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Abstract Coral records of surface‐ocean conditions extend our knowledge of interannual
El Niño–Southern Oscillation (ENSO) variability into the preinstrumental period. That said, the wide range
of natural variability within the climate system as well as multiple sources of uncertainties inherent
to the coral archive produce challenges for the paleoclimate community to detect forced changes in ENSO
using coral geochemical records. We present a new coral proxy system model (PSM) of intermediate
complexity, geared toward the evaluation of changes in interannual variance. Our coral PSM adds additional
layers of complexity to previously published transfer functions of sensor models that describe how the
archive responds to sea surface temperature (SST) and salinity. We use SST and salinity output from the
Community Earth System Model Last Millennium Ensemble 850 control to model coral oxygen isotopic
ratios and SST derived from Sr/Ca. We present a detailed analysis of our PSM using climate model output for
sites in the central and southwest Pacific before extending the analyses to span the broader tropical
Pacific. We demonstrate how variable growth rates, analytical and calibration errors, and age model
assumptions systematically impact estimates of interannual variance and show that the relative magnitude
of the change in interannual variance is location dependent. Importantly, however, we find that even
with the added uncertainties in our PSM, corals from many circum‐Pacific locations are broadly able to
capture decadal and longer (decadal+) changes in ENSO variability. Our code is publicly available on
GitHub to facilitate future comparisons between model output and coral proxy data.

Plain Language Summary Climate scientists use the chemistry of coral skeletons to study past
tropical climate conditions. The elemental ratio of strontium to calcium (Sr/Ca) and the oxygen isotopic
composition (δ18O) in the coral skeleton are used to reconstruct past sea surface temperature and salinity.
Coral Sr/Ca varies in response to changes in sea surface temperature, whereas coral δ18O records both
changes in temperature and salinity. Individual corals provide tens to hundreds of years of climate
information from the tropical oceans. They are well‐suited for studying variability related to the
El Niño–Southern Oscillation (ENSO), a climate phenomenon that impacts global temperature and rainfall
patterns every few years. We rely on both climate proxy data and simulations from global climate
models to study changes in ENSO variability in the past. Nevertheless, it is difficult to directly compare proxy
data with climate model output due to the imperfect nature of how the climate signal is recorded in the coral
skeleton. Proxy system models are a tool designed to help bridge the gap between climate information
recorded in corals and climate model output. In this study, we develop a coral proxy system model to
demonstrate how different processes impact a coral's ability to record changes in ENSO variability.

1. Introduction

Geochemical records from massive corals provide decades to centuries of subannually resolved proxy cli-
mate data from the tropical oceans (Fairbanks et al., 1997; Gagan et al., 2000; Grottoli & Eakin, 2007;
Lough, 2010). The ratio of strontium to calcium (Sr/Ca) and the oxygen isotopic composition (δ18O) of coral
skeletal material are established climate proxies (Corrège, 2006; DeLong et al., 2013; Fairbanks et al., 1997;
Lough, 2010). Sea surface temperature (SST) exerts the dominant climate control on coral Sr/Ca (Beck
et al., 1992; Smith et al., 1979; Weber, 1973), whereas coral δ18O is jointly influenced by SST and the
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oxygen isotopic composition of seawater (δ18Osw) (Gagan et al., 1998; Ren et al., 2003; Weber &
Woodhead, 1972), the latter of which is impacted by similar processes as sea surface salinity (e.g., rainfall,
evaporation, advection of different water masses, and freshwater runoff) (LeGrande & Schmidt, 2006).
One of themajor climate applications of geochemical records from tropical Pacific corals is to provide insight
about El Niño–Southern Oscillation (ENSO) variability during preinstrumental times.

ENSO is the leading mode of interannual climate variability and has global impacts on temperature and pre-
cipitation patterns (Bjerknes, 1969; Ropelewski & Halpert, 1987). SST anomalies (SSTA) averaged across the
Niño 3.4 region in the central equatorial Pacific (5°N to 5°S, 120–170°W) are canonically used to determine
the occurrence of ENSO events (Trenberth, 1997). Observed SSTA from the Niño 3.4 region shows an
increase in the magnitude and frequency of extreme ENSO events over the last few decades (Trenberth &
Hoar, 1996; Wang et al., 2019). That said, instrumental observations are of insufficient length (Deser
et al., 2010; Fairbanks et al., 1997) to characterize the full range of natural variability in ENSO
(Wittenberg, 2009). Furthermore, tropical climate variability is a major source of uncertainty in climate
model simulations that project how the Earth will respond to increasing greenhouse gas emissions
(Chung et al., 2019; Collins et al., 2013). Different model simulations of future changes in ENSO differ widely
in their response to the external forcing of increasing greenhouse gas emissions, as well as in their simulated
range of natural (unforced) variability within the climate system (Bellenger et al., 2014; Cai et al., 2014, 2015;
Collins et al., 2010; DiNezio et al., 2013). Uncertainties about ENSO projections for the future are a motiva-
tion to study ENSO under past climate conditions when the Earth experienced different background condi-
tions. Coral‐based climate records that overlap with, and extend beyond, the instrumental period provide
important tests of climate model simulations of ENSO (Cobb et al., 2013; Emile‐Geay et al., 2016; Gagan
et al., 2000; Schmidt et al., 2014).

There are, however, several sources of uncertainty that impact our ability to understand past changes in
ENSO variability. These sources of uncertainty include those due to the climate system as well as those from
the coral archive. ENSO behavior can vary in the absence of forcings external to the climate system (Deser
et al., 2012; Wittenberg, 2009), making it difficult to separate internally versus externally driven changes in
variability from short coral records. Clear links between the climate variability experienced at an individual
reef site and ENSO must be established through observational study. Lastly, the coral archive itself impacts
how a climate signal is recorded. Sources of climate and coral‐related uncertainties that impact our ability to
characterize past changes in ENSO variability include, but are not limited to the following:

1. the fidelity of a point‐source location to capture regional changes in ENSO variability;
2. the range of natural variability within the climate system;
3. the ability of coral Sr/Ca and δ18O to record ocean‐climate variables;
4. uncertainties in the coral archive that may obscure the climate signal of interest (e.g., variable growth

rates); and
5. proxy observation uncertainties (e.g., analytical, calibration, dating, and age model errors)

A proxy system model (PSM) addresses Points 3–5 of the uncertainties listed above, and serves as an impor-
tant bridge between proxy data and observations or model output (and see Evans et al., 2013; Dee et al., 2015
for a review). PSMs mathematically model how different processes impact a climate signal that emerges
from the proxy data. Typically, paleoclimate proxy data is used to reconstruct a climate variable (e.g., SST)
using empirically determined calibration equations (Corrège, 2006). Conversely, forward modeling using a
PSM broadcasts observations or climatemodel output into pseudoproxy time series, providing a forward esti-
mate of the proxy signal (Dee et al., 2015; Evans et al., 2013). Previous coral proxy system modeling work
developed a transfer function of the sensor model to forward model pseudocoral δ18O as a linear combina-
tion of SST and sea surface salinity (SSS) (Brown et al., 2008; Thompson et al., 2011):

δ18Opseudocoral¼a1SSTþ a2SSS

(from Thompson et al., 2011)

The coefficient a1 is based on the inverse SST dependence that arises from thermodynamic fractionation
(Epstein et al., 1953), and the coefficient a2 is based on observed δ18Osw‐SSS relationships (LeGrande &
Schmidt, 2006); (see section 2.3.1). Coral PSMs have been employed in previous work to compare a suite
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of coral δ18O records (Ault et al., 2009) with pseudocorals generated from
instrumental observations and climate model simulations for the twenti-
eth century (Thompson et al., 2011). Coral PSMs have also been used to
quantify uncertainties in climate signal interpretation (Dee et al., 2015),
including errors in coral‐based ENSO amplitude (Russon et al., 2015) or
ENSO variability estimates (Stevenson et al., 2013).

In this study, we add additional layers of complexity to these previously
published transfer functions that describe how the coral archive responds
to SST and salinity (Dee et al., 2015; Thompson et al., 2011). We use sur-
face temperature and salinity output from the Community Earth System
Model Last Millennium Ensemble (CESM‐LME) (Otto‐Bliesner
et al., 2016) to model pseudocoral δ18O and SST derived from Sr/Ca
(SSTSr/Ca). The model is applied to two sites in the central (Kiritimati)
and southwest Pacific (Vanuatu) as case studies to demonstrate the sub-
components of our PSM, and then our pseudoproxy network is expanded
to span the broader tropical Pacific.

Our specific objective is to identify how uncertainties associated with (1)
analytical and calibration errors, (2) variable growth rates, and (3) age
modeling assumptions impact interannual variance and the ability of a
pseudocoral to capture decadal and longer (decadal+) changes in ENSO
variability. Although precise month‐to‐month SST variations in the
Niño 3.4 region are a common target for ENSO studies, this is challenging
for paleoclimate studies because of temporal uncertainties in proxy
records (Emile‐Geay et al., 2013a, 2013b). Thus, we focus on how various
coral processes impact estimates of decadal+ changes in ENSO variability
in coral paleoclimate reconstructions. Section 2 describes the coral PSM
framework and the various submodels. Section 3 provides results and
discusses the impact of the three coral uncertainties on interannual
variance, as well as a coral's ability to capture changes in ENSO variabil-
ity. The conclusions are provided in section 4.

2. A New Coral PSM

Proxy system models are tools used to evaluate the contribution of local
environmental signals and their variability on the measured proxy record

and have been widely employed to assess uncertainties in paleoclimate data for a variety of geological
archives and proxy types (e.g., Comboul et al., 2014; Dee et al., 2015, 2018; Evans et al., 2007, 2013;
Herron & Langway, 2017; Johnsen et al., 2000; Partin et al., 2013; Roden et al., 2000; Thompson et al., 2011;
Wong & Breecker, 2015). This study introduces a coral PSM that builds upon previous work and adds new
layers of complexity by incorporating uncertainties related to the following:

1. variable growth rates experienced when sampling a coral along the maximum growth axis;
2. analytical and calibration errors; and
3. seasonal chronological uncertainties associated with transforming coral geochemical data from the

depth to the time domain (herein referred to as the age model).

The additions presented here adhere to the PSM submodel framework described in Evans et al. (2013) where
a PSM consists of environment, sensor, archive, and observation subcomponents (Figure 1). This is the first
study to include an archive‐based coral PSM with a variable growth rate algorithm. Analytical and calibra-
tion errors as well as the age model assumptions fall within the observation subcomponent of the PSM.

Our coral PSM allows the user to run different permutations of the various archive and observation submo-
dels (Figure 1 arrows). For example, to isolate the impact of age modeling assumptions the user can solely
perturb pseudocoral δ18O or SST derived from Sr/Ca (SSTSr/Ca) with the age model algorithm (Figure 1).
The full coral PSM herein refers to first perturbing the coral sensor output with the variable growth rate

Figure 1. Coral proxy system model (PSM) schematic. The sea surface
temperature (SST), sea surface salinity (SSS), or the oxygen isotopic
composition of sea water (δ18Osw) environmental inputs (green box) can
come from instrumental observations, climate model output, or reanalysis
data (Dee et al., 2015; Evans et al., 2013). Here and in all subsequent figures,
SSTSr/Ca refers to SST derived from coral Sr/Ca. The coral δ18O sensor
model (Thompson et al., 2011) accounts for sensitivity to SST and δ18Osw
(SSS). The growth rate archive model (purple box) describes how an
environmental signal may be emplaced or transformed in the coral archive
due to variable growth rates. The coral observation models (blue boxes)
include the combined effect of analytical and calibration errors, as well as
age model uncertainties that arise from transforming the coral geochemical
from the depth to the time domain. Arrows show possible permutations
of the archive and observation submodels to yield pseudocoral output
perturbed by the coral PSM (gray boxes). The full coral PSM refers to
consecutively perturbing the environmental inputs with the variable
growth rate, analytical and calibration, and age model algorithms.
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algorithm, followed by analytical and/or calibration errors, and the then age modeling algorithm (follow the
center arrows in Figure 1). With this framework we can also useMonte Carlo methods to generate many rea-
lizations of pseudocoral δ18O or SSTSr/Ca in order to quantify the uncertainty in coral‐inferred estimates of
variance. This study focuses on how various uncertainties impact interannual variance, a leading time scale
of interest for coral‐based paleoclimatology.

2.1. Coral PSM Input Variables

In this study, we use surface temperature and salinity output from the CESM‐LME 850 control (Otto‐Bliesner
et al., 2016) as the environmental inputs to demonstrate how the new coral PSM quantifies how the coral
archive affects interannual variance in coral climate reconstructions. The environmental inputs for the coral
PSM are SST, sea surface salinity (SSS), and δ18Osw if available (Figure 1). These climate variables can be from
instrumental observations or model output, though we choose to only usemodel output for this study. In this
study, we use surface temperature and salinity output from the CESM‐LME 850 control (Otto‐Bliesner
et al., 2016) as the environmental inputs. The CESM‐LME uses version 1.1 of CESM with the Community
Atmospheric Model Version 5, CESM1(CAM5) (Hurrell et al., 2013). The CESM‐LME has ~2° resolution
for the atmosphere and ~1° resolution for the ocean. We use the 2‐m surface temperature output from the
atmosphericmodel (CAM5), which will equal SST over the ocean. The surface salinity (0–10m depth) output
was gridded to the same ~2° resolution as the atmospheric components to facilitate forward modeling coral
δ18O as a linear combination of SST and SSS (section 2.3.1).

We focus on CESM as this model exhibits realistic ENSO dynamics (DiNezio et al., 2017;Wu et al., 2019), and
there are no changes in external forcing throughout the CESM‐LME 850 control simulation (Otto‐Bliesner
et al., 2016), hence all of the changes in interannual variability within the simulation are unforced. The
850 control is also sufficiently long (1,156 years) to sample across a wide range of internal variability, which
is not possible in the short instrumental record (Stevenson et al., 2010; Wittenberg, 2009). Implementing our
new coral PSM using CESM‐LME allows us to quantify how different assumptions and uncertainties inher-
ent to the coral archive impact interannual variance in a geochemical time series, while minimizing the
impacts of a stationarity assumption by removing any effects that could result from external forcing. Here,
the proxy uncertainties are evaluatedwithin the simulated climate generated by themodel, such that we con-
strain ourselves to the CESM‐LME's simulation of tropical Pacific variability, including ENSO. Due to model
biases, the spatial patterns observed using the CESM‐LMEmay not be strictly comparable to other models or
instrumental observations, but the general results about how the three coral uncertainties impact interann-
ual variability within the framework of CESM are broadly applicable to other environmental inputs. Due to
model biases, we caution future users of the PSM to avoid direct point‐to‐point comparisons between coral
observations and climate model output from a single grid point. Care must be taken to select a region in
the model that best matches the climate conditions observed at the proxy site.

2.2. Case Studies: Kiritimati and Vanuatu

ENSO involves basin‐scale atmospheric and oceanic interactions across the tropical Pacific, with the largest
interannual signal occurring in the central and eastern equatorial Pacific. In contrast, coral heads are point
source locations (on the scale of meters) that are impacted by both regional and local climate processes.
Thus, there needs to be a demonstrated link between climate variability at the individual reef site and
ENSO. Modern and paleo‐ENSO studies have targeted sites within the Niño 3.4 region (Cobb et al., 2013;
Emile‐Geay et al., 2016), as well as sites in the eastern, western, and southwest Pacific that are sensitive to
changes in ENSO variability (Hereid, Quinn, & Okumura, 2013). For example, the western and southwest
Pacific contain a large number of islands that are home to abundant modern and fossil coral heads for paleo-
climate studies (Cole et al., 1993; DeLong et al., 2012; Gorman et al., 2012; Hereid, Quinn, Taylor, et al., 2013;
Jimenez et al., 2018; Kilbourne et al., 2004; Linsley et al., 2006; and many others).

We choose two end‐member localities at Kiritimati (2°N, 157°W) and Vanuatu (16°S, 167°E) to apply our
coral PSM for testing how different processes and uncertainties inherent to coral‐based paleoclimatology
impact interannual variance. Kiritimati, located in the central equatorial Pacific, has a small annual cycle
and a large interannual response to ENSO, whereas Vanuatu, located within the South Pacific
Convergence Zone, has a larger annual cycle and a smaller interannual response to ENSO. In all instances,
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when selecting the environmental input for the coral PSM, we use the model output from the grid point
closest to the selected sites.

2.3. Coral Sensor Models
2.3.1. Pseudocoral δ18O
We use the coral sensor model of Thompson et al. (2011) to forward model mean‐removed pseudocoral δ18O
anomalies (Δδ18Opseudocoral) as a linear combination of SST and δ18Osw or salinity anomalies:

Δδ18Opseudocoral ¼ a1ΔSSTþ Δδ18Osw (1)

Δδ18Opseudocoral ¼ a1ΔSSTþ a2ΔSSS (2)

TheΔ symbol indicates the removal of themean of the full‐length SST and SSS/δ18Osw input time series such
that the resulting δ18Opseudocoral anomalies are centered around zero. The coefficient a1 is based on the
inverse SST dependence that arises from thermodynamic fractionation (Epstein et al., 1953). The tempera-
ture dependence for δ18O at individual coral sites may range from −0.10 to −0.34‰/°C (Evans et al., 2000),
whereas studies that synthesize the results frommultiple locations report values of−0.20 (Evans et al., 2000)
and−0.22 (Lough, 2004), which are close to the inorganic slope of−0.22‰/°C (Epstein et al., 1953). Here we
use a slope −0.22‰/°C for a1 as used in Thompson et al. (2011).

SSS and δ18Osw are often assumed to be linearly proportional as they are impacted by similar precipitation,
evaporation, and advection processes (LeGrande & Schmidt, 2006). We use Equation 2 and approximate a2
using observed δ18Osw‐SSS slopes determined from basin‐scale regression analysis (LeGrande &
Schmidt, 2006). Limited δ18Osw and SSS observations (LeGrande & Schmidt, 2006), spatiotemporal
variability in the δ18Osw‐SSS relationship (Conroy et al., 2017), or subgrid processes affecting δ18Osw

(Stevenson et al., 2015) can lead to large errors on interannual variance (Russon et al., 2015; Stevenson
et al., 2013) and hinder direct comparison between forward modeled pseudocorals and coral proxy
observations. That said, since our study focuses on the impact of other processes on interannual variance
we define a2 as 0.27 for tropical Pacific latitudes north of 5°S (e.g., Kiritimati), and 0.45 for latitudes south
of 5°S (e.g., Vanuatu) as defined in LeGrande and Schmidt (2006).
2.3.2. Pseudocoral SST Derived From Sr/Ca (SSTSr/Ca)
The inverse relationship between coral Sr/Ca and temperature is an established proxy for reconstructing SST
(Beck et al., 1992; Corrège, 2006; Gagan et al., 2000; Lough, 2010; Quinn & Sampson, 2002). Slope values for
the linear Sr/Ca‐SST transformation typically fall within the −0.06 ± 0.01 (±1σ) mmol/mol/°C range for the
Indo‐Pacific (Corrège, 2006). Uncertainties in the Sr/Ca‐SST calibration can yield errors in the SST
reconstruction up to 0.35°C (±2σ) (Quinn & Sampson, 2002), although this uncertainty may be larger based
on interlaboratory comparisons (Hathorne et al., 2013) and reproducibility studies (Sayani et al., 2019). A
published coral Sr/Ca sensor model does not exist at the time of this study but it could be incorporated into
our coral PSM framework in the future. Given that a variety of slope values are published in the literature, in
this study we assume that the original SST input to the coral PSM is a reasonable approximation of SST
derived from coral Sr/Ca (SSTSr/Ca). This assumption helps circumnavigate some of the challenges asso-
ciated with developing a universally applicable coral Sr/Ca sensor model. Importantly, this assumption also
helps facilitate comparison between SSTSr/Ca processed using the coral PSM algorithms and the original,
unperturbed SST output from the model. The error in the Sr/Ca‐SST calibration is considered in our PSM,
as further discussed in section 2.5.1.

2.4. Coral Archive Model: Variation in Coral Growth Rates

Subseasonal resolution is a goal of many coral paleoclimate studies that seek to quantify changes in inter-
annual variance. However, a coral's growth rate may vary both within and between years. For example, a
Porites coral growing an average of 1.2 cm/year would achieve approximately monthly resolution if sampled
in 1 mm increments. Although monthly resolution is targeted, one sample of coral powder may average
2–3 weeks (−2σ) of time when the coral is growing faster, or 5–6 weeks (+2σ) when the coral is growing
slower. Due to variable growth rates, the net effect of equal sampling in the depth domain will lead to
unequal sampling in the time domain. We use our coral PSM to assess how variations in coral growth impact
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the variance of a resulting geochemical time series when the coral is sampled at a fixed sampling resolution
(e.g., 1 mm).

High‐precision calipers were used tomeasure the annual growth rates of ninemodern and fossil Porites cores
from Vanuatu to generate a distribution of growth rates with a mean of 1.2 ± 0.2 cm/year (±1σ). The
measured growth rate values are consistent with the reported average values for Porites corals from other
regions of the tropical Pacific (Cobb et al., 2013). We incorporate variable growth rates into the coral PSM
using an autoregressive order 2, AR(2), model since the measured annual growth rates are serially correlated
and cannot be modeled with an independent error term. The lag 1 and 2 correlation coefficients (0.25 and
0.20, respectively), and the standard deviation (0.2 cm/year) for the AR(2) model are based on the nine mea-
sured Porites corals. The AR(2) model is used to generate a series of annual growth rates (Figure 2a). The dis-
tribution of simulated growth rates (Figure 2b) is consistent with the measured coral growth rates given a
large n, as the simulated growth rates are pulled from a distribution based on measured growth rates. The
parameters for the AR(2) model can easily be adjusted for different species or for a different median
and/or standard deviation of growth rates.

A single realization of the AR(2) model provides a transformation from the time to the depth domain. One
random realization for SST and forward modeled Δδ18Opseudocoral is provided at Kiritimati and Vanuatu as
an illustrative example of how the algorithm works (Figures 3a–3d). The pseudocoral annual growth rates
are used to stretch and compress the original PSM inputs to mimic how equal sampling in the depth domain
can yield to unequal sampling in the time domain. The net effect of the variable growth rate algorithm is that
the pseudocoral output looks stretched and compressed relative to the original input. Monte Carlo methods
are used to generate n number of random realizations of the AR(2) model that are then used to stretch and
compress the original, unperturbed SST or Δδ18Opseudocoral input time series n number of times.

2.5. Coral Observation Models
2.5.1. Analytical and Calibration Errors
Monte Carlo methods are also used to randomly generate 1,000 Δδ18Opseudocoral time series perturbed with
analytical errors, and 1,000 and SSTSr/Ca time series perturbed with the combined impact of analytical and
calibration errors. The analytical and calibration errors are both modeled as Gaussian white noise, such that
they sum accordingly (Figures 3e–3h). For Δδ18Opseudocoral, analytical errors are taken as 0.20‰ (±2σ), a
value typical of laboratory analytical precision. For coral SSTSr/Ca, we incorporate the combined effect of
the analytical instrument error, as well as the linear calibration error associated with transforming coral

Figure 2. Simulated annual coral growth rates (cm/year). (a) A randomly generated realization of simulated growth rates for 100 pseudocoral annual density
bands. The growth rates are simulated using an autoregressive order 2, AR(2), model with lag coefficients and variance parameters determined from
measured Porites corals from the Southwest Pacific (section 2.4). This figure shows one randomly generated realization of the AR(2) simulated growth rates. We
note that the variable growth rate model could be run multiple times to generate n realizations that are subsequently used to stretch and compress the
original input to the coral PSM. (b) Histogram of modeled pseudo Porites annual growth rates (1.2 ± 0.2 cm/year, ±1σ). The pseudocoral annual growth rates are
used to stretch and compress the environmental inputs to mimic how equal sampling in the depth domain can yield to unequal sampling in the time domain.
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Sr/Ca into SST. Previous studies identified that the net effect of analytical and calibration errors can cause
uncertainties of ~0.30°C in Sr/Ca‐SST reconstructions (±2σ) (Alibert & McCulloch, 1997; Quinn &
Sampson, 2002; Schrag, 1999). The original SST environmental inputs are thus perturbed with Gaussian
white noise that includes the combined impact of analytical and calibration errors (0.30°C, ±2σ). The
error term for SSTSr/Ca can be changed within the PSM framework to account for larger analytical and
calibration error terms (Corrège, 2006; DeLong et al., 2013; Hathorne et al., 2013; Sayani et al., 2019)
based on user need.
2.5.2. Monthly Coral Chronology
The creation of an age model in coral paleoclimate studies requires the measured climate indicator (proxy)
be transformed from the depth into the time domain.We investigate the impact of key agemodeling assump-
tions on interannual variance. We note that the assumptions discussed here are different than the

Figure 3. Impact of variable growth rates and analytical and calibration errors on environmental signals. (a–d) Blue curves depicts the original SST (a, c) and
Δδ18Opseudocoral (b, d) inputs transformed from the time to the depth domain using a realization of the AR(2) variable growth rate model. Gray curves
indicate the original inputs transformed to the depth domain using a constant transformation of 1.2 cm/year (i.e., no variable growth rates) for the model grid
points closest to Kiritimati (a, b) and Vanuatu (c, d). Model output in this and all subsequent figures are from the CESM‐LME 850 control (Otto‐Bliesner
et al., 2016) (section 2.1). Δδ18Opseudocoral (‰, VSMOW) in this and all subsequent figures is generated using the sensor model of Thompson et al. (2011)
(section 2.3.1). We refer the reader to Friedman and O'Neil (1977) for the conversion to‰, VPDB. (e, g) Pseudocoral SSTSr/Ca perturbed with the combined effect
of analytical and calibration errors (±0.30°C, 2σ; section 2.5.1) at the model grid points closest to Kiritimati (e) and Vanuatu (g). (f, h) Δδ18Opseudocoral
perturbed with analytical error (±0.20‰, 2σ; section 2.5.1) for Kiritimati (f) and Vanuatu (h). Black line in (e)–(h) indicates the unperturbed environmental inputs
for the selected sites, and the blue shading represents the spread of forward modeled pseudocoral time series (n = 1,000). For illustrative purposes, each panel
includes a 20‐year subset of the 850 control to show how variable growth rates and analytical/calibration errors impact the original inputs.
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uncertainties that arise from missing or double counting years in annually banded archives (Comboul
et al., 2014) that have been previously incorporated into existing PSM frameworks (Dee et al., 2015).

The chronology for coral data that has been sampled at approximately monthly resolution typically uses
annual cyclicity in the data to constrain a relative chronology. For coral Sr/Ca, larger values indicate cooler
temperatures, while smaller values indicate warmer temperatures (Beck et al., 1992; Smith et al., 1979;
Weber, 1973). For coral δ18O, surface conditions often constructively interfere such that more negative
extrema indicate warmer and/or fresher conditions, while more positive extrema indicate cooler and/or
more saline conditions (Corrège, 2006; Fairbanks et al., 1997; Lough, 2010), though exceptions may occur.
When constructing an agemodel, the peaks and troughs in the coral geochemical data are assigned a specific
calendar month based on knowledge about the climatology at the site. For example, if the site on average
experiences the warmest SST during June and the coolest SST during December, then the Sr/Ca minima
are assigned the month of June and the Sr/Ca maxima are assigned the month of December. Coral δ18O is
a function of SST and the δ18Osw (SSS), so the input for the climatological extrema in δ18Omay be dominated
by temperature, salinity, or a combination of the two variables. Once identifying all the geochemical
extrema, the coral data are interpolated to achieve evenly spaced monthly resolution. The resulting relative
age model can be further refined by overlapping the coral record with instrumental observations (modern
corals only) and with high‐precision 230Th ages that serve as absolute chronological constraints with errors
~1% of the age (Cheng et al., 2013; Shen et al., 2012).

We developed a MATLAB® algorithm to standardize coral age modeling and have made it publicly available.
The age model algorithm assumes that the coral was optimally sampled along the maximum growth
axis (DeLong et al., 2013) at subseasonal resolution. The coral geochemical data (in the depth or
sample‐number domain) is the first required input for the age model algorithm. There are several additional
inputs supplied by the user based on their individual lab procedures. First, the user must provide the esti-
mated sampling resolution of the coral (e.g., 10–14 samples per annual growth band). The user must also
supply the calendar month that corresponds to the annual peaks and trough in the geochemical data. For
Sr/Ca (or SSTSr/Ca as in this study), this input would be the climatological warmest and coolest months at
the coral site. The climatological month assignment can be determined from instrumental observations or
model output for past time intervals when the annual cycle is not known. The target temporal resolution
for the age modeled output defaults to monthly resolution (12 points/year), but this parameter can be chan-
ged by the user if desired.

We demonstrate the utility of the age model algorithm using SST from the grid points nearest to Vanuatu
and Kiritimati as illustrative examples (Figures 4 and 5). The age modeling approach for Δδ18Opseudocoral

is identical and produces similar results (Figures S1 and S2 in the supporting information). The age model
uses a standard peak finding algorithm in the MATLAB® software (findpeaks) to identify local minima
and maxima (i.e., inflection points) in the geochemical data (Figures 4c and 5c), herein referred to as critical
points. To identify the critical points the input coral data are first 2‐month low‐pass filtered to smooth out
high‐frequency noise and better‐illuminate the annual cyclicity in the data. The peak‐finding algorithm then
finds all of the peaks and troughs in the low‐pass filtered data, and then ranks the critical points by their pro-
minence (i.e., height) as well as their location relative to other prominent extrema. This ranking scheme
ensures that the critical points are not spaced too closely or too far apart given the original sampling resolu-
tion of the data. The locations of the highest ranked peaks/troughs in the low‐pass filtered time series are
then mapped to the original input data set. The selected critical points are then assigned a calendar month
based on the climatological input (Figures 4a and 5a). The data are then interpolated to monthly resolution
using the geochemical extrema as tie points (Figures 4f and 5f). Our interpolation scheme uses a piecewise
linear transformation (Fritsch et al., 1980).

The algorithm also contains an option to constrain the number of years based on an approximate number of
annual density bands visible in a coral's X‐ray image. The number of years constraint is often not necessary
for sites with a clear annual cycle (e.g., the southwest Pacific), but may be necessary for sites with a small
and/or noisy annual cycle (e.g., the equatorial Pacific). The age model algorithm is deterministic, meaning
that for a given Sr/Ca or δ18O input series the age model will find a single solution that meets the constraints
provided by the user. In the context of the full coral PSM presented here, multiple realizations of age
modeled pseudocoral output can be generated by first perturbing the PSM input with the variable growth
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rate algorithm (section 2.4). Alternatively, the user can follow the protocol of the Comboul et al. (2014)
banded age model and perturb the number of years constraint within error.

3. Results and Discussion

After developing the submodels of our coral PSM, including the three additions that model variable growth
rates in the context of sampling, analytical and calibration errors, and age model assumptions, we now apply
the model to constrain the climatic impacts. These three sources of uncertainty alter the input climate sig-
nals and impact estimates of interannual variance and ENSO variability inferred from the pseudocorals.
Tropical reefs are point sources for paleoclimate reconstructions; by contrast, with climate model output
the coral PSM can be run at every grid point in the tropical Pacific to identify regional patterns. Broad regions
of the tropical Pacific exhibit distinct patterns when the original environmental inputs are perturbed using
the coral PSM. We separate the identified patterns into three subsections: changes in the standard deviation
of monthly anomalies as recorded by corals, decadal and longer changes in ENSO variability, and decadal
and longer changes in ENSO variability as recorded by corals.

3.1. Quantifying Changes in Interannual Variability: Monthly Standard Deviation

The percent change in standard deviation between the perturbed pseudocorals and the original
(unperturbed) SST or Δδ18Opseudocoral climatology‐removed anomalies is a method used to quantify changes
in interannual variance. The percent difference between the unperturbed anomalies and the anomalies that
result from that PSM (Figure 6) is calculated using the median standard deviation value for n realizations of

Figure 4. Age modeling of pseudocoral SST at Vanuatu. Climatology (black) ±1σ (shading) for the original (a) and age‐modeled (d) SST output for the grid point
nearest Vanuatu in the CESM‐LME 850 control (n = 1,156 years). Histogram of the warmest (red bars) and coolest (blue bars) month for each individual
year in the (b) 850 control and the (e) age modeled SST output. The climatological warmest/coolest months are indicated with dashed vertical lines in (b, e).
(c) 10 years of the (c) unperturbed monthly SST and the (f) age modeled monthly SST at Vanuatu. Triangles in (a), (c), (d), and (f) indicate the climatological
warmest (February) and coolest (August) months. The black circles in (c) indicate the peak/troughs identified by the age model algorithm, and the
adjacent text labels indicate the calendar month at each critical point. (g) Monthly SSTA for the original input (black) and age modeled pseudocoral SST (teal). In
this and all subsequent figures, anomalies are with respect to the climatology of the full‐length control run. The warmest/coolest month distributions in
(b) and (e) are wider than a single month and is directly related to a loss of interannual variance in (g).
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the perturbed pseudocoral monthly anomaly time series. The percent change in standard deviation
highlights site dependencies in the results. The changes in interannual variance between the original
environmental inputs and the coral PSM output at a given location is linked to both the amplitude of the
interannual signal and the annual cycle. Analytical and calibrations errors (section 2.5.1) cause a
systematic increase in interannual variance for pseudocoral SSTSr/Ca (Figure 6b) and Δδ18Opseudocoral

(Figure 6f) compared to the original environmental inputs. Regions of the Pacific with a large interannual
signal (Figures 6a and 6e) are less impacted by analytical/calibration errors compared to regions with a
smaller interannual signal.

For the age modeling assumptions, we first assess how the algorithm (section 2.5.2) impacts interannual
variance locally at Kiritimati and Vanuatu before extending the analysis to the broader tropical Pacific.
SST from the grid points nearest to Vanuatu and Kiritimati are provided as illustrative examples
(Figures 4 and 5; section 2.5.2). The results for Δδ18Opseudocoral are similar (Figures S1 and S2). Simulated
SST at Vanuatu shows a clear annual cycle with the climatological warmest month occurring in February
and the climatological coolest month in August (Figure 4a). The algorithm does well in identifying the
timing of the austral warm/cool season peaks at Vanuatu (Figure 4c, black circles). The algorithm assigns
the critical points the climatological warmest (February) and coolest (August) months, and the data are
linearly interpolated between the critical points to generate the age modeled time series (Figure 4f). At
Kiritimati, where the annual cycle is smaller (Figure 5a), the algorithm encounters more difficulties in iden-
tifying seasonal extrema due to the relatively large amplitude of interannual variability, as compared to the
amplitude of the seasonal cycle (Figures 5b and 5c). Uncertainty in the age model of a coral record results
when the common assumption that the months of the climatological extrema do not change is violated.

To show how this uncertainty manifests, we show the spread in the distribution of the warmest and coolest
months. Although February and August are climatologically the warmest and coolest months at Vanuatu,

Figure 5. Age modeling of pseudocoral SST at Kiritimati. Same as Figure 4 except for the grid point nearest to Kiritimati. Triangles in (a), (c), (d), and (f) indicate
the climatological warmest (June) and coolest (October) months. Years with strong El Niño events (e.g., model years 8 and 9) have a reduced annual cycle
and a small and/or absent trough during boreal winter, leading to incorrect month assignment in (f) that results in a reduction in interannual variance in anomaly
space (g).
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Figure 6. Pseudocoral SSTSr/Ca and δ18O changes in interannual variance. (a) Standard deviation (SD) of monthly SSTA in the LME 850 control. Warm colors
highlight regions with the largest interannual signal. (b) Percent difference in SD between pseudocoral SSTSr/Ca anomalies perturbed with analytical and
calibration errors and the SD of the unperturbed SST anomalies. (c) Amplitude of the annual SST cycle in the LME 850 control. (d) Percent change in SD between
age modeled pseudocoral SSTSr/Ca anomalies and the original, unperturbed SST anomalies. (e) SD of monthly forward modeled Δδ18Opseudocoral. (f) Percent
difference in SD between pseudocoral δ18O anomalies perturbed with analytical errors and the SD of the unperturbed Δδ18Opseudocoral anomalies. (g) Amplitude
of the annual Δδ18Opseudocoral cycle in the 850 control. (h) Percent change in SD between age‐modeled pseudocoral Δδ18O anomalies and the original,
unperturbed Δδ18O anomalies. The percent difference in SD for the full‐length time series (~1,156 years) is reported. The SD for the coral PSM output is the
median of 1,000 realization in (b) and (f) and 1 realization of the deterministic age model (d, h). The Niño 3.4 region is outlined by a white box (a–h). The changes
in interannual variance from analytical/calibration errors (b, f) is inversely related to the magnitude of the interannual signal (a, e), whereas the change in
variance from age modeling (d, h) is linked to the amplitude of the annual cycle (c, g). Colormaps in this and all subsequent maps use the cmocean: colormaps for
oceanography toolbox (Thyng et al., 2016).
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there are years in which other months are the warmest or coolest (Figure 4b). That said, the overall spread in
the distribution of the warmest and coolest months at Vanuatu (Figure 4b) is narrow. Since the distribution
is narrow the age model algorithm has more success in identifying the correct calendar month in the
extrema in the time series. That said, there is still an incorrect month assignment in the age model. For
example, March is the actual warmest month in model year 4, but the age model algorithm assigns
the month of February to the SST peak (Figure 4c). In contrast, the distribution of the simulated
warmest/coolest months at Kiritimati (Figure 5b) is broad, such that there is a large error in assigning the
correct calendar month to the extrema. In worst‐case scenarios, model years with strong El Niño events have
a small, nearly absent annual cycle with SSTs during boreal winter (December–February) surpassing the
climatological summertime maximum values typically experienced in June. Without constraining the
approximate number of years, it is easy to miss weak troughs during boreal winters with El Niño events,
and therefore miss years. These age model assumptions can yield large differences (~10–30%) in interannual
variance when the climatology of the age modeled time series (Figures 5d and 5f) is removed from incor-
rectly assigned months to generate SST anomalies (Figure 5g).

Globally, the increase in annual cycle regularity induced by the age model (section 2.5.2) broadly tends to
cause a decrease in interannual variance across most of the tropical Pacific (Figures 6d and 6h). The largest
percent change in standard deviation occurs in the central Pacific and eastern Pacific cold tongue regions
where ENSO events can lead to climatologically coolest months that are warmer than the climatologically
warmest months. It is thus difficult to identify a trough in the geochemical data and accurately assign a
month to the data when age modeling (section 2.5.2). The age model effects are particularly exacerbated
in the CESM‐LME due to biases in the amplitude of ENSO events (Otto‐Bliesner et al., 2016). Conversely,
pseudocorals generated at sites with a larger annual cycle and less variable distribution of warmest and
coolest months have a smaller reduction in interannual variance compared to the original environmental
input (Figures 6d and 6h). Outside of the tropics, however, sites that have multiple consecutive months with
approximately the same average SST value experience an increase in variance (Figure 6d). For a given site,
the magnitude of the percent change is typically larger for Δδ18Opseudocoral compared to SST given that δ18O
is multivariate and may have contributions from SSS that may be a few months out of phase with SST (e.g.,
Gorman et al., 2012) (Figure 6d versus Figure 6h).

The percent change in standard deviation for the full coral PSM (Figure 7) reveals the tradeoff between inter-
annual variability and the amplitude of the annual cycle. At locations with the strongest interannual signal
(equatorial sites), the loss of variance due to the age model assumptions, that is, incorrect months assigned to
extrema, exerts the dominant influence on interannual variance for pseudocoral SSTSr/Ca (Figure 7a) and
δ18O (Figure 7b). Although age model uncertainty also causes a decrease in variance in regions like the
southwest Pacific, the relative magnitude of the change is compensated by the increase in variance that
results from analytical and calibration errors. Our results highlight that the different processes and assump-
tions inherent to coral‐based studies exert sizable impacts on pseudocoral interannual variance and that the
relative contributions are site dependent. While changes in the monthly standard deviation of an individual
anomaly time series can show longer‐term changes in ENSO (Wittenberg, 2009), uncertainties in coral
climate reconstructions (Emile‐Geay et al., 2013a, 2013b) preclude such a reconstruction back in time, thus
warranting an alternative metric for paleo‐ENSO studies.

3.2. Quantifying Changes in ENSO Variability: Decadal+

This section evaluates the impact of coral uncertainties on reconstructing changes in ENSO
variability through time. Although precise month‐to‐month variations of SST in the Niño 3.4 region are a
sought‐after target for ENSO studies, this is difficult to reconstruct back in time using a limited number of
coral proxy records with age uncertainties. Previous studies have used sophisticated statistical techniques
on corals from the last millennium and still had an appreciable degree of uncertainty in the reconstruction
(Emile‐Geay et al., 2013a, 2013b). Fossil corals with absolute age errors on the order of 1%make a month‐to‐
month reconstruction virtually impossible on 103 years and longer time scales. We address this challenge by
building upon the procedure suggested in Trenberth (1997) and use descriptive statistics and probability
theory to quantify changes in ENSO variability on the time scale of decades. Indeed, the technique of looking
at changes in ENSO over windows in the past has already been employed using corals from the central
Pacific (Cobb et al., 2013).
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We formalize this technique to quantify changes in ENSO variability using climatology‐removed SST
anomalies averaged across the Niño 3.4 region (Figure 6, box). The time series is restricted (Figure 8a) to
the first 200 years purely for discussion purposes; the entire control run (1,156 years) is employed for the
remainder of the analyses. During El Niño (La Niña) events, the Niño 3.4 region experiences positive (nega-
tive) SST anomalies that peak during boreal winter while the western Pacific experiences negative (positive)
excursions (Trenberth, 1997). Strong El Niño and La Niña events yield SST anomalies that fall into the tails
of the SSTA distribution (Figures 8b and 8c). An increase in the frequency and/or magnitude of strong ENSO
events will increase the width of the SSTA distribution, and result in a larger standard deviation, a result pre-
viously illustrated using corals from the southwest Pacific (Lawman et al., 2020). This technique is ideally
suited for data that has small uncertainty in the time domain or in the interpretation.

Longer‐term changes in the amplitude and frequency of large SST anomalies can occur for decades or
longer intervals (denoted here as decadal+ variability). For example, model years 100–120 (Figure 8a)
have smaller amplitude SSTA compared to the frequent large‐amplitude anomalies in model years
125–150. These changes occur in the absence of external forcing, as this is an unforced model simulation,
and they likely result from complex interactions between ENSO and other internally driven modes of varia-
bility (Sun & Okumura, 2019; Wittenberg, 2009; Wittenberg et al., 2014). We quantify decadal+ changes in
ENSO variability using the running standard deviation of climatology‐removed monthly SSTA of 20‐year
windows averaged across the Niño 3.4 region (σNiño3.4‐SSTA; Figure 8d) (Okumura et al., 2017). Larger
σNiño3.4‐SSTA values indicate increased ENSO variability, whereas smaller σNiño3.4‐SSTA values indicate
decreased ENSO variability during a time interval. The wide range of internal ENSO variability within the
CESM‐LME 850 control is reflected in the width of the σNiño3.4‐SSTA distribution (Figures 8e and 8f). We sug-
gest that longer‐term, decadal+ changes in ENSO variability, as reflected by σNiño3.4‐SSTA and the distribution
of standard deviation values (Figure 8f), is a feasible target for coral‐based paleoclimate reconstructions since
this metric reduces the influence of uncertainties, especially temporal uncertainty.

3.3. Quantifying Changes in ENSO Variability Using Corals: Decadal+ With PSM

The coral PSM provides a tool to investigate how various uncertainties not only impact interannual variabil-
ity locally, but also how the uncertainties broadly impact the ability of a pseudocoral to capture decadal+
changes ENSO variability. On interannual time scales, corals from circum‐Pacific locations are influenced
by ENSO, local variability, and how corals themselves records climate (section 1). Our coral PSM addresses
some of these confounding influences by quantifying how analytical and calibration errors, variable growth
rates, and age modeling assumptions modify input climate signals and impact interannual variance
(section 2). The running standard deviation of climatology‐removed anomalies is presented as an applicable
metric in paleoclimate reconstructions for capturing temporal changes in interannual variability. This
running standard deviation also provides a means to provide constraints on the range of internal variability
(section 3.2). A running or windowed standard deviation is also advantageously poised to handle short
(several decades or less) and/or discontinuous coral records, and has previously been employed for fossil

Figure 7. Changes in interannual variance for the full coral PSM. Percent difference in SD between pseudocoral
(a) SSTSr/Ca and (b) Δδ18O anomalies perturbed with variable growth rates, analytical/calibration errors, and the age
modeling algorithm, and the original, unperturbed environmental input (n = 100 realizations). Selected sites at Kiritimati
(2°N, 157°W) in the Central Pacific, and Vanuatu (16°S, 167°E) in the Southwest Pacific are indicated with gold stars.
The white box outlines the Niño 3.4 region. The percent change in SD for the full coral PSM reveals the tradeoff between
interannual variability and the amplitude of the annual cycle (Figure 6).
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coral records that are dated to cover snapshots of the last 7,000 years (the middle to late Holocene)
(Cobb et al., 2013).

The 20‐year running standard deviation of SSTSr/Ca and Δδ18Opseudocoral anomalies for Kiritimati and
Vanuatu (Figure 9) demonstrate how the various PSM subcomponents impact interannual variance. This
metric also encapsulates information about the range of simulated natural variability. As with Niño
3.4 monthly SSTA (Figure 8f), the median standard deviation value of the original environmental inputs
(Figure 9, gray boxes) indicates the overall amplitude of interannual variance at a site, whereas the height
of the box and whiskers indicate the range of internal variability. Kiritimati expectedly has a higher median
standard deviation value and a larger spread compared to Vanuatu given that the site experiences larger
interannual SST (Figure 6a) and δ18O (Figure 6e) signals. Perturbing the original SST and Δδ18Opseudocoral

time series at Kiritimati and Vanuatu with analytical and calibration errors (section 2.5.1) systematically
increases interannual variance (Figure 9, light blue boxes) as quantified by the shift in the median standard
deviation value compared to the original environmental inputs. Incorrect assumptions about the timing of
the warmest and coolest month assignment in the age model (section 2.5.2) decreases interannual variance
(Figure 9, teal boxes). We do not isolate the impact of variable growth rates as the algorithm generates a
pseudodepth vector (section 4) that is not readily subset into 20‐year windows. Instead, the original
environmental input is perturbed with variable growth rates and then processed by the age model algorithm
to generate multiple realizations (Figure 9, dark blue boxes). The combined influence of variable growth
rates and the age model assumptions causes a systematic decrease in interannual variance at both sites.

Although each individual submodel of the PSM causes a systematic change in interannual variance at both
Kiritimati and Vanuatu, the relative increase or decrease in the interannual signal (median standard devia-
tion) for the full PSM, or the summation of the effects from the subcomponents, is site dependent. These site
dependencies are revealed when expanding the pseudocoral network to the entire tropical Pacific
(Figure 10). For similar reasons discussed in section 3.1, the interannual variance change is closely related
to the ratio between the magnitude of the interannual signal and the amplitude of the annual cycle.

Figure 8. Quantifying changes in internal ENSO variability. (a) Monthly SSTA averaged across the Niño 3.4 region in the 850 control (200‐year subset shown for
clarity). Distribution of Niño 3.4 SSTA depicted as a histogram/PDF (b) and box plot (c) for the full‐length control (1,156 years). (d) The 20‐year running standard
deviation of Niño 3.4 monthly SSTA (σNiño3.4‐SSTA). Shaded portions in (a) and (d) highlight two intervals with more (red) and less (blue) internal ENSO
variability. Distribution of σNiño3.4‐SSTA values depicted as a histogram/PDF (e) and box plot (f). Higher SD values indicate increased ENSO variability, whereas
lower SD values indicate decreased variability. PDFs in (b) and (e) are based on a kernel density estimation method (Parzen, 1962). The lower and upper bounds of
the boxes in (c) and (f) correspond to the 25th and 75th percentiles, and the center line indicates the median. The whiskers in (c) and (f) represent the 1.5 ×
interquartile range (IQR). Outliers greater than 1.5 × IQR are omitted for clarity. The running SD of monthly anomalies (f) is a metric for decadal+ changes in
interannual variability.
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We correlate Niño 3.4 SSTA with the pseudocoral realizations to demonstrate how corals from locations
around the tropical Pacific record changes in ENSO and begin with the familiar month‐to‐month correlation
calculation. The month‐to‐month correlation of local SST or SSS anomalies with Niño 3.4 SSTA is canoni-
cally used to demonstrate the ENSO sensitivity at a site. A consistent pattern of response over the 1,156‐
year‐long control is the temperature relationship between the central/eastern and western tropical Pacific
with monthly SSTA from the Niño 3.4 region (Figure 11a). For example, SSTA in the Niño 3.4 region and
the central/eastern Pacific are in phase during ENSO events, meaning that when the Niño 3.4 region warms
(cools), the central/eastern Pacific also warms (cools). During ENSO events SSTA in the Niño 3.4 region and

Figure 9. The impact of coral PSM uncertainties on interannual variance. Box plots showing the distribution of 20‐year running standard deviation values for
pseudocoral SSTSr/Ca (a, c) and δ18O (b, d) anomalies across all pseudocoral realizations for the Kiritimati (a, b) and Vanuatu (c, d) grid points. The growth
rate and age model (GR & AM), analytical/calibration, and full PSM include the results for 1,000 realizations. The deterministic age modeled results are shown for
1 realization. The full PSM is determined by consecutively running the growth rate algorithm, applying analytical/calibration error, and then age modeling
all 1,000 pseudocoral SSTSr/Ca or Δδ

18Opseudocoral realizations. The lower and upper bounds of the boxes correspond to the 25th and 75th percentiles and the
center line indicates the 50th percentile. The whiskers represent 1.5 × IQR. Outliers greater than 1.5 × IQR are omitted for clarity. Dashed horizontal gray lines
indicate the median SD for the original environmental inputs. The median 20‐year running standard deviation of SSTSr/Ca and Δδ18Opseudocoral anomalies
illustrates how the various PSM subcomponents systematically increase or decrease interannual variance. The length of the box and whiskers encapsulates
information about the range of simulated internal variability.

Figure 10. Changes in interannual variance for the full coral PSM. Percent difference in the median 20‐year running
standard deviation between pseudocoral SSTSr/Ca (a) and Δδ18O (b) anomalies perturbed with variable growth rates,
analytical/calibration errors, and the age modeling algorithm, and the original, unperturbed environmental input
(n = 100 realizations). Gold stars indicate select sites at Kiritimati and Vanuatu. The white box indicates the Niño 3.4
region. The percent change in standard deviation for the full coral PSM reveals the tradeoff between interannual
variability and the amplitude of the annual cycle. The patterns displayed here are similar to those of Figure 6, indicating
that the two variability metrics yield consistent results.

10.1029/2019PA003836Paleoceanography and Paleoclimatology

LAWMAN ET AL. 15 of 21



the western Pacific are out of phase, such that when SSTA are warm in the Niño 3.4 region SSTA in the wes-
tern Pacific are cool, and vice versa. Forward modeled monthly Δδ18Opseudocoral, a function of SST and SSS,
also covaries with Niño 3.4 SSTA (Figure 11b) with nearly the same pattern of response as SSTA (Figure 11a).
For example, during El Niño events the central and eastern Pacific experience negative Δδ18Opseudocoral

anomalies indicating the combined impact of warmer and/or fresher conditions, while the western Pacific
experiences positive Δδ18Opseudocoral excursions indicative of cooler and/or more saline conditions
(Fairbanks et al., 1997). As previously discussed, the month‐to‐month correlation with Niño 3.4 SSTA is
more applicable for observations or model output with no uncertainty in the time domain. Some of the
uncertainties in coral proxy data can be circumvented by instead shifting the focus to the ability of a coral
to capture ENSO variability on decadal+ time scales (section 3.2).

Unlike the month‐to‐month maps, Niño 3.4 SSTA and the running standard deviation of SSTSr/Ca and
Δδ18Opseudocoral anomalies on decadal+ time scales are positively correlated across much of the tropical
Pacific (Figures 11c and 11d). The boomerang‐shaped monthly SSTA correlation pattern that distinguishes
the western Pacific from the central/eastern Pacific (Figure 11a) essentially disappears when examining
how different regions of the Pacific track decadal+ changes in ENSO variability. The nodal structure

Figure 11. Correlation between Niño 3.4 SSTA and values at each grid point. Monthly Niño 3.4 correlated with monthly
values for SSTA (a) and monthly values of forward modeled pseudocoral Δδ18Opseudocoral (b). The 20‐year running SD of
Niño 3.4 SSTA (σNiño3.4‐SSTA) with the 20‐year running SD of SSTA (c) and Δδ18Opseudocoral anomalies (d). The 20‐year
running SD of Niño 3.4 SSTA with the 20‐year running standard deviation of SSTA (e) and Δδ18Opseudocoral anomalies
(f) perturbed by the full coral PSM. Colormap in (e) and (f) is the median correlation coefficient for 100 full PSM
realizations. The Niño 3.4 region is outlined by a white box (a–f). The correlation coefficient averaged across all grid
points within the Niño 3.4 region (white box) is indicated with a gold diamond in (c)–(f). Colormaps provide the Pearson
correlation coefficient (Pearson, 1920). Δδ18Opseudocoral is generated using the sensor model of Thompson et al. (2011)
(section 2.3.1). Stippling indicates statistically significant correlations (p < 0.01) that accounts for autocorrelation
in the time series (Dawdy & Matalas, 1964; Hu et al., 2017). Gold stars indicate select sites at Kiritimati and Vanuatu.
Decadal+ changes in forward modeled interannual SSTSr/Ca and δ18O variability are positively correlated with
σNiño3.4‐SSTA across much of the tropical Pacific (e, f) even with the added uncertainties in our PSM, indicating
that these processes do not obscure the target climate signal of decadal+ changes in ENSO variability.
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(where the red color changes to blue in the month‐to‐month calculation), where the correlation is essentially
zero (Figures 11a and 11b), is still apparent in decadal+. In the decadal+ calculation of ENSO variability, a
significant positive correlation coefficient between σNiño3.4‐SSTA and the running standard deviation of
monthly SST (Figure 11c) or Δδ18Opseudocoral (Figure 11d) anomalies indicates that when ENSO variability
increases or decreases in the Niño 3.4 region, interannual variability at a given location tends to pace with
those changes. The correlation with σNiño3.4‐SSTA for the pseudocorals perturbed by the full coral PSM are
expectedly smaller than the original PSM inputs, but importantly, the temporal relationship with changes
in SST variability in the Niño 3.4 region is broadly preserved for both pseudocoral SSTSr/Ca (Figure 11e)
and Δδ18Opseudocoral (Figure 11f). Despite all of the calculated coral uncertainties, the correlation with deca-
dal+ changes in ENSO remains statistically significant at many circum‐Pacific locations, particularly those
near coral atolls (Figures 11e and 11f). This highlights the strength of corals in their ability to capture deca-
dal+ changes in ENSO variability.

4. Conclusions

The coral PSM presented here advances our knowledge of how corals modify interannual climate signals
and how they record changes in ENSO variability via the decadal+ calculation. This study builds upon
previous work by adding new archive and observation submodels to the full PSM framework in order to
quantitatively estimate the impact of various nonclimatic processes on interannual variance in the final
coral time series. Constraining such information is crucial given that quantitative estimates of interannual
variance is one of the primary applications of coral paleoclimatology. Our process‐based coral PSM explicitly
incorporates an archive‐based model (variable growth rates) as well as age modeling assumptions that are
used when generating a coral geochemical time series. This study applies the new PSM framework to the
CESM LME 850 control run, which serves as the environmental input. The long control run allows us to
include the impact of a wide range of internal variability in our analyses, which is not possible using the
short instrumental record. Although we note that the PSM is equally equipped to handle observational data
or output from other climate models. Our tools and algorithms are publicly available to the broader commu-
nity to facilitate the comparison of coral geochemical data and observational data or climate model output,
as well as facilitate the reproducibility of our results, via a GitHub repository (https://github.com/lawmana/
coralPSM).

Our results characterize and document the ability of pseudocorals to capture decadal and longer, which we
call decadal+, changes in ENSO variability. Coral proxy records of past ENSO variability come from a
suite of sites spanning the western, central, and eastern tropical Pacific, all of which have varying
signal‐to‐noise ratios with respect to ENSO. In some regions of the tropical Pacific, the combination of
different uncertainties can increase or decrease interannual SSTSr/Ca and δ18O variance by 10–30%
(Figures 7 and 10). We identify four broad conclusions from these analyses:

1. Analytical and calibration errors systematically increase interannual variance.
2. Seasonal chronological uncertainties associated with transforming coral geochemical data from the

depth to the time domain act to decrease interannual variability.
3. Variable growth rates in conjunction with age modeling assumptions decrease interannual variance.
4. The change in interannual variance at a given location is related to the relative magnitudes of the inter-

annual ENSO signal and the amplitude of the annual cycle.

Given that different processes exert sizable impacts on interannual variance, it is therefore most appropriate
to compare coral geochemical data with instrumental observations or climate model output processed
through the new coral PSM. Despite the three uncertainties investigated in this study, the temporal relation-
ship with changes in SST variability in the Niño 3.4 region is preserved for both pseudocoral SSTSr/Ca
(Figure 11e) and Δδ18Opseudocoral (Figure 11f). Importantly, decadal+ changes in forward‐modeled interann-
ual SSTSr/Ca and δ18O variability are positively correlated with σNiño3.4‐SSTA across much of the tropical
Pacific. Despite all of the added uncertainties in our PSM, at many locations these processes do not obscure
the target climate signal of decadal and longer changes in ENSO variability and yield statistically significant
correlations with σNiño3.4‐SSTA. This increases confidence that despite these major sources of uncertainties
investigated herein, coral geochemical records from a suite of sites across the tropical Pacific are useful tools
to reconstruct changes in ENSO variability back in time.
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Quantifying the range of ENSO variability experienced during different background climate states in the
past is critical, as this data can help constrain models that provide projections of how ENSO variability
may change in the future with anthropogenic warming. Paleoclimate reconstructions serve as important
out‐of‐sample tests of ENSO variability, and climate models that are able to simulate past changes in
ENSO may be better equipped to project how ENSO will change in the future. Proxy system modeling
studies, such as this one that incorporates information from both models and proxy records, are necessary
to compare model estimates of paleo‐ENSO variability with coral geochemical data. By putting climate
model output and proxy data on a level playing field, we can reconcile the agreement between climate
models and proxy‐inferred responses and take an important step toward predicting how ENSO will respond
to future radiative forcing.
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