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Abstract

IMPORTANCE A stay-at-home social distancing mandate is a key nonpharmacological measure to
reduce the transmission rate of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), but
a high rate of adherence is needed.

OBJECTIVE To examine the association between the rate of humanmobility changes and the rate of
confirmed cases of SARS-CoV-2 infection.

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study used daily travel distance and
home dwell time derived frommillions of anonymous mobile phone location data fromMarch 11 to
April 10, 2020, provided by the Descartes Labs and SafeGraph to quantify the degree to which social
distancingmandates were followed in the 50US states and District of Columbia and the association
of mobility changes with rates of coronavirus disease 2019 (COVID-19) cases.

EXPOSURE State-level stay-at-home orders during the COVID-19 pandemic.

MAINOUTCOMES ANDMEASURES Themain outcomewas the association of state-specific rates
of COVID-19 confirmed cases with the change rates of median travel distance and median home
dwell time of anonymousmobile phone users. The increase rates are measured by the exponent in
curve fitting of the COVID-19 cumulative confirmed cases, while the mobility change (increase or
decrease) rates were measured by the slope coefficient in curve fitting of median travel distance and
median home dwell time for each state.

RESULTS Data frommore than 45million anonymousmobile phone devices were analyzed. The
correlation between the COVID-19 increase rate and travel distance decrease rate was –0.586 (95%
CI, –0.742 to –0.370) and the correlation between COVID-19 increase rate and home dwell time
increase rate was 0.526 (95% CI, 0.293 to 0.700). Increases in state-specific doubling time of total
cases ranged from 1.0 to 6.9 days (median [interquartile range], 2.7 [2.3-3.3] days) before stay-at-
home orders were enacted to 3.7 to 30.3 days (median [interquartile range], 6.0 [4.8-7.1] days) after
stay-at-home social distancing orders were put in place, consistent with pandemicmodeling results.

CONCLUSIONS ANDRELEVANCE These findings suggest that stay-at-home social distancing
mandates, when they were followed bymeasurable mobility changes, were associated with
reduction in COVID-19 spread. These results come at a particularly critical period when US states are
beginning to relax social distancing policies and reopen their economies. These findings support the
efficacy of social distancing and could help inform future implementation of social distancing policies
should they need to be reinstated during later periods of COVID-19 reemergence.
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Key Points
Question Did humanmobility patterns

change during stay-at-home orders and

were the mobility changes associated

with the coronavirus disease 2019

(COVID-19) curve?

Findings This cross-sectional study

using anonymous location data from

more than 45million mobile phones

found that median travel distance

decreased and stay-at-home time

increased across the nation, although

there was geographic variation. State-

specific empirical doubling time of total

COVID-19 cases increased (ie, the spread

reduced) significantly after stay-at-

home orders were put in place.

Meaning These findings suggest that

stay-at-home social distancing

mandates were associated with the

reduced spread of COVID-19 when they

were followed.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic is a global threat with escalating health,
economic, and social challenges. As of April 11, 2020, there were 492 416 total confirmed cases and
18 559 total deaths in the US, according to reports from the Centers for Disease Control and
Prevention (CDC).1 People are still witnessing widespread community transmission of COVID-19 all
over the world. To date, there is neither a vaccine nor pharmacological agent found to reduce the
transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes
COVID-19. Thus, the effects of nonpharmacological pandemic control and interventionmeasures,
including travel restrictions, closures of schools and nonessential business services, wearing of face
masks, testing, isolation, and timely quarantine on delaying the spread of COVID-19, have been
largely investigated and reported.2-6 Tomitigate and ultimately contain the COVID-19 pandemic, one
of the important nonpharmacological control measures to reduce the transmission rate of SARS-
CoV-2 in the population is social (ie, physical) distancing. An interactive web-basedmapping platform
that provides timely quantitative information on howpeople in different counties and states reacted
to state-at-home social distancingmandates has been developed (eAppendix 2 in the Supplement).7

It integrates geographic information systems and daily updated humanmobility statistical patterns
derived frommillions of anonymized and aggregated smartphone location data at the county level in
the US.7-10

Reducedmobility and trips may help limit people’s exposure to large in-person gatherings.
However, it is worth noting that reducedmobility does not necessarily ensure that social distancing
in practice follows the CDC’s definition: “stay at least 6 feet (about 2 arms’ length) from other
people.”11 Due to themobile phone Global Positioning System horizontal error and uncertainty,12 such
physical distancing patterns cannot be directly identified from the user aggregatedmobility data;
that would require other wearable sensors or mobile phone Bluetooth trackers, which raise issues of
personal data privacy and ethical concerns.13 Because COVID-19 is more contagious and far more
deadly than seasonal flu,14 social distancing is critical in the fight to save lives and prevent illness.
However, to what degree such guidelines have been followed from place to place before and after
shelter-in-place orders across the US and the quantitative effect on flattening the curve are as yet
unknown, to our knowledge.

To this end, we used 2 humanmobility metrics, the median of individual maximum travel
distance and stay-at-home time derived from location data frommillions of mobile phones, to assess
the association of stay-at-home policies with reducing the spread of COVID-19. For each state, we
examined thesemeasures against the rate of SARS-CoV-2 infection cases.

Methods

Awaiver of institutional review board review and informed consent was obtained from the University
ofWisconsin–Madison because anonymized and aggregated data were used and our study does not
involve human participants as defined. This study follows the Consolidated Health Economic
Evaluation Reporting Standards (CHEERS) reporting guideline.

Data
In this cross-sectional study, the epidemiological confirmed cases data were retrieved from the
Corona Data Scraper open source project,15 which provides local-level and community-driven
reports, and we conflated the data with the state-level department of health services official reports
in each state to ensure the data quality. To understand howpeople reacted to the stay-at-home social
distancing guidelines imposed during the COVID-19 pandemic, humanmobility changes were
considered in terms of changes in travel distance and stay-at-home dwell time. The travel distance
mobility data were collected from an open-source repository released by Descartes Labs,8 while the
home dwell time data derived frommore than 45million anonymous mobile phone users were
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processed from SafeGraph.7 Both data sources were acquired at the county level and aggregated to
the state level using median and interquartile range (IQR) values. To consider the socioeconomic
factors that may be associated with statewide changes in humanmobility, socioeconomic variables
at the state level were also collected from the American Community Survey16 and the US Census
Bureau.17 The following socioeconomic variables and geospatial data sets were retrieved and
computed: population (ie, number of people), population density (measured by population divided
by area of state), proportion of population with bachelor’s degree, proportions of population of
different races/ethnicities, proportion of population of different age groups, median household
income, and urban core area boundaries.

Statistical Analysis
Simple linear regression andmultivariate linear regression analyses were performed using the scikit-
learn package version 0.23.1 in Python. The Pearson correlation coefficient with 2-sided significance
test, P < .05, was computed using the SciPy package version 1.4.0 in Python.

Curve Fitting for Pandemic Spread, Travel Distance, andHomeDwell Time
In themathematical modeling process, we used a few types of mathematical formulas (eAppendix 1
in the Supplement) to fit the curve of the cumulative confirmed cases for the COVID-19 with respect
to their temporal changes in each state and selected the following scaling lawwith a deivation term
formula as the most appropriate: yc(t) = tb + k, in which yc is the total number of confirmed cases in
each state as a function of time, t is the number of days fromMarch 11, 2020 (when the COVID-19
became a pandemic), and b and k are parameters we will estimate. By fitting the curve, we can
compare the infection rates among different states using the coefficient b estimated from themodel.
Meanwhile, we used linear regression to detect the travel distance decreasing rate (represented by
the slope estimated from the linear model) over time (eFigure 2 in the Supplement) and examined
whether there was a correlation between the increase rate of cases and the distance decreasing rate.
We also fitted the curve for the home dwell time changes for each state using the linear regression
model. The linear model was selected from a few different models because it is the simplest one, and
results of all fittedmodels were similar. We then calculated the correlation between the home dwell
time increasing rate (the slope estimated from the linear model) and the increase rate of the number
of confirmed cases.

Evaluating Factors AssociatedWith Changes in Travel Distance andHomeDwell Time
To understand what socioeconomic factors were associated with travel distance changes and home
dwell time changes, a multilinear regression model integrating socioeconomic factors was used to fit
the mobility change rates that were represented by the slope estimates for each state. The R2 as
goodness of fit and significance of variables are reported (eAppendix 1 in the Supplement).

Calculating theDoubling Time of Total Confirmed Cases
We investigated how the social distancing guidelines and stay-at-home orders (eTable 5 in the
Supplement) were associated with the pandemic doubling time of COVID-19 confirmed cases from
March 11 to April 10, 2020, in each state. We usedmathematical curve fittingmodels andmechanistic
epidemicmodels (eAppendix 1 in the Supplement) using Bayesian parametric estimation of the serial
interval distribution of successive cases to cross validate the conclusion.18,19 We calculated the
doubling time of the number of cumulative confirmed cases (ie, the time intervals it takes for the
cumulative confirmed cases to double in size20) to reflect the characteristics of the COVID-19
pandemic spread, especially how the stay-at-home orders in each state were associated with
flattening the COVID-19 curve. The larger the doubling time, the smoother the pandemic increase
curve. Within the time frame of our study, the state-level increase rates of COVID-19 cases in the US
were either exponential or subexponential, thus we implemented an exponential model and a
power-lawmodel to fit the curve for calculating the doubling time. We also calculated the doubling
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time based on empirical observations (model-free) to further explore how the doubling time differs
in these methods. We used the effective date of the stay-at-home order to split the confirmed case
data into 2 parts: before the order and after the order. We fitted each model on the data before the
order and after the order, then we calculated the doubling times of the confirmed cases based on
themodel and empirical COVID-19 infection data. The doubling time of the cumulative confirmed
cases in each state is defined as

d(t) = ln(2)
ln(1 + r[t])

In which d(t) represents the doubling time of the cumulative confirmed cases on date t in each state,
ln(x) is the natural log of x, and r(t) represents the increase rate of the cumulative confirmed cases
on date t in each state.

In addition, we visualized and investigated the overall probability density distribution of the
median doubling time before and after the stay-at-home order in each state to have a better
understanding of the overall changes in the pandemic spread nationwide. Furthermore, we
measured the similarity in probability density distribution of themedian doubling time between the
fitting results and the empirical data using the Jensen–Shannon Divergence.21

Results

Trends of HumanMobility Changes
Data frommore than 45million anonymousmobile phone devices were analyzed. The associations
of stay-at-home policies with human mobility changes are illustrated in Figure 1, Figure 2, and the
Table. Figure 1A shows the temporal changes of the median of individual maximum travel distances
in the states with the highest infection rates (ie, New York, New Jersey, Michigan, California, and
Massachusetts) by April 10, 2020. People’s daily mobility decreased significantly but with different
temporal lags following the implementation of statewide stay-at-home orders across these states
(Table). Figure 1B shows the state-specific temporal changes of median home dwell time. With the
social distancing guidelines and shelter-at-home orders in place, the median home dwell time
increased significantly in most states since March 23, 2020 (Table). Figure 2 shows the spatial
distributions of confirmed cases per capita and themedian of travel distances andmedian of home
dwell time in 2 specific days as snapshots for comparison of mobility patterns with the COVID-19
infection rate before and after stay-at-home-orders: March 11 and April 10, 2020. Themedian travel

Figure 1. Temporal Changes inMedian of Individual MaximumTravel Distance andMedian HomeDwell Time in theMost Infected US States
FromMarch 11 to April 10, 2020
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distance decreased and themedian home dwell time increased across the US during this period. In
addition, we calculated the means of median travel distances before and after the stay-at-home-
orders in each state. Themedian travel distances decreased in all states (Table). Implementation of
stay-at-home social distancing policies were associated with human movement changes, that is,
people generally reduced their daily travel distances and increased their home dwell time.
Interestingly, the multiple linear regression model result for the increasing rate of home dwell time
with the socioeconomic variables shows that the ratio of Asian individuals in each statewas positively
associated with longer home dwell time at the state level. The higher the proportion of Asian

Figure 2. Comparison Among Confirmed Coronavirus Disease 2019 Cases Per Capita, Median of Individual MaximumTravel Distance, andMedian HomeDwell Time
FromMarch 11 and April 10, 2020
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Table. Empirical Doubling Time of Total Infected Cases and theMedian Travel Distance and HomeDwell Time Before and After Stay-at-HomeOrders

State

Doubling time, d Travel distance, km Home dwell time, min

Median (IQR)

Change

Median (IQR)

Change

Median (IQR)

ChangeBefore order After order Before order After order Before order After order
Alabama 3.3

(2.3-4.4)
6.5
(5.4-7.8)

3.2 6.651
(5.356-8.278)

4.311
(4.283-4.903)

–2.328 660.9
(576.3-695.4)

781.4
(758.5-799.2)

120.5

Alaska 6.9
(3.5-9.2)

30.3
(23.6-38.9)

23.4 1.369
(0.168-2.450)

0.091
(0.049-0.092)

–1.273 342.3
(282.5-376.2)

427.1
(343.6-454.4)

84.8

Arizona 2.5
(2.0-3.8)

6.8
(5.8-10.5)

4.3 3.227
(1.82-5.071)

1.037
(0.878-1.274)

–2.231 523.9
(489.3-560.7)

637.9
(520.9-645.1)

114.0

California 3.3
(3.1-3.7)

5.3
(3.8-7.3)

2.0 3.922
(3.128-6.177)

0.770
(0.259-0.986)

–3.207 748.1
(642.7-760.4)

833.0
(754.4-874.0)

84.9

Colorado 2.6
(2.3-3.2)

6.2
(5.7-9.3)

3.6 2.824
(1.387-4.334)

0.319
(0.095-0.464)

–2.496 529.6
(475.1-548.0)

676.5
(575.7-692.6)

146.9

Connecticut 1.7
(1.3-2.8)

4.5
(2.8-7.5)

2.8 3.100
(2.174-4.482)

0.396
(0.107-0.549)

–2.687 667.5
(583.0-725.4)

822.5
(752.4-854.1)

155.0

Delaware 2.9
(1.5-4.7)

4.7
(3.7-5.4)

1.8 4.102
(2.888-5.704)

0.641
(0.183-0.937)

–3.462 629.3
(546.9-667.6)

749.5
(676.8-795.6)

120.2

Florida 3.0
(2.1-3.9)

10.0
(8.8-11.1)

7.0 3.484
(1.805-5.224)

0.930
(0.655-1.208)

–2.622 559.6
(476.2-604.4)

694.3
(680.0-717.5)

134.7

Georgia 3.5
(2.3-5.0)

6.4
(6.1-10.7)

2.9 4.852
(3.292-6.57)

2.278
(1.818-3.04)

–2.758 636.6
(546.2-674.1)

759.4
(732.3-784.3)

122.9

Hawaii 2.0
(1.6-2.4)

7.3
(5.2-11.1)

5.3 4.294
(3.131-6.057)

1.147
(1.054-1.466)

–3.177 625.7
(541.1-649.5)

789.4
(607.3-830.9)

163.7

Idaho 1.3
(1.0-2.6)

4.8
(2.9-9.8)

3.5 3.424
(2.661-4.599)

1.286
(1.063-1.713)

–2.208 567.9
(499.7-604.7)

686.2
(621.3-718.7)

118.3

Illinois 1.9
(1.9-2.4)

4.7
(4.0-7.1)

2.8 4.214
(3.046-6.604)

0.784
(0.427-1.144)

–3.428 648.6
(599.5-694.8)

764.0
(725.9-802.8)

115.4

Indiana 2.7
(2.0-3.0)

3.7
(3.0-4.2)

1.0 4.513
(3.41-6.232)

1.64
(1.432-2.193)

–2.932 605.2
(525.7-634.2)

718.8
(653.5-757.9)

113.6

Kansas 2.7
(1.8-3.5)

5.8
(5.1-10.2)

3.1 3.589
(2.300-4.657)

1.897
(1.735-2.269)

–1.67 606.2
(553.6-644.3)

702.1
(607.0-730.9)

96.0

Kentucky 2.5
(1.7-4.1)

5.4
(4.3-9.1)

2.9 4.778
(3.745-6.087)

2.802
(2.333-3.256)

–2.041 630.5
(562.8-670.4)

744.3
(686.1-764.2)

113.8

Louisiana 2.1
(1.9-2.3)

4.6
(3.1-8.7)

2.5 6.242
(5.925-8.289)

3.176
(2.877-3.830)

–3.122 609.5
(515.4-631.4)

736.9
(675.7-763.0)

127.4

Maine 3.7
(2.4-7.1)

16.5
(11.6-17.6)

12.8 2.413
(0.735-3.331)

0.361
(0.094-0.705)

–2.014 553.2
(481.6-590.2)

690.0
(638.8-703.4)

136.7

Maryland 2.8
(2.2-3.6)

4.2
(3.4-6.1)

1.4 2.346
(0.307-3.654)

0.122
(0.045-0.092)

–2.271 688.5
(611.4-745.6)

794.9
(676.6-824.0)

106.4

Massachusetts 3.8
(3.0-5.3)

4.7
(4.5-6.3)

0.9 2.323
(0.991-3.412)

0.108
(0.045-0.104)

–2.213 640.4
(538.5-670.0)

780.8
(692.0-812.3)

140.5

Michigan 2.3
(1.4-2.8)

4.4
(3.7-7.1)

2.1 3.562
(2.274-5.058)

0.104
(0.046-0.131)

–3.454 566.6
(492.3-600.5)

734.3
(649.8-764.3)

167.6

Minnesota 3.0
(1.7-4.9)

8.7
(7.6-9.4)

5.7 2.927
(1.359-4.268)

0.482
(0.138-0.509)

–2.54 556.9
(500.4-607.0)

701.4
(607.1-732.2)

144.5

Mississippi 2.8
(1.7-5.1)

9.4
(6.4-13.6)

6.6 7.103
(5.675-8.868)

4.751
(4.11-5.919)

–2.613 612.1
(514.0-654.5)

744.6
(720.4-767.7)

132.5

Montana 2.4
(1.8-3.2)

8.3
(7.4-14.5)

5.9 2.353
(1.821-2.953)

0.820
(0.405-1.158)

–1.475 443.3
(400.8-506.0)

559.6
(477.2-577.8)

116.3

Nevada 3.7
(1.7-5.0)

11.2
(8.5-12.6)

7.5 2.432
(0.687-4.353)

0.502
(0.253-0.764)

–1.962 516.0
(479.3-553.0)

611.5
(596.7-620.5)

95.6

New Hampshire 3.0
(2.3-4.3)

5.8
(4.3-11.7)

2.8 3.689
(1.527-5.603)

0.818
(0.266-1.073)

–3.014 585.0
(528.3-631.6)

735.4
(623.7-752.7)

150.4

New Jersey 1.8
(1.3-2.0)

4.2
(3.1-6.6)

2.4 3.244
(1.972-5.362)

0.095
(0.043-0.085)

–3.162 722.1
(671.7-819.5)

968.4
(900.8-983.9)

246.3

New Mexico 3.1
(2.6-3.5)

5.2
(4.4-6.9)

2.1 3.492
(2.728-4.579)

0.993
(0.873-1.275)

–2.519 467.8
(407.9-489.1)

577.5
(488.1-596.8)

109.8

New York 1.8
(1.5-2.2)

6.4
(4.4-9.5)

4.6 2.093
(1.137-3.554)

0.037
(0.032-0.039)

–2.056 580.0
(527.3-644.9)

767.4
(669.5-785.6)

187.4

North Carolina 2.7
(2.1-3.5)

6.3
(5.1-11.0)

3.6 5.220
(3.935-7.065)

2.679
(2.204-3.199)

–2.577 606.2
(545.8-633.2)

690.1
(595.4-711.2)

84.0

Ohio 2.1
(1.9-2.5)

5.3
(3.8-8.0)

3.2 4.076
(3.275-6.096)

1.202
(0.806-1.603)

–2.934 611.0
(547.3-653.0)

729.7
(688.0-762.5)

118.7

Oklahoma 2.4
(1.6-3.1)

5.6
(4.3-6.8)

3.2 5.962
(4.864-7.734)

3.550
(2.881-4.277)

–2.511 631.3
(563.2-664.9)

767.3
(707.3-804.4)

136.1

Oregon 3.8
(3.2-4.3)

6.7
(5.0-10.8)

2.9 2.667
(1.930-3.900)

0.571
(0.232-0.854)

–2.124 629.3
(575.8-663.4)

742.3
(687.0-789.9)

113.0

(continued)
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population, the longer themedian home dwell time of residents in that state (eTable 7 in the
Supplement).

Association of Rate of InfectionWithMobility Changes
We fitted the curves for the state-specific COVID-19 confirmed cases using the scaling-lawwith a
deviation term formula22 and identified the top 5 states with the largest increase rates of confirmed
COVID-19 cases by April 10, 2020: New York, New Jersey, California, Michigan, and Massachusetts.
Our fitting results corresponded to the up-to-date COVID-19 situation at that time (eTable 1 and
eTable 2 in the Supplement). eFigure 1 in the Supplement shows the reported cases and the fitting
curves in these 5 states using the scaling-lawwith a deviation term formula. The Pearson correlation
coefficient between the cases increase rate and the distance decay ratewas –0.586 (95%CI, –0.742
to –0.370; P < .001) (eTable 3 in the Supplement). Figure 3A shows the state-level correlation
between the increase coefficients of confirmed cases and the travel distance decay coefficients
across the nation. Themoderate negative correlation indicates that in the states where the
confirmed cases were increasing faster, people generally reduced their daily travel distance
more quickly.

Figure 3B shows the state-level correlation between the increase coefficients of confirmed
cases and the home dwell time increment coefficients across the nation. The increase rates and the
home dwell time rates (eTable 4 in the Supplement) had a positive correlation of 0.526 (95% CI,
0.293 to 0.700; P < .001), which suggests that in states with higher case increase rates, home dwell
time of residents in this statewere generally longer. These association analyses found that therewas
statistically significant mobility reduction associated with the increase rate of COVID-19 cases and
that people in most states reduced their daily travel distance and increased stay-at-home time.

In addition, the statistical variation of themobility measures can be largely explained (travel
distance: R2 = 0.59; P < .001; home dwell time: R2 = 0.69; P < 001) by socioeconomic factors,
including state policies, race/ethnicity, population density, age groups, andmedian household

Table. Empirical Doubling Time of Total Infected Cases and theMedian Travel Distance and HomeDwell Time Before and After Stay-at-HomeOrders (continued)

State

Doubling time, d Travel distance, km Home dwell time, min

Median (IQR)

Change

Median (IQR)

Change

Median (IQR)

ChangeBefore order After order Before order After order Before order After order
Pennsylvania 2.5

(2.1-3.3)
5.8
(4.5-6.0)

3.3 1.798
(0.078-2.445)

0.184
(0.089-0.246)

–1.609 656.0
(562.7-704.5)

776.7
(770.2-798.4)

120.6

Rhode Island 1.9
(1.4-3.5)

4.6
(4.1-5.3)

2.7 2.286
(0.804-3.592)

0.256
(0.071-0.357)

–2.034 705.1
(587.1-733.2)

795.2
(747.6-823.0)

90.1

South Carolina 2.4
(1.8-4.2)

5.8
(3.9-8.1)

3.4 6.484
(4.942-8.405)

3.898
(3.651-4.390)

–2.664 586.9
(532.3-619.1)

700.2
(626.4-712.3)

113.2

Tennessee 3.3
(1.8-4.0)

10.3
(8.4-12.5)

7.0 5.679
(4.094-7.368)

3.442
(3.215-4.098)

–2.189 647.8
(590.0-683.3)

731.4
(617.3-760.8)

83.6

Texas 3.4
(2.5-5.5)

6.0
(5.5-7.1)

2.6 4.076
(2.413-5.763)

1.869
(1.837-2.326)

–2.249 589.5
(525.1-645.8)

728.8
(722.2-759.4)

139.2

Utah 2.5
(1.9-4.1)

6.7
(5.2-11.6)

4.2 3.351
(2.094-4.933)

1.369
(0.916-1.791)

–2.05 642.6
(560.2-666.3)

710.9
(667.9-721.0)

68.3

Vermont 2.3
(1.6-2.8)

7.1
(5.1-11.9)

4.8 2.716
(0.843-4.386)

0.166
(0.059-0.201)

–2.592 465.8
(414.6-515.0)

648.4
(535.6-668.2)

182.7

Virginia 3.4
(2.4-4.9)

4.8
(4.1-7.2)

1.4 3.261
(1.454-4.669)

1.029
(0.627-1.320)

–2.273 607.6
(556.1-645.8)

695.1
(596.8-716.4)

87.5

Washington 4.5
(4.1-6.2)

12.3
(5.2-14.2)

7.8 2.710
(2.027-4.187)

0.253
(0.054-0.332)

–2.501 683.5
(618.6-717.0)

811.6
(760.0-848.3)

128.1

Washington, DC 3.5
(1.9-5.6)

6.9
(4.3-7.2)

3.4 0.85
(0.031-1.112)

0.026
(0.024-0.027)

–0.823 615.7
(523.4-639.7)

716.7
(696.9-722.0)

101.0

West Virginia 1.0
(1.0-1.3)

4.4
(3.9-7.3)

3.4 4.611
(3.573-6.217)

1.691
(1.345-2.095)

–2.939 586.3
(488.6-626.1)

693.1
(619.5-721.2)

106.8

Wisconsin 2.3
(1.9-2.6)

7.0
(6.1-9.6)

4.7 3.233
(2.061-4.871)

0.753
(0.574-1.23)

–2.477 594.2
(549.6-631.4)

720.2
(660.3-763.8)

126.0

Wyoming 3.1
(2.1-5.1)

7.9
(5.5-11.0)

4.8 2.719
(2.381-3.433)

1.798
(1.218-2.198)

–0.867 478.3
(430.9-539.2)

617.7
(491.8-636.6)

139.4

Abbreviations: DC, District of Columbia; IQR, interquartile range.
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income (eAppendix 1, eTable 6, and eTable 7 in the Supplement). Recent studies have also identified
partisan differences in individual responses to stay-at-home social distancing guidelines during the
COVID-19 pandemic (H. Alcott et al, unpublished data, July 2020).

Pandemic Doubling Time Changes
The fitted curves by an exponential model and a power-lawmodel are shown in eFigure 3 and
eFigure 4 in the Supplement. For the exponential model before the statewide stay-at-home orders,
initial estimates of the increase rates of the number of confirmed cases for the pandemic in each
state were 0.17 to 0.70 per day with a doubling time of 1.3 to 4.3 days (median [IQR], 2.6 [2.1-2.9]
days). A similar result was found by fitting the power-lawmodel, in which initial estimates of the case
rates before the orders in each statewere 0.12 to 0.71 cases per daywith a doubling time of 1.3 to 6.2
days (median [IQR], 2.7 [2.2-3.1] days). The finding aligned well with the doubling time of 2.3 to 3.3
days in the early pandemic epicenter in Wuhan, China.23 After the implementation of stay-at-home
orders, the estimates of the case rate in each state by the exponential model were reduced to 0.03 to
0.21 cases per day, with a doubling time increased to 3.7 to 27.7 days (median [IQR], 5.7 [4.7-6.9]
days). Similarly, the estimates of the case rate in each state by the power-lawmodel were reduced to
0.02 to 0.17 cases per day, with a doubling time increased to 4.3 to 29.8 days (median [IQR], 6.3
[5.4-7.9] days). The finding also aligned well (measured by Jensen–Shannon Divergence) with the
result from the observed epidemiological data (Table), in which the empirical case rate in each state
was 0.11 to 0.95 cases per day with a doubling time of 1.0 to 6.9 days (median [IQR], 2.7 [2.3-3.3]
days) before the statewide stay-at-home orders, and reduced to 0.02 to 0.21 per cases day with a
doubling time increased to 3.7 to 30.3 days (median [IQR], 6.0 [4.8-7.1] days) after the orders. The
curve fitting results also matched the outcomes of mechanistic epidemic models (eFigure 7 in the
Supplement), such as themodels reported by Cori et al18 and Thompson et al.19 Thesemodels used
confirmed cases and the serial interval, that is, the days between 2 successive infection cases.

In addition, we investigated the overall probability density distribution of the doubling time
nationwide before and after the stay-at-home orders using the state-level median doubling time
(Figure 4A; eFigure 5 and eFigure 6 in the Supplement). The doubling time nationwide increased
after the stay-at-home orders (empirical observations: frommedian [IQR] 2.7 [2.3-3.3] days to
median 6.0 [4.8-7.1] days). Our combined results on doubling times suggest that stay-at-home orders
were associated with reduction of the COVID-19 pandemic spread and with flattening the curve.
Similar findings have also been reported in a study by Sen et al24 on the association of stay-at-home
orders with COVID-19 hospitalizations. In addition, the ten-hundred plot (Figure 4B)25 also shows
that the case increase rate in each of the top 5 states (ie, New York, New Jersey, Michigan, California,

Figure 3. State-Level Correlation Between the Increase Coefficients of Confirmed Cases, Travel Distance Decay Coefficients, and HomeDwell Time
Increase Coefficients
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andMassachusetts) slowed down after the stay-at-home orders (approaching subexponential
growth). The statistical variation of themobility measures can be largely explained (travel distance:
R2 = 0.59; P < .05; home dwell time: R2 = 0.69; P < .05) (eAppendix 1 in the Supplement) by
socioeconomic factors, including state policies, race/ethnicity, population density, age groups, and
median household income (eTable 6 and eTable 7 in the Supplement). Recent studies have also
identified partisan differences in individual responses to stay-at-home social distancing guidelines
during the COVID-19 pandemic (H. Alcott et al, unpublished data, July 2020).

Discussion

These findings suggest that stay-at-home social distancing mandates, when they were followed by
measurable mobility changes, were associated with reduction in COVID-19 case rates. Great efforts
have been made in scientific research communities on the study of human mobility patterns using
various emerging data sources, including anonymized mobile phone call detail records,26-31 social
media (eg, Twitter),32,33 location-based services, andmobile applications.34-38 During the COVID-19
pandemic, both individual-level and aggregated-level human mobility patterns have been found
useful in pandemic modeling and digital contact tracing.6,13,39,40 However, technical challenges (eg,
location uncertainty), socioeconomic and sampling bias,41-44 privacy and ethical concerns have been
expressed by national and international societies.45-48 Moving forward, research efforts should
continue exploring the balance of using such humanmobility data at different geographic scales for
public health and social good while preserving individual privacy and rights.

Limitations
This study has some limitations. Potential confounding issues relate to other control measures, such
as varying state-level quarantine protocols, availability of personal protective equipment, and timely
testing, but the detailed information was not available, and the consistency of our results across
most states makes such confounding less likely. In addition, the variability in the curve fitting
estimated parameters was not accounted for the correlation analysis. There are variations in human
behaviors and risk perception even within a state. All these factors contribute to the potential
endogeneity of findings49 and the limitations.

Figure 4. Probability Density Distributions and Ten-Hundred Plot of Coronavirus Disease 2019 Spread Before and After Stay-at-HomeOrders
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Conclusions

This cross-sectional study found a statistically significant association of 2 humanmobility measures
(ie, travel distance and stay-at-home time) with the rates of COVID-19 cases across US states. This
study found a reduction of the spread of COVID-19 after stay-at-home social distancing mandates
were enacted in most states. The findings come at a particularly critical period, when US states are
beginning to reopen their economies but COVID-19 cases are surging. At such a time, our study
suggests the efficacy of stay-at-home social distancing measures and could inform future public
health policy making.
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