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a b s t r a c t 

Virtual delineation of white matter bundles in the human brain is of paramount importance for multiple applica- 
tions, such as pre-surgical planning and connectomics. A substantial body of literature is related to methods that 
automatically segment bundles from diffusion Magnetic Resonance Imaging (dMRI) data indirectly, by exploit- 
ing either the idea of connectivity between regions or the geometry of fiber paths obtained with tractography 
techniques, or, directly, through the information in volumetric data. Despite the remarkable improvement in au- 
tomatic segmentation methods over the years, their segmentation quality is not yet satisfactory, especially when 
dealing with datasets with very diverse characteristics, such as different tracking methods, bundle sizes or data 
quality. In this work, we propose a novel, supervised streamline-based segmentation method, called Classifyber, 
which combines information from atlases, connectivity patterns, and the geometry of fiber paths into a simple 
linear model. With a wide range of experiments on multiple datasets that span from research to clinical domains, 
we show that Classifyber substantially improves the quality of segmentation as compared to other state-of-the-art 
methods and, more importantly, that it is robust across very diverse settings. We provide an implementation of 
the proposed method as open source code, as well as web service. 
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. Introduction 

Accurate delineation of anatomical structures in the human brain is
ssential to numerous scientific disciplines. In particular, white matter
undle segmentation can provide information to multiple applications,
.g. the characterization of neurodevelopmental disorders, pre-surgical
lanning, or connectomic studies ( O’Donnell et al., 2017; Yeatman et al.,
012; Yeh et al., 2018 ). 
In the last decade, several automatic methods for white matter bun-

le segmentation have been developed to mimic the manual segmenta-
ion done by expert neuroanatomists ( Catani et al., 2002; Mori et al.,
005; Wakana et al., 2007 ), which is very time consuming and diffi-
ult to reproduce. Automatic methods can be divided into three main
roups: (i) Connectivity-based, (ii) Streamline-based, and (iii) Direct. 
Connectivity-based methods aim to extract bundles by filtering the

ntire set of streamlines with inclusion/exclusion Regions of Interest
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ROIs) that the bundle is assumed to pass / not to pass through ( Oishi
t al., 2008; Wassermann et al., 2016; Yeatman et al., 2012; Yendiki
t al., 2011; Zhang et al., 2010 ). These ROIs, which can be placed both
n the cortex or in the white matter, frequently come from atlases that
ave to be registered into the individual subject space. A significant
rawback to this approach is that the segmentation is inherently lim-
ted by the anatomical variability of the subjects and by the process of
egistration ( Siless et al., 2020 ). 
Streamline-based methods group together streamlines according

o some similarity measure. Unsupervised streamline-based meth-
ds, such as those in Brun et al. (2004) , Maddah et al. (2005) ,
’Donnell and Westin (2007) , Guevara et al. (2012) , Tunç et al. (2014) ,
iless et al. (2016) , Siless et al. (2018) , and Zhang et al. (2018) , per-
orm whole brain segmentation through clustering, without prior knowl-
dge about the anatomy of the bundles and without leveraging exam-
les of expert-made segmented bundles, limiting the quality of segmen-
undation (FBK), Trento, Italy. 
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Fig. 1. Examples of different properties of bundles. A. Two bundles with differ- 
ent size, on the left a large bundle (inferior-fronto-occipital fascicle) and on the 
right a small bundle (posterior arcuate). B. Two bundles (corticospinal tracts) 
obtained using different tracking algorithms, on the left with probabilistic and 
on the right with deterministic tracking. C. Two bundles (arcuate fascicles) seg- 
mented from diffusion data of different quality, on the left at research quality 
and on the right at clinical quality. In each panel it is reported the fractal di- 
mension (FD) of the voxel mask of the respective bundle. 
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1 With the term robust we refer to the ability of the method to perform con- 
sistently well across different data settings, e.g., with different bundle sizes, 
tractography techniques, or data quality, rather than across repetitions of the 
data acquisition, e.g., test-retest. 
ation. In contrast, supervised streamline-based methods require one or
ore examples of the bundle to learn from, in order to segment such
undle in the target subject, such as those in Mayer et al. (2011) ,
livetti and Avesani (2011) , Vercruysse et al. (2014) , Yoo et al. (2015) ,
abra et al. (2016) , Garyfallidis et al. (2018) and Sharmin et al. (2018) .
t has been shown that streamline-based methods like RecoBundles
 Garyfallidis et al., 2018 ) and the one based on the Linear Assignment
roblem, referred to as LAP ( Sharmin et al., 2018 ), outperform connec-
ivity based methods in terms of quality of segmented bundles. 
Direct methods are voxel-based methods that segment bundles di-

ectly from diffusion images without the need for streamlines, see
asserthal et al. (2018a) for a brief review. In contrast to the lim-
ted quality of segmentation reached by these methods, a recent direct
ethod proposed in Wasserthal et al. (2018a) presented evidence of re-
arkably better segmentation quality in comparison with a large selec-
ion of other segmentation methods, including connectivity-based and
treamline-based methods. This method, called TractSeg, is based on
onvolutional neural networks ( Ronneberger et al., 2015 ) and has set
he new standard in terms of quality of bundle segmentation. 
Despite the remarkable improvement in automatic segmentation
ethods over the years, the resulting bundles can be unsatisfactory.
he quality of segmentation may be strongly affected by some proper-
ies of the bundles, for example by their size; by the tractography tech-
ique, e.g. probabilistic or deterministic tracking algorithm; or by the
ata quality, e.g. research (high-resolution) or clinical quality, see Fig. 1
or some examples. 
As of today, no single method for bundle segmentation has been

emonstrated to be robust, to bundle size, tracking method and data
uality 1 . The choice of the most appropriate pipeline for tractography
s not unequivocal, but rather is strongly affected by the quality of
he available diffusion Magnetic Resonance Imaging (dMRI) data, and
hanges according to the specific application, depending on the desired
evel of sensitivity/specificity ( Thomas et al., 2014 ). Similarly, even
hough the interest in large bundles is well established in multiple appli-
ations ( Pestilli, 2018; Wandell, 2016 ), small and short bundles, which
e here call minor bundles, have recently received increasing attention,
ee Guevara et al. (2011) , Wu et al. (2016b) , Guevara et al. (2017) and
ullock et al. (2019) . For example, the relatively smaller bundles con-
ecting the human dorsal and posterior cortices have been recently
roven to be of great help in understanding how information flows in the
uman brain ( Bullock et al., 2019; Sani et al., 2019; Wu et al., 2016b ).
or these reasons, we believe that automatic methods for white matter
undle segmentation must be able to maintain a high quality of results
cross different settings. 
The main contribution of the present work is a novel method for

undle segmentation that is robust to all properties described in Fig. 1 .
e call the method Classifyber . Classifyber is a supervised streamline-
ased method, and is based on a linear classification model that pre-
icts whether or not individual streamlines belong to the bundle of in-
erest. It combines the current knowledge in bundle segmentation, ex-
loiting both the similarity between streamlines, typical of streamline-
ased methods, and the anatomical information from ROIs, typical of
onnectivity-based methods. In contrast to state-of-the-art automatic
egmentation methods, we claim that Classifyber is robust to different
ata settings. 
As a second contribution, we present an extensive comparison be-

ween Classifyber and multiple other automatic bundle segmentation
ethods available in the literature, across a diverse set of conditions:
ajor bundles vs minor bundles, different tractography techniques, and
undles from healthy subjects vs brain tumor patients. The results of
hese experiments support our claims that Classifyber is able to adapt
o different data settings and sets a new standard with respect to the
urrent literature by substantially improving the segmentation quality
eached by other methods. 
As a third contribution, we show that some segmentation methods

re deeply affected by a geometrical property of the shape of the bun-
les: the fractal dimension (FD) ( Esteban et al., 2007; Zhang et al., 2006 ).
undles with high fractal dimension are in general larger, more rounded,
nd have a smooth shape. Alternatively, bundles with low fractal dimen-
ion are generally smaller, flattened, and have a less smooth shape, see
ig. 1 . We observe that the tracking algorithm used to generate the trac-
ography and the size of the bundles are among the main factors in the
hange of fractal dimension. The concept of the fractal dimension of
 bundle is a key concept to discuss the experiments presented in this
ork. 
This paper is structured as follows. In Section 2 , we describe the pro-

osed method, Classifyber. Then, in Section 3 we present the materials,
hich are composed of four different datasets and of the atlases used
o derive the ROIs for the proposed method. In Section 4 , we report the
esign and the results of a number of experiments that we conducted to
erify our hypotheses. Finally, in Section 5 , we discuss the results that
uggest that practitioners should adopt the proposed Classifyber method
s the leading standard for bundle segmentation. 

. Methods 

Classifyber is a novel method that performs automatic bundle seg-
entation as a supervised learning problem, meaning that the algorithm
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earns how to segment from expert-based examples. The name Classify-
er is the linguistic blend of Classify and fiber , which explains the basic
rinciple of its functioning: to classify whether or not a given stream-
ine/fiber 2 belongs to the bundle of interest. 
Below, we provide a formal description of Classifyber, from the basic

oncepts to the key element of the proposed method, i.e., the vectorial
epresentation of a streamline that merges geometrical information typ-
cally used by streamline-based segmentation methods, and anatomical
nformation, typically used by connectivity-based segmentation meth-
ds. Afterwards, we describe the details of training and testing Classify-
er. We then briefly recall the most important aspects of other bundle
egmentation methods that we include in the experimental comparison
f Section 4.1 , together with the evaluation procedure. We conclude the
ection by introducing the notion of the fractal dimension (FD) of a bun-
le, which will be used to discuss the experimental results in Section 5 .

.1. Basic concepts 

A streamline 𝑠 = [ 𝐱 1 , … , 𝐱 𝑛 ] is an ordered sequence of 3D points,
 𝑖 = [ 𝑥 𝑖 , 𝑦 𝑖 , 𝑧 𝑖 ] ∈ ℝ 

3 , 𝑖 = 1 … 𝑛, that approximates a group of axons with
 similar path in the white matter of the brain. A tractogram T is the
ntire set of streamlines of the white matter of a brain: 𝑇 = { 𝑠 1 , … , 𝑠 𝑀 

} ,
here M typically ranges from hundreds of thousands to several mil-
ions. A white matter bundle, b ⊂T , is a subset of the tractogram with a
pecific anatomical meaning, such as the corticospinal tract. 
Experts neuroanatomists manually segment a given bundle b in a

ractogram adopting several strategies, which may comprise the defini-
ion of inclusion/exclusion ROIs to obtain the desired streamlines. From
he point of view of an algorithm, a convenient way to model that seg-
entation process is to consider each streamline individually and to
ecide whether or not the streamline belongs to the bundle: 

 ( 𝑠 ) = 

{ 

1 if 𝑠 ∈ 𝑏 

0 otherwise 
(1)

here e ( s ) denotes the expert deciding on the streamline s . 

.2. Classifyber 

Classifyber implements a classifier that accurately predicts whether
r not a given streamline s belongs to the bundle b . In analogy to the
revious work of Olivetti and Avesani (2011) , in this work we propose
 linear classifier method as core algorithm for Classifyber, for multi-
le reasons: it is extremely well known and easy to understand, it is
ery fast and requires minimal resources, software implementations are
ommonly available and, as opposed to non-linear methods, it can be
nterpreted. Generally, a linear classifier c takes as input a vector of real
alues 𝐯 ∈ ℝ 

𝑑 and returns its predicted category, i.e. 0 or 1: 

( 𝐯 ) = 

{ 

1 if 𝑎 1 𝑣 1 + ⋯ + 𝑎 𝑑 𝑣 𝑑 + 𝑎 0 > 0 
0 otherwise 

(2)

here the weights of the linear classifier 𝑎 0 , … , 𝑎 𝑑 are estimated by min-
mizing the errors in classification on a training set (plus regularization
erms that may differ between different algorithms). 
In order to use a linear classifier on a streamline s , it is necessary to

ransform the streamline into a vector v which contains the necessary in-
ormation for the task of bundle segmentation. In other words, we need
o define an effective feature space to represent streamlines as vectors.
his is a key step in the proposed method, where we extract geometrical
nd anatomical information from the streamline and create this vector.

.3. Vectorial representation of a streamline 

Given a streamline s , we compute 4 sets of values that, concatenated,
reate the proposed vectorial representation v of the streamline. The first
2 In some literature, the name fiber refers to axon and in other literature to 
treamline . Here we refer to the latter for linguistic convenience. 

t  
wo sets refer to the geometrical aspects of the streamline, typically ex-
loited by streamline-based segmentation methods. The remaining two
ets refer to connectivity and anatomical aspects of the bundle of interest
espectively, which are the main focus of connectivity-based segmenta-
ion methods. 
Streamline-based segmentation methods group together streamlines

ccording to some similarity measures, or distances. Typical distances
etween two streamlines are the minimum average direct flip ( d MDF ) dis-
ance or the minimum average mean ( d MAM 

) distance, which account
or the respective positions and shapes of the two streamlines, see
aryfallidis et al. (2015) and Olivetti et al. (2017) . Based on such con-
epts, an accurate and easy way to compute a vectorial representation
f streamlines has been proposed in Olivetti et al. (2012) and since
een used for multiple applications, like clustering, interactive segmen-
ation and fast nearest-neighbor queries, see Olivetti et al. (2013) , Porro-
uñoz et al. (2015) and Sharmin et al. (2016) . The transformation from
treamline to vector is built on the general concept of dissimilarity rep-
esentation , initially proposed for pattern recognition problems, see for
xample the comprehensive ( Pekalska and Duin, 2005 ). The dissimilar-
ty representation for streamlines described by Olivetti et al. (2012) , first
equires the user to define a small group of prototypical streamlines of
he tractogram 

3 , called landmark streamlines, 𝑙 1 , … , 𝑙 𝐿 , that summarise
he tractogram and acts as a reference system. Then, given a stream-
ine s , the set of its distances from the landmarks is its vectorial rep-
esentation: 𝑣 = [ 𝑑( 𝑠, 𝑙 1 ) , … , 𝑑( 𝑠, 𝑙 𝐿 )] , where d is a streamline distance,
ike d MDF or d MAM 

. As shown in Olivetti et al. (2012) and in Porro-
uñoz et al. (2015) , a vector v or this sort is an accurate vectorial rep-
esentation of the streamline s . 
In this work we propose a vectorial representation for streamlines

hat extends the one originally proposed in Olivetti et al. (2012) . The
rst two sets of values are two dissimilarity representations based on
ifferent landmarks: the first one uses 𝐿 = 100 landmarks taken glob-
lly from a whole tractogram, as in Olivetti et al. (2012) ; the second
ne is bundle-specific and uses 𝐿 = 100 landmarks taken locally in the
rea of bundle of interest. Both the global and local landmarks are cho-
en in one random subject using the subset farthest first (SFF) policy,
hich provides a uniform coverage of the area of interest, as suggested
n Olivetti et al. (2012) . Notice that, since the set of landmarks act as a
eference system, it has to be the same for all subjects. 
The third set of values represents connectivity features and is, again,

 dissimilarity representation but now focused on connectivity patterns
nstead of the shape of the streamline. The idea is that, if a streamline
epresents the anatomical connection between cortical areas at its end-
oints, then two streamlines with neighboring endpoints represent the
ame pattern of anatomical connectivity and serve the same purpose.
he dissimilarity representation of this third set of values is based on
 recent streamline distance that we proposed in Bertò et al. (2019) ,
hich exploits only the endpoints of the streamline: given two stream-
ines s A and s B , whose endpoints are { 𝐱 𝐴 1 , 𝐱 

𝐴 
𝑛 𝐴 
} ∈ 𝑠 𝐴 and { 𝐱 𝐵 1 , 𝐱 

𝐵 
𝑛 𝐵 
} ∈ 𝑠 𝐵 ,

heir endpoint distance is simply the mean Euclidean distance of the
orresponding endpoints: 

 END ( 𝑠 𝐴 , 𝑠 𝐵 ) 

= 

1 
2 
( min ( ||𝐱 𝐴 1 − 𝐱 𝐵 1 ||2 , ||𝐱 𝐴 1 − 𝐱 𝐵 

𝑛 𝐵 
||2 ) + min ( ||𝐱 𝐴 

𝑛 𝐴 
− 𝐱 𝐵 1 ||2 , ||𝐱 𝐴 𝑛 𝐴 − 𝐱 𝐵 

𝑛 𝐵 
||2 )) 

(3) 

In this work, we propose to use this endpoint distance from the 𝐿 =
00 global landmarks as the third set of values to describe the connectivity
attern of a streamline. 
The fourth set of values refers to anatomical aspects of the bundle of

nterest, by means of the ROIs that define that bundle. Often, a bundle is
efined by two ROIs that define its trajectory before it diverges towards
he cortex, see for example ( Wakana et al., 2007; Yeatman et al., 2012 ),
3 Such streamlines can be just a random subset of the tractogram. 
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Fig. 2. Feature definition and extraction. Set 1 and set 2 contain the distances ( d MDF ) of the streamline with 100 global and 100 local landmarks, respectively. Set 3 
contains the distances ( d END ) between the endpoints of the streamline and the 100 global landmarks. Set 4 contains the distances ( d ROI ) between the streamline and 
the two ROIs pertaining to the bundle of interest. 

o  

B  

a  

a  

a  

t

𝑑  

w  

W  

d  

b
 

d  

u  

v  

u  

c  

v  

v  

fi  

s

2

 

f  

w  

c  

N  

s  

p  

n  

b  

o  

p

2

 

c
 

t  

e  

d  

b  

s  

b  

r  

a  

a  

l  

n  

W  

c  

d  

b  

M  

g  

S
 

t  

i  

F  

T  

f
 

u  

a  

4 Usually, with 𝑘 = 2000 , the bundle superset, which is a subset of the en- 
tire tractogram, is approximately 30 times bigger that the bundle and 20 times 
smaller than the whole brain tractogram. 
r by the two terminal ROIs, see for example ( Bullock et al., 2019 ). In
ertò et al. (2019) , we recently proposed a streamline-ROI distance as
 closest point distance: given a streamline s and one ROI represented
s a voxel mask ROI = { vox 1 , … , vox 𝑀 

} , their distance is the minimum
mong all Euclidean distances between the points of the streamline and
he voxels of the ROI: 

 ROI ( 𝑠, ROI ) = min 
𝐱∈𝑠, vox ∈ROI 

||𝐱 − vox ||2 (4)

here with vox we indicate the coordinates of the center of the voxel.
e use this distance to define the fourth set of values, i.e., the set of
istances of the streamline s to each of the two ROIs that define the
undle. 
In conclusion, given a streamline s , we compute 100 values as the

issimilarity representation from global landmarks ( set 1 ), then 100 val-
es as the dissimilarity representation from local landmarks ( set 2 ), 100
alues as the endpoint distance from global landmarks ( set 3 ) and 2 val-
es as the Euclidean distance from the 2 ROIs (or more than 2 values in
ase of more than 2 ROIs) relevant to the bundle of interest ( set 4 ). The
ector v resulting from concatenating those 302 values is the proposed
ectorial representation of the streamline and these 302 variables de-
ne the proposed feature space. An illustration of the proposed feature
pace is given in Fig. 2 . 

.4. Classifyber: training and test 

Given tractograms and bundles segmented by experts, we first trans-
orm all streamlines into vectors and label them with 1 or 0, to indicate
hether or not they belong to the bundle of interest, and then train a
lassifier to segment a specific bundle, e.g. the corticospinal tract (CST).
otice that, in order to segment different kinds of bundles, it is neces-
ary to train different instances of Classifyber, each with a set of exam-
les of the desired kind of bundle. Afterwards, given a tractogram of a
ew subject, we predict which of its streamlines belong to that bundle
y first transforming them into vectors and then by applying the previ-
usly trained classifier to them. This procedure, divided into a training
hase and a test phase , is described below and illustrated in Fig. 3 . 
.4.1. Training phase 

The training phase is composed of three steps, which are schemati-
ally illustrated in Fig. 3 (A). 
Step (a1) Bundle superset . The entire set of streamlines in each trac-

ogram is reduced to a subset of those proximal to the bundle of inter-
st. The main purpose of this reduction is to avoid extremely imbalanced
ata , which decreases the accuracy of classification. Typically, the ratio
etween the number of streamlines of a bundle (class 1) and all the other
treamlines in the tractogram (class 0) is around 1: 500, so extremely im-
alanced. A typical simple technique to promote effective training is to
emove examples far away from the boundary between the two classes
nd to get a more even class ratio. Specifically, the bundle superset of
n example bundle is computed by considering the neighboring stream-
ines belonging to the corresponding tractogram retrieved by a k nearest
eighbors ( k -NN) procedure applied to each streamline of the bundle.
e found 𝑘 = 2000 to be a good compromise between computational
ost reduction and size of the resulting superset with respect to the bun-
le and the tractogram 

4 . Such operation is computationally intensive,
ut we adopted the very fast solution described in Sharmin et al. (2018) .
oreover, this extra cost in time is massively outweighed by the 20x
ain in time when computing the next steps, i.e. steps (a2) and (a3), see
ection 4.2.7 for more details. 
Step (a2) Feature extraction . Each streamline of the superset is then

ransformed into a vector, as described in Section 2.3 . To the vector
s assigned a class label 1 if it belongs to the bundle, 0 otherwise, see
ig. 3 (A), where they are represented in green and red respectively.
he entire set of vectors, i.e. the training set , is z-scored independently
or each feature. 
Step (a3) Training . A binary Logistic Regression classifier is trained,

sing the stochastic average gradient (SAG) solver ( Schmidt et al., 2017 )
vailable in the Python package scikit-learn ( Pedregosa et al., 2011 ). We
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Fig. 3. Training and test of Classifyber. A. Schematic illustration of the training phase of Classifyber for a given bundle (CST) over N different subjects. Step (a1): 
bundle superset. Streamlines belonging to the bundle are depicted in green (class 1), while those not belonging to the bundle are depicted in red (class 0). Step (a2): 
feature extraction. Streamlines are transformed into vectors. Step (a3): training of a linear Logistic Regression (LR) classifier. The outcome of this phase is a vector 
of weights. B. Schematic illustration of the test phase of Classifyber on a single target subject. Step (b1): bundle superset. All the streamlines are depicted in orange 
because the labels are unknown. Step (b2): feature extraction. Streamlines are transformed into vectors. Step (b3): test using the resulting weights of the training 
phase. The outcome of this phase is the predicted bundle (CST) in the target subject. 
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5 Retrospectively, in all experiments, the superset obtained in this way was 
approximately 40 times larger than the target bundle and always containing all 
the streamlines of the target bundle. 
se default parameters, except for the number of iterations of the solver,
hich we increase to 1000 to ensure convergence, as well as the param-
ter to lessen the negative effects of the residual class imbalance, which
e set in all cases to 1:3. These choices are the result of a preliminary
nvestigation on left out data and are kept for all the experiments. 

.4.2. Test phase 

The test phase is performed on one subject of the test set at the time,
alled the target subject . Similarly to the training phase, the test phase
omprises three steps, which are schematically illustrated in Fig. 3 (B). 
Step (b1) Bundle superset . Similarly to step (a1) of the training phase,

e reduce the whole target tractogram to a superset of the target bun-
le, mainly to decrease the computational cost of segmenting the target
undle. Obviously, in this case we do not know the target bundle in ad-
ance, so the superset is only expected to contain the target bundle, with
ery high probability. In this case, first, a candidate bundle superset is
omputed as in step (a1) but considering, in the target tractogram, the
eighboring streamlines of one of the example bundle. This procedure is
epeated using 5 of the example bundles. Then, the final bundle superset
s obtained as the union of all the candidate bundle supersets 5 . 
Step (b2) Feature extraction . Each streamline of the bundle superset is

mbedded into a vector, as described in Section 2.3 . All the vectors are z-
cored feature-by-feature using means and standard deviations obtained
n step (a2) of the training phase. 
Step (b3) Test . By exploiting the linear classifier obtained from the

raining phase in step (a3), each streamline of the superset is predicted
o be either part of the bundle (class 1) or not (class 0). 

.5. Other bundle segmentation methods 

In Section 4.1 we compare Classifyber to state-of-the-art automatic
egmentation methods. We selected two methods based on the recent ex-
ensive comparison presented in Wasserthal et al. (2018a) , where Tract-
eg obtained the highest quality of bundle segmentation and RecoBundles
anked as the second best method among those freely available. In our
omparison we also included LAP , see Sharmin et al. (2018) , because it
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Table 1 

Where to find the code and web apps of the methods considered in this work. 

code / web app web link contribution of this work 

Classifyber code https://github.com/FBK- NILab/app- classifyber yes (original) 

Classifyber web app https://doi.org/10.25663/brainlife.app.228 yes (original) 

https://doi.org/10.25663/brainlife.app.265 yes (original) 

TractSeg code https://github.com/MIC-DKFZ/TractSeg no, already available 

TractSeg web app https://doi.org/10.25663/brainlife.app.186 no, already available 

TractSeg-retrained web app https://doi.org/10.25663/brainlife.app.204 yes (adapted) 

https://doi.org/10.25663/brainlife.app.205 yes (adapted) 

RecoBundles(-atlas) code http://nipy.org/dipy no, already available 

LAP web app https://doi.org/10.25663/brainlife.app.209 yes (adapted) 

Box-counting dimension https://github.com/FBK-NILab/fractal _ dimension yes (original) 
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as not compared in Wasserthal et al. (2018a) but proved to be supe-
ior to nearest neighbor methods, the category to which RecoBundles
elongs. In some cases, we used variants of TractSeg and RecoBundles,
eferred to as TractSeg-retrained and RecoBundles-atlas . We provide de-
ails on these other segmentation methods in Section 4.1.2 . 

.6. Evaluation procedure 

To quantitatively evaluate the performance of the different segmen-
ation methods we use a procedure commonly adopted in this literature,
ee for example Garyfallidis et al. (2018) , Sharmin et al. (2016) and
asserthal et al. (2018a) . We compute the degree of voxel overlap
etween the automatically segmented bundle 𝑏̂ and the expert-based
egmented bundle b , through the Dice Similarity Coefficient (DSC)
 Dice, 1945 ): 𝐷𝑆𝐶 = 2 ⋅ ( |𝑣 ( ̂𝑏 ) ∩ 𝑣 ( 𝑏 ) |)∕( |𝑣 ( ̂𝑏 ) | + |𝑣 ( 𝑏 ) |) where | v ()| is the
umber of voxels in the bundle mask. The DSC ranges from 0 to 1 and
he closer the score is to 1, the more the two bundles ̂𝑏 and b are similar.
he evaluation is conducted in the subject’s native space. 

.7. Fractal dimension 

The concept of fractal dimension (FD) ( Mandelbrot, 1982 ) can be used
o quantify the degree of irregularity of a 3D shape. This notion has
lready been applied to the shape of the brain white matter ( Zhang et al.,
006 ) and to characterize multiple sclerosis ( Esteban et al., 2007 ). 
Intuitively, for standard objects like straight lines, a 2D flat square

r a 3D cube, the FD is 1, 2 and 3, respectively. Irregular lines can have
D greater than 1 and asymptotically 2, if their resulting shape is close
o a 2D surface. In the same way, a convoluted 2D shape that resembles
 3D shape, or a 3D shape with several holes, both have FD between
 and 3. For example, Zhang et al. (2006) estimated the FD of the 3D
oxel mask of the white matter of human brains and obtained values
etween 2.1 and 2.5. 
In this work, we determine the FD of the voxel mask of white matter

undles via the box-counting dimension, see Falconer (2014) . The box-
ounting dimension is based on the idea of covering a given shape with
oxes of size 𝜎 and it quantifies how the number of boxes changes when
changes, in double-log scale: 

D box = − lim 

𝜎→0 

log count ( 𝜎) 
log 𝜎

(5)

here count( 𝜎) is the number of the necessary boxes. As an example,
ee the FD of some bundles in Figure 1 . 

.8. Code availability 

We provide the source code of Classifyber and the code to estimate
he box-counting dimension (with examples) as open source software,
ee Table 1 . Moreover, Classifyber can be freely used as web applica-
ion on the online platform brainlife.io . In Table 1 we list the web links
elated to all the implementations of the bundle segmentation methods
onsidered in this work. 
. Materials 

In order to test different automatic bundle segmentation methods
cross a wide range of settings, we conducted extensive experiments
cross four different datasets of tractograms and bundles, three of which
re novel. The description of these datasets, which we denote as HCP-
inor, HCP-IFOF, HCP-major and Clinical, is provided in the following
ections, together with the atlases used to derive the ROIs for the pro-
osed method. 

.1. Data sources 

The first three datasets are built on top of diffusion data freely avail-
ble from the Human Connectome Project (HCP) ( Sotiropoulos et al.,
013; Van Essen et al., 2013 ), 3T scanner, image resolution of 1.25 mm
sotropic, 270 gradient directions with b -values = 1000, 2000, and 3000
 / mm 

2 and 18 volumes with b = 0. Data have already been preprocessed
ith the minimal pipeline of Glasser et al. (2013) , which includes brain
xtraction and correction for motion, distortion and eddy-currents. The
ourth dataset is an in-house clinical dataset built from patients with
rain tumors, 1.5T scanner, image resolution 0.9 x 0.9 x 2.4 mm, 60
radient directions with b -value = 1000 s / mm 

2 and 1 volume with b = 0.
ata were corrected for eddy-current and motion, and an additional step
f rescaling was applied to obtain an isotropic voxel resolution of 2 x 2
 2 mm. 

.2. Datasets of tractograms and expert-based segmented bundles 

i) HCP-minor . Number of subjects: 105 from HCP. Tractography: 90
directions, single shell b = 2000 s / mm 

2 , constraint spherical decon-
volution (CSD), ensemble probabilistic tracking ( Takemura et al.,
2016 ) with curvature parameters = 0.25, 0.5, 1, 2 and 4 mm,
step size = 0.625 mm, 750K streamlines. Bundles: Left and right
posterior arcuate fasciculus (Left_pArc and Right_pArc), left and
right temporo-parietal connection to the superior parietal lobule
(Left_TP-SPL and Right_TP-SPL), left and right middle longitudi-
nal fasciculus-superior parietal lobule component (Left_MdLF-SPL
and Right_MdLF-SPL), left and right middle longitudinal fasciculus-
superior angular gyrus component (Left_ MdLF-Ang and Right_MdLF-
Ang). Expert-based segmentations: We obtained the segmentations of
192 randomly selected HCP subjects using the procedure proposed in
Bullock et al. (2019) . We then filtered out segmented bundles that
were not considered plausible from the neuroanatomical point of
view with a semi-automatic technique, as described in Appendix A ,
remaining with 105 subjects. 

ii) HCP-IFOF . Number of subjects: 30 from HCP. Tractography: 90 di-
rections, single shell b = 2000 s / mm 

2 , constraint spherical decon-
volution (CSD), deterministic local tracking ( Berman et al., 2008;
Garyfallidis et al., 2014 ), step size = 0.625 mm, white matter seed-
ing, approximately 500K streamlines. Bundles: Left and right infe-
rior fronto-occipital fasciculus (Left_IFOF and Right_IFOF). Expert-
based segmentations: One expert neurosurgeon (A.D.B.) manually seg-

https://github.com/FBK-NILab/app-classifyber
https://doi.org/10.25663/brainlife.app.228
https://doi.org/10.25663/brainlife.app.265
https://github.com/MIC-DKFZ/TractSeg
https://doi.org/10.25663/brainlife.app.186
https://doi.org/10.25663/brainlife.app.204
https://doi.org/10.25663/brainlife.app.205
http://nipy.org/dipy
https://doi.org/10.25663/brainlife.app.209
https://github.com/FBK-NILab/fractal_dimension
https://brainlife.io
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mented the bundles in 30 random HCP subjects following the guide-
lines in Sarubbo et al. (2013) and Hau et al. (2016) , who proposed
a classification of the IFOF in different subcomponents based on mi-
crodissection studies. Specifically, the bundle is composed of two
layers: the first layer is superficial and antero-superiorly directed,
with terminations in the inferior frontal gyrus, while the second layer
is deeper and consists of three components (anterior, middle and pos-
terior). 

ii) HCP-major . Number of subjects: 105 from HCP. Tractography: 270 di-
rections, multi-shell multi-tissue (msmt) constraint spherical decon-
volution (CSD), iFOD2 probabilistic anatomically constrained trac-
tography (ACT), variable step size, white matter seeding, 10 mil-
lion streamlines. Bundles: Left and right corticospinal tract (Left_CST
and Right_CST), left and right inferior fronto-occipital fasciculus
(Left_IFOF and Right_IFOF), left and right inferior longitudinal fas-
ciculus (Left_ILF and Right_ILF), left and right uncinate fasciculus
(Left_UF and Right_UF), left and right arcuate fasciculus (Left_AF
and Right_AF). Expert-based segmentations: We considered a portion
of the semi-automatically segmented bundles from the freely avail-
able benchmark dataset of Wasserthal et al. (2018a) available at
Wasserthal et al. (2018) ). 

ii) Clinical . Number of patients: 10 with brain tumor. Tractography:
60 directions, single shell b = 1000 s / mm 

2 , diffusion tensor imaging
(DTI) reconstruction, Euler Delta Crossing (EuDX) tracking method
( Garyfallidis et al., 2014 ), 10 6 seeds, approximately 100K stream-
lines. Bundles: Left inferior fronto-occipital fasciculus (Left_IFOF) and
left arcuate fasciculus (Left_AF). Expert-based segmentations: One ex-
pert neurosurgeon (S.S.) manually segmented the bundles in the le-
sioned hemisphere of the patients, who were affected by brain tu-
mors. The lesion however did not affect the shape of the bundles con-
sistently. Bundles where successively refined to remove outliers us-
ing the interactive segmentation tool Tractome ( Porro-Muñoz et al.,
2015 ) and visually inspected, remaining with 7 instances for each
bundle. 

.3. Atlases 

We exploited the following freely available atlases in order to derive
he ROIs used by Classifyber, which were then registered to the MNI152
1 template ( Mazziotta et al., 2001 ). 
MNI152_ICBM2009c_reconstructed_atlas. This atlas is a curated

reeSurfer parcellation of the ICBM2009c nonlinear asymmetric template,

ee Fischl (2012) , Fonov et al. (2011) , and Gorgolewski (2016) . The par-
ellation is used to define the terminal regions of bundles in HCP-minor
ataset. 
MNI_JHU_tracts_ROIs_atlas. This atlas is composed of two planar way-

oint ROIs for each of 20 major bundles, which delineate the path of
ach bundle before it diverges towards the cortex. Each ROI was drawn
n a group-average dataset in MNI space, see Wakana et al. (2007) . This
tlas is used to define the waypoint ROIs of the bundles in HCP-major,
CP-IFOF and Clinical datasets. 

.4. Data preprocessing 

For the three HCP datasets, we computed the non-linear warp to
egister the structural T1-weighted images of every subject of each
ataset to the MNI152 T1 template using the Advanced Normaliza-
ion Tool (ANTs) ( Avants et al., 2008 ). For the clinical dataset, we
omputed a streamline linear registration (SLR) to the whole brain
emplate of Yeh et al. (2018) (available at Garyfallidis (2018) ) be-
ause non-linear registration of clinical data is debated, as reported in
aryfallidis et al. (2015) . In all cases, we applied the registrations to
ractograms and bundles. 
.5. Data availability 

We freely share tractograms and expert-based segmented bun-
les of the HCP-minor dataset through the brainlife.io platform at
ttps://doi.org/10.25663/brainlife.pub.11 . The HCP-major dataset is
vailable at Wasserthal et al. (2018) . The HCP-IFOF is available upon
ormal data sharing agreement with the authors. The access to the Clin-
cal dataset is limited by ethical and privacy issues and requires formal
greement with the neurosurgery unit involved in this study. 

. Experiments and results 

.1. Experiments 

The experiments were conducted on the four datasets described in
ection 3 : HCP-minor, HCP-major, HCP-IFOF and Clinical. For each
ataset, the entire pool of subjects was randomly divided into two
roups: the training set and the test set . Bundles of the training set were
sed as examples to learn from, while bundles of the test set were used
o assess the performance of the different methods. Notice that the ex-
ct same test sets were kept for all the methods compared. In this way,
e could compare both the quality of segmentation obtained by each
ethod averaged over the pool of test subjects, such as in an unpaired
est, and the subject-by-subject comparison in segmenting each bundle,
uch as in a paired test, e.g. how frequently one method obtained better
uality of segmentation than another method. 

.1.1. Classifyber: experimental setup 

We retrieved the ROIs pertaining to each bundles in order to
uild the feature space of Classifyber, using the available atlases de-
cribed in Section 3.3 . For the dataset HCP-minor, the two ROIs
onsidered for each bundle are the two terminal ROIs, i.e. the
ortical regions that the bundle of interest connects, derived from
ullock et al. (2019) . Specifically, the MdLF-Ang and MdLF-SPL con-
ect the parietal region to the lateral-temporal region, while the TP-
PL and pArc connect the parietal region to the temporal region.
ach region was built by merging specific cortical parcellations of
he MNI152_ICBM2009c_reconstructed_atlas . For the other three datasets,
he ROIs considered are the two planar waypoint ROIs defined in the
NI_JHU_tracts_ROIs_atlas , see Wakana et al. (2007) . 
HCP-minor We considered only subjects for which all bundles re-

eived an expert-made score of 3 or higher, according to the procedure
xplained in Appendix A , resulting in a set of 40 subjects. We randomly
plit this pool of subjects into a group of 15 for training and a group of 25
or testing. Additionally, within this dataset, we also studied how much
he quality of segmentation of Classifyber was affected when changing
he number of subjects in the training set from 1 to 60. In this case, we
onsidered also subjects for which all bundles received an expert-made
core of at least of 2. 
HCP-IFOF We randomly split the pool of subjects into a group of 15

or training and a group of 15 for testing. 
HCP-major For this dataset, which is part of the dataset used in
asserthal et al. (2018a) , we selected the same 21 test subjects used
n the experiments presented there. In this way, we could directly com-
are our new results on the major bundles with theirs and, at the same
ime, we could test the reproducibility of their results. Of the 84 re-
aining subjects, 15 were randomly selected and used as training set
or Classifyber. The kinds of bundles considered are those for which the
wo waypoint ROIs are available in the MNI_JHU_tracts_ROIs_atlas . In
reliminary experiments, we observed that the 10 million streamlines
f each tractogram in HCP-major were extremely redundant for train-
ng Classifyber and just using 10% of them, randomly selected, did not
ignificantly change the results. By using just 10% of the streamlines
e reduced the training time by a factor of 10 and the RAM usage by a
actor of 4. 

https://brainlife.io
https://doi.org/10.25663/brainlife.pub.11
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Table 2 

Summary of the experimental setup of all the segmentation methods and variants, across the experiments/datasets consid- 
ered in this work. For each dataset, all training sets are identical across the methods, except when indicated with a letter. 
Explanation of a : trained also on 15 subjects from HCP-IFOF and 15 subjects from HCP-major; b : 84 subjects/bundles from 

HCP-major; c : exact same training set as the other methods composed of 15 bundles, but considered individually; d : 1 
example bundle from the bundle atlas. UNSUPPORTED: TractSeg and RecoBundles-atlas cannot segment minor bundles. 
UNFEASIBLE: RecoBundles and LAP required too many computational resources. Notice that in all cases, all test sets are 
identical across all methods. 

Method Description Experiment / Dataset (# subjects in training set) 

HCP-minor HCP-IFOF HCP-major Clinical 

Classifyber linear classifier of single streamlines 15 15 15 6 a 

TractSeg voxel-based CNNs, pre-trained UNSUPPORTED 84 b 84 b 84 b 

TractSeg-retrained voxel based CNNs, retrained 15 15 84 b –

RecoBundles 1-NN of single streamlines 15 c 15 c UNFEASIBLE –

RecoBundles-atlas 1-NN of single streamlines, from atlas UNSUPPORTED 1 d 1 d –

LAP linear assignment of single streamlines 15 15 UNFEASIBLE –
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Clinical Due to the small number of subjects in the dataset, instead
f splitting the pool of 7 subjects into training and test sets, we ran
lassifyber in two different ways: (i) we trained Classifyber on the IFOFs
nd AFs of the HCP-major dataset and then segmented the 7 patients
n the Clinical dataset. We chose this dataset because it is part of the
xact same dataset used for training TractSeg, to have fair comparison
etween the two methods. We refer to this case as Classifyber-major . (ii)
e performed a cross-validation study with the leave-one-subject-out
trategy, using only 6 subjects from the Clinical dataset as training set
nd the remaining subjects as test set, repeatedly. We refer to this case
lainly as Classifyber . In this latter case we also aimed to show the ability
f Classifyber to accurately segment bundles even when trained on a
ery small number of segmentations, in this case only 6. To conclude,
or the IFOF, we ran one additional experiment where Classifyber was
rained on the HCP-IFOF dataset. We refer to this case as Classifyber-
FOF . 

.1.2. State-of-the-art methods: experimental setup 

Here we describe the state-of-the-art automatic segmentation meth-
ds that we considered in our comparison, their necessary variants to
xperiment on all datasets, and their experimental setup. A summary of
he experimental setup of all the methods, variants, and datasets con-
idered is given in Table 2 . 
TractSeg TractSeg, a voxel-based method recently proposed by
asserthal et al. (2018a) , is based on fully convolutional neural net-
orks (FCNNs) and segments 72 bundles simultaneously. Its output are
he voxel masks of the segmented bundles. We adopted the openly avail-
ble pretrained network, which was trained on 84 subjects, and tested
t on the dMRI data of the target subjects. Note that the pre-trained
ractSeg, despite being very fast and easy to use, is expected to not per-
orm well in some of the experimental settings because it was trained on
undles whose characteristics 6 may differ from the bundles to be seg-
ented. We used the default parameters and the postprocessing option,
hich removes holes and isolated voxels in the predicted voxel mask of
he bundles. 
TractSeg-retrained When the bundle to be segmented was not avail-

ble among those covered by TractSeg, we re-trained the FCNN on new
xamples with a procedure discussed with the authors of TractSeg and
escribed in the following. We refer to this variant as TractSeg-retrained .
irst, we trained a single FCNNs per dataset with default parameters,
50 epochs, fraction of validation subjects = 0.2 and data augmenta-
ion. Then, we tested the method enabling the postprocessing option.
or the HCP-minor dataset, we trained the model both with the same
5 subjects used in the other methods, and also with 69 additional sub-
ects by considering as well those subjects for which all bundles received
6 TractSeg was trained with bundles from dMRI data of the Human Connec- 
ome project, CSD reconstruction and probabilistic tracking, see Section 3.2 . n
 score of at least 2 (84 subjects in total). We provide evidence of the
uccessful training in Appendix B . 
RecoBundles-atlas Garyfallidis et al. (2018) proposed a streamline-

ased segmentation method, called RecoBundles, that takes as input
ne example bundle which is used to estimate the corresponding bun-
le in a new tractogram by means of linear registration and nearest-
eighboring streamlines. We contacted the authors of RecoBundles and
eceived the indication to use the bundle models provided by the bun-
le atlas of Yeh et al. (2018) (available at Garyfallidis (2018) ) as the
xample bundles and specifically 30 (out of 80) of them. We denote as
ecoBundles-atlas this use of the RecoBundles algorithm. Note that this
ariant of RecoBundles, despite being very fast and easy to use, is ex-
ected to not perform well in some of the settings of the experiments,
ecause it uses as input a single bundle model from an atlas whose char-
cteristics 7 may differ from the bundles to be segmented. We used the
est configuration of parameter values found from an extensive prelim-
nary assessment analogous to the one reported in the supplementary
aterials. This configuration uses default parameter values with the ex-
eption of disabling the local streamline linear registration (SLR) option
because all the datasets were already coregistered in MNI space) and
sing the minimum average mean distance ( d MAM ) instead of the mini-
um average direct flip distance ( d MDF ). 
RecoBundles When the bundle to be segmented is not available

mong the 30 selected bundles from the bundle atlas of Yeh et al. (2018) ,
e fell back to the original indication in Garyfallidis et al. (2018) and
sed the same example bundles adopted as input for the other meth-
ds. We denote this use of the algorithm plainly as RecoBundles . Due to
he fact that RecoBundles accepts only one bundle as example, to quan-
ify the quality of segmentation when multiple bundles are available in
he training set, we adopted a procedure similar to the one used in the
xperiments of Wasserthal et al. (2018a) . Specifically, we treated the N
xample bundles as models for N separate runs of the algorithm over the
arget subject, thus obtaining N different predictions of the same bundle.
e then evaluated the segmentation accuracy by computing the mean
SC across the N bundles. As for RecoBundles-atlas, we used the best
onfiguration of parameter values found from an extensive preliminary
ssessment described in the supplementary materials. 
LAP Sharmin et al. (2018) proposed a streamline-based segmenta-

ion method that takes as input multiple example bundles which are
sed to estimate the corresponding bundle in a target tractogram by
eans of finding corresponding streamlines through the solution of a
inear Assignment Problem (LAP) and a refinement step. We ran the al-
orithm following the original procedure and we set the parameter k , the
nly parameter of the method, corresponding to the number of nearest
eighbors streamlines to compute the superset, equal to 2000 (default
7 The atlas of Yeh et al. (2018) is based on dMRI data from the Human Con- 
ectome Project and deterministic tracking. 
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Table 3 

Quantitative comparison over HCP-minor dataset: DSC (mean ± sd) across 25 
target subjects for RecoBundles, TractSeg-retrained, LAP and Classifyber. High- 
est quality of segmentation in bold face. 

RecoBundles TractSeg-ret. LAP Classifyber 

Right_pArc 0.76 ± 0.04 0.77 ± 0.03 0.80 ± 0.03 0.88 ± 0.03 
Left_MdLF-Ang 0.71 ± 0.04 0.72 ± 0.06 0.79 ± 0.05 0.87 ± 0.03 
Left_pArc 0.73 ± 0.05 0.75 ± 0.03 0.79 ± 0.04 0.85 ± 0.05 
Right_MdLF-Ang 0.68 ± 0.04 0.70 ± 0.03 0.76 ± 0.03 0.84 ± 0.03 
Left_MdLF-SPL 0.63 ± 0.06 0.67 ± 0.05 0.73 ± 0.04 0.82 ± 0.04 
Right_TP-SPL 0.62 ± 0.08 0.68 ± 0.06 0.72 ± 0.05 0.82 ± 0.05 
Left_TP-SPL 0.63 ± 0.06 0.67 ± 0.04 0.70 ± 0.05 0.81 ± 0.04 
Right_MdLF-SPL 0.60 ± 0.05 0.64 ± 0.04 0.70 ± 0.03 0.80 ± 0.04 
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Table 5 

Quantitative comparison over HCP-major dataset: DSC 
(mean ± sd) across 21 target subjects for RecoBundles- 
atlas, TractSeg and Classifyber. Highest quality of segmen- 
tation in bold face. 

RecoB.-atlas TractSeg Classifyber 

Right_CST 0.62 ± 0.07 0.85 ± 0.02 0.87 ± 0.02 
Left_CST 0.62 ± 0.11 0.85 ± 0.03 0.86 ± 0.10 
Right_UF 0.57 ± 0.24 0.79 ± 0.03 0.86 ± 0.03 
Right_AF 0.53 ± 0.11 0.83 ± 0.02 0.86 ± 0.03 
Left_UF 0.55 ± 0.27 0.77 ± 0.03 0.84 ± 0.04 
Left_IFOF 0.67 ± 0.06 0.80 ± 0.02 0.84 ± 0.03 
Left_ILF 0.57 ± 0.07 0.77 ± 0.02 0.84 ± 0.04 
Right_IFOF 0.76 ± 0.04 0.80 ± 0.02 0.84 ± 0.03 
Left_AF 0.71 ± 0.05 0.84 ± 0.03 0.83 ± 0.04 
Right_ILF 0.42 ± 0.13 0.75 ± 0.03 0.82 ± 0.04 
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 = 500 ), since the total number of streamlines of the tractograms con-
idered in our experiments are approximately 4 times higher than in the
riginal study of Sharmin et al. (2018) . One limitation of LAP is that it is
omputationally too expensive for supersets larger than 100 thousands
treamlines, both for memory and time requirements. 

.1.3. Experiments on Fractal Dimension (FD) 

In this experiment, we studied how the performance of the differ-
nt segmentation methods is affected by the FD of the target bundles.
e computed the FD of the voxel mask of each target bundle as seg-
ented by experts and compared it with the quality of segmentation
DSC) obtained for that bundle by each automatic segmentation method,
cross all experiments (approximately 500 bundles). For TractSeg and
ecoBundles, that number was larger because we investigated also the
ariants TractSeg-retrained and RecoBundles-atlas, while for LAP it was
maller because it was not possible to execute the method on the HCP-
ajor dataset, where supersets substantially exceeded 100 thousands
treamlines. 

.2. Results 

.2.1. Results on HCP-minor dataset 

In Table 3 and Fig. 7 , we quantify the mean quality of segmenta-
ion in terms of DSC across the minor bundles considered in this set of
xperiments for RecoBundles, TractSeg-retrained, LAP and Classifyber
cross 25 subjects. TractSeg and RecoBundles-atlas were excluded be-
ause they do not address minor bundles. The quality of segmentation
btained by Classifyber is very high and outperforms all the other meth-
ds. Moreover, given that the target subjects are exactly the same across
ll methods, we can also summarize the results with a direct compari-
on on the individual bundles: over the 200 segmentations (8 different
undles for each of the 25 test subjects) performed by each method dur-
ng the test phase, Classifyber obtained higher quality of segmentation
higher DSC) than RecoBundles and TractSeg-retrained in 100% of the
ases (Wilcoxon signed-rank test, p -value =1 . 4 × 10 −34 for both the com-
arisons), and than LAP in 99% of the cases 8 (Wilcoxon signed-rank test,
 -value =1 . 7 × 10 −34 ). 
8 TractSeg-retrained, when trained on 84 subjects, performed better than 
ractSeg-retrained on 15 subjects, obtaining a marginal increase in DSC be- 
ween 0 and 0.03. For a fair comparison with the other methods, this result 
s not reported in Table 3 and Fig. 7 . 
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Table 4 

Quantitative comparison over the HCP-IFOF dataset: DSC (m
atlas, RecoBundles, TractSeg, TractSeg-retrained, LAP and 
face. 

RecoBundles-atlas RecoBundles TractSeg 

Left_IFOF 0.45 ± 0.14 0.80 ± 0.04 0.48 ± 0.0
Right_IFOF 0.62 ± 0.18 0.72 ± 0.06 0.41 ± 0.0
The superiority of Classifyber over the other segmentation methods
s also evident from the qualitative comparison in Fig. 4 , in which the
egmentations provided by the proposed method are, for all the bun-
les considered, the most anatomically similar to the expert-based seg-
entations. When using other methods, we observe a consistent bias
n the predictions: RecoBundles and LAP tend to overestimate the bun-
le producing several false positives streamlines. On the other hand, for
he majority of the bundles of this dataset, TractSeg-retrained correctly
dentifies the core part of the bundles, but fails to retrieve part of the
ortical terminations. Illustrative examples of this behavior are in the
ast row of Fig. 4 , in which the Right_MdLF-SPL is overestimated by Re-
oBundles (first panel), and it is missing most of the terminations in the
atero-temporal ROI by TractSeg-retrained (second panel). 

.2.2. Results on HCP-IFOF dataset 

In Table 4 and Fig. 7 we report the result of comparing Classifyber
ith all other methods and variants: RecoBundles-atlas, RecoBundles,
ractSeg, TractSeg-retrained and LAP. The average DSC across 15 sub-
ects shows the superiority of Classifyber. Moreover, in all individual
ases, i.e. the 30 segmented bundles of the test set, Classifyber always
btained the highest DSC as compared to all other methods (Wilcoxon
igned-rank test, p -value =1 . 7 × 10 −6 for all the comparisons). 
Additionally, a qualitative visual comparison is reported in Fig. 5 ,

hich illustrates that the Left_IFOF estimated with RecoBunldes-atlas
first panel), is clearly missing the middle and posterior subcomponents
ith respect to the expert-based segmented bundle (last panel). A very
imilar behavior is observed in the bundle predicted by TractSeg (third
anel). 

.2.3. Results on HCP-major dataset 

In Table 5 and Fig. 7 we report the mean quality of segmentation
s DSC for RecoBundles-atlas, TractSeg and Classifyber over the major
undles considered, across 21 subjects. Over the 210 individual segmen-
ations generated by each method in the test phase, Classifyber obtained
 higher DSC than RecoBundles-atlas in 99% of the cases (Wilcoxon
igned-rank test, p -value =5 . 4 × 10 −35 ) and higher than TractSeg in 86%
f the cases (Wilcoxon signed-rank test, p -value =3 . 2 × 10 −27 ). 
Fig. 6 shows a qualitative comparison of two of the bundles seg-
ented with the three different methods. It is visible that Classifyber
ean ± sd) across 15 target subjects for RecoBundles- 
Classifyber. Highest quality of segmentation in bold 

TractSeg-retrained LAP Classifyber 

4 0.61 ± 0.03 0.81 ± 0.04 0.91 ± 0.03 
6 0.57 ± 0.04 0.73 ± 0.05 0.89 ± 0.03 
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Fig. 4. Qualitative comparison of segmented bundles in one target subject. Bundles on the rows: Left_TP-SPL (first row), Left_MdLF-Ang (second row) Right_pArc 
(third row), and Right_MdLF-SPL (fourth row). Automatic segmentation methods on the columns: RecoBundles (first column), TractSeg-retrained (second column), 
LAP (third column) and Classifyber (fourth column) and expert-based segmentation (fifth column). Highest quality of segmentation in bold face. 

Fig. 5. Qualitative comparison of segmented bundles in one target subject. One instance of Left_IFOF for RecoBundles-atlas, RecoBundles, TractSeg, TractSeg- 
retrained, LAP and Classifyber with the expert-based segmented bundle. Highest quality of segmentation in bold face. 
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Table 6 

Quantitative comparison over the Clinical dataset: DSC (mean ± sd) across 7 
target subjects for TractSeg, Classifyber-major, Classifyber-IFOF and Classifyber. 
Highest quality of segmentation in bold face. 

TractSeg Classifyber-major Classifyber-IFOF Classifyber 

Left_IFOF 0.42 ± 0.05 0.72 ± 0.09 0.81 ± 0.07 0.89 ± 0.03 
Left_AF 0.23 ± 0.02 0.74 ± 0.13 – 0.92 ± 0.03 
eaches a comparable quality of segmentation to TractSeg, even though
t uses only 15 subjects as examples. 

.2.4. Results on clinical dataset 

In Table 6 we report the quantitative comparison in terms of mean
SC for Classifyber and TractSeg. The comparison is focused on Tract-
eg because in Wasserthal et al. (2018a) it is stated that the method is
ffective on clinical quality data as well, without the need for retraining
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Fig. 6. Qualitative comparison of segmented bundles in one target subject. One instance of Right_CST and Left_UF for RecoBundles-atlas, TractSeg, and Classifyber 
with the expert-based segmented bundle. Highest quality of segmentation in bold face. 

Table 7 

FD values of the 4 datasets used in this work. The 
dataset are sorted according to their mean FD. 

dataset FD min FD max FD mean ± sd 

HCP-major 2.09 2.44 2.30 ± 0.08 

HCP-minor 1.89 2.26 2.10 ± 0.08 

HCP-IFOF 1.74 2.08 1.99 ± 0.06 

Clinical 1.75 1.96 1.86 ± 0.06 
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Table 8 

Time in minutes required to train each method and to seg- 
ment one IFOF for: RecoBundles-atlas, RecoBundles, TractSeg, 
TractSeg-retrained, LAP and Classifyber, when having 15 train- 
ing examples. ( ∗ ) GPU accelerated. ( ∗ ∗ ) segmenting 2 kinds of 
bundles at the same time. ( ∗ ∗ ∗ ) Training on 84 subjects to seg- 
ment 72 kinds of bundles at the same time. 

Training phase Segmentation Total 

RecoBundles-atlas 0 0.5 0.5 

RecoBundles 0 3 3 

Classifyber 34 3 37 

LAP 0 130 130 

TractSeg-ret.( ∗ ) 175( ∗ ∗ ) 5 180 

TractSeg( ∗ ) 720( ∗ ∗ ∗ ) 5 725 
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he network. Individually, over the 14 segmented bundles, Classifyber
lways obtained a higher DSC than TractSeg, for all the different training
ets, i.e. for all three different variants: Classifyber-major, Classifyber-
FOF and Classifyber (Wilcoxon signed-rank test, p -value =9 . 8 × 10 −4 , p -
alue =1 . 8 × 10 −2 , and p -value =9 . 8 × 10 −4 , respectively). 
In Fig. 8 we show a qualitative comparison between the different

ases. 

.2.5. Results on Fractal Dimension (FD) 

In Fig. 9 , we present the relationship between the FDs and the DSC
cores of each method when segmenting all bundles in the experiments
ver the four datasets described above, i.e. on approximately 500 bun-
les. In the same figure, we also show the linear interpolation of such
alues as a summary of all experiments presented in this work, reporting
he Pearson correlation coefficient (R) between FD and DSC. The results
how that the quality of segmentation of TractSeg is strongly dependent
n the FD of the bundle to be segmented. LAP also shows some degree of
ependency, while RecoBundles and Classifyber are not affected by the
D of bundles. Additionally, in Table 7 , we report the different range
f FD values across the four datasets described in Section 3 . Bundles of
he HCP-major dataset have on average the highest FD, while bundles
f the clinical dataset the lowest. 

.2.6. Classifyber: the size of the training set 

For all automatic segmentation methods that learn from examples,
he higher the number of training subjects, the better the resulting qual-
ty of segmentation. Nevertheless, in practice, the cost of time and effort
y an expert to prepare a curated training set severely limits this num-
er. In Fig. 10 we show how the mean DSC of Classifyber over multiple
undles changes with the number of training subjects. We observe that
he quality of segmentation has no substantial increase beyond approx-
mately 15 subjects and plateaus at 30 subjects. 

.2.7. Analysis of the computing time 

In Table 8 we report the time required by each segmentation method
or the training phase and for segmenting one bundle of the HCP-IFOF
ataset. We chose this dataset because it is the only dataset on which
e compared all segmentation methods and variants. 
We observed that the training time is linearly correlated with the

umber of training streamlines. For example, in the experiments of on
he HCP-major dataset, by using only 10% of the training set, the train-
ng time was reduced 10 times as well. When trained, Classifyber seg-
ents bundles in just 3 minutes. The main cost of the computation in
oth the training and test phases is the preparation of the input for the
lassifier, i.e. steps (a1) and (a2), and steps (b1) and (b2). The actual
egmentation, i.e. step (b3) only requires less than 1 second. 
In contrast to Classifyber, RecoBundles and LAP do not require

raining time, because their underlying learning algorithms, i.e. near-
st neighbor and linear assignment respectively, are lazy learning algo-
ithms that postpone the computation to when the testing/segmentation
tep is required. In the case of RecoBundles, the segmentation step re-
uires between 0.5 and 3 minutes, on the example discussed above.
AP requires 130 minutes and it is the slowest of the methods
ompared. 
TractSeg adopts a different approach because it segments 72 bun-

les in parallel. The training time of TractSeg is vastly larger than all
ther methods, requiring 7 h on a GPU. When the bundle of interest is
ot included in those 72 bundles, or when the training examples differ
rom the ones used in Wasserthal et al. (2018a) , we re-trained TractSeg
called TractSeg-retrained): for example, on the examples of HCP-IFOF,
he training phase required approximately 3 hours on GPU, see Table 8 .
oth TractSeg and TractSeg-retrained required approximately 5 min to
egment a new bundle. 
All computations of all experiments described in this work were

xecuted on the high-performance computing (HPC) cluster pro-
ided by Indiana University, allocating 16 cores of Intel Xeon CPU
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Fig. 7. Summary of the quantitative comparison across the three HCP datasets. Top: mean DSC across 25 subjects of the HCP-minor dataset. Middle: mean DSC 
across 15 subjects of the HCP-IFOF dataset. Bottom: mean DSC across 21 subjects of the HCP-major dataset. The methods compared are depicted in different colors: 
RecoBundle-atlas (light blues), RecoBundles (blue), TractSeg (green), TractSeg-retrained (light green), LAP (yellow) and Classifyber (red). 
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5-2680 2.50 GHz and 32Gb of RAM, a setup equivalent to a
owerful personal workstation typically available in research labs
nd clinics. For TractSeg, we also allocated one NVIDIA GPU RTX
080Ti. 

. Discussion and conclusions 

.1. General comments 

At the global level, all the results on the comparison among auto-
atic segmentation methods presented in Section 4.2 indicate one main
essage: Classifyber clearly outperforms other methods in all cases, by
 substantial margin, and segments bundles very accurately. This is ob-
erved to occur across different kinds of bundles, tractography tech-
iques, expert-made segmentations, and quality of dMRI data, i.e., re-
earch vs clinical quality. The summary results in Fig. 9 , which report on
he y-axes the DSC score for each of the hundreds of individual bundles
egmented across all the experiments of Section 4.1 , show that Clas-
ifyber obtained scores ranging from 0.65 to 0.96, with a mean and
tandard deviation of 0.85 ± 0.05. This is the highest quality of seg-
entation among the different automatic segmentation methods by a
arge or substantial margin, in almost all cases, see the results at the
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Fig. 8. Qualitative comparison of segmented bundles in one of the patients. Bundles on the rows: Left_IFOF (first row) and Left_AF (second row). Automatic 
segmentation methods on the columns: TractSeg (first column), Classifyber-major (second column), Classifyber-IFOF (third column), Classifyber (fourth column) and 
expert-based segmentation (fifth column). Highest quality of segmentation in bold face. 

Fig. 9. DSC vs FD across all methods for all the predicted bundles of the experiments in this work. From top left: RecoBundles and RecoBundles-atlas (blue and 
light blue), TractSeg and TractSeg-retrained (green and light green), LAP (yellow), and Classifyber (red). R is the Pearson correlation coefficient and related p -value 
between FD and DSC over all the predicted bundles, i.e. approximately 500 segmentations. 
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evel of individual target bundles reported in Sections 4.2.1 –4.2.4 and in
ig. 7 . 
Fig. 9 also reports that the results obtained by LAP are consistently

uperior to those obtained by RecoBundles and TractSeg, at least on the
atasets HCP-minor and HCP-IFOF. Moreover, the figure shows that Re-
oBundles and TractSeg have a large amount of variability in the qual-
ty of segmentation across the different experiments: their DSC scores
ange from 0.07 to 0.90, with means of 0.64 ± 0.14 and 0.71 ± 0.13
espectively. Surprisingly, TractSeg reaches a low (or very low) quality
f segmentation on small bundles. We discuss this point in detail below,
n Section 5.3 , where we analyze the FD of bundles. 

.2. Discussion of the comparison across datasets 

HCP-minor Fig. 7 and Table 3 show that the quality of segmentation
btained by Classifyber is very high (DSC ≥ 0.80) across all kinds of
mall bundles and distinctively superior to all other methods 9 . This re-
ult is of particular importance because minor bundles are notoriously
arder to segment due to their size and high variability across subjects
 Guevara et al., 2017 ). 
In the qualitative comparison in Fig. 4 we observe that TractSeg-

etrained is not very precise in segmenting fine-grained structures of
he bundles, in particular their terminal portions. We believe that this
s due to an inherent bias of FCNNs, which we discuss in Section 5.3 . 
HCP-IFOF 

When segmenting the IFOFs of the HCP-IFOF dataset, Classifyber
eaches an extremely high quality of segmentation, with DSC around
.9, as reported in Table 4 . RecoBundles and LAP ranked second with
SC around 0.8. TractSeg-retrained, despite being trained on the IFOFs
f that dataset, ranked third with DSC around 0.6. Also in this case we
elieve that this is evidence of an inherent bias of the method, which
e discuss in Section 5.3 . TractSeg and RecoBundles-atlas ranked last
ith DSC around 0.5. 
A possible explanation of the poor performances of TractSeg and

ecoBundles-atlas is that the anatomical shape of the bundles used
s examples differs from the shape of the manually expert-based seg-
ented bundles of the HCP-IFOF dataset. Specifically, the example used
y RecoBundles-atlas, i.e. the IFOF of the atlas of Yeh et al. (2018) ,
omes from clustering followed by expert labeling. The examples used
y TractSeg come from a semi-automatic refinement of the segmentation
rovided by TractQuerier ( Wassermann et al., 2016 ), while the exam-
les in HCP-IFOF are manually segmented by an expert neurosurgeon
nd follow the definition in Sarubbo et al. (2013) and Hau et al. (2016) .
hese anatomical differences are justified by the fact that the anatomi-
al definition of some white matter bundles, among which the IFOF, is
n evolution ( Forkel et al., 2014; Sarubbo et al., 2013; Wu et al., 2016a ).
HCP-major Even for the segmentation of major bundles, Classifyber

btained very high quality of segmentation, ranging from DSC = 0 . 82
or the Right_ILF, to DSC = 0 . 87 for the Right_CST, see Table 5 and
ig. 7 , outperforming in most of the cases all other methods. Never-
heless, TractSeg reached slightly inferior segmentation quality, with an
verage DSC ranging from 0.75 to 0.85, even though it used a much
arger training set of 84 subjects instead of 15. Due to their size, major
undles are generally easier to segment ( Guevara et al., 2017 ). On the
ontrary, RecoBundles-atlas obtained more modest and highly-variable
esults, with an average DSC ranging from 0.42 to 0.76, although we
sed the bundle models from Yeh et al. (2018) as suggested by the au-
hors of RecoBundles. We believe that this result is partly motivated by
he fact that the bundles used as examples by RecoBundles-atlas may
ave a different shape than those of the HCP-major dataset, as already
iscussed in the paragraph related to the HCP-IFOF dataset. 
9 The mean improvement in terms of DSC with respect to the second-best 
ethod is 0.09. 
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Clinical On the Clinical dataset, i.e. on the white matter of patients
ith a brain tumor in the same hemisphere as the bundles of interest,
lassifyber reached extremely high quality of segmentation, i.e. DSC
round 0.9 as reported in Table 6 , when the training examples came
rom the same clinical dataset. When examples partly differ from the
nes in the Clinical dataset, the DSC dropped accordingly to around 0.8
or Classifyber-IFOF and to 0.7 for Classifyber-major, see Table 6 and the
xample in Fig. 8 (first row). Specifically, in Classifyber-IFOF, the trac-
ography of the training bundles is built on research-quality data instead
f clinical-quality and the reconstruction step of the tractography is CSD
nstead of DTI. In Classifyber-major the differences are even greater: the
raining data is research-quality and the tractography is probabilistic in-
tead of the deterministic tractography featured in the Clinical dataset.
oreover, in this case, the definition of the IFOF is the classical one pro-
ided by TractQuerier ( Wassermann et al., 2016 ) instead of the more
efined from Sarubbo et al. (2013) and Hau et al. (2016) used in the
linical dataset. 
It is well known that training classification algorithms on exam-

les that systematically differ from the examples in the test set sub-
tantially reduces the quality of classification. This problem, called
omain shift , was previously mentioned for bundle segmentation in
asserthal et al. (2018a) and has no simple solution. 
Although in Wasserthal et al. (2018a) they claim that their pre-

rained network works properly also on clinical settings, the results of
ractSeg on the Clinical dataset are surprisingly low, with DSC around
.3, as reported in Table 6 . These results should be comparable to those
f Classifyber-major, which instead reached a DSC around 0.7. We be-
ieve that the main reason of this behavior is the low FD of the clinical
undles, which has a strong impact on TractSeg as explained in detail
elow in Section 5.3 . 

.3. The fractal dimension of bundles 

While conducting hundreds of automatic segmentations with differ-
nt methods, we noticed that TractSeg had consistent success or con-
istent failure on specific datasets. TractSeg very accurately segmented
he bundles in HCP-major, but obtained only medium or poor results
n other datasets, see Fig. 7 . Fig. 9 shows that the segmentation quality
eached by TractSeg is deeply affected by a specific geometric property
f the voxel mask of the target bundle: its fractal dimension (FD, see
ection 2.7 ). Tractseg accurately segmented bundles which are smooth
nd rounded, i.e., with high FD, while it produced poor segmentations
hen they are wrinkled and irregular, i.e., with low FD. By Combining
he information of Table 7 and the trends in Fig. 9 , we can indeed expect
ractSeg to accurately segment bundles in the HCP-major dataset and
o consistently fail in the HCP-IFOF or Clinical datasets. 
We believe that this tendency is related to the operations of con-

olution and max-pooling of the fully convolutional neural networks
FCNNs) within TractSeg. In the domain of computer vision, it has been
bserved multiple times that FCNNs are biased towards rounded seg-
entations of objects, which can loose details and fine-grained struc-
ure, in particular because of the max-pooling operation, see for exam-
le ( Kim et al., 2018; Sabour et al., 2017; Wei et al., 2019 ). This problem
s inherent in U-net ( Ronneberger et al., 2015 ), which is at the core of
ractSeg. 
As an example, consider the experiments related to the segmen-

ation of the IFOFs and Fig. 5 . The IFOFs in the HCP-IFOF dataset
ere manually segmented by experts and, according to Table 7 , have
D = 1 . 99 ± 0 . 06 . The IFOFs predicted by TractSeg have FD = 2 . 3 ± 0 . 1 ,
nd appear substantially more rounded and smoother than the expert-
ased segmented IFOFs, see Fig. 5 (third and last panels). Even re-
raining TractSeg only on examples of HCP-IFOF did not solve this prob-
em but instead merely mitigated it: the IFOFs predicted by TractSeg-
etrained have FD = 2 . 1 ± 0 . 1 , which is still systematically higher than
he expert-based segmentations, confirming the bias, see for example
ig. 5 (fourth panel). 
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Fig. 10. Effect on the segmentation accuracy when varying the number of ex- 
amples to train Classifyber. DSC (mean ± sd of the mean) across 25 test subjects 
of the HCP-minor dataset when varying the number of examples, from 1 to 60. 
Each bundle is depicted with a different color. 
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Fig. 9 shows that LAP is also slightly affected by the FD of bundles,
hough much less than TractSeg. However, such result might not be
ntirely reliable because a large portion of the segmentations are missing
ue to the limitation of LAP to address large tractograms. 
In contrast to TractSeg and LAP, both RecoBundles and Classify-

er are insensitive to the FD of the voxel masks of bundles, as clearly
hown in Fig. 9 . We speculate that the reason for this is related to the
treamline-based nature of such methods and, more specifically, to the
act that they operate via single streamline classification. By predicting
hether or not each streamline of the tractogram belongs to the tar-
et bundle, there is not a specific constraint to produce round/smooth
oxel-structures as observed with TractSeg or to jointly consider all tar-
et streamlines during the prediction as in LAP. 

.4. Size of the training set 

As an additional result of this work, we observed that Classifyber
equires only a small number of example bundles to obtain high quality
f segmentation. In fact, Fig. 10 shows that, on the HCP-minor dataset,
here is no substantial gain in the quality of segmentation beyond 15
raining examples. In the experiments on the Clinical dataset, Classifyber
eached an extremely high segmentation quality using only 6 example
ubjects, with a mean DSC around 0.9, see Table 6 . 
Both RecoBundles and LAP require a very small number of training

ubjects: 1 bundle/model for RecoBundles and around 5-10 for LAP, ac-
ording to Sharmin et al. (2018) . On the contrary, TractSeg was trained
n 84 subjects. Although in Wasserthal et al. (2018a) there are no clear
uidelines on the number of subjects to be used for training, it is well
nown that deep learning models need a very large training set, which
s often not available in clinical settings. 

.5. Time required to segment a bundle 

Among the methods compared in this work, deciding which one is
aster is not straightforward: on the one hand, streamline-based meth-
ds like Classifyber, RecoBundles and LAP require the tractogram as
nput. In our experience and applications, the tractogram is always
lready available and provided by neurosurgeons/neuroscientists, be-
ause they decide the reconstruction and tracking algorithms specif-
cally for their desired task, the available MR scanner and sequence
f acquisition. If only raw dMRI data is provided, the time to build
he tractogram should be accounted for the total time of the compu-
ation. On the other hand, TractSeg uses the GPU and requires a specific
re-processing of dMRI data as input, which needs approximately 30
inutes of computation per subject. Moreover, to obtain the predicted
undle as streamlines, bundle-specific tracking must be computed after-
ards ( Wasserthal et al., 2018b ). 
Overall, if the target tractogram is available, RecoBundles is the

astest segmentation method in our comparison, see Table 8 . Alterna-
ively, if pre-trained methods are available, like in the case of TractSeg
nd Classifyber, TractSeg and Classifyber are also similarly as fast as
ecoBundles. LAP is the slowest segmentation method but, if training
as to be done, TractSeg ranks last. 

.6. Reproducibility 

The results on large bundles that we present in Table 5 and Fig. 7 re-
roduce those in Wasserthal et al. (2018a) for what concerns Tract-
eg and RecoBundles, for the variant RecoBundles-atlas: TractSeg has
 distinctively higher quality of segmentation than RecoBundles. How-
ver, when considering other datasets, the situation is different. On the
ataset HCP-minor, see Fig. 7 and Table 3 , RecoBundles shows compara-
le quality of segmentation to TractSeg, while on the dataset HCP-IFOF,
ee Table 4 , RecoBundles has better quality of segmentation than Tract-
eg. These results are novel because Wasserthal et al. (2018a) did not
onsider bundles with low FD. 
The better performances of LAP than those of RecoBundles and Tract-

eg on the dataset HCP-minor, and of TractSeg on the dataset HCP-IFOF,
re shown in the same tables and figures just mentioned. With respect
o RecoBundles, this result is consistent with what was demonstrated in
harmin et al. (2018) , i.e., that LAP outperforms the nearest-neighbor-
ased segmentation, which is the category to which RecoBundles be-
ongs. With respect to TractSeg, the result of our comparison is novel,
ecause LAP was not included in the extensive comparison presented in
asserthal et al. (2018a) . 
The sharing of code and data is becoming standard practice in neu-

oscience and facilitates both accelerated scientific discovery and re-
roducibility, see Avesani et al. (2019) . For this reason, Classifyber is
reely available on the online platform https://brainlife.io both as the
ull algorithm that implements the training and test phases, and as a pre-
rained method ready to segment bundles in the highest quality fashion
vailable. 

.7. Conclusions 

In this work we present Classifyber, a streamline-based linear clas-
ifier that segments white matter bundles from dMRI data and expert-
ade examples. Classifyber is the first automatic classification-based
egmentation method that exploits both the shape of streamlines, ob-
ained with tractography techniques from dMRI data, and the anatomi-
al information of the bundles, in the form of connectivity patterns and
pecific ROIs. Classifyber substantially raises the quality of segmentation
s compared to the current state-of-the-art methods described in the lit-
rature, by a large margin, and more importantly, across very diverse
ettings. Maintaining a high quality of bundle segmentation regardless
f the type of input tractography or the quality of dMRI data is nowadays
f paramount importance for a vast number of applications. For exam-
le, the practitioner may not be able to anticipate whether the bundle
o be segmented will have high or low FD. 
As opposed to voxel-based methods like TractSeg, we believe that

ccurate segmentation of bundles from dMRI data must leverage trac-
ography techniques and also include information about streamlines.
treamlines represent a spatial statistic of the dMRI signal that approx-
mates the underlying anatomical connectivity, though it does so with
 substantial problem of false positives ( Daducci et al., 2015; Jeurissen
t al., 2019; Maier-Hein et al., 2017; Pestilli et al., 2014 ). 

https://brainlife.io
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Additionally, Classifyber is fast to train on new datasets/bundles
nd requires only a small number of examples. This specific feature is
f great importance for bundle-specific applications like in pre-surgical
lanning, because Classifyber can be tailored to the specific task, dMRI
ata and tractography technique at the cost of a small amount of manual
egmentation by expert neuroanatomists. 
In future, we plan to test nonlinear classification algorithms in order

o investigate potential improvements in the segmentation quality of
lassifyber. The current linear model used within Classifyber is indeed
 limitation of the proposed method. Nevertheless, linear models are fast
nd light and, according to the results presented in this work, sufficient
o substantially advance the state-of-the-art in automatic white matter
undle segmentation. 
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ppendix A. Semi-automatic technique to curate the HCP-minor 

undle dataset 

In this Section, we describe the semi-automatic technique adopted
o filter out bundles considered not anatomically plausible in the HCP-
inor dataset. 
First, we automatically discarded those subjects which had at least

ne bundle that deviated more than ± 2 standard deviations from the
ean of the bundle distribution of the number of voxels and number of
treamlines of the population across the 192 subjects. After this step, the
umber of subjects retained was 121. Then, an expert (D.B.) performed
isual inspection of each individual bundle to detect anomalies in the
egmentations. Bundles were assigned an omnibus score corresponding
o their degree of anatomical plausibility. These scores ranged from 1
o 5 such that 1 indicated a rating of bad , 2 indicated a rating of poor , 3
ndicated a rating of OK , 4 indicated a rating of good , 5 indicated a rating
f great . Finally, we kept those subjects whose all bundles obtained a
core of 2 or higher, remaining with a total of 105 subjects. 

ppendix B. TractSeg-retrained metrics on HCP-minor dataset 

In Fig. B.11 , we report the training metrics obtained when training
ractSeg-retrained on HCP-minor dataset as explained in Section 2.5 .
ed lines represent the value of the loss function obtained across all the
pochs (y-axis labels on the left side), while green lines represent the f1
core (y-axis labels on the right side). The graph shows that we reached
onvergence in 250 iterations. 
 the HCP-minor dataset, data augmentation, 250 epochs. 
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he online version, at 10.1016/j.neuroimage.2020.117402 . 
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