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Abstract—In recent years, molecular communication (MC) is
considered as a transformative paradigm in the communication
theory and a promising solution to future nanoscale communi-
cation networks. In this article, a novel framework is introduced
for diffusion-based MC and is shown how its capacity is impacted
by the effects of chemical reactions which were neglected in
the existing literature. Particularly, the chemical reactions cor-
responding to complex balanced chemical reaction networks are
studied in this work. With an information-theoretic approach,
the capacity is introduced where the effects of chemical reactions
are taken into account. Then, the individual entropy derivations
are addressed where the chemical reactions at the transmitter are
considered with the chemical reaction network theory. Finally, the
mutual information is derived based on these entropy derivations
and the analytical capacity expressions are introduced accord-
ingly. Numerical results exhibit the interactions between different
parameters and show that the capacity actually decreases when
the effects of chemical reactions are considered, implying that the
capacity derived without chemical reactions was overestimated in
previous studies. Consequently, the proposed framework analyzes
the fundamental limits of diffusion-based MC and provides a
more realistic capacity derivation comprising limitations imposed
by chemical reactions, hence applicable to various more realistic
MC scenarios.

Index Terms—Diffusion-based molecular communication
(MC), chemical reactions, capacity analysis, chemical reaction
network theory.

I. INTRODUCTION

MOLECULAR communication (MC) is an emerging
communication paradigm where information is encoded

into properties of substances at the molecular level and
exchanged through chemical reactions and molecular trans-
port. This paradigm is originated from the observation of
nature, where the basic units of life, i.e., biological cells,
generate, store, and communicate information through molec-
ular processes in order to coordinate their collective behavior.
The aim of MC theory is to quantify the flow of information
in biochemical domain by modeling and engineering MC
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systems and devices which are envisioned to enable a plethora
applications in environments challenging for classical commu-
nications, such as inside the human body [1].

Due to its tight integration within the biological environ-
ment and its feasibility at the cellular scale (nm - μm),
MC is proposed as a possible tool for establishing future
nanonetworks that can interact with living organisms and
their biological processes. Therefore, it paves the way for
a wide range of applications, mostly biomedical, but also
industrial and environmental. Intelligent intrabody systems for
health monitoring, biosensor networks, smart drug delivery
systems, industrial monitoring and control of microbial for-
mations for water and air filtering, organic waste disposal,
and biological and chemical nanosensor networks for surveil-
lance against biological and chemical attacks are among the
potential practical applications of MC-enabled nanonetworks.

In the past decade of MC theory research, initial studies
mostly driven by communication and networking engineers,
are focused on identifying elements of biochemical com-
munication processes and abstracting them into theoretical
models to construct the building blocks of MC systems [2].
Numerous channel models have been proposed based on a
wide range of molecule propagation processes ranging from
passive diffusion of molecules [3], [4], to the advection of
molecules by fluid flow [5]–[7], and to active processes where
molecules are transported by other carriers such as molecu-
lar motors [8]. Further studies include design of MC devices
and their parts such as transmitter/receiver [9] and studies
addressing fundamental capacity limits of the aforementioned
channels.

To understand the fundamental limits and the performance
of an MC system, it is crucial to investigate it from an
information-theoretic perspective, model and analyze the the-
oretical communication capacity of this system. Previous con-
tributions in MC literature have tackled the study of capacity
of some of the aforementioned channels for specific modula-
tion and coding schemes such as time-slotted on-off keying
(OOK) [10], [11] and continuous transmission [12], [13] for
diffusion channels encoding information on concentration of
molecules; time slotted [14] and continuous transmission [15]
for channels encoding information on the timing of molecules.
Other contributions addressed the problem for specific MC
systems such as cardiovascular systems [5], microfluidic
systems [6], molecular circuits [16], ligand-receptor bind-
ing [17], and enzymatic reactions [17], [18]. Although these
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studies contribute to the understanding of channel capac-
ity for some MC scenarios, they are far from constituting
a general mathematical framework that can describe the
unique features of MC. Recently, [2] has addressed this
research gap by providing an information-theoretic frame-
work stemming from statistical mechanics to determine or
estimate (in intractable cases) the capacity of MC channels.
Starting from the Langevin stochastic differential equation
(SDE) [19] describing the motion of particles, a method-
ology to determine or estimate the capacity of any MC
system by matching the transport processes to the terms of
the Langevin SDE is proposed. However, this framework
only describes the propagation of molecules in the medium
but falls short in depicting the peculiarities of the trans-
mission and reception processes often occurring as chemical
reactions.

Our work aims to extend the framework of [2] by adding
the transmission and reception processes into the picture and
provide a more complete perspective for MC capacity for-
mulation to reveal more accurate expressions/estimations of
fundamental limits of the capacity in MC.

In this article, we consider the effects of chemical reac-
tions which correspond to complex balanced chemical reaction
networks [20], [21] on the capacity of diffusion-based MC.
Examples of biochemical reactions that can be modelled
as complex balanced chemical reaction networks include T-
cell receptor signal transduction [22] and specific classes of
enzyme-driven reactions [23], [24].

The contributions of this article can be summarized as:
• We consider a diffusion-based MC model, where we pro-

pose a framework to provide stricter capacity expressions
with the effects of chemical reactions at the transmitter
taken into account.

• Based on the proposed framework, we adopt the chemical
reaction network theory to obtain the individual entropy
derivations, mutual information, and resulting capacity
considering the chemical reactions at the transmitter with
an information-theoretic approach.

• We perform numerical evaluations to assess the effects of
chemical reactions on the resulting capacity and demon-
strate the interactions between different parameters of
capacity expressions. It is shown that the capacity is
significantly decreased when the effects of chemical
reactions are considered.

The rest of this article is organized as follows. In Section II,
we review the system model for diffusion-based MC and the
chemical reaction network theory. In Section III, we present
a new framework to analyze the capacity of diffusion-based
MC systems incorporating the effects of chemical reactions at
the transmitter. In Section IV, we numerically evaluate the
capacity for two different cases, namely, the capacity cal-
culated considering only the propagation of molecules and
the capacity calculated considering the chemical reactions
for various parameters. Finally, in Section V, we conclude
by discussing the applications of the proposed framework to
different MC techniques, as well as the future research oppor-
tunities to extend this framework for a more realistic capacity
bound.

Fig. 1. Diffusion-Based MC system.

II. PRELIMINARIES

In this section, we review several concepts that are related
to this study, including the diffusion-based MC and chemical
reaction network theory.

A. Diffusion-Based MC

A typical diffusion-based MC system is illustrated as in
Fig. 1, consisting of the classical cascade of the source, trans-
mitter, channel, receiver, and destination [25]. The propagation
of molecules in the channel is governed by diffusion where
they do not undergo chemical reactions. In addition, there
are chemical reactions occurring at both the transmitter and
receiver.

The source information X(t) generated at time t goes
through the processes of information encoding and molecule
emission at the transmitter, where we consider there are S
types of chemical substances involved in M different chemical
reactions. During the information encoding, X(t) is modulated
through the M chemical reactions into the transmitter molecule
number vector

NT (t) = [NT1(t) NT2(t) · · · NTS (t)]
T ∈ Z

S
≥0, (1)

where NTi (t), i = 1, 2, . . . ,S is the number of molecules
for the ith type of chemical substances at the transmitter at
time t and Z

S
≥0 is the set containing all S-dim vectors with

non-negative integer entries. During the molecule emission,
consider the case where a specific type of chemical substance
among the S types is selected as the information carrier and
subsequently emitted. Note that the characterization of inter-
symbol interference is beyond the scope of this study and is
to be studied in future works. Associated with NT (t), the
transmitted signal (emitted molecules) can be expressed as [2]

E = {tn , ln (tn )}n , (2)

where n is the index of an individual emitted molecule, tn is
the time instance when the molecule indexed as n is emitted,
and ln (tn ) is the location of the molecule indexed as n when
emitted at time tn .

Next, the molecules emitted pass through the channel, where
the particle motion can be analytically expressed with the
Langevin SDE, which can be written as [19]

m
d2(ln (t)− vn (t)t)

dt2
= Fn (t)− 6πμr

d(ln (t)− vn (t)t)

dt
+ f(t), (3)

where m and r are the mass and radius of a single emit-
ted molecule (which is assumed to be spherical), vn (t) and
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Fn (t) are the drift velocity and external force observed by the
molecule indexed as n, respectively, μ is the viscosity of the
fluid in the channel (where the fluid is assumed to be homo-
geneous and at infinite dilution within the propagation space),
f (t) is the Brownian motion force whose correlation function
can be expressed as

〈
fi (t)fj

(
t ′
)〉

= 12πμrkBT δij δ
(
t − t ′

)
, (4)

where fi (t) is the component of f(t) in the ith dimension, 〈·〉
is the average operator, kB is the Boltzmann’s constant, T is
the absolute temperature, δ(·) is the Dirac delta function, and

δij =

{
1, i = j
0, i �= j

. (5)

After passing through the channel, the emitted molecules
arrive at the receiver. The received signal (received molecules)
can be expressed as [2]

P = {tn ′ , ln ′(tn ′)}n ′ , (6)

where n ′ is the index of an individual received molecule, tn ′ is
the time instance when the molecule indexed as n ′ is received,
and ln ′(tn ′) is the location of the molecule indexed as n ′ when
received at time tn ′ . Then, the received signal P goes through
the processes of molecule reception and information decoding
at the receiver, where we suppose there are S ′ types of chem-
ical substances (including the received molecules) involved in
M ′ different chemical reactions. During the molecule recep-
tion, the received molecules in P interact with other molecules
existing at the receiver through chemical reactions, which lead
to the corresponding receiver molecule number vector

NR(t) = [NR1(t) NR2(t) · · · NRS ′(t)]T ∈ Z
S ′
≥0, (7)

where NRi (t), i = 1, 2, . . . ,S ′ is the number of molecules for
the ith type of chemical substances at the receiver at time t.
During the information decoding, NR(t) is demodulated into
the reconstructed information X̂ (t), which is then passed to
the destination.

Therefore, a diffusion-based MC system and its correspond-
ing capacity depend on the particle motion in the channel and
the chemical reactions at both the transmitter and receiver. The
particle motion, which involves the behavior of information-
carrying molecules in the channel, can be analyzed with the
Langevin SDE as expressed in (3), and its effects on the
capacity has been well studied in the literature. The chem-
ical reactions, which consist of the biochemical interactions
involved in the emission and reception of information-carrying
molecules at both the transmitter and receiver, constitute an
essential part of molecule transfer, but their effects on the
capacity are still not clear.

B. Chemical Reaction Network Theory

In order to analyze the effects of chemical reactions
on diffusion-based MC, we introduce the chemical reac-
tion network theory [26], which investigates the evolution
of the number of molecules for each chemical substance
involved in various chemical reactions through time. Note
that the number of chemical substances is associated with

Fig. 2. An illustration of how the molecule number vector evolves with time.
The red and green circles exhibit the changes in the number of molecules
before and after the first state transition which occurs during (t0, t1) and the
second state transition which occurs during (t1, t2), respectively.

the information encoding and decoding at the transmitter and
receiver, respectively.

Suppose there are S̄ chemical substances s1, s2, . . . , sS̄
involved in M̄ different chemical reactions, where the for-
ward and reverse reactions of a reversible chemical reaction
are considered as two distinct chemical reactions. For the jth
chemical reaction, we denote vj = [vj1 vj2 · · · vj S̄ ]

T and
v′j = [v ′j1 v ′j2 · · · v ′

j S̄
]T as the coefficient vectors (also called

complexes) of reactants and products, respectively, where vji
and v ′ji are the coefficients of the ith type of chemical sub-
stance si as a reactant and a product, respectively. Assume
that vj �= v′j , j = 1, 2, . . . , M̄ . Then, the jth chemical reaction
can be expressed as

S̄∑

i=1

vji si →
S̄∑

i=1

v ′ji si , j = 1, 2, . . . , M̄ . (8)

Subsequently, the corresponding chemical reaction network
of the above chemical reactions can be defined by the follow-
ing definition.

Definition 1 (Chemical Reaction Network [20], [21]):
Suppose there are S̄ chemical substances s1, s2, . . . , sS̄
involved in M̄ different chemical reactions, with vj and v′j
representing the complexes of reactants and products, respec-
tively, in the jth chemical reaction. Denote S = {si}S̄i=1,
C = {vj }M̄j=1, and R = {vj → v′j }M̄j=1 as the sets of chem-
ical substances, reactant complexes, and chemical reactions,
respectively. Then, the triple {S, C,R} is the corresponding
chemical reaction network.

Over the chemical reaction network as stated above, we
denote the molecule number vector at time t as

N(t) =
[
N1(t) N2(t) · · · NS̄ (t)

]T ∈ Z
S̄
≥0, (9)

where Ni (t), i = 1, 2, . . . , S̄ is the number of molecules for
the ith type of chemical substances at time t. Note that each
distinct molecule number vector at a specific time instance
represents a state and that all states compose a state space.

An illustration of how the molecule number vector evolves
with time is shown in Fig. 2. Suppose there is a chem-
ical reaction network {S, C,R}, where S = {A,B ,C},
C = {[1, 0, 3]T , [0, 2, 0]T , [2, 1, 0]T , [0, 0, 2]T }, and R =
{[1, 0, 3]T → [0, 2, 0]T , [0, 2, 0]T → [1, 0, 3]T , [2, 1, 0]T →
[0, 0, 2]T , [0, 0, 2]T → [2, 1, 0]T }, which implies the chemi-
cal reactions of A + 3C � 2B and 2A + B � 2C. Assume
that only the chemical reaction A + 3C → 2B happens
between the two time instances t0 and t1, resulting in a state
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transition where one A molecule and three C molecules are
converted into two B molecules. Consequently, the state at
t0 is transitioned to that at t1. Now, assume that only the
chemical reaction 2A + B → 2C happens between the two
time instances t1 and t2. Then, another state transition occurs
in the same manner. Note that a chain of chemical reac-
tions may occur in multiple ways with the same combination
of molecules (e.g., when uni-directed chemical reactions or
chemical reactions which can be triggered only in certain
environments are involved).

In the chemical reaction network theory, there are two
modeling approaches that are commonly used to describe
the evolution of the number of molecules of chemical sub-
stances over the chemical reaction network through time, i.e.,
stochastic [27]–[30] and deterministic [31]–[33] approaches.

With the stochastic model, the chemical reaction network
is formulated as a continuous time Markov chain where the
molecule number vector at time t is a random process about t
and can be expressed as [20], [21]

N(t) = N(0) +

M̄∑

j=1

(
v′j − vj

)
Yj

(∫ t

0
λj (N(τ))dτ

)
, (10)

where Yj (
∫ t
0 λj (N(τ))dτ) is an independent unit-rate Poisson

process [34], [35] representing the number of occurrences
of the jth chemical reaction with the parameter being the
integration from 0 to t of the propensity function λj (N (τ))
expressed as

λj (N(τ)) = κj

S̄∏

i=1

Ni (τ)!(
Ni (τ)− vji

)
!
1{Ni (τ)≥vji}, (11)

where κj is some constant associated with the jth chemical
reaction and

1{condition} =

{
1, condition = True
0, condition = False

(12)

is the indicator.
With the deterministic model, the molecule number vector

at time t is approximated as a deterministic function of t and
can be expressed as

N̂(t) = N̂(0) +

∫ t

0

M̄∑

j=1

rj

(
N̂(τ)

)
dτ

=
[
N̂1(t) N̂2(t) · · · N̂S̄ (t)

]T ∈ R
S̄
≥0, (13)

where

rj

(
N̂(τ)

)
= κj

S̄∏

i=1

N̂i (τ)
vji (14)

is the state-dependent rate of the jth chemical reaction and
R
S̄
≥0 is the set containing all S̄ -dim vectors with non-negative

entries. For notational brevity, we omit the parameter in the
molecule number vector hereafter.

In the following definition, a complex balanced chemical
reaction network is defined.

Definition 2 (Complex Balanced Chemical Reaction
Network [20], [21]): A chemical reaction network {S, C,R}

is called complex balanced if there exists an equilibrium value
c = [c1 c2 · · · cS̄ ]

T ∈ R
S̄
≥0 such that for each η ∈ Z

S̄
≥0,

∑

j :vj=η

rj (c) =
∑

j :v′j=η

rj (c), (15)

where rj (·) is the state-dependent rate of the deterministic
model, as defined in (14).

Suppose there is a complex balanced chemical reaction
network {S, C,R} with an equilibrium value c ∈ R

S̄
≥0, which

satisfies (15) relating to the state-dependent rate of the deter-
ministic model. Then, it is derived in [20] that there exists a
stationary distribution of the molecule number vector N in the
stochastic model, as defined in (10), of this network, expressed
as [20]

Pr(N = x) =

S̄∏

i=1

ci
[x]i

[x]i !
e−ci , x ∈ Z

S̄
≥0, (16)

which is a product of S̄ Poisson distributions, where the
parameter of the ith Poisson distribution is ci .

Note that there may be multiple potential equilibrium val-
ues, which correspond to different steady states (resulting from
different initial conditions) from a physical perspective, in a
single complex balanced chemical reaction network.

With (16), the stationary distribution of the molecule num-
ber vector can be obtained, and therefore the effects of
chemical reactions on diffusion-based MC can be further
analyzed.

III. FRAMEWORK FOR CAPACITY OF DIFFUSION-BASED

MOLECULAR COMMUNICATION INCORPORATING

CHEMICAL REACTIONS

In the existing literature, the characteristics of particle
motion through the channel in diffusion-based MC have been
well studied. Particularly, the mutual information between E
and P, as defined in (2) and (6), respectively, and the corre-
sponding channel capacity have been derived. However, the
effects of chemical reactions are not fully considered in the
capacity analysis for diffusion-based MC in previous studies,
which lead to an overestimated capacity.

In this section, we derive the capacity for diffusion-based
MC with the effects of chemical reactions considered, provid-
ing a more realistic capacity analysis. Note that we suppose
the chemical reactions occur at both the transmitter and
receiver, and no chemical reactions occur in the channel,
i.e., the molecules do not undergo chemical reactions during
propagation in the channel.

A. Information-Theoretic Formulation

To begin with, note that the effects of chemical reactions
reflect on the molecule number vectors NT and NR , as defined
in (1) and (7), at both the transmitter and receiver, respectively.

In order to take the effects of chemical reactions at both
the transmitter and receiver into consideration, the capacity of
diffusion-based MC in this study is defined as [36]

C = max
fNT

(nT )
I (NT ;NR), (17)
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where I (NT ;NR) is the mutual information between NT and
NR . Note that (17) is a simplified formulation neglecting the
channel memory, which is to be integrated in future works.

To better distinguish the effects of chemical reactions at the
transmitter and receiver individually, we focus on the chemical
reactions at the transmitter in this study, while the chemical
reactions at the receiver are to be studied in future works.
Therefore, we simplify NR as a deterministic function of the
received signal P.

First, note that the conditional entropy of a deterministic
function of a process given that process is zero. Therefore,

H (NR|P) = 0. (18)

In order to compute the capacity C defined in (17), we need
to address the mutual information term I (NT ;NR), which can
be expressed as

I (NT ;NR) = H (NT )− H (NT |NR)

= H (NT )− H (NT |NR) + H (NR)− H (NR)

− H (NR|P), (19)

where the second equality holds due to (18).
According to the definition of mutual information, the third

and fifth terms in (19) can be rewritten as

H (NR)− H (NR|P) = I (NR;P) = H (P)− H (P |NR).

(20)

Note that the sum of the two conditional entropy derivations,
H (NT |NR) and H (P |NR), is equal to the joint conditional
entropy H (NT ,P |NR), since NT and P are conditionally
independent given NR . Hence,

H (NT |NR) + H (P |NR) = H (NT ,P |NR). (21)

With (20) and (21), the mutual information term I (NT ;NR)
can be rewritten as

I (NT ;NR) = H (NT ) + H (P)− H (NT ,P |NR)− H (NR)

= H (NT ) + H (P)− H (NT ,P ,NR)

= H (NT ) + H (P)− H (NT ,P)

= I (NT ;P)

= H (NT )− H (NT |P), (22)

where the third equality holds given that NR is a deterministic
function of P.

Note that the mutual information term I (NT ;NR) is there-
fore equal to the difference between the two entropy deriva-
tions, H (NT ) and H (NT |P). Next, we will address the two
terms, H (NT ) and H (NT |P), respectively.

B. Entropy of Molecule Number Vector at Transmitter

As expressed in (22), the first term to be addressed is
H (NT ), which is the entropy of the molecule number vector
at the transmitter NT .

Suppose there are S types of chemical substances involved
in M different chemical reactions, as described in Section II-A,
at the transmitter, where the M chemical reactions correspond
to a complex balanced chemical reaction network, as defined

in Definition 2, with an equilibrium value c ∈ R
S
≥0, which

is derived from the state-dependent rate of the determinis-
tic model. It is assumed that the supply of molecules (after
molecule emission) is sufficiently fast so that the equilibrium
value can be considered as unchanged in a large time scale.

Now, we would like to obtain the stationary distribution of
NT in the stochastic model of this complex balanced chemical
reaction network. According to (16), this can be expressed as

Pr(NT = x) =

S∏

i=1

ci
[x]i

[x]i !
e−ci , x ∈ Z

S
≥0, (23)

which is a product of S Poisson distributions, where the ith
distribution can be expressed as

Zi ∼ Pois(ci ), i = 1, 2, . . . ,S . (24)

With (23) and (24), the entropy of NT can be approximated
as

H (NT ) ≈
S∑

i=1

H (Zi ), (25)

which is the sum of the S entropy derivations corresponding
to the S Poisson distributions.

C. Conditional Entropy of Molecule Number Vector at
Transmitter Given Received Signal

Subsequently, the second term of (22) to be addressed is
H (NT |P), which is the conditional entropy of NT given P.

Assume that the qth type of chemical substances, among
the S types at the transmitter, are used for diffusion-based
MC, where the particles of the qth type are released during
molecule emission, pass through the channel, and are received
during molecule reception.

Suppose the S Poisson distributions defined in (24) are con-
ditionally independent given P (due to the assumption that no
chemical reaction occurs in the channel). Then,

H (NT |P) =

S∑

i=1

H (Zi |P)

=

q−1∑

i=1

H (Zi ) + H
(
Zq |P

)
+

S∑

i=q+1

H (Zi ), (26)

where the second equality holds since we only use the qth
type of chemical substances so that P is only dependent on
the qth Poisson distribution Zq and is independent of the other
S − 1 Poisson distributions. According to (26), the condi-
tional entropy H (NT |P) is the sum of the conditional entropy
H (Zq |P) and the S − 1 entropy derivations corresponding to
the S − 1 Poisson distributions except Zq .

Now, we first focus on the qth term of (26), i.e., the condi-
tional entropy H (Zq |P). Suppose the diffusion coefficient in
the channel is D, and the receiver is a sphere with radius Rr .

Assume that the realizations of Zq |P are independent at
different probabilistic trials [37], each of which is statistically
uncorrelated to each other, and bandlimited within an effective
bandwidth W [38], which corresponds to the symbol transmis-
sion rate (number of molecule emissions per second). In other

Authorized licensed use limited to: Michigan State University. Downloaded on January 28,2021 at 01:01:59 UTC from IEEE Xplore.  Restrictions apply. 



238 IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS, VOL. 6, NO. 3, DECEMBER 2020

words, the bandwidth W is the reciprocal of the symbol time
(time duration of each molecule emission) and can be altered
by changing the environment where chemical reactions occur
(e.g., by adding catalysts). Then, according to the Shannon-
Hartley theorem [36], [39], which expresses the capacity as a
product of the maximum sampling rate and number of bits in
a symbol, it is implied that the conditional entropy H (Zq |P)
can be expressed as

H
(
Zq |P

)
= 2WH

(
Zq |P

)
, (27)

where 2W is the maximum sampling rate, and P is the received
signal per time sample and can be expressed as

P =

1
2W τp∑

k=1

pk , (28)

where τp is the time interval between the measurements for
their statistical independence and can be expressed as [40]

τp =
Rr

2

D
, (29)

1
2W τp

is the number of independent measurements within a
time sample, and pk is the kth independent measurement of
the number of received particles within a single time sam-
ple. Suppose each independent measurement of the number
of received particles within a single time sample follows a
binomial distribution [41], i.e.,

pk ∼ Binomial
(
Z̄q ,F (d)

)
, k = 1, 2, . . . ,

1

2W τp
, (30)

where Z̄q is the average number of emitted particles within a
time sample and can be expressed as

Z̄q =
E
[
Zq

]

2W
=

cq
2W

, (31)

and F(d) is the successful probability of each particle being
received in terms of the distance d. In general, the success-
ful probability F(d) depends on the characteristics of the
channel and is adaptable toward different application scenar-
ios. Note that each independent measurement in (30) can be
approximated as a Poisson distribution [37], expressed as

pk ∼ Pois
(
Z̄qF (d)

)
, k = 1, 2, . . . ,

1

2W τp
, (32)

when Z̄q is sufficiently large and F(d) is sufficiently small.
The expected value of each independent measurement defined
in either (30) or (32) can be obtained as

E [pk ] = Z̄qF (d), k = 1, 2, . . . ,
1

2W τp
. (33)

In the following, we use the binomial model in (30) for
derivations.

From the Bayes’ theorem, the connection between the prior
and posterior probability distributions is established. If the
prior and posterior probability distributions fall into the same
probability distribution family, then the prior (posterior) prob-
ability distribution is the conjugate of the posterior (prior)
probability distribution [42]. Note that the binomial distribu-
tion is the conjugate of the beta distribution [43]. Therefore,

according to the Bayesian inference theory [43], the indepen-
dent measurements following a binomial distribution in (30)
correspond to Zq |P = p following a beta distribution, which
can be expressed as

Zq |P = p ∼ Beta

(
p,

1

2W τp
Z̄q − p

)
, (34)

whose corresponding probability density function can be
expressed as [43]

fZq |P
(
zq |p

)
=

zp−1
q

(
1− zq

) 1
2W τp

Z̄q−p−1

B
(
p, 1

2W τp
Z̄q − p

) , (35)

where B(·, ·) is the beta function defined as [44]

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
, (36)

where Γ(·) is the gamma function defined as [45]

Γ(α) = (α− 1)!, α ∈ N. (37)

Note that when the two parameters of the beta function are
both positive integers, the beta function can be rewritten
as [44]

B(α, β) =
(α− 1)!(β − 1)!

(α+ β − 1)!
, α, β ∈ N, (38)

according to the definition of gamma function defined in (37).
Substituting (31) into (34), (34) can be rewritten as

Zq |P = p ∼ Beta

(
p,

cq
4W 2τp

− p

)
. (39)

Subsequently, the conditional entropy H (Zq |P = p) can be
computed through its definition expressed as

H
(
Zq |P = p

)
= −

∫
fZq |P

(
zq |p

)
log2 fZq |P

(
zq |p

)
dzq , (40)

which is an explicit function of the probability density function
in (35).

Therefore, with (35) the conditional entropy H (Zq |P = p)
can be obtained as [46]

H
(
Zq |P = p

)
= lnB

(
p,

cq
4W 2τp

− p

)
− (p − 1)ψ(p)

−
(

cq
4W 2τp

− p − 1

)
ψ

(
cq

4W 2τp
− p

)

+

(
cq

4W 2τp
− 2

)
ψ

(
cq

4W 2τp

)
, (41)

where ψ(·) is the digamma function defined as [44]

ψ(α) =
Γ′(α)
Γ(α)

, (42)

where Γ′(·) is the derivative of the gamma function.
In addition, the statistics of the received signal per time

sample P is also of interest. Note that the expected value of
P can be computed as

E [P] =

1
2W τp∑

k=1

E [pk ] =
1

2W τp
Z̄qF (d) =

cq
4W 2τp

F (d), (43)
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where the second equality holds due to (33) and the third
equality holds due to (31).

For the conditional entropy H (Zq |P), we approximate it
by fixing P at its expected value. Therefore, substituting
E [P] for p in (41), the conditional entropy H (Zq |P) can be
approximated as

H
(
Zq |P

) ≈ H
(
Zq |P = E [P]

)

= lnB

(
E [P],

cq
4W 2τp

− E [P]

)

− (E [P]− 1)ψ(E [P])

−
(

cq
4W 2τp

− E [P]− 1

)
ψ

(
cq

4W 2τp
− E [P]

)

+

(
cq

4W 2τp
− 2

)
ψ

(
cq

4W 2τp

)
. (44)

Finally, combining (26), (27), (43), and (44), we obtain the
conditional entropy H (NT |P) as

H (NT |P) =

q−1∑

i=1

H (Zi ) +
S∑

i=q+1

H (Zi ) + 2W lnB

×
(

cq
4W 2τp

F (d),
cq

4W 2τp
(1− F (d))

)

− 2W

(
cq

4W 2τp
F (d)− 1

)
ψ

(
cq

4W 2τp
F (d)

)

− 2W

(
cq

4W 2τp
(1− F (d))− 1

)

× ψ

(
cq

4W 2τp
(1− F (d))

)

+ 2W

(
cq

4W 2τp
− 2

)
ψ

(
cq

4W 2τp

)
. (45)

D. Resulting Capacity

From the above derivations, we explicitly obtain the two
terms, H (NT ) and H (NT |P), as expressed in (25) and (45),
respectively. Note that H (NT ) and H (NT |P) share the
common terms

∑q−1
i=1 H (Zi ) +

∑S
i=q+1H (Zi ).

Substituting (25) and (45) into (22), the mutual information
term I (NT ;P) can be rewritten as

I (NT ;P) = H
(
Zq

)− 2W lnB

×
(

cq
4W 2τp

F (d),
cq

4W 2τp
(1− F (d))

)

+ 2W

(
cq

4W 2τp
F (d)− 1

)
ψ

(
cq

4W 2τp
F (d)

)

+ 2W

(
cq

4W 2τp
(1− F (d))− 1

)

× ψ

(
cq

4W 2τp
(1− F (d))

)

− 2W

(
cq

4W 2τp
− 2

)
ψ

(
cq

4W 2τp

)
. (46)

Note that the common terms
∑q−1

i=1 H (Zi ) +
∑S

i=q+1H (Zi )
are eliminated during the subtraction in (22).

Next, we focus on the first term of (46), i.e., the entropy
H (Zq ). Recall that Zq follows a Poisson distribution with
parameter cq and can be expressed as

Zq ∼ Pois
(
cq
)
, (47)

whose corresponding probability mass function is

Pr
(
Zq = l

)
= e−cq cq

l

l !
. (48)

Then, the entropy H (Zq ) can be computed through its defini-
tion expressed as

H
(
Zq

)
= −

∑
Pr

(
Zq = l

)
log2 Pr

(
Zq = l

)
, (49)

which is an explicit function of the probability mass function
in (48).

Hence, with (48) the entropy H (Zq ) can be obtained as [47]

H
(
Zq

)
= cq

(
1− log2 cq

)
+ e−cq

∞∑

l=0

cq
l log2 l !

l !
. (50)

Suppose cq is sufficiently large so that the entropy H (Zq ) can
be approximated as [47]

H
(
Zq

) ≈ 1

2
log2

(
2πecq

)
. (51)

Substituting (51) into (46), the mutual information I (NT ;P)
can be finally obtained as

I (NT ;P) =
1

2
log2

(
2πecq

)− 2W lnB

×
(

cq
4W 2τp

F (d),
cq

4W 2τp
(1− F (d))

)

+ 2W

(
cq

4W 2τp
F (d)− 1

)
ψ

(
cq

4W 2τp
F (d)

)

+ 2W

(
cq

4W 2τp
(1− F (d))− 1

)

× ψ

(
cq

4W 2τp
(1− F (d))

)

− 2W

(
cq

4W 2τp
− 2

)
ψ

(
cq

4W 2τp

)
. (52)

Now that the mutual information term I (NT ;P) is derived
in (52), we subsequently address the capacity C which is
defined in (17).

According to (52), the only term in I (NT ;P) that depends
on the probability density function fNT

(nT ) is cq . Note that
there may be multiple equilibrium values for c, depending on
fNT

(nT ), in the complex balanced chemical reaction network
at the transmitter, where each equilibrium value corresponds
to a distinct cq . Therefore, the capacity C can be achieved
with the probability density function fNT

(nT ) leading to the
equilibrium value c∗ which corresponds to the maximum of
all possible cq , denoted by c∗q .

Finally, we can derive the capacity C, which is formally
stated as follows: Suppose c∗q is sufficiently large and the
molecule supply is sufficiently fast. Given that NR is a deter-
ministic function of P, that the S Poisson distributions defined
in (24) are conditionally independent given P, that realiza-
tions of Zq |P are independent at different probabilistic trials
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and bandlimited within W, and that independent measurements
pk follow the binomial distribution, the capacity C can be
obtained by substituting c∗q for cq in (52), expressed as

C =
1

2
log2

(
2πec∗q

)

− 2W lnB

(
c∗q

4W 2τp
F (d),

c∗q
4W 2τp

(1− F (d))

)

+ 2W

(
c∗q

4W 2τp
F (d)− 1

)
ψ

(
c∗q

4W 2τp
F (d)

)

+ 2W

(
c∗q

4W 2τp
(1− F (d))− 1

)

× ψ

(
c∗q

4W 2τp
(1− F (d))

)

− 2W

(
c∗q

4W 2τp
− 2

)
ψ

(
c∗q

4W 2τp

)
. (53)

IV. NUMERICAL EVALUATIONS

In this section, we present the numerical results to assess
the effects of chemical reactions on the capacity of diffusion-
based MC systems. Specifically, the capacity analysis in this
work takes into account the effects of chemical reactions at
the transmitter, which are not considered in the existing liter-
ature calculating the capacity based on solely the propagation
of molecules in the channel (e.g., [12]). Therefore, we eval-
uate the effects of the chemical reactions in the transmission
process, as described in Section II-A, by comparing the capac-
ity expression (53) obtained in Section III with that derived
in [12], where the former addresses the chemical reactions
and the latter does not. We also demonstrate the interactions
between different parameters and their impacts on the resulting
capacity.

The common parameters shared by all evaluations include
the system temperature T, which is set as the standard state
temperature 298 K, and the radius of the (assumed spheri-
cal) receive volume Rr , which is set as 30 μm. Note that
the Boltzmann constant is Kb = 1.38 × 10−23 J/K. For
diffusion-based MC systems, the successful probability is set
as F (d) = 4

3
Rr

3

Dd [12]. For a fair comparison, the average
transmit power, denoted as P̄H, used in [12] (for the case
without chemical reactions) is set as the amount needed for
the emission of c∗q molecules, i.e.,

P̄H =
3

2
KbTc

∗
q . (54)

For all plots in this section, blue curves (labeled as
“w/ chemical reactions”) correspond to the capacity expres-
sion (53) in this article, while red curves (labeled as “w/o
chemical reactions”) correspond to the capacity expression
(59) in [12].

A. Capacity Versus Distance Under Different c∗q
The relationship between the capacity and the distance

under different c∗q conditions with and without chemical reac-
tions considered is shown in Fig. 3. The diffusion coefficient
D and the bandwidth W are set as 10−9 m2/s and 30 Hz,

Fig. 3. Relationship between the capacity and the distance under different
c∗q conditions with and without chemical reactions considered.

respectively. The distance d is evaluated ranging from 40 to
80 μm, and the c∗q is evaluated across {5× 104, 105}.

From the plots in Fig. 3, it can be observed that the capac-
ity decreases as the distance increases in all cases due to the
enhanced molecular noise with the increased distance. Note
that the decrease is more significant when chemical reactions
are considered and is less significant when chemical reac-
tions are not considered. In addition, an increase in c∗q leads
to an increased capacity, since more information bits can be
transmitted with more molecules emitted.

B. Capacity Versus Bandwidth Under Different c∗q
In Fig. 4, we show the relationship between the capacity and

the bandwidth under different c∗q conditions with and without
chemical reactions considered. The diffusion coefficient D and
the distance d are set as 10−9 m2/s and 50 μm, respectively.
The bandwidth W is evaluated ranging from 15 to 30 Hz, and
the c∗q is evaluated across {5× 104, 105}.

According to Fig. 4, it can be found that the capacity
increases as the bandwidth increases in all cases, since more
information bits can be transmitted within a larger bandwidth.
However, it can be observed that the impacts of the bandwidth
on the capacity is less significant in the case when chemical
reactions are not considered than in the case when chemical
reactions are considered, which implies that the bandwidth is
not dominant in the case when the effects of chemical reactions
are taken into account.

C. Capacity Versus Diffusion Coefficient Under Different c∗q
The relationship between the capacity and the diffusion

coefficient under different c∗q conditions with and without
chemical reactions considered is shown in Fig. 5. The band-
width W and the distance d are set as 30 Hz and 50 μm,
respectively. The diffusion coefficient D is evaluated rang-
ing from 10−9 to 10−8 m2/s, and the c∗q is evaluated across
{5× 104, 105}.
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Fig. 4. Relationship between the capacity and the bandwidth under different
c∗q conditions with and without chemical reactions considered.

Fig. 5. Relationship between the capacity and the diffusion coefficient under
different c∗q conditions with and without chemical reactions considered.

Based on Fig. 5, it can be observed that the capacity
increases with an increase in the diffusion coefficient in
all cases, since molecules diffuse further and transmit more
information bits in an environment with a larger diffusion
coefficient.

D. Capacity Versus Distance Under Different Bandwidth

In Fig. 6, we investigate the relationship between the capac-
ity and the distance under different bandwidth conditions with
and without chemical reactions considered. The c∗q and the
diffusion coefficient D are set as 105 and 10−9 m2/s, respec-
tively. The distance d is evaluated ranging from 40 to 80 μm,
and the bandwidth W is evaluated across {15, 30} Hz.

According to Fig. 6, it can be found that the capac-
ity decreases as the distance increases and the bandwidth
decreases. In addition, the bandwidth is more dominant in the
resulting capacity when chemical reactions are not taken into

Fig. 6. Relationship between the capacity and the distance under different
bandwidth conditions with and without chemical reactions considered.

Fig. 7. Relationship between the capacity and the diffusion coefficient
under different bandwidth conditions with and without chemical reactions
considered.

consideration. These observations are in accordance with those
obtained in Sections IV-A and IV-B.

E. Capacity Versus Diffusion Coefficient Under Different
Bandwidth

The relationship between the capacity and the diffusion
coefficient under different bandwidth conditions with and
without chemical reactions considered is shown in Fig. 7.
The c∗q and the distance d are set as 105 and 50 μm, respec-
tively. The diffusion coefficient D is evaluated ranging from
10−9 to 10−8 m2/s, and the bandwidth W is evaluated across
{15, 30} Hz.

From the Fig. 7, it can be observed that the capacity
increases as the diffusion coefficient increases and the band-
width increases. Similarly, the bandwidth has a larger effect
on the resulting capacity when the chemical reactions are
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not considered. These observations are consistent with those
obtained in Sections IV-B, IV-C, and IV-D.

F. Impact of Chemical Reactions on the Resulting Capacity

From the results shown in the figures, it can be observed
that there is an approximate four-fold decrease in the resulting
capacity with chemical reactions considered compared with
that without chemical reactions considered, which implies that
the capacity would be overestimated if the effects of chemical
reactions are not taken into account. Moreover, this obser-
vation can be intuitively interpreted with the famous data
processing inequality [25], which explains the decrease in the
resulting capacity when the process of chemical reactions are
additionally integrated into the capacity derivation.

V. CONCLUSION

In this article, we propose a framework to investigate the
effects of chemical reactions on the capacity of diffusion-based
molecular communication in an information-theoretic manner.
Particularly, we study the chemical reactions which correspond
to complex balanced chemical reaction networks. Within the
capacity analysis, we adopt the chemical reaction network
theory and obtain the individual entropy derivations, mutual
information, and final capacity expressions with the chemi-
cal reactions at the transmitter taken into account. Numerical
results demonstrate the relationships between different param-
eters and show that there is a significant decrease in the
resulting capacity when chemical reactions are considered
compared with the case when they are not considered, which
implies that the capacity is overestimated when the effects of
chemical reactions are not included.

The proposed framework provides a methodology using
the chemical reaction network theory incorporated with the
information theory, leading to a stricter capacity expression.
The effects of transmission processes are represented by chem-
ical reactions and incorporated in the capacity derivations
through the state of the complex balanced chemical reaction
network which can easily be adapted to various application
scenarios. Future directions around this topic include the inte-
gration of effects of chemical reactions at the receiver, the
interaction between the particle motion and chemical reactions
during molecule propagation in the channel (in systems such
as reaction-diffusion systems), and multi-type molecules used
as information carriers.
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