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Abstract— This paper presents models and optimization
methods for the design of electric vehicle propulsion systems.
Specifically, we first derive a bi-convex model of a battery
electric powertrain including the transmission and explicitly
accounting for the impact of its components’ size on the energy
consumption of the vehicle. Second, we formulate the energy-
optimal sizing and control problem for a given driving cycle
and solve it as a sequence of second-order conic programs.
Finally, we present a real-world case study for heavy-duty
electric trucks, comparing a single-gear transmission with a
continuously variable transmission (CVT), and validate our
approach with respect to state-of-the-art particle swarm op-
timization algorithms. Our results show that, depending on
the electric motor technology, CVTs can reduce the energy
consumption and the battery size of electric trucks between up
to 10%, and shrink the electric motor up to 50%.

I. INTRODUCTION

T
HE ROAD transportation sector is undergoing an extensive

electrification process. Battery electric vehicles (BEVs)

are finding their way into the passenger car and bus market,

and sales are rapidly increasing [1]. Nevertheless, this pro-

cess does not yet affect the heavy-duty transportation sector

to the same degree, as the development of battery electric

trucks is still focused on feasibility studies in terms of eco-

nomical viability [2]–[4] and technological research [5], [6].

In this context, design studies investigating the deployment

of battery electric trucks play a crucial role in defining a

technological road-map for the electrification of heavy-duty

road transport. Specifically, the optimal powertrain design

problem is particularly critical due to the high costs entailed

by the operation of freight transportation vehicles in terms

of energy consumption and load capacity (due maximum

weight regulations, reducing the empty-vehicle’s mass results

in a higher freight capacity). Given a powertrain topology,

this problem consists of finding the optimal components’

size minimizing a cost (for instance, energy consumption)

conditional on the intended usage. This calls for numerical

methods that optimize the sizing of the battery, the electric

machines and the transmission together with the overall

powertrain operation strategies in an integrated fashion. In

this paper, we present a general bi-convex optimization

framework to jointly compute the optimal powertrain design

and control strategies for generic BEVs and showcase it on

heavy-duty trucks.

Literature review: The state-of-the-art for powertrain de-

sign mainly consists of nonlinear optimization methods and
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Fig. 1. Overview of the battery electric powertrain studied including
a battery (BA), an electric machine (EM), a gearbox/transmission (GB),
and a final drive (FD) connected to the rear wheels (W) of the vehicle.
The parameters in gray indicate the design parameters of each component,
namely, battery capacity, electric motor power, and gear-ratio (for the single-
gear transmission) and minimum and maximum ratio (for the CVT).

convex optimization approaches. Critically, the first class

of methods sacrifices computational tractability and global

optimality guarantees for the sake of model accuracy, whilst

the second one approximates the models for the sake of

computational time and theoretical optimality guarantees. In

the following, we revise them in turn.

The first class of methods combines high-fidelity (often

map-based) simulation models with derivative-free optimiza-

tion methods, such as particle swarm optimization (PSO)

algorithms. Such methods have been extensively applied

to battery and motor sizing problems for hybrid electric

vehicles [7], [8] and BEVs [9], sometimes also including

a transmission consisting of a multi-speed gearbox or of a

continuously variable transmission (CVT) [10], [11]. How-

ever, these methodologies do not provide global optimality

guarantees and must rely on a large number of simulations

usually entailing high computation times.

A second class of methods leverages convex optimization

algorithms. Overall, these methodologies rely on model

approximations and relaxations to accommodate the problem

in convex optimization frameworks. They have the advantage

that the solution can be computed in polynomial time and

is guaranteed to be globally optimal. These approaches have

been extensively applied to compute the fuel-optimal control

strategies for hybrid electric vehicles [12]–[14], sometimes

also optimizing the size of the battery, the engine and the mo-

tor [15]–[17]. Nevertheless, they consider the transmission

design to be fixed and treat its operation as a pre-computed

exogenous signal (which sometimes is separately optimized

in an iterative, multi-level fashion). Therefore, to the best

of the authors’ knowledge, there are no convex optimization

frameworks to jointly design electric powertrains, including

the transmission, and optimize their operation in an inte-

grated fashion.

Statement of contributions: To bridge this gap, this paper
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presents a model to jointly optimize the design and the

operation of the battery electric powertrain shown in Fig. 1,

and our contribution is threefold: First, we formulate the

energy-optimal design and operation problem for a given

driving cycle in a bi-convex form, whereby we identify an

electric motor model that is convex with respect to power

and speed, while still capturing its map characteristics in

detail, and two types of transmission technologies: a single-

gear transmission and a CVT. Second, solving the problem

as a sequence of second-order conic programs (SOCPs),

we compute the globally optimal solution comprising the

components’ sizing and the operation of the electric motor

and the CVT, when present. Finally, we apply our approach

to design the electric powertrain of the heavy-duty truck,

considering both a single-gear transmission and a CVT,

and compare it with state-of-the-art PSO methods [11]. Our

results show that, compared to a single-gear configuration,

a CVT can improve the energy consumption between 1%

and 10% and allow to reduce the electric motor size by 20%

to 50%, depending on the electric motor technology, paving

the way to extensive design studies for different powertrain

architectures.

Organization: The remainder of this paper is structured

as follows: We identify a bi-convex model of a BEV and

formulate the energy-optimal design and operation problem

in Section II. Section III presents numerical results for

both types of transmission on different driving cycles. We

conclude the paper in Section IV with a discussion and an

outlook on future research directions.

II. METHODOLOGY

This section introduces a bi-convex optimization approach

to jointly optimize the components’ sizing and the powertrain

controls of the BEV shown in Fig. 1. We first present a model

of the BEV and its transmission in Section II-A. Second, we

model the electric motor and the battery in Sections II-B and

II-C, respectively, and present a model for the components’

mass in Section II-D. Finally, we formulate the energy-

optimal sizing and operation problem in Section II-E and

discuss our modeling assumptions and their limitations in

Section II-F.

A. Vehicle and Transmission

In line with common practices we use the quasi-static

modeling approach of [18]. For the sake of simplicity,

we drop dependence on time whenever it is clear from

the context. Consider a given driving cycle consisting of

an exogenous speed trajectory v(t), acceleration trajectory

a(t) and road grade trajectory α(t). Accounting only for

the longitudinal dynamics of the vehicle, whereby lateral

effects such as crosswinds and turning are neglected, the

power required to drive Preq consists of the drag power

resulting from the aerodynamic resistance, rolling friction

and gravitational force, and the inertial power as

Preq =mv · (cr · g · cos(α) + g · sin(α) + a) · v

+
1

2
· ρ · cd ·Af · v

3,
(1)

where mv is the total mass of the vehicle subject to opti-

mization, cr the rolling friction coefficient, g the gravitational

acceleration, ρ the air density, cd the aerodynamic drag

coefficient and Af the frontal area of the vehicle. Given the

transmission ratio γ subject to optimization, the speed of the

electric motor is

ω = γ ·
v · γf
rw

, (2)

where γf is the fixed transmission ratio of the final drive and

rw is the wheels’ radius. For the transmission ratio it holds

γ(t)

{

= γ1 if single-gear

∈ [γmin, γmax] if CVT
∀t, (3)

where γ1 > 0 is the fixed ratio of the single-gear, and γmin >

0 and γmax > 0 are the minimum and maximum transmission

ratios achievable by the CVT. Considering a fixed final-

drive and transmission efficiency ηf and ηg, respectively, the

mechanical power provided by the motor Pm is related to

the requested power as

Preq =

{

ηf · ηg · Pm if Pm ≥ 0
1

ηf ·ηg·rbrk
· Pm − Pbrk if Pm < 0,

where rbrk is the fraction of braking power that the electric

motor can exert via the rear axle of the vehicle without desta-

bilizing the vehicle and the power exerted by the mechanical

brakes is Pbrk ≥ 0. Therefore, the requested power can be

relaxed to
Preq ≤ ηf · ηg · Pm

Preq ≤
1

ηf · ηg · rbrk
· Pm.

(4)

Finally, we enforce the vehicle to be able to start driving

with a road grade of α0 as

mv ·g ·sin(α0) ·rw ≤ ηf ·ηg ·Tm,max ·

{

γ1 if single-gear

γmax if CVT

(5)

where Tm,max is the maximum electric motor torque.

B. Electric Motor

Starting from a standard DC circuit model jointly captur-

ing the motor and the inverter, we relate the electric power

provided Pdc to a corrected mechanical power Pm,corr as

Pdc =
P 2
m

Pm,eff

+ Pm,corr,

where Pm,eff is a speed-dependent quadratic efficiency term

accounting for electric losses, and the corrected mechanical

power captures speed-dependent friction and linear efficiency

terms as

Pm,corr = c0(t) + c1(t) · ω + c2(t) · ω
2 + ηm(t) · Pm,

whereby it holds that

(

{ci(t)}i, ηm(t)
)

=











(

{c+i }i, η
+
m

)

if Pm(t) > 0
(

{c−i }i, η
−
m

)

if Pm(t) < 0
(

0, 0
)

if Pm(t) = 0.
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Since the electric motor is the only mover of the powertrain,

the sign of the motor power can be directly assessed in

the pre-processing phase. Specifically, fixing the vehicle

mass to the base value m̄v (whereby we use the notation

(̄·) to indicate the original size of the components), we

can compute an exogenous requested power trajectory P̄req

from (1). This way, we can pre-compute the value of the

coefficients of (8) as exogenous functions of time as

(

{ci(t)}i, ηm(t)
)

=











(

{c+i }i, η
+
m

)

if P̄req(t) > 0
(

{c−i }i, η
−
m

)

if P̄req(t) < 0
(

0, 0
)

if P̄req(t) = 0.

(6)

Similar as in [19], we use lossless relaxations to transform

the model to a convex form using second-order conic con-

straints. We relax the electric motor power equation to

(Pdc − Pm,corr) · Pm,eff ≥ P 2
m

and formulate it as a second-order conic constraint as
∥

∥

∥

∥

Pdc − Pm,corr − Pm,eff

2 · Pm

∥

∥

∥

∥

2

≤ Pdc−Pm,corr+Pm,eff . (7)

Since our objective is to minimize energy consumption, con-

straint (7) will always hold with equality, as it is inefficient

to pick a higher value of Pdc (this statement holds also for

other types of cost, such as money or lap time in racing

applications). Following a similar reasoning, we relax the

corrected mechanical power as

Pm,corr ≥ c0(t) + c1(t) · ω + c2(t) · ω
2 + ηm(t) · Pm. (8)

For the sake of brevity, in the remainder of the paper we

abstain from showing why the relaxations performed are

lossless, as the explanation follows from the same rationale.

We assume the efficiency-loss power to be piecewise affine

in the motor speed as

Pm,eff = akm · ω + bkm if ω ∈
[

ωk−1, ωk
]

∀k ∈ [1, ...,K],

where akm ≥ ak+1
m ∀k = [1, ...,K − 1] and K is the number

of affine lines. Our model is fitted to the measured motor

map [20] with a root mean squared error (RMSE) of 1.45%.

The original efficiency map of a permanent magnet electric

machine is compared with our convex approximation in

Fig. 2. To preserve convexity, we relax the efficiency power

equation to

Pm,eff ≤ akm · ω + bkm ∀k ∈ [1, ...,K]. (9)

The motor power is limited by the maximum power Pm,max

as well as by the maximum torque Tm,max as

Pm ∈ [−Pm,max, Pm,max]

Pm ∈ [−Tm,max, Tm,max] · ω.
(10)

Furthermore, the motor speed is constrained as

ω ∈ [0, ωmax]. (11)

Finally, to keep the motor map consistent, we scale the

motor size as a function of the maximum power Pm,max
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Fig. 2. Electric motor efficiency map (including the inverter) from real
data [20] (left) and fitted convex model (right).

while keeping the intersection between the maximum torque

and maximum power lines at a constant speed:

Tm,max = T̄m,max ·
Pm,max

P̄m,max

c±i = c̄±i ·
Pm,max

P̄m,max

∀i ∈ {1, 2, 3}

akm = ākm ·
Pm,max

P̄m,max

∀k ∈ {1, . . . ,K}

bkm = b̄km ·
Pm,max

P̄m,max

∀k ∈ {1, . . . ,K}.

(12)

This way, the electric motor model is convex for a given

Pm,max.

C. Battery

We model the battery as a DC circuit model with state of

energy Eb, resistance R and open-circuit voltage Uoc. The

power extracted at the terminal Pb is

Pb = Pdc + Pa, (13)

where Pa is a constant auxiliary power. The terminal power

is related to the internal battery power Pi through the open-

circuit voltage Uoc and the internal resistance R as

Pi = Pb +
R

U2
oc

· P 2
i

that can be written using the open-circuit power Poc =
U2

oc

R

as

(Pi − Pb) · Poc = P 2
i .

Assuming that the battery capacity Eb,max is changed by

modifying the number of cells’ strings in parallel, while

keeping the number of cells per string constant, the open-

circuit voltage is not affected by the battery size and can be

expressed as Uoc = u1 ·
Eb

Eb,max
+u0, with u1 > 0 and u0 > 0,

and the internal resistance is R = R0 ·
Ēb,max

Eb,max
, with R0 > 0
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and Ēb,max denoting a base battery capacity. Therefore, we

get that

Poc =

(

u1 ·
Eb

Eb,max

+ u0

)2

·
Eb,max

R0 · Ēb,max

=
u2
1 ·

E2
b

Eb,max
+ 2 · u1 · u0 · Eb + u2

0 · Eb,max

R0 · Ēb,max

Since it usually holds that the open-circuit voltage slope u1 is

significantly smaller than its base value u0, we approximate

u2
1 ≈ 0. This way, the open-circuit power becomes

Poc = ab · Eb + bb · Eb,max, (14)

where ab > 0 and bb > 0 are two given parameters subject

to identification. Similarly as for the electric motor, we relax

the battery power equation to

(Pi − Pb) · Poc(Eb) ≥ P 2
i ,

which can be expressed as a second-order conic constraint

as
∥

∥

∥

∥

Pi − Pb − Poc

2 · Pi

∥

∥

∥

∥

2

≤ Pi − Pb + Poc. (15)

The internal battery power is limited as

Pi ∈ [−Pi,max, Pi,max], (16)

whereby

Pi,max = ab,max · Eb + bb,max · Eb,max, (17)

where ab,max > 0 and bb,max > 0 are two given parameters

subject to identification. The battery state of energy is limited

by the battery size Eb,max as

Eb ∈ [rb,min, rb,max] · Eb,max, (18)

where rb,min and rb,max represent the relative minimum and

maximum state of energy levels allowed. Finally, the battery

dynamics are given by

d

dt
Eb = −Pi. (19)

The proposed model is fitted to the original Lithium-ion

battery data used in [11] with a RMSE of 0.84%.

D. Mass

The vehicle is assumed to have a total mass mv comprising

a base mass m0 accounting for structure, fixed components

and load, the motor mass mm, the battery mass mb and the

gearbox mass mg, i.e.,

mv = m0 +mm +mb +mg. (20)

In line with current practices [21], we model the mass of the

motor to be linear in its maximum power as

mm = ρm · Pm,max, (21)

where ρm represents the power-specific mass of the motor

also including the mass of the inverter. As we modify the

battery by changing the number of cells in parallel, which

linearly affects the battery capacity Eb,max, we can assume

the mass of the battery to be

mb = ρb · Eb,max, (22)

where ρb represents its energy-specific mass. Finally, we

assume the transmission mass mg to be quadratic in the

transmission ratio as

mg =

{

ρg · γ
2
1 if single-gear

mcvt,0 + ρcvt · γ
2
max if CVT,

where ρg, mcvt,0 and ρcvt are used to model the mass of the

single-gear transmission and the CVT, respectively. Finally,

we relax the mass of the gearbox as

mg ≥

{

ρg · γ
2
1 if single-gear,

mcvt,0 + ρcvt · γ
2
max if CVT.

(23)

E. Energy-optimal Sizing and Operation Problem

As the objective of the optimal sizing and control problem

we choose the energy consumption over the driving cycle,

i.e.,

J(Eb) = Eb(0)− Eb(tf), (24)

where tf is the length of the driving cycle. We state the

energy-optimal sizing and operation problem as follows:

Problem 1 (Energy-optimal Sizing and Operation Problem).

Given the battery electric powertrain architecture shown in

Fig. 1, the optimal components’ size and control strategies

are the solution of
min
xp,xc

J(Eb)

s.t. (1)–(24),

with the sizing parameters xp = {Pm,max, Eb,max, γx},

where x = 1 for the single-gear and x ∈ {min,max} for

the CVT. The control variables are xc = {Pm, γ} (where γ

is present for the CVT only).

Problem 1 is bi-convex in Pm,max and

{xp, xc}\{Pm,max}. In particular, for a given value of

Pm,max, Problem 1 is a SOCP in {xp, xc}\{Pm,max}.

Since Pm,max is a scalar variable, Problem 1 can be solved

computing the optimal solution for a range of given values

of Pm,max as a sequence of SOCPs. Critically, if the chosen

range is fine enough, the solution found is globally optimal.

Alternative methods could directly leverage the problem

structure [22]. Yet, this approach also delivers a sensitivity

analysis on the motor size which can be used for validation

purposes, as is done in Section III-C.

F. Discussion

A few comments are in order. First, we consider a given

driving cycle whereby the vehicle speed trajectory is exoge-

nous. This approach is in line with most of the literature

related to the control of hybrid electric vehicles [18] and

widely used in sizing problems [7]. Second, we use a pre-

computed requested power trajectory based on a guess of the

overall vehicle’s mass to assess when the electric motor will

be operated in motor or generator mode. This assumption
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TABLE I

VEHICLE PARAMETERS.

Parameter Symbol Truck Unit

Base vehicle weight m0 37.900 kg
Wheel radius rw 0.492 m
Rear axle brake fraction rbrk 0.25 -
Final drive ratio γf 1 -
Air drag coefficient cd 0.73 -

Frontal area Af 9.75 m2

Rolling resistance coefficient cr 0.006 -

Air density ρ 1.225 kg/m3

Gravitational constant g 9.81 m/s2

Constant auxiliary power Pa 4.86 kW
Transmission efficiency ηg 0.97 -
Final drive efficiency ηf 0.97 -
Battery energy-specific mass ρb 6.7 kg/kWh
EM power-specific mass ρm 0.9 kg/kW
Single gear density ρg 1.68 kg
CVT density ρcvt 1 kg
CVT base mass mcvt,0 50 kg

is in order for standard driving cycles, whereby the sign of

the requested power is mostly well-defined, and especially

well-suited for heavy-duty applications, as the base mass is

significantly larger than the mass of the powertrain. Third,

according to (12), we scale the electric motor by scaling

both the maximum torque Tm,max line and the efficiency map

linearly in the maximum power Pm,max. Since the maximum

torque is proportional to the motor length, this enables us to

scale the motor mass linearly in Pm,max. We leave to future

research the problem of modifying the motor characteristics

such as maximum speed, maximum torque and efficiency

map in a separate fashion. Fourth, we modify the battery

size only by changing the number of cells in parallel.

Changing the arrangement of the battery cells also in series

to future research. Finally, the convex relaxations proposed

make the optimization Problem 1 non-physical. However, as

the objective is to minimize the energy consumption (24),

the optimal solution will have the constraints holding with

equality, as it would be suboptimal otherwise, guaranteeing

that the relaxations are lossless and the optimal solution

physical.

III. RESULTS

This section presents the results obtained by solving

Problem 1 for the different powertrain configurations shown

in Fig. 1, namely, a battery, a motor and a single-gear or

a CVT. We first outline the experiments in Section III-A,

present our results and compare them with a state-of-the-art

PSO method [11] in Section III-B, and discuss their validity

in Section III-C. Note that the PSO method is applied to the

nonlinear version of the model described in [11] and not to

the convexified model described in this paper, which is based

on the nonlinear model of [11].

A. Experimental Design

We consider the same heavy-duty battery electric truck as

in [11]. The parameters of the vehicle are given in Table I.

We consider two different 100 km long driving cycles: a

shortened version of a long-haul driving cycle, and a delivery

driving cycle comprising extra urban routes. Both cycles are
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h
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Fig. 3. Speed and grade profile of the VECTO regional long-haul cycle
and the VECTO regional delivery cycle.

TABLE II

RESULTS FOR THE LONG-HAUL AND THE DELIVERY CYCLE.

Method Bi-convex PSO
Transmission 1s CVT 1s CVT

Long-haul cycle

J [kWh] 175.9 174.4 -0.8% 177.3 174.7 -1.4%
Eb,max [kWh] 294 291 -0.8% 295 291 -1.4%
Pm,max [kW] 460 350 -23.9% 481 433 -10.1%
γ1/γmin [-] 7.04 4.51 6.03 3.14
γmax [-] - 11.17 - 11.77
mv [kg] 40366 40342 -0.1% 40371 40427 +0.1%

Delivery cycle

J [kWh] 192.8 190.8 -1.1% 195.6 192.2 -1.8%
Eb,max [kWh] 322 318 -1.1% 325 320 -1.7%
Pm,max [kW] 440 380 -13.6% 547 483 -11.8%
γ1/γmin [-] 7.36 4.51 7.51 2.44
γmax [-] - 12.37 - 12.85
mv [kg] 40541 40577 +0.1% 40665 40691 +0.1%

obtained from the Vehicle Energy consumption Calculation

Tool (VECTO) [23] and their velocity and slope profiles are

shown in Fig. 3.

B. Numerical Results

In line with current practices, for each configuration

and driving cycle we discretize Problem 1 using the Euler

forward method with a 1 s sampling time. Thereafter, we

parse it with YALMIP [24] and solve it using ECOS [25].

Specifically, we solved Problem 1 for fixed values of Pm,max

ranging between 300 kW and 600 kW. The solver took about

3 s per solution. Given the chosen discretization of 10 kW, the

resulting computational time is about one and a half minutes.

Table II shows the results obtained with the proposed bi-

convex approach and the PSO method from [11] (that took

about 20–30 min per case to converge). The results of the

PSO method differ from the results presented in [11] because

different battery boundaries are used here.

Both approaches obtain similar results on both driving

cycles in terms of energy consumption suggesting that a CVT

can improve the minimum energy consumption by about 1%,

in keeping with the results of the study in [11]. This result

1729

Authorized licensed use limited to: Stanford University. Downloaded on January 28,2021 at 03:03:39 UTC from IEEE Xplore.  Restrictions apply. 



t [s]

γ
[-
]

ω
[r
a
d
/
s]

E
b
[M

J
]

mg = (1s) : 83 kg, (cvt) : 175 kg

mm = (1s) : 414 kg, (cvt) : 315 kg

mb = (1s) : 1969 kg, (cvt) : 1952 kg

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

0

200

400

0

500

1000

Fig. 4. Optimal solution of the convex method for the single-gear (1s) and
CVT (cvt) on the VECTO regional long-haul cycle. The first plot shows the
battery trajectory over the drive cycle, the second plot shows the rotational
speed of the motor and the last plot shows the transmission ratio.

can be ascribed to the fact that a CVT can operate the motor

in a more efficient way by changing its operational speed

as shown in Fig. 4 for the long-haul cycle. The optimal

motor operation enabled by the CVT and the single-gear

is shown in detail in Fig. 5 for the long-haul cycle, for both

optimization methods, indicating that when a CVT is present

the workpoints of the EM are located closer to the region of

high efficiency of the electric machine.

In terms of optimal component sizing, we find similar

battery sizes whose difference corresponds to the difference

in energy consumption. Regarding the maximum motor size,

the bi-convex model results in a smaller motor w.r.t. the PSO

approach. Yet, for both driving cycles both models show

that the CVT enables to shrink the electric machine. Partly

related to the difference in electric machine sizes, the PSO

finds a larger optimal ratio spread for the CVT, i.e., a larger

difference between γmin and γmax. Finally, the total vehicle’s

mass mv is not significantly influenced, as the increase in

transmission mass resulting from the CVT is close to the

reduction in powertrain mass resulting from a smaller battery

and electric machine.

C. Validation

To further validate our approach, we simulate the optimal

solution found by the bi-convex method in the nonlinear

model. The optimal single-gear solution achieved an energy

consumption that was higher by 1.1% (long-haul cycle)

and 1.9% (delivery cycle), whilst the consumption with the

optimal solution for the CVT configuration increased the

consumption by 0.4% (long-haul cycle) and 1.4% (delivery

cycle). Overall, the results shown in Fig. 6 for different val-

ues of Pm,max on the long-haul cycle are not completely in

line due to inevitable model inconsistencies. Yet, our model

is able to capture the overall relative changes. Moreover,

the energy consumption benefits obtained when comparing

the optimal CVT configuration with the optimal single-gear

transmission in the nonlinear simulator are 1.5% (long-haul
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Fig. 5. Workpoints, indicated with black dots, of the electric machine on the
VECTO regional long-haul cycle in case of a single-gear (1s) and CVT (cvt)
transmission. On the left for the optimal solution of the bi-convex method,
and on the right for the PSO method. The plot includes the maximum and
minimum torque lines of the electric machines in black
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Fig. 6. Solution of Problem 1 for different values of Pm,max (SOCP So-
lution) and validation through simulation in the nonlinear model (Nonlinear
Validation) for the long-haul driving cycle. For both the single-gear (1s) and
the CVT the nonlinear model simulation results in slightly higher values.
Yet, the trends are in line with each other.

cycle) and 1.6% (delivery cycle), and correspond to the

findings of the PSO approach.

D. Electric Motor Technology

Since the impact of the electric motor technology can

be significant [26], we leverage our method to investigate

a different motor. Specifically, we perform the same study

as in Section III-B for another permanent magnet electric

motor [27] on the long-haul cycle. Overall, this motor results

in a higher consumption when compared to the one from [20]

due to its lower efficiency. Interestingly, in this case the

CVT can significantly improve the overall results compared

to the single-gear configuration. Specifically, the achievable

energy consumption drops from 198.6 kWh to 179.9 kWh

by more than 10% (with the PSO approach resulting in an

8% reduction), whilst the motor shrinks from 500 kW to

260 kW by 48% (the PSO obtained 54%). What is more,

in this case the mass of the truck is reduced by 300 kg, i.e.,

almost 1% (the PSO achieved the same result). These results

highlight (i) the importance of the motor technology, and (ii)

1730

Authorized licensed use limited to: Stanford University. Downloaded on January 28,2021 at 03:03:39 UTC from IEEE Xplore.  Restrictions apply. 



that it is worthwhile investigating the application of CVT

technologies to BEVs.

IV. CONCLUSIONS

In this paper we explored the possibility of jointly optimiz-

ing the components’ sizing and the control strategies of elec-

tric vehicle propulsion systems using convex optimization

methods. Thereby, we presented a bi-convex model to cap-

ture the impact of the size of the powertrain components and

their operation on the achievable energy consumption in an

integrated fashion. First, we combined convex approximation

and relaxation techniques to formulate the energy-optimal

design and operation problem for a vehicle equipped with a

battery, a single motor and a single-gear transmission or a

continuously variable transmission (CVT), and computed the

globally optimal solution by solving a sequence of second-

order conic programs. We applied our method to design a

battery electric heavy-duty truck and compared our results

to a state-of-the-art particle swarm optimization approach

relying on high-fidelity models. Whilst achieving similar

results, our approach is significantly faster and is guaranteed

to deliver solutions that are globally optimal. Specifically,

we showed that, compared to standard single-speed trans-

missions, a CVT can reduce the energy consumption and the

battery size of heavy-duty battery electric trucks in the order

of 1% to 10%, and significantly shrink the electric motor size

by 20% to 50%. These improvements are significant over the

life-cycle of the truck due to reduced investment costs and

operational costs, and increased revenues.

This work opens the field for several extensions: The

framework proposed is not constrained to the powertrain

topology studied in this paper nor to heavy-duty trucks, but

is readily applicable to e-scooters, cars and motorbikes, and

could be extended to more complex powertrain architectures.
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