
Securing Time in Untrusted Operating Systems
with TimeSeal

Fatima M. Anwar
UMass Amherst

fanwar@umass.edu

Luis Garcia
UCLA

garcialuis@ucla.edu

Xi Han
UCLA

xihan94@ucla.edu

Mani Srivastava
UCLA

mbs@ucla.edu

Abstract—An accurate sense of elapsed time is essential
for the safe and correct operation of hardware, software,
and networked systems. Unfortunately, an adversary can
manipulate the system’s time and violate causality, consis-
tency, and scheduling properties of underlying applications.
Although cryptographic techniques are used to secure data,
they cannot ensure time security as securing a time source
is much more challenging, given that the result of inquiring
time must be delivered in a timely fashion.

In this paper, we first describe general attack vectors that
can compromise a system’s sense of time. To counter these
attacks, we propose a secure time architecture, TIMESEAL
that leverages a Trusted Execution Environment (TEE) to
secure time-based primitives. While CPU security features
of TEEs secure code and data in protected memory, we
show that time sources available in TEE are still prone to
OS attacks. TIMESEAL puts forward a high-resolution time
source that protects against the OS delay and scheduling
attacks. Our TIMESEAL prototype is based on Intel SGX
and provides sub-millisecond (msec) resolution as com-
pared to 1-second resolution of SGX trusted time. It also
securely bounds the relative time accuracy to msec under
OS attacks.

In essence, TIMESEAL provides the capability of trusted
timestamping and trusted scheduling to critical applica-
tions in the presence of a strong adversary. It delivers all
temporal use cases pertinent to secure sensing, computing,
and actuating in networked systems.

Index Terms—trusted clock, shielded execution, delay
attack, scheduling attack, Intel SGX

I. INTRODUCTION

Emerging temporal use cases in the Internet of Things

(IoT) applications have a critical dependence on high

precision and accurate relative time. For instance, dis-

tance and speed calculations rely on precise round trip

times [1] [2], schedulers build upon elapsed and re-

maining times [3] [4], network telemetry depends on

residency delays [5], code profiling requires execution

times [6], and data sampling needs timestamps [7].

Attacking a system’s sense of time has ramifications such

as location theft, network outages, higher delays, and

data inconsistencies. Furthermore, critical functionalities

for securing applications in shielded execution environ-

ments such as Haven [8], SCONE [9], Panoply [10], and

Graphene-SGX [11] have no access to secure time. In-

stead, they rely on untrusted operating system (OS) time.

A compromised OS may lie about the time or signal

early timeouts, and although traditional cryptographic

techniques, trusted execution technologies, and network

security mechanisms may guarantee data security; they

do not cater to time security.

In an attempt to provide this security of time, re-

searchers have tried to implement secure clocks for

shielded execution in Trusted Execution Environments

(TEE) [12]. A well known approach fTPM [13] tries

implementing a secure clock on Arm TrustZone, but

it relies on untrusted OS acknowledgements for clock

writes. On the other hand, Déjá Vu [6] leverages hard-

ware transactional memory to provide a high resolution

clock for Intel Software Guard Extension (SGX), but

it is susceptible to frequent aborts and delay attacks.

While Aurora [14] leverages hardware support of System

Management RAM (SMRAM) to provide an absolute

clock for SGX, it still relies on untrusted timers and

kernel devices. All of these clocks are prone to attacks

in the presence of a compromised OS.

To reason about the generalized security of a clock,
we argue that it is essential to secure all layers in
a time stack. Providing this security of a clock gives

rise to three main challenges: first, find a trusted timer

that cannot be modified by a privileged adversary [15],

second, provide a secure path to read the trusted timer in

a timely manner [16], third, protect timekeeping software

from adversarial attacks [6]. In this paper, we propose

TIMESEAL, a secure time architecture designed to tackle

these challenges.

To address the first challenge, we compare the timing

capabilities of different Trusted Execution Environments

(TEE) [12]. Based on our analysis, TIMESEAL lever-

ages hardware-based protection of Intel SGX that gives

80

2019 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/19/$31.00 ©2019 IEEE
DOI 10.1109/RTSS46320.2019.00018

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

access to a trusted timer. A privileged adversary in a

compromised OS cannot write to the SGX trusted timer.

Concerning the second challenge, the SGX com-

munity has confirmed that the path to SGX trusted

timer is not secure [17]. The SGX platform service

transfers trusted time packets over a secure session

via OS interprocess communication (IPC) [18]. While

these packets are encrypted and integrity protected and

a compromised OS cannot change the packet contents,

the OS can still delay these packets and violate their

timely arrival, consequently relaying the wrong elapsed

time. We address this challenge of securing trusted timer

access by mitigating the effects of this delay attack on

trusted time values.

Unfortunately, SGX time – which increments once

per second – is insufficient to protect against delay

attacks. TIMESEAL builds upon coarse-grained SGX

trusted timer and uses counting threads to increase its

resolution while adopting compensation mechanisms to

mitigate accumulative errors and maintain monotonicity.

Our high resolution and monotonic SGX clock is capable

of measuring intervals as small as 0.1msec and times-

tamp events that are apart by ≥ 0.1msec. TIMESEAL

not only serves applications with high precision require-

ments [15] [19] but also utilizes this improved precision

to detect and mitigate delay attacks.

The third and final challenge requires us to defend

against attacks on timekeeping software, where a com-

promised OS may downgrade the time resolution to

seconds by scheduling out the associated timekeeping

threads. TIMESEAL overcomes these scheduling attacks
and adopts multithreaded counting policies to induce un-

certainty in malicious scheduling and reduce the efficacy

of this attack on resolution degradation. As a result,

the system maintains msec-level resolution that is also

substantial to detect and compensate for delay attacks.

Indeed there are applications in need of μsec-level pre-

cision while TIMESEAL achieves msec-level accuracy

because of the fundamental hardware limitations of large

timer access latency in commodity platforms.

Securing time in the presence of a compromised OS is

a big challenge. This paper presents a thorough design

exercise of securing time by highlighting the tradeoffs

among performance, security, and resource consump-

tion. Indeed both hardware and software-based design is

needed; however, for an extensible solution, we provide

a software-only approach leveraging existing hardware

features from shielded execution to provide secure time.

Though we leverage SGX for constructing a secure

clock, TIMESEAL is not restricted to one architecture,

and its principles are general enough to be applied to

different hardware architectures.

Our contributions are summarized as follows,

• We provide a complete guideline for time security by

enumerating challenges in securing a clock (§IV-A).

• We identify and verify that the path to reading SGX

time is not secure by implementing a delay attack

in OS and disrupting the timely arrival of SGX time

(§IV-A).

• We present TIMESEAL, a secure time architecture that

addresses the aforementioned challenges.

• We provide a high resolution SGX time (§V) and

use the improved resolution to mitigate delay attacks

(§V-B).

• We devise policies that reduce the effect of malicious

scheduling on time error (§V-A).

• We prototype TIMESEAL on Intel SGX and evaluate

the complete secure time architecture (§VI).

• We provide recommendations to hardware vendors that

are critical to improving the accuracy of a secure clock

(§VII).

This paper is organized as follows. We discuss the

related work and preliminary information necessary to

understand secure time in §II and §III, respectively.

We present the design challenges, threat model and

overview of TIMESEAL in §IV. We detail how TIME-

SEAL achieves a high resolution secure clock as well

as how it overcomes different classes of attacks in §V.

The implementation and evaluation of TIMESEAL are

presented in §VI. We provide a discussion of the solution

in §VII and conclude in §VIII.

II. RELATED WORK

Researchers have attempted to implement trusted

clocks [20] [21] to enforce time-based policies [22]. For

example, Chen et al. [23] provides coarse-grained secure

clock on a trusted cloud with unrealistic assumptions

that the network link has a bounded delay and a trusted

counter is present in the cloud. Also, Raj et al. [13] face

numerous challenges in implementing a secure clock on

ARM TrustZone. Though a peripheral such as a timer

can be mapped to the secure world, a peripheral’s con-

troller can still be programmed by the normal world [13].

The absence of a secure timer forces them to rely on a

compromised OS to acknowledge clock writes and make

the clock persistent.

TrustedClock [24] for SGX and Aurora [14] tries to

provide a high resolution and absolute secure clock for

SGX enclaves. Their absolute clock leverages System

Management RAM (SMRAM) for timekeeping, and re-

lies on a kernel daemon to trigger system management

81

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

interrupt (SMI) for a clock read request. A malicious

OS can make time fuzzy by arbitrarily delaying these

requests. Also, SMI handler reads legacy timers on Intel

Architecture that can be written to by the OS in a

consistent manner to avoid detection. Thus relying on

hardware timers that OS can manipulate and reading

from kernel devices that can be delayed makes their

system not secure.

Much closer to our work is an entire body of research

that uses high resolution timers either to launch side

channel attacks [16] [25] or to detect side channel

attacks [6] in shielded execution. The absence of high

resolution timers inside shielded execution environments,

particularly Intel SGX, motivated researchers to find

alternative solutions. Malware Guard Extension [16]

emulates a short-lived precise timer inside an enclave

to perform a Prime+Probe cache side-channel attack

against co-located enclaves. Déjá Vu [6] identifies page

faults by measuring execution time of the victim code in

SGX with a reference-clock that is incremented within a

Hardware Transactional Memory [26] to detect OS inter-

ruptions. Both solutions are affected by high frequency

aborts and prone to OS delay attacks.

Because of the absence of a secure notion of time,

most systems rely on untrusted time. For example,

fine-grained cycle-level measurements are made inside

enclaves via reasonably fast Network Interface Card

(NIC) clock for line rate processing in middleboxes such

as ShieldBox [15] and Slick [19]. However, as noted

by the authors, the NIC clock is not secure against

OS attacks. They argue that there is no precise trusted

time source for shielded execution and it remains an

open problem [15] [16]. Other secure systems such as

SCONE [9], Haven [8], and Panoply [10] also rely on

untrusted time via OS system calls.

In short, secure clocks are non-existent, and current

secure systems have to rely either on untrusted clocks

or coarse-grained clocks, leaving out many applications

in need of precise trusted time.

III. BACKGROUND

This section covers concepts that influence our design

choices for TIMESEAL. We start by explaining a tradi-

tional time stack in all systems, possible attacks on the

stack, and timing capabilities of TEE.

Attacks on the Time Stack: Every system maintains

a time stack. Discrete components that make up a time

stack are hardware timers and timekeeping software. A

hardware counter/timer counts the number of cycles of a

periodic signal obtained from an oscillator. Timekeeping

software maintains time by converting cycle counts into

human understandable time.

A hardware timer in a time stack is not considered

secure if a malicious software is able to write to its

registers. In Intel architecture, RDTSC/RDTSCP results

are not immune to influences by privileged software, e.g.,

the Time Stamp Counter (TSC) can be written to by the

OS [27][28]. Similarly, other timers such as the High

Precision Event Timer (HPET) can be controlled by the

OS. Basically, the design principle of the OS dictates

that its high privilege allows it to write to all registers.

Hence, a diverse set of timers such as TSC, APIC, HPET,

PIT present in Intel architectures are controlled by the

OS. The diversity of these timers cannot be leveraged to

detect misbehaving OS as the OS may remain undetected

by consistently lying for all timers.

Virtualizing timer via trusted hypervisor also does

not protect against timer modifications. First, OS can

consistently alter timer to avoid detection. Second, no

hypervisor can detect malicious time delays. Further-

more, OS is responsible for timekeeping, and it can

lie about time, signal timeouts early or late, delay time

transfer to applications, or gradually change the notion

of time for applications to deceive them. Hence, a

privileged software is capable of adding discontinuities

in time. To protect these timers, it is essential to restrict

timer writes only to trusted entities.

Trusted Time in SGX: Intel released Software Guard

Extensions (SGX) which are a set of CPU instructions

to secure code and data in protected memory. SGX’s

reserved & isolated memory regions called enclaves pro-

vide straightforward mechanism of SGX virtualization.

Hence, SGX technology has been seamlessly adopted in

the server market and paving its way towards mobile

phones.

Intel SGX supports trusted time service by leveraging

the security capabilities of Intel Converged Security and

Management Engine (CSME) [18]. The CSME consists

of an embedded hardware engine that runs its own

firmware. This firmware allows the host to load and

execute Java applets in the CSME at runtime through

a dynamic application loader. SGX hosts different archi-

tectural enclaves that provide key services to application

enclaves. Platform Service Enclave (PSE) is an architec-

tural enclave that provides trusted time and monotonic

counter service. Architectural Enclave Service Manager

(AESM) is a background service that hosts the PSE

and automatically loads and starts the Platform Services

DAL Applet (PSDA) inside CSME to securely expose

the CSME battery backed Protected Real-Time Clock

82

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

(PRTC) timer. As CSME is backed up with a battery, it’s

not affected by CPU power management states, i.e., it

always has power to keep the PRTC running. PSDA and

PSE communicate through a Management Engine Inter-

face (MEI) driver that supports data exchange through

a secure, memory-mapped mechanism not accessible by

OS.

Intel SGX gets its notion of time from the PRTC timer

in CSME. The OS can neither access nor manipulate

the PRTC and, hence, SGX provides access to a trusted

timer. This trusted time is managed by a PSE that

reads the PRTC and transforms it into SGX time by

appending an epoch to it. An application enclave first

establishes a secure session with PSE, then invokes the

sgx get trusted time() API to get SGX time. This time

is in seconds and too coarse-grained to be useful for

measuring short durations within a single enclave.

An application accesses SGX time through the en-

crypted and integrity protected PSE messages passing

through the OS layer. These messages can be captured

or replayed by the OS. However, a PSE message includes

a sequence number that helps reset a session if replay

attacks are detected.

IV. TIMESEAL DESIGN

To the best of our knowledge, this is the first paper

that presents a comprehensive list of attacks on all

components in a time stack for various architectures.

It establishes that applications in shielded execution are

also affected by timing attacks. We categorize our list

of attacks and their mitigation such that they cover

all components in a time stack. To provide a secure

time architecture, the addressed challenges are namely

the availability of a trusted timer, secure access to that

timer, and secure clock software. In this section, we

present design overview of TIMESEAL overcoming these

challenges under a generalized threat model.

A. Challenges

The choice of a trusted timer, one that cannot be modi-

fied by a privileged adversary, is critical for TIMESEAL’s

design. To make this choice, we compare the timing

capabilities of SGX and TPM, the only two trusted

clocks provided by different TEE.

[Challenge 1] A Trusted Timer - SGX Trusted
Time versus TPM Secure Clock: There are a number

of limitations in providing secure time over Intel SGX.

First, peripheral registers such as hardware timer’s reg-

isters cannot be mapped into protected enclave memory

to protect the timer from OS manipulation. Only the

Process Reserve Memory (PRM), a special DRAM for

secure enclaves in SGX, can be mapped into the virtual

address of an enclave page – or in SGX’s terminology

– Enclave Page Caches (EPC). Second, SGX trusted

timer has coarse-grained, one-sec resolution [18] that

can only be used for enforcing policies spanning large

time intervals. In contrast, TPM has a high resolution

clock. The effective resolution of TPM clock however is

reduced when accessed from the CPU. We empirically

compared the access latencies to SGX trusted time and

TPM secure clock from an application running on CPU.

The latency in retrieving SGX time from CSME has

a mean of 13msec, whereas TPM clock has an access

latency of almost 32msec that is three times more than

SGX time latency. Note that both CSME and TPM

are separate from the CPU, justifying their large access

latencies.

The effective clock resolution that an application sees

is either the base timer resolution or the clock access

latency, whichever is higher. This makes theoretical

time resolution of 1sec for SGX and approximately

32msec for TPM. Although TPM has higher resolution,

it cannot be accessed by multiple applications at the

same time due to limited TPM resources, thus decreasing

it’s effective resolution for applications. TPM’s clock is

mostly used to timestamp stored keys and data inside

it, and not designed for timestamping network packets

or sensor data. TPM clock does not satisfy the needs of

broad applications, hence we choose SGX trusted time as

a trusted timer for TIMESEAL’s secure time architecture.

[Challenge 2] A Secure Path to Trusted Timer:
The encrypted SGX time value passes through a secure

channel established between PSE and an application

enclave. This communication happens via IPC [18].

We know that a compromised OS cannot attack the

encrypted and integrity protected packet. We show, how-

ever, that it can still cause damage by delaying the time

packet. Delaying affects timely arrival of of SGX time,

hence distorting time for application enclaves. Note that

TPM time is also prone to IPC delay attacks.

We implement a delay attack in the OS by delaying

all SGX time packets with a random value sampled

from a uniform distribution of 0 to 1sec. The result

in Figure 1a shows that SGX notion of 1sec fluctuates

within 0 to 2.5sec, while 4sec varies between 2.2 to 5.5

sec. Time fuzziness due to delay attacks affects many

applications. For example, Timecard [3] servers need to

provide consistent response times to clients within few

msec of target delays. Fuzzy time in the order of seconds

distorts their sense of elapsed time resulting in wastage

of compute resources.

83

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8
SGX calculated period (sec)

0

2

4

6

8

A
ct

ua
l t

im
e

pe
rio

d
(s

ec
)

(a) Fuzzy SGX time

0 1 2 3 4 5 6
Actual period (sec)

0

1

2

3

4

5

6

M
ea

su
re

d
pe

rio
d

(s
ec

)

Time
compression

Time
dilation

(b) Time dilation & compression

Fig. 1: Two ways to visualize the effect of delay attacks

on SGX trusted time

Note that a privileged attacker manipulating the Dy-

namic Voltage and Frequency Scaling (DVFS) achieves

the same effect as delay attack. This effect can be visual-

ized in another way shown in Figure 1b. An application

relying on SGX time measures 1sec durations on y-

axis, which in reality are distorted durations on x-axis.

Time advances without a fundamental fixed frequency,

resulting in either time dilation or compression across

different intervals. Thus, delay or DVFS attacks cause

SGX time to dilate and constrict, and we establish that

the path to our choice of trusted timer – SGX time – is

not secure.

[Challenge 3] A Secure Timekeeping Software: A

timekeeping service maintained by an enclave process

and threads is secure from memory manipulation. How-

ever, these threads can still be attacked by malicious

OS scheduling that can make time inconsistent. This

is because a thread running in enclave mode is the

same as a thread running in normal mode from the

OS perspective [29], We refer to attacks on timekeeping

threads through malicious scheduling as scheduling at-
tacks. Note that these attacks also result in time dilation

and compression. Hence, we establish that timekeeping

software within secure enclave is also prone to attacks.

B. TIMESEAL Overview

TIMESEAL is a secure time architecture that over-

comes the above mentioned challenges, i.e., the availabil-

ity of a trusted timer, secure access to that timer, and an

attack free timekeeping software. It solves Challenge
1 by leveraging SGX time derived from a trusted timer.

Challenge 2 is addressed by timely detection and

mitigation of delay attacks, while Challenge 3 is

resolved by devising policies that overcome the effect

of scheduling attacks.

TIMESEAL’s components are shown in Figure 2. SGX

time provided by PSE to an application enclave is coarse-

grained and incapable of detecting and eliminating

Architectural
Enclave

ApplicationEnclave

TIMESEAL

counting thread N

Timekeeping
thread

counting thread1PSE

Architectural
Enclave

ApplicationEnclave

TIMESEAL

counting thread N

Timekeeping
thread

counting thread1PSE Delay
Attack

Operating System
Scheduling

Attack
S1

2

SGX
trusted time

Fig. 2: TIMESEAL components inside an Application

Enclave. It is subject to two main attacks: 1© OS

scheduling attacks on TIMESEAL threads, and 2© OS

delay attacks on SGX trusted time

scheduling and delay attacks. Hence, a high resolution

clock is critical to secure time. TIMESEAL provides a

high resolution clock comprised of a timekeeping thread
that keeps track of SGX time, and counting threads
that interpolate between SGX time to provide sub-sec

resolution.

C. Threat Model

The goal of an attacker is to compromise TIMESEAL’s

sense of time while maintaining stealthiness. Although

more prominent attacks could cause damage, e.g., a

denial-of-service attack on any component, we consider

attacks that have a more enduring impact over time,

e.g., an attacker that gradually makes time fuzzy while

remaining undetected. Such an attack can successfully

establish false proximity for various applications that

rely on time for co-location detection [30] [31].

Compromised OS: Our threat model considers TEE

by different vendors such as ARM TrustZone and Intel

SGX as trustworthy. TIMESEAL does not trust the OS

nor hypervisors as they can be corrupted. To maximize

damage, an attacker may stay undetected throughout the

system’s operation because consistent time uncertainty is

worse for the system as a single time jump can easily be

detected. We also assume that the threads in TIMESEAL

are subject to a normal OS scheduling policy and can

be aborted/scheduled out at any instant, i.e., they will

compete for CPU time with the rest of the system.

Attack vectors: Because the attacker is trying to com-

promise the timing components of TIMESEAL in a

stealthy fashion, the only two attack vectors specific to

TIMESEAL’s attack surface are the aforementioned (1)

delay attacks or (2) scheduling attacks. For delay attacks,

prior knowledge of the system and physical clock charac-

teristics helps the attacker launch an attack that degrades

system performance without detection. For example, the

84

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

40 42 44
Actual duration (sec)

40

42

44

M
ea

su
re

d
du

ra
tio

n
(s

ec
)

(a) Elapsed time plot

sgx high-res clock
sgx trusted time

0.094 0.095 0.096 0.097 0.098
resolution (msec)

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) Distribution plot

Mean: 0.096
std: 0.00044

Fig. 3: (a) High-resolution SGX clock measures sub-

second durations compared to SGX tick that is only

capable of measuring durations greater than a second. (b)

Achieved mean resolution of high-res clock is 0.1msec

with 0.4microsec standard deviation (std)

OS knows that ‘aesmd daemon’ encapsulates PSE and

handles SGX trusted time packets. Therefore, it launches

delay attacks on SGX time packets by intercepting

all transmitted/received packets to/from aesmd daemon.

Hence the attacker is capable of making SGX time fuzzy

as established in Challenge 2.

It is to be noted that an attack strategy of delaying

all SGX packets by a constant value does not harm a

system. Adding a constant value to true time does not

affect the rate at which time is elapsed. Rather, delaying

SGX packets by a different value adds variations to the

clock rate and distorts the passage of time. Therefore,

our threat model incorporates incremental, random, and

distribution based delay attacks on SGX packets.

Detectability of DoS Attacks: The attacker also knows

that SGX time increments every sec, referred to as SGX
tick. It may choose to delay a packet by any arbitrary

value. This causes an application polling SGX time to

detect missing SGX ticks. We equate this scenario to a

denial of service, which becomes an availability issue

rather than a security issue. To maintain stealthiness, it

would choose to delay by a sec or so. For scheduling
attacks (established in Challenge 3), we assume that

an attacker does not want to schedule out all threads of

a process in order to maintain stealthiness–if there are

no threads running, this is considered a detectable denial

of service because the count value is less to none.

TIMESEAL strives to protect against attackers capable

of launching scheduling attacks on SGX enclave threads

as well as delay attacks on SGX time packets.

V. HIGH RESOLUTION SECURE CLOCK IN SGX

Low resolution of SGX time is not enough for many

IoT applications. We provide a subtick service that

builds a high resolution SGX clock on top of coarse

SGX Tick

subtick

subticks_per_second

Fig. 4: SGX tick interpolated by subticks

SGX time. We refer to a 1sec SGX time increment as

an SGX tick. To get fine time granularity, we develop a

subtick service that interpolates SGX ticks. This interpo-

lation mechanism uses an SGX tick, which has a large,

known one-sec period, and a subtick, which has a short,

unknown sub-sec period. SGX tick is used to establish

the period of the subtick, and together they provide time

with high resolution.

The subtick service is comprised of a timekeeping
thread inside an enclave that continuously polls SGX

time, and a counting thread that counts within one SGX

tick as shown in Figure 2. Counting thread maintains

the number of subticks in one SGX tick, where each

subtick is comprised of few instruction cycles as shown

in Figure 4. In essence, a subtick is implemented as an

internal SGX variable that continually gets incremented

every few clock cycles. As this variable is stored inside

enclave’s protected memory, it cannot be altered or

manipulated by a compromised OS. Thus the subtick

value is considered trustworthy.

To build a high resolution SGX clock–which we call

“high-res clock”–using SGX ticks and subticks, we use

a clock model to calculate the current time, i.e., tlocal =
SGXticks + subticks

MA(subticks per sec) , where tlocal is the

local time reported by our high-res clock, SGXticks
represents seconds, and subticks divided by the moving

mean (MA) of multiple subticks per sec values in a

window represents the fractional part of a sec. Thus, we

are able to provide sub-sec clock resolution.

We test the resolution of our high-res clock by measur-

ing fine time intervals. The smallest duration that a clock

is able to measure in a stable manner is its resolution.

As shown in Figure 3a, the sloped dotted line (blue)

shows that the high-res clock is capable of measuring

sub-sec time durations. The dashed (red) line shows that

SGX time is not capable of measuring durations that

are less than a sec, i.e., a new value comes once every

sec. Figure 3b shows that our high-res clock is able to

achieve a mean resolution of 0.1 msec, i.e., the clock

is capable of measuring durations as small as 0.1 msec

or timestamp events that are apart by 0.1 msec. This

0.1 msec resolution is a result of software instructions

85

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

40 42 44
Actual duration (sec)

40

42

44

46

M
ea

su
re

d
du

ra
tio

n
(s

ec
)

(a) Non-Monotonic Clock

sgx high-res clock
sgx trusted time

40 42 44
Actual duration (sec)

40

42

44

46

M
ea

su
re

d
du

ra
tio

n
(s

ec
)

(b) Monotonic but not load resistant

sgx high-res clock
sgx trusted time

40 42 44
Actual duration (sec)

40

42

44

46

M
ea

su
re

d
du

ra
tio

n
(s

ec
)

(c) Monotonic and load resistant

sgx high-res clock
sgx trusted time

Fig. 5: Comparison of different clock models to build a high resolution SGX clock. A clock should always be

monotonic and compensate for time errors during high system load

in subtick service that take up CPU cycles. We can

configure the code to improve or relax this resolution.

Threads scheduled under high system load cause

subtick variations. We conduct experiments by running a

large number of stressing threads along with the subtick

service to overload the system by 80%. This causes

fluctuations in subticks per sec that result in discon-

tinuities in tlocal based on our current clock model.

Figure 5a shows a non monotonic clock with time

discontinuities shifting the clock back in time. tlocal
exceeds true SGX time as it advances at a rate higher

than the nominal rate.

To make the high-res clock monotonic, we revise

our clock model by advancing local time from pre-

vious local time instead of the latest SGX tick, i.e.

tlocal = tprev local +
subticks

MA(subticks per sec) . The result

of this, as shown in Figure 5b, is a monotonic clock

where tlocal significantly deviates from true time due to

accumulated errors over time. We rely on the SGX tick

boundary to calculate the accumulated error, terror =
tlocal − SGXticks, and compensate for it. We thus
propose a new clock model that not only advances time
with respect to previous time, but also takes into account
the accumulated error in local time at every SGX tick
boundary.

Adding huge offsets to remove error from time is not a

good practice as it can lead to negative durations or high

error fluctuations. Thus, we divide this error into smaller

chunks equal to the high-res clock resolution. We then

remove the error by subtracting small error chunks from

local time at every iteration until no error remains. This

process of removing error using smaller chunks is called

slewing time. Thus, our new clock model is, tlocal =
tprev local +

subticks
MA(subticks per sec) − slew(error). Figure

5c shows that the slewed clock is monotonic and slowly

converges to true time during peak load.

A. Scheduling Attack and Mitigation

An enclave counting thread of the subtick service is

continuously counting. This thread is subject to normal

OS scheduling policy and can be aborted/scheduled out

at any instant. As a result, the number of subticks

per sec over multiple SGX ticks are inconsistent. A

compromised OS may issue sophisticated attacks and

schedule out the counting thread to downgrade the time

resolution to seconds, making the subtick service useless

for achieving high resolution.

A single counting thread is unlikely to provide a

consistent count every sec under malicious scheduling

as there is a higher probability that an attacker can

identify the counting thread. Our goal is to provide a

stable count every sec in the presence of high system

load and malicious OS scheduling, both of which may

cause huge variations in count values over multiple SGX

ticks. We attain this goal by inducing uncertainty in

the OS scheduling policy: TIMESEAL employs multiple

threads and a thread counting policy design that reduces

the efficacy of an attack on the time resolution per sec.

1) Thread Counting Policy Design: One naive ap-

proach for inducing scheduling uncertainty is to let all

threads count all the time and choose one maximum

count value at the end of every SGX tick. This is not an

effective counting policy because a fair OS scheduling

interrupts all threads for the same amount of time, and

results in same reduced resolution as with one counting

thread. Another approach is to allow only one thread to

count at a time for a specific duration before switching

to the next thread. If the order in which the threads

are scheduled and their count intervals are known, a

malicious OS can locate and interrupt the thread that

is ready to count. As such, we need to design policies

that reduce this predictability.

Policy design variables: The design variables of a

thread counting policy include the number of threads,

the counting interval assigned to each thread, as well

86

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

0

1

2

T1 T2 T3

(a) Policy A

0

1

2

T1 T2 T3

(b) Policy B

0

1

2

T1 T2 T3

(c) Policy C

Fig. 6: Multiple threads consuming equal CPU time

either in one SGX sec or across multiple seconds. Note

that threads count in a different order every second

as the order in which each thread counting interval

occurs. We first design three policies based on the latter

two variables and discuss how varying the number of

threads will affect each policy. For the purpose of clarity,

Figure 6 depicts the three general approaches for a

counting policy consisting of three threads1: T1, T2, and

T3. Each policy assigns an order and counting interval

to each thread. In summary,

• Policy A: assigns a different order but the same count

interval to the threads every sec

• Policy B: chooses a different order and count interval

every sec

• Policy C: chooses a different thread order every sec

while assigning a different count interval to every

thread within one sec.

All threads get the same amount of counting time over

a small (Policies A and B) or a long period (Policy

C). In order to assess the efficacy of each defense, we

will first describe possible attack scenarios that aware of

TIMESEAL’s counting policy design variables.

Attacker strategies: Based on the aforementioned de-

sign variables of TIMESEAL, a clever attacker may craft

one of the three following approaches:

• Attack 1: Choose n out of N counting threads ran-

domly to be scheduled out for one sec, where n could

be any value from 1 to N − 1.

• Attack 2: Schedule out all counting threads for the

same interval delay of cd secs one after the other in

any order, where cd < 1.

• Attack 3: Schedule out all threads for the same interval

delay of cd secs at the same time.

In all cases, we assume the attacker not only knows the

design variables of TIMESEAL, but can also identify

1Note that this figure only depicts the counting threads for clarity.
These threads will most likely compete with the rest of the OS.

the candidate set of counting threads of the associ-

ated application. In reality, there may be several other

threads associated with the application that may further

obfuscate the counting process. Note that an attacker

scheduling out all threads yields a zero count value and

is indicative of an attack. Thus an attack of this nature

is considered a detectable denial of service and out of

the scope for this analysis.

Policy efficacy: To assess the efficacy of each policy

against each defense, we define a degradation metric,

D, as the portion of subticks that will be omitted

from the overall subticks count across one SGX tick,

e.g., if subticks per tick = 1000, and D= 0.5, that

would mean an attack caused the subtick service to

lose 50% of its resolution. We further determine what

is the maximum and minimum degradation an attack

may achieve, Dmax and Dmin, respectively, as well as

the probability of achieving the maximum degradation,

P(D).

Table I summarizes the results of our formalization

for each attack’s efficacy across all policies. In general,

Attack 3 is the most powerful and has complete control

of the subtick count degradation, D, but causes a de-

tectable denial of service. Attack 1 has the most consis-

tent degradation under stealthy conditions assuming that

an attacker can accurately identify the set of counting

threads. Attack 2 has the highest possible degradation

but with a much lower probability of success.

All scheduling policies in TimeSeal randomize thread

order but differ in choosing their count intervals per

second. In terms of choosing a policy, the performance

of Policy B is comparable to Policy A across all attacks

except that Policy B also decreases the attack’s success

probability. Policy C performs worse because of uneven

count distribution among threads per second, and it

is possible that an attacker schedules out the threads

with the largest count intervals, hence increasing the

probability of resolution degradation and causing more

damage. As such, we hypothesize that Policy B will be

the most robust approach against scheduling attacks. We

will validate this hypothesis empirically in Section VI.

Policy A Policy B Policy C
P(D) Dmax Dmin P(D) Dmax Dmin P(D) Dmax Dmin

A1 1 n
N

n
N

1 n
N

n
N

1 n
N

n
N

A2 (1
N
)N 1 0 (1

N
)N 1 0 (1

N
)N <1 0

A3 1 cd cd 1 cd cd 1 cd cd

TABLE I: Efficacy of each attack against all policy

designs enumerated in Figure 6. The degradation metric

D refers to the portion of subticks that will be lost due

to the attack over one SGX tick

87

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

1 2 3

1

2

3

4

delayed_subticks_per_sec

avg_subticks_per_sec

t_delay

t_localt_local_shifted

t_error

slew{t_error}

(sec)

(sec)

(a) Condition 1: delayed tick
duration is much greater than
true tick duration

0.5 1 1.5 2
1

2

3

4

delayed_subticks_per_sec

t_local

t_local_shifted

(sec)

(sec)

(b) Condition 2: delayed tick
duration is much smaller than
true tick duration

Fig. 7: Measured local time (blue dotted line) is slewed

by restoring true SGX ticks (dashed red line) from

delayed ticks (solid green line)

B. Overcoming SGX Delay Attacks

Referring back to TIMESEAL’s design overview in

Figure 2, we provide a high resolution clock by overcom-

ing SGX trusted time limitations. Assuming we choose

an optimal scheduling policy–tentatively, Policy B–that

provides stable subtick values across stealthy attacks, we

can also use it to detect delay attacks. If an attacker

delays one SGX time packet by nth of a sec, the previous

SGX tick is 1+n sec away from the current tick, while

the next one will be 1 − n sec away from the current

tick. A stealthy attacker that wants to avoid detection

delays SGX time packets by a little bit more than a

sec and makes SGX time fuzzy by twice the delay as

established in Figure 1a. The effect of a delay attack

is time dilation and compression. Some elapsed seconds

span more than a few seconds, while other seconds only

span a few msecs as shown in Figure 1b. As a result, a

time-aware application that relies on the physical notion

of elapsed time calculates wrong intervals [31].

Our design relies on the intuition that subticks over

multiple seconds show large variations under delay at-

tacks. The attacker cannot avoid these large variations

even when it launches coordinated delay and scheduling

attacks. With no knowledge of the time value inside an

SGX packet, the attacker does not know when a new

SGX tick starts. There are two ways an attacker can

avoid subtick variations: it can delay packets by a small

value–which reduces the time error, or it can delay all

packets by the same value–which is not an attack because

relative time stays the same. Both ways do not result in

an attack.

To provide an accurate high resolution clock, the local

time tlocal should join the SGX ticks by a straight

line. Figure 7a, 10a shows that tlocal significantly de-

viates from true SGX ticks due to delay attacks. The

Algorithm 1 Delay Free Clock Model

1: procedure RESTORETRUESGXTICKS(avg subticks per sec,
subticks persec upperlimit, subticks persec lowerlimit)

2: a ← avg subticks per sec
3: u ← subticks persec upperlimit
4: l ← subticks persec lowerlimit
5: true tick dist ← 1
6: new delayed tick:
7: d ← delayed subticks per sec
8: if d > u then � true tick found: Condition 1
9: true tick dist ← 1

10: else if d < u & d > l then � true tick passed
11: true tick dist ← true tick dist+ 1
12: else if d < l then � true tick found: Condition 2
13: true tick dist ← 1
14: d ← a
15: end if
16: n ← true tick dist
17: tdelay ←

∑n
1 d

a
− n

18: tlocal shifted ← tlocal − tdelay
19: terror ← tlocal shifted − SGXticks
20: goto new delayed tick
21: end procedure
1: procedure ADVANCE TIME(tprev local, avg count)
2: terror ← procedure{Restore True SGX TICKS}
3: new subtick:
4: tlocal ← tprev local +

subticks
avg count

− slew{terror}
5: goto new subtick
6: end procedure

first step to overcome delay attacks and align tlocal
with true SGX ticks is to approximately locate these

ticks. We make an observation that large delay variation

gives rise to two conditions that are an indication of

a delayed tick being close enough to true SGX tick.

Condition 1, as shown in Figure 7, arises when

delayed subticks per sec is large enough for a de-

layed tick to be aligned with at least one of the true SGX

ticks. Once a true tick is identified, we shift the delayed

tick back to true tick by tdelay . This delay approximately

equals delayed subticks per sec minus the average of

delayed subticks avg subtick per sec. We can find the

error in local time terror by subtracting tdelay from

tlocal and shifting it to true SGX Tick at tlocal shifted.

This error helps slew the clock to true time. Figure 7b

shows a scenario that gives rise to Condition 2 of

detecting a true SGX tick., This condition states if

delayed subticks per sec is small enough, the delayed

tick overlaps the true tick within an error tolerance. In

that case tdelay is zero and terror would be the difference

in tlocal and true SGX tick. Algorithm 1 provides the

details of how we calculate tdelay and terror to overcome

delay attacks and slew the clock towards true time.

Calculating the right tdelay value is critical to con-

struct a delay-free clock. Algorithm 1 shows in detail

how tdelay is calculated from different set of parameters.

88

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

The range of delay variation helps select values for these

parameters: subticks persec upperlimit determines

how large delayed subticks per sec should be to sat-

isfy Condition 1, subticks persec lowerlimit sat-

isfies Condition 2, whereas avg subticks per sec
is the mean of multiple delayed subticks per sec.
This mean provides a good approximation of true

subticks per sec. The upper and lower limits parame-

ters are adjusted based on the maximum, minimum, and

average delayed subticks per sec.
To align tlocal with true SGX ticks, it is necessary

to find a true tick and extrapolate time from there. As

the occurrence of Condition 1 and 2 is not high, we

maintain a parameter true tick dist that determines

how many delayed ticks have elapsed since the last

found true tick. In essence, it makes sure that tdelay is

always calculated with respect to true tick. In reality,

error in time gets accumulated due to inaccuracies in

tdelay calculation with every passing delayed tick since

the true tick. Therefore, the true tick dist value should

not exceed an accumulated error threshold that deems the

time unreliable.

VI. IMPLEMENTATION AND EVALUATION

We provide a scalable TIMESEAL implementation on

a SGX enabled computer with an i7-6700K processor

and 16 GiB memory running Ubuntu Linux 16.04.3,

kernel version 4.10.32. The sgx get trusted time API

provides time from the hardware management engine.

An application that wishes to acquire secure time in-

stantiates TIMESEAL within its own process to limit OS

interactions and avoid delay attacks. Counting policies

and their associated parameters, e.g., the number of

threads, counting order, and count values, are maintained

within the SGX process memory. To randomize the

selection of threads, and count values every SGX sec, we

use sgx read rand API to generate a true random num-

ber. Every thread increments its own counter based on

the counting policy instead of incrementing a common

global counter. This is to avoid reliance on OS mutual

exclusion locks for race conditions. To manipulate thread

count, OS may give two threads the lock at once or may

not give a lock to any thread at all [32].

Evaluation metrics: We choose two evaluation metrics.

One metric is the time difference of TIMESEAL’s high

resolution secure clock with SGX trusted time at the

boundary of a true SGX tick. We term this accumulated

error per SGX tick as errortick. It represents frequency

error in TIMESEAL’s clock. Note that TIMESEAL’s

clock is derived from SGX time by constantly polling

it. The SGX time access latency is around 13 msec

1 2 3 4 5
Number of threads counting

0

5

10

15

20

25

30

E
rr

or
 (m

se
c)

(a) TimeSeal error w.r.t OS time

Attack1 mean
Attack1 95th percentile
Attack2 mean
Attack2 95th percentile

1 2 3 4 5
Number of threads counting

0

5

10

15

20

25

30

E
rr

or
 (m

se
c)

(b) TimeSeal error w.r.t SGX ticks

Attack1 mean
Attack 1 95th percentile
Attack2 mean
Attack2 95th percentile

Fig. 8: Scheduling attacks 1 and 2 aborts either 1, 2, 3,

or 4 threads out of 5 counting threads. Policy B bounds

the error to within tens of msec

on average. Therefore, errortick would always have a

standard deviation comparable to access latency.

The other evaluation metric compares TIMESEAL’s

jitter with respect to OS time. We term it as errorOS .

Considering an OS’s monotonic clock as the ground truth

for evaluation purposes, we generate small durations

with respect to OS time. TIMESEAL timestamps these

durations and the resultant jitter indicates its stability

w.r.t. OS’s monotonic clock. Because the oscillators for

OS’s clock and TIMESEAL’s clock are different, there

will be sub millisec level relative drift between both

clocks. However, this drift is masked by millisec level

access latencies.

Countering scheduling attacks: Table II provides a

summary of TIMESEAL’s errors in the presence of

scheduling attacks. We run different experiments with

three threads (N = 3) counting under different policies

(A, B, C) experiencing the three categories of scheduling

attacks (1, 2, 3) under 50% system load. The perfor-

mance of Policy B is comparable to Policy A in terms

of empirical errors except that Policy B also decreases

the attack’s success probability. Policy C performs worse

when few threads are allowed to run because of uneven

count distribution among threads per sec. Lastly, Attack

3 degrades all policies equally because it causes a

detectable denial of service for a duration it is launched

in. Figure 8 shows the relationship between the number

of threads and TIMESEAL’s errors. Using Policy B, we

see a decrease in errors with an increase in number of

threads because of small attack success probability. Also

note that 95th percentile errortick for Attack2 is smaller

as compared to Attack 1 because of its lower attack

success probability as discussed in Section V-A.

Countering delay attacks: Time error is directly pro-

portional to delay attack duration. The more the SGX

time packet is delayed, the more error an attacker can

accumulate. We test different delay attack intervals rang-

89

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

Attack 1 Attack 2 Attack 3
Single Thread N-1 Threads Single Thread N-1 Threads 50% cd
μ σ μ σ μ σ μ σ μ σ

Policy A 0.5‖ 3 7‖ 7 0.5‖ 3 9‖ 8.4 0.5‖ 1.8 7‖ 7 0.5‖ 3 9‖ 8.5 0.6‖ 8 25‖ 24
Policy B 0.002‖ 3 6.6‖ 5.2 0.068‖ 3 9.6‖ 8.5 0.076‖ 1.5 6‖ 5 0.05‖ 0.6 10‖ 7.4 0.08‖ 9.4 22‖ 24
Policy C 8‖ 2.7 300‖ 200 0.3‖ 0.6 1500‖ 1600 1‖ 11 81‖ 60 1‖ 25 100‖ 99 0.02‖ 5 31‖ 26

TABLE II: Counting policies results for single and multiple-thread contexts, where μ and σ are the mean and standard

deviation of induced error in milliseconds. A “Single” Thread attack implies only one thread is scheduled out while

an “(N-1) Threads” attack implies only one thread is counting at a time. Format of error is {errortick ‖ errorOS}

0 0.2 0.4 0.6 0.8 1
Delay attack duration (sec)

0

100

200

300

E
rr

or
 (m

se
c)

(a) TimeSeal error w.r.t OS time

mean
95th percentile

0 0.2 0.4 0.6 0.8 1
Delay attack duration (sec)

0

100

200

300

E
rr

or
 (m

se
c)

(b) TimeSeal error w.r.t SGX ticks

mean
95th percentile

Fig. 9: Delay attacks of different durations

ing from 0 to 1sec under 50% system load. In Figure 9,

although TIMESEAL’s error increases with an increase

in delay duration, our delay mitigation technique bounds

it to be within 100s of msec. For example, for a delay

duration of 1sec, errortick has a 140msec mean and

342msec 95th percentile. errorOS has 137msec mean

with 356msec 95th percentile. We can also detect and

bound delay attacks above 1sec by adjusting the subtick

related parameters discussed in Section V-B.

Overcoming scheduling and delay attacks: Figure 10

shows the effects of delay attacks and scheduling attacks

on time plots. SGX true time advances every sec (red

dashed line), delayed SGX time advances with variations

around 1 sec (green solid line), and TIMESEAL’s clock

advances with a msec resolution (blue dotted line). Delay

attacks distort frequency of TIMESEAL’s clock such that

it advances at a different rate every sec as shown in

Figure 10a.

Our delay mitigation technique restores true SGX

ticks, adjusts TIMESEAL’s frequency, and slews accu-

mulated errors of delay attacks. By doing so, Figure 10b

shows that the high resolution TIMESEAL clock traces

SGX ticks precisely and advances with a stable fre-

quency. If an attacker also launches scheduling attacks

on top of delaying SGX packets, our policies make sure

that the error remains bounded to within 100s of msecs.

Depending upon the scheduling attack type and cd value

per thread, Figure 10c’s zoomed-in plot shows a decrease

in TIMESEAL’s effective resolution. The wavy plot with

small time discontinuities is a result of different threads

counting at different times due to scheduling attacks.

TIMESEAL’s resolution degradation is much less than

the clock errors. Figure 11 presents the mean errortick
and errorOS distributions for different scheduling attack

types and 1sec delay attacks. The mean of errors are a

result of delay attacks while the interquartiles (iqr) are

a result of scheduling attack. Note that fewer number

of threads yield slightly large errors. For Attack 1 with

N-1 threads counting (A1 : (N−1)c), the mean erroros
is 135msec with 11msec iqr, and mean errortick is

138msec with 9msec iqr. For Attack 1 with only one

thread counting (A1 : c) the mean errors increase to

165msec with 15msec iqr for both errors.

System resources overhead: TIMESEAL threads are

not given a high priority and they are scheduled as

normal threads. Systems under high load may give

less CPU time to TIMESEAL threads resulting in er-

rors due to varying subticks per sec as shown in

Figure 5. Scheduling attack achieves same degradation

maliciously. Hence, we argue that our clock model

and counting policies are equally resilient to high load

scenarios and an attacker can’t obfuscate an attack during

high load.

For an application that needs secure time, TIME-

SEAL’s model of polling PSE for SGX time is similar to

current SGX model. To enforce certain time based poli-

cies, SGX enclaves also poll PSE continuously to make

sure that a certain duration has passed [33]. Therefore,

we argue that there is no bandwidth increase over current

SGX use cases. However, to decrease the probability of

an attack’s success, more counting threads under any

scheduling policy are employed, thus increasing the CPU

usage. We argue that securing time is a big challenge

and our design exercise highlights the tradeoff among

performance, resource consumption, and security.

VII. DISCUSSION

TIMESEAL placement: TIMESEAL’s components are

enclosed inside application enclaves to avoid delay at-

tacks on additional communication channels via the

OS. This design requires applications to have their own

instances of TIMESEAL threads. Another possibility to

avoid delay attacks between PSE and TIMESEAL is to

90

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

708 709 710 711 712
Actual duration (sec)

707

708

709

710

711

712
M

ea
su

re
d

du
ra

tio
n

(s
ec

)
Measured time
SGX true time
SGX delayed time

(a) Delay attack

708 709 710 711 712
Actual duration (sec)

707

708

709

710

711

712

M
ea

su
re

d
du

ra
tio

n
(s

ec
)

Measured time
SGX true time
SGX delayed time

(b) Delay attacks compensation

708 709 710 711 712
Actual duration (sec)

707

708

709

710

711

712

M
ea

su
re

d
du

ra
tio

n
(s

ec
)

708.8 709
708.8

709

709.2

Measured time
SGX true time
SGX delayed time

(c) Both attacks compensation

Fig. 10: Time plot of true SGX, delayed SGX, and TIMESEAL measured time. (a) Error in subticks per sec due

to delayed SGX ticks affects TIMESEAL’s accuracy. (b) Delay attack mitigation technique, connects measured time

to true SGX ticks. (c) Scheduling attacks on top of delay attacks decrease resolution as shown in zoomed-in plot

A1:(N-1)c A1:c A2:(N-1)c A2:c A3:N/2 A3:N/4
Scheduling attack types

120

140

160

180

200

E
rr

or
 (m

se
c)

(a) TimeSeal error w.r.t OS time

A1:(N-1)c A1:c A2:(N-1)c A2:c A3:N/2 A3:N/4
Scheduling attack types

120

140

160

180

200

E
rr

or
 (m

se
c)

(b) TimeSeal error w.r.t SGX ticks

Fig. 11: An attacker delays SGX packets by 1 sec and

launches scheduling attacks 1, 2, 3. The mean error

distribution for all attacks remain within 100s of msec

provide a high resolution clock within PSE. A modified

PSE, though, will not be able to use a secure channel

with CSME because the root of trust isn’t established by

Intel servers [34].

TIMESEAL for other TEE: TIMESEAL’s architecture

and design principles are not dependent on one TEE.

Though we used SGX, any TEE that provides access

to a trusted timer can be considered. Exploring the

possibility of enabling TIMESEAL for ARM TrustZone

is in consideration as it dominates the embedded market.

Recommendations for vendors: To avoid complex and

incomplete designs of secure clocks–which is still an

open problem–we list a set of requirements for hardware

vendors that fulfill all conditions of a secure clock to

the best of our knowledge. First, there should exist a

hardware timer with associated registers that no privi-

leged hardware or software can write to. Second, this

timer should be derived from a high frequency oscillator

that should not be overclocked or under-clocked by

a malicious software. Third, the timer should have a

sufficient number of bits–preferably 64 bits–so that it

never overflows. Finally, access to the timer value should

be securely memory mapped for fast access and indepen-

dent of OS manipulation and delays. These requirements

can only be fulfilled by a hardware vendor.

VIII. CONCLUSION

Securing time in an untrusted OS is a challenge. We

present TIMESEAL, a new architecture that leverages

TEE for hardware timer protection and eliminates timing

limitations and vulnerabilities in TEE to secure time.

TIMESEAL provides a secure local clock that is good

for measuring durations. There are a plethora of appli-

cations that require secure global time [21] [35] [36].

Researchers have addressed global clock security by

protecting time transfer packets in the network. This is an

orthogonal area of research, and we plan to synchronize

TIMESEAL to global reference.

TIMESEAL protects time or in other words, “seal” time

so that no privileged adversary can arbitrarily change

the notion of time, and compromise the safety and

performance of applications.

ACKNOWLEDGEMENT

The research reported in this paper was sponsored

in part by the National Science Foundation (NSF) un-

der award # CNS-1329755 and CNS-1705135, by the

CONIX Research Center, one of six centers in JUMP,

a Semiconductor Research Corporation (SRC) program

sponsored by DARPA, and by the Army Research Lab-

oratory (ARL) under Cooperative Agreement W911NF-

17-2-0196. The views and conclusions contained in this

document are those of the authors and should not be

interpreted as representing the official policies, either

expressed or implied, of the ARL, DARPA, NSF, SRC,

or the U.S. Government. The U.S. Government is autho-

rized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation here on.

91

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. Meadows, R. Poovendran, D. Pavlovic, L. Chang, and
P. Syverson, “Distance bounding protocols: Authentication logic
analysis and collusion attacks,” in Secure localization and
time synchronization for wireless sensor and ad hoc networks.
Springer, 2007, pp. 279–298.

[2] R. Tachet, P. Santi, S. Sobolevsky, L. I. Reyes-Castro, E. Frazzoli,
D. Helbing, and C. Ratti, “Revisiting street intersections using
slot-based systems,” PloS one, vol. 11, no. 3, p. e0149607, 2016.

[3] L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakrishnan,
“Timecard: Controlling user-perceived delays in server-based
mobile applications,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 2013, pp.
85–100.

[4] R. Mahajan and R. Wattenhofer, “On consistent updates in
software defined networks,” in Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks. ACM, 2013, p. 20.

[5] C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “Accurate
latency-based congestion feedback for datacenters,” in 2015
USENIX Annual Technical Conference (USENIX ATC 15).
Santa Clara, CA: USENIX Association, 2015, pp. 403–
415. [Online]. Available: https://www.usenix.org/conference/
atc15/technical-session/presentation/lee-changhyun

[6] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting
privileged side-channel attacks in shielded execution with déjá
vu,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security. ACM, 2017, pp. 7–
18.

[7] S. Hamilton, D. Sengupta, and R. Gupta, “Introducing automatic
time stamping (ats) with a reference implementation in swift,”
in 2018 IEEE 21st International Symposium on Real-Time Dis-
tributed Computing (ISORC). IEEE, 2018, pp. 138–141.

[8] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications
from an untrusted cloud with haven,” ACM Transactions on
Computer Systems (TOCS), vol. 33, no. 3, p. 8, 2015.

[9] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. Stillwell et al.,
“Scone: Secure linux containers with intel sgx.” in OSDI, vol. 16,
2016, pp. 689–703.

[10] S. Shinde, D. Tien, S. Tople, and P. Saxena, “Panoply: Low-
tcb linux applications with sgx enclaves,” in Proceedings of
the Annual Network and Distributed System Security Symposium
(NDSS), 2017, p. 12.

[11] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical
library os for unmodified applications on sgx,” in Proceedings of
the USENIX Annual Technical Conference (ATC), 2017, p. 8.

[12] J. Seibel, K. LaFlamme, F. Koschara, R. Schumak, and J. Debate,
“Trusted execution environment,” Jul. 27 2017, uS Patent App.
15/007,547.

[13] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England,
C. Fenner, K. Kinshumann, J. Loeser, D. Mattoon et al., “ftpm:
A software-only implementation of a tpm chip.” in USENIX
Security Symposium, 2016, pp. 841–856.

[14] H. Liang, M. Li, Q. Zhang, Y. Yu, L. Jiang, and Y. Chen, “Aurora:
Providing trusted system services for enclaves on an untrusted
system,” arXiv preprint arXiv:1802.03530, 2018.

[15] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia,
and C. Fetzer, “Shieldbox: Secure middleboxes using shielded
execution,” in Proceedings of the Symposium on SDN Research.
ACM, 2018, p. 2.

[16] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks,”
in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2017, pp.
3–24.

[17] linuxsgx, “Intel(r) software guard extensions for linux os, trusted
time discussion,” https://github.com/intel/linux-sgx/issues/161,
2018.

[18] S. Cen and B. Zhang, “Trusted time and monotonic counters
with intel sgx platform services,” https://software.intel.com/sites/
default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf,
2017.

[19] B. Trach, A. Krohmer, S. Arnautov, F. Gregor, P. Bhatotia, and
C. Fetzer, “Slick: Secure middleboxes using shielded execution,”
arXiv preprint arXiv:1709.04226, 2017.

[20] S. M. Kim, J. Han, J. Ha, T. Kim, and D. Han, “Enhancing
security and privacy of tor’s ecosystem by using trusted execution
environments.” in NSDI, 2017, pp. 145–161.

[21] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi,
“Town crier: An authenticated data feed for smart contracts,” in
Proceedings of the 2016 aCM sIGSAC conference on computer
and communications security. ACM, 2016, pp. 270–282.

[22] R. Kotla, T. Rodeheffer, I. Roy, P. Stuedi, and B. Wester, “Pasture:
Secure offline data access using commodity trusted hardware.” in
OSDI, 2012, pp. 321–334.

[23] C. Chen, H. Raj, S. Saroiu, and A. Wolman, “ctpm: A cloud
tpm for cross-device trusted applications.” in NSDI, 2014, pp.
187–201.

[24] H. Liang and M. Li, “Bring the missing jigsaw back: Trusted-
clock for sgx enclaves,” in Proceedings of the 11th European
Workshop on Systems Security. ACM, 2018, p. 8.

[25] D. Kohlbrenner and H. Shacham, “Trusted browsers for uncertain
times.” in USENIX Security Symposium, 2016, pp. 463–480.

[26] M. Herlihy and J. E. B. Moss, Transactional memory: Architec-
tural support for lock-free data structures. ACM, 1993, vol. 21.

[27] intel sgx, “Intel(r) software guard extensions software devel-
oper manual,” https://www.intel.com/content/dam/www/public/
us/en/documents/manuals, 2016.

[28] intel sgx forums, “Intel(r) software guard extensions forum, tsc
discussion topic 743186,” https://software.intel.com/, 2017.

[29] Intel, “Intel(r) developer zone, enclave thread scheduling dis-
cussion, topic 635939,” https://software.intel.com/en-us/forums/,
2018.

[30] J. Han, A. J. Chung, M. K. Sinha, M. Harishankar, S. Pan, H. Y.
Noh, P. Zhang, and P. Tague, “Do you feel what i hear? enabling
autonomous iot device pairing using different sensor types,” in
Do You Feel What I Hear? Enabling Autonomous IoT Device
Pairing using Different Sensor Types. IEEE, 2018, p. 0.

[31] D. Singelee and B. Preneel, “Location verification using secure
distance bounding protocols,” in Mobile Adhoc and Sensor
Systems Conference, 2005. IEEE International Conference on.
IEEE, 2005, pp. 7–pp.

[32] D. R. Ports and T. Garfinkel, “Towards application security on
untrusted operating systems.” in HotSec, 2008.

[33] linux sgx, “Intel(r) software guard extensions for linux os,
drm sample code,” https://github.com/intel/linux-sgx/tree/master/
SampleCode/SealedData, 2018.

[34] linuxsgx, “Intel(r) software guard extensions for linux os,
pse modification discussion,” https://github.com/intel/linux-sgx/
issues/194, 2018.

[35] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild
et al., “Spanner: Google’s globally distributed database,” ACM
Transactions on Computer Systems (TOCS), vol. 31, no. 3, p. 8,
2013.

[36] S. D’souza and R. Rajkumar, “Time-based coordination in
geo-distributed cyber-physical systems,” in Proceedings of the
9th USENIX Conference on Hot Topics in Cloud Computing.
USENIX Association, 2017, pp. 9–9.

92

Authorized licensed use limited to: UCLA Library. Downloaded on January 28,2021 at 08:17:39 UTC from IEEE Xplore. Restrictions apply.

