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Intertemporal choices involve assessing options with different reward amounts available at

different time delays. The similarity approach to intertemporal choice focuses on judging how

similar amounts and delays are. Yet we do not fully understand the cognitive process of how

these judgments are made. Here, we use machine-learning algorithms to predict similarity

judgments to (1) investigate which algorithms best predict these judgments, (2) assess which

predictors are most useful in predicting participants’ judgments, and (3) determine the minimum

number of judgments required to accurately predict future judgments. We applied eight algo-

rithms to similarity judgments for reward amount and time delay made by participants in two

data sets. We found that neural network, random forest, and support vector machine algorithms

generated the highest out-of-sample accuracy. Though neural networks and support vector

machines offer little clarity in terms of a possible process for making similarity judgments,

random forest algorithms generate decision trees that can mimic the cognitive computations

of human judgment-making. We also found that the numerical difference between amount

values or delay values was the most important predictor of these judgments, replicating previous

work. Finally, the best performing algorithms such as random forest can make highly accurate

predictions of judgments with relatively small sample sizes (~15), which will help minimize

the numbers of judgments required to extrapolate to new value pairs. In summary, machine-

learning algorithms provide both theoretical improvements to our understanding of the cognitive

computations involved in similarity judgments and intertemporal choices as well as practical

improvements in designing better ways of collecting data.
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Introduction

Intertemporal choices are a critical class of decisions that

involve choosing between rewards available at different times

[1]. We all face these decisions on a daily basis. Would you

prefer to buy the latest gadget or put that money away for

retirement? Would you prefer to consume a decadent dessert

or avoid the calories for a slimmer waistline? Researchers

of intertemporal choice typically probe people’s preferences

by providing a series of choices between smaller amounts of

money available after a short or no delay and a larger amount

available later (e.g., Would you prefer to receive $10 today or

$12 in one week?).
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Though temporal discounting is the dominant approach to in-

tertemporal choices [2], an alternative heuristic model asserts

that similarity judgments can account for these choices [3, 4].

For example, if people find the reward amounts to be similar

(e.g., $10 vs. $12) but the time delays to be dissimilar (e.g.,

today vs. one week), they may ignore the similar attribute

and choose based on the dissimilar attribute (e.g., choose

the immediate option). This approach predicts intertemporal

choices well when it can make predictions [5], but it raises

the question of what drives similarity judgments.

Previously, we used machine-learning algorithms to assess

similarity judgments [6]. Machine learning is a powerful set

of tools that “sift through data looking for patterns” [7]. Re-

searchers can input predictors to evaluate if machine-learning

algorithms can predict responses [8]. In our case, we were

interested in which features of the amount and delay values

predicted people’s similarity judgments. We proposed a par-

ticular type of machine-learning algorithm [9, 10] as both a

potential predictor of choice and a reasonable approximation

of the cognitive process that people could use to make the

similarity judgments. We found that these decision trees

accurately predicted choice (about 86% out-of-sample accu-

racy) and that the numerical difference between the large and
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small amounts and delays (large − small) and the numerical

ratio between them (small / large) were the best features for

predicting similarity judgments.

The aim of that study was to investigate a decision tree called

Classification and Regression Tree or CART [11]. This algo-

rithm was chosen because it was a fairly simple decision tree

algorithm that is well-studied and could provide a relatively

straightforward cognitive process model of decision making.

Yet there are many potential machine-learning algorithms that

could be used to classify similarity judgments based on the

numerical values of the small and large amounts and delays.

One key aim of the current study is to test a range of algo-

rithms on our data to determine which algorithms best predict

similarity judgments. In addition to accuracy (number of

correct predictions / total number of predictions), machine

learning uses other performance metrics of classification [12].

Precision (or positive predictive value) is the proportion of

instances predicted to be positive that are actually positive

(number of correct positive predictions / number of positive

predictions). Recall (or sensitivity, hit rate, true positive rate)

is the proportion of actual positives that are correctly classified

(number of correct positive predictions / number of positive

instances). For our purposes, we can think of “similar” judg-

ments as positive. So precision is the proportion of similar

predictions that the algorithms correctly classify as similar,

and recall is the proportion of actual similar judgments that

the algorithms correctly classify as similar (Table 1).

To calculate these performance metrics, we must have pre-

dictors. In Stevens and Soh [6], we mathematically arranged

the small and large values to generate 11 predictors that may

predict similarity judgments (Table S1). A second aim of the

current study is to reassess which predictors are most useful

in predicting similarity judgments using the wider range of al-

gorithms. Further, the previous analysis only found the single

best predictor for each person by extracting the predictor used

as the first node in the decision tree. Here, we assess predictor

importance [8] for each algorithm that allows this calculation.

Therefore, we compute importance measures across a range

of algorithms and for each predictor.

Finally, assessing similarity judgments requires asking for

pairwise binary judgments of similar or dissimilar from par-

ticipants. It would be useful to be able to predict an individ-

ual’s similarity judgments with as few questions as possible.

Therefore, our final aim is to evaluate prediction accuracy

at different sample sizes to determine the minimum number

of questions required to accurately predict similarity judg-

ments using a learning-curve analysis [13]. Further, we assess

whether the ordering of the questions influences prediction

accuracy. Typically, when assessing the effects of sample

size on accuracy, machine-learning analyses randomly select

the instances within the training sets. Though this is fine for

overall analyses of sample size, our aim requires a different

approach. Because we are interested in minimizing the num-

ber of questions asked, we must consider the questions in the

order in which they were asked in case judgments change

over time. Therefore, we assess the effect of sample size

on accuracy for questions that are randomly selected as well

as those that are selected in the order experienced by the

participants.

To address the aims of this study, we reanalyzed the two

similarity judgment data sets used in Stevens and Soh [6]. We

repeatedly split the data from each individual into a training

set and testing set. We fit each algorithm to the training set

and then used the fitted model to predict the testing set [14].

We calculated accuracy, precision, and recall on this out-of-

sample testing set. With this method, we investigated (1)

which algorithms performed best, (2) which predictors best

predicted judgments, and (3) how sample size and question

order influenced predictive accuracy for similarity judgments.

Methods

Data sets

We tested the different machine-learning algorithms on two

data sets used by Stevens and Soh [6] (available at https:

//doi.org/10.17605/OSF.IO/EW8DC). In both data sets,

participants with inattentive choice (e.g., judged 10 vs. 10 to

be dissimilar or 1 vs. 90 to be similar), inconsistent choice

(in a step-wise increase of large values, switching judgments

more than three times), or near uniform choice (≥ 95% choice

for similar or dissimilar) were removed. This eliminated 32

of the 155 participants, leaving 123 for our current analysis.

The first data set was collected from 50 participants (25 males

and 25 females) with a mean±SD age of 28.6±3.8 (range 24-

42) years recruited from the Adaptive Behavior and Cognition

Web Panel at the Max Planck Institute for Human Devel-

opment in Berlin, Germany in August 2011. Participants

received a flat fee of €3 for completing the survey. Web panel

participants made similarity judgments between 50 pairs of

amount values (e.g., €6 vs. €8) and 49 pairs of delay values

(e.g., 6 days vs. 8 days): “Please decide whether the numbers

are similar”. This research was approved by the Max Planck

Institute for Human Development’s Ethics Committee.

The second data set was collected from 73 participants (25

males and 48 females) with a mean±SD age of 19.9±1.6

(range 18-26) years recruited from the University of Nebraska-

Lincoln Department of Psychology undergraduate participant

pool in December 2014. Participants received course credit

for their participation. Participants started by making 20 in-

tertemporal choices before rating the similarity of 41 reward

amount values and 42 time delay values: “Do you consider

receiving [small amount] and [large amount] to be similar or

dissimilar?” and “Do you consider waiting [short delay] and

[long delay] to be similar or dissimilar?”. The intertemporal
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Table 1

Confusion matrix for true vs. predicted judgments with accuracy, precision, and recall

True judgment

Predicted judgment Judged similar Judged dissimilar

Predicted similar True Similar (TS ) False Similar (FS ) Precision = TS
TS+FS

Predicted dissimilar False Dissimilar (FD) True Dissimilar (T D)

Recall = TS
TS+FD

Accuracy = TS+T D
TS+FS+FD+T D

choices used the same value pairs as the similarity judgments

and were included first to expose participants to the range

of amount and delay magnitudes and to provide the overall

decision context before they made similarity judgments. This

research was approved by the University of Nebraska-Lincoln

Internal Review Board (IRB Approval # 20130313118EP).

Data analysis

We used R [15] and the R-packages C50 [16], caret [17],

e1071 [18], foreach [19], GGally [20], here [21], kernlab [22],

naivebayes [23], nnet [24], papaja [25], patchwork [26], ran-

domForest [27], rpart [28], tidytext [29], and tidyverse [30] for

all our analyses (package usage described in the R script found

in Supplementary Materials). The manuscript was created

using rmarkdown [31]. Data, analysis scripts, supplementary

tables and figures, and the reproducible research materials are

available in Supplementary Materials and at the Open Science

Framework (https://doi.org/10.17605/OSF.IO/EDQ39).

Predictors. We adapted predictors used in [6] for our in-

vestigation in this paper. In the original study, Stevens and

Soh tested 11 predictors: small value, large value, difference,

ratio, mean ratio, log ratio, relative difference, disparity ratio,

salience, discriminability, and logistic (Table S1). However,

we observed that a number of these predictors are very similar

functions and thus may suffer from multicollinearity, which

can be a problem for some machine-learning algorithms [7].

Therefore, we computed pairwise correlations for all pre-

dictors (Figures S1 & S2). Correlation coefficients for ra-

tio, mean ratio, log ratio, relative difference, disparity ratio,

salience, and discriminability all exceeded 0.81. Therefore,

we removed mean ratio, relative difference, disparity ratio,

and salience from the analyses. We kept ratio, log ratio,

and discriminability as predictors because ratio was a key

predictor in [6] and log ratio and discriminability both have

curvilinear relationships with ratio and therefore may provide

additional information for classification. Thus, the following

analyses include small value, large value, difference, ratio,

log ratio, discriminability, and logistic.

Algorithms. We used a set of commonly used algorithms,

including tree-based models C5.0 [7, 32] and random for-

est [33], k-nearest neighbor [34], naive Bayes [35], neural

networks [36], and support vector machines [37]. We com-

bined these with those used in [6]: CART [11] and logistic

regression.

Accuracy, precision, and recall. All analyses were con-

ducted at the level of the individual participant for each judg-

ment type (amount and delay). We conducted analyses for

two different orderings: random and sequential. For random

ordering, we first partitioned the data using a stratified random

sample based on similarity judgments, so the training and test-

ing sets had comparable distributions of similarity judgments

(i.e., approximately the same proportion of “similar” vs. “dis-

similar” judgments in both sets). For sequential ordering, we

created the training set by drawing the judgments in the order

in which each participant made their similarity judgments.

Once the training sets were drawn, for both orderings, we

generated testing sets by randomly drawing 10 samples from

the non-training judgments. This ensured that all testing sets

included the same number of judgments, regardless of training

set size.

Because one of our research aims involved exploring how

sample size influenced algorithm predictive accuracy, we an-

alyzed accuracy over a range of training set sizes. The two

data sets included 50 and 43 judgments of each type, and we

analyzed training set sizes of 15, 20, 25, and 30 samples for

both data sets. For data set 1, this is equivalent to 30%, 40%,

50%, and 60% of the total data, and, for data set 2, this maps

to 36%, 48%, 59%, and 71% of the total data.

We fit models on each training set for each algorithm using the

train function in the caret package [17], which uses boot-

strapping to resample the data and fit the model repeatedly

[7]. We applied each model to the training set and calculated

accuracy, precision and recall for the training data (Table S2;

Figures S3 and S4). We then used the models to predict the

testing data to calculate out-of-sample accuracy, precision,

and recall. This process was repeated 100 times for each data

set, judgment type, subject, algorithm, and training set size.

We then calculated the mean accuracy, precision, and recall

over the 100 repetitions (see Table S2 for other performance

metrics).

Predictor importance. All algorithms except support vec-

tor machines provide a measure of predictor importance. We
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Figure 1. Out-of-sample accuracy, precision, and recall for each algorithm based on random ordering of a sample size of 30

instances and a testing set size of 10 instances. For each performance measure, algorithms are ordered by mean score. Dots

represent means, error bars represent within-subjects 95% confidence intervals, boxplot horizontal lines represent medians,

boxes represent interquartile range (25-75th percentile), whiskers represent 1.5 × interquartile range. Outliers are not shown.

Note the y-axis is truncated at 0.5 to enlarge the presentation of the means and confidence intervals.

calculated predictor importance on the full data set (no train-

ing and testing sets) for each participant, data set, judgment

type, algorithm (except support vector machine), and predictor

using the varImp function in the caret package [17]. While

each model type has a different metric of importance (Table

S3), we scaled importance values, with the most important

variable importance set to 100.

Results

Algorithm performance

To determine which algorithms best predict similarity judg-

ments, we measured accuracy, precision, and recall on out-of-

sample predictions from the aforementioned eight algorithms.

We calculated these measures on the largest sample size (30

samples) and with random ordering for each participant. The

confusion matrix, accuracy, precision, and recall percentages

for training and testing sets and each algorithm are available

in Table S2. Figure 1 presents testing set accuracy, precision,

and recall rates for each algorithm summarized over data set

and judgment type (training set results available in Figures

S3 and S4). For accuracy (number of correct predictions /

all predictions), neural network, random forest, and support

vector machine algorithms yielded the highest accuracy rates

at 90%, with naive Bayes and C5.0 performing slightly worse,

followed by CART, logistic regression, and kNN. Precision

(correct similar predictions / all similar predictions) shows a

comparable ordering. For recall (correct similar predictions /

actual similar judgments), naive Bayes tops the list, followed

closely by random forest, neural networks, C5.0, and support

vector machines. Similar rankings of the algorithms’ per-

formance were observed across both data sets and between

amount and delay similarity judgments (Figure S5).

Predictor importance

Different algorithms use predictors differently, so the predic-

tors can vary in their contribution to the model performance.
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Figure 2. Importance of each predictor for each algorithm.

Predictor importance refers to the relative contribution of each

predictor to predicting the response. Predictors are ordered by

mean importance. Dots represent means, error bars represent

within-subjects 95% confidence intervals, boxplot horizontal

lines represent medians, boxes represent interquartile range,

whiskers represent 1.5 × interquartile range. Outliers are not

shown.

To assess which predictors were most useful in predicting sim-

ilarity judgments, we calculated predictor importance for each

participant, data set, judgment type, algorithm, and predictor

using the full data set. Figure 2 illustrates the importance

of each predictor summarized over data set, judgment type,

and algorithm. The numerical difference between large and

small values was the most important predictor, followed by

logistic, ratio and discriminability, log ratio, large value, and

small value. Similar rankings of the predictors’ performance

were observed across both data sets and between amount and

delay similarity judgments (Figure S6). While CART, kNN,

naive Bayes, and random forest algorithms generate these

rankings of predictor importance, C5.0, neural networks, and

logistic regression generated different rankings (Figure S7).

C5.0 was somewhat similar to the others, logistic regression

showed little differentiation between predictors, and neural

networks generated completely different rankings than the

other algorithms.

Sample size and order

Developing small but predictive sets of judgment questions

can allow us to predict judgments of value pairs that partici-

pants have not made. To investigate the effect of sample size

on algorithm performance, we randomly sampled different

training set sizes and repeatedly assessed each algorithm’s ac-

curacy in predicting a fixed, out-of-sample testing set. Figure

3 (left panel) shows out-of-sample accuracy for each algo-

rithm at each sample size. Accuracy clearly increases with

larger samples, but the rate of increase differs across algo-

Figure 3. Out-of-sample accuracy for each sample size for

each algorithm. Sample size refers to number of questions per

participant used to train the algorithms. Random refers to a

random sample of training questions used to predict a random

sample of 10 testing questions. Sequential refers to a sample

of training questions drawn in order of presentation to each

participant that was used to predict a random sample of 10 test-

ing questions. Dots represent means, and error bars represent

between-subjects 95% confidence intervals (within-subject

confidence intervals were not used because excessive missing

data for small sample sizes caused too many participants to

be removed from the calculations).

rithms. Remarkably, random forest and support vector ma-

chines have about 88% accuracy at the smallest sample size of

15 (out of 43-50 judgments). Naive Bayes, C5.0, and neural

networks yield only slightly lower accuracy rates of 86%.

The remaining algorithms perform substantially worse at the

lowest sample size but increase their performances with larger

sizes. CART, in particular, performs very poorly at the lowest

sample size but dramatically improves its performance at the

next size, where it surpasses kNN and logistic regression.

These rank orderings of algorithm performance hold across

data sets and judgments types, with slightly lower accuracy

rates in data set 2 (Figure S8A).

Though most assessments of sample size effects on algorithm

performance randomly draw instances from data sets, the

order in which participants experience questions can influ-

ence their responses. Given that the aim of this analysis is

to determine how well small samples can predict judgments

more generally, we must account for the sequential order in

which participants make judgments. To investigate how well

early questions can predict later ones, we fit the algorithms

on training sets of various sizes, but, rather than randomly

drawing the instances, we selected instances in the order in

which participants experienced the questions. Figure 3 (right

panel) shows out-of-sample accuracy for each algorithm at

each sample size for the sequentially ordered data. The pattern
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of results is qualitatively similar to those from the randomly

selected data but with lower accuracy rates. Again, random

forest and support vector machines top the algorithm rank-

ings with only slightly lower accuracy than the random order

(86%). And the algorithm rankings hold across data sets and

judgment types (Figure S8B).

Discussion

Our analysis of algorithm performance found comparable

levels of performance in accuracy, precision, and recall, but

the algorithms differed in their performance across these

three measures. Similarly, the different predictors varied in

their contributions to algorithm performance, some of which

matched previous findings, but others differed. Finally, as

is typically the case in machine learning, algorithm perfor-

mance improved with larger sample sizes, and the algorithms

performed better predicting randomly selected samples than

samples entered in the order experience by participants.

Algorithm performance

Neural network, random forest, and support vector machine

algorithms generated the highest out-of-sample accuracy and

precision for both data sets and judgment types. Naive Bayes

and C5.0 joined all of these algorithms in showing the highest

levels of recall. These analyses illustrate interesting differ-

ences across algorithms. First, this analysis contrasts with

Stevens and Soh [6] showing better accuracy rates in CART

than logistic regression. In the current analysis, CART and

logistic regression have comparable levels of accuracy. This

improvement in performance for logistic regression is likely

due to removal of collinear predictors in the current analysis.

Regression models are particularly susceptible to problems

associated with multicollinearity [7].

The current analysis suggests that both CART and logistic

regression are outperformed by a number of other machine-

learning models, including C5.0, naive Bayes, neural net-

works, random forest, and support vector machines. There-

fore, even higher levels of out-of-sample accuracy than those

observed by Stevens and Soh [6] can be achieved by test-

ing a wider range of models. A key reason that Stevens

and Soh used CART was to test the possibility that decision

trees capture the actual cognitive computations of decision

making. That is, similarity judgments may actually be made

in decision-tree-like ways. Thus, it is important to see that

two other tree-based algorithms (C5.0 and random forest)

outperform CART. While we do not directly test predictions

about the computational process on C5.0 and random forest

here, this provides a fruitful area of future research.

Decision trees are not the only class of algorithms that per-

form well. Neural networks and support vector machines

perform as well as random forest. These algorithms, however,

are “black box” algorithms in the sense that their process of

converting predictors into predictions for the outcomes is not

straightforward. Whereas random forest produces decision

trees which can, in principle, mimic the cognitive computa-

tions of how judgments are made, neural networks produce

a series of layers of nodes with weights connecting them

[38], and support vector machines calculate multidimensional

hyperplanes [39]. Therefore, though neural networks mimic

neural computations, these algorithms do not resemble a cog-

nitive process.

The three performance measures were quite consistent across

data sets and judgment types. Consistency across data sets

indicates robustness of these analyses within the area of sim-

ilarity judgments. Although there were only two data sets

analyzed, the actual similarity value pairs differed between

the data sets, and, perhaps more importantly, the study sample

population differed with Germans being sampled in data set 1

and Americans in data set 2. Nevertheless, both populations

were relatively similar in age and educational level, with the

Germans being slightly older. Both participant groups were

drawn from predominantly white, educated, industrialized,

rich, and democratic (WEIRD) populations [40]. The narrow

scope of the questions and the similarity of the study pop-

ulations make it difficult to generalize our findings beyond

similarity judgments in WEIRD populations.

Predictor importance

A key feature of many algorithms is that they can offer a met-

ric of how much each predictor contributed to the predictions.

This predictor importance offers insight into which predictors

are most useful. Across all algorithms, our analysis showed

that the numerical difference predictor contributed the most to

predictive performance, followed by logistic, discriminability,

and ratio. Stevens and Soh [6] also found difference to be

the primary predictor used as the first node in 62-71% of

participants’ decision trees. In fact, difference was the most

important predictor in the current analysis for all algorithms

except logistic regression and neural networks. This provides

robust evidence that one of the simplest predictors (large value

− small value) is also the most important in making similarity

judgments.

One key difference between the current analysis and Stevens

and Soh [6] is the next most important predictors. Stevens and

Soh found that ratio was the second most used primary node

predictor for CART (27-33% of participants), with relative

difference and logistic following (1-2%). The current analysis

showed logistic followed by discriminability and ratio. This

is a surprising contradiction of Stevens and Soh’s findings

because logistic and discriminability are more mathematically

complicated combinations of small value and large value com-

pared to ratio (Table S1). Though a simple predictor is the

most important predictor, the next most important predictor

could be a more complex combination of small and large



SIMILARITY JUDGMENTS AND MACHINE LEARNING 7

values.

The discrepancy with Stevens and Soh [6] could arise because

of two reasons. First, the measure of predictor importance

in the current analysis is based on different types of metrics

across algorithms (Table S3) that are scaled similarly for com-

parison. Because different algorithms use different metrics,

the scaling (apart from the most and least important predictor)

may not be comparable across algorithms. Therefore, the

predictors of intermediate importance may be compressed or

expanded differently across algorithms. Nevertheless, logistic

was the second most important predictor across all but two

of the algorithms. Second, the set of predictors in the two

analyses differed. Stevens and Soh included all 11 predictors,

and the current analysis used a limited set of predictors to

reduce multicollinearity. The multicollinearity of many of

the predictors with ratio could have somehow boosted its

performance, whereas without multicollinearity, ratio’s con-

tribution could have been reduced. This finding speaks to

the importance of feature selection in investigating predictor

importance [41].

Finally, for this analysis, we eliminated a number of predictors

from our analysis because of their multicollinearity with other

predictors. Some of these predictors play key roles in psy-

chological and economic models of intertemporal and risky

choice (e.g., relative difference, salience). While these models

may yield insights into decision making, it is important to

consider that they are highly correlated with simpler predic-

tors of these choices (e.g., ratio). Thus, parsimony requires

substantial additional predictive value for these models to be

favored over simpler ratio-based models.

Sample size and order

Sample size is a key aspect of algorithm performance [13].

As expected, we found that accuracy increased with sample

size of randomly selected data. Some algorithms (notably

random forest and support vector machines) showed high out-

of-sample accuracy even at the smallest size (15 instances or

30-36% of the total number of instances). Therefore, choos-

ing the appropriate algorithm can result in high out-of-sample

accuracy even with small samples.

Analyses of randomly selected data, however, do not capture

the potential effects of the order of experiencing questions on

participants’ judgments. That is, participants may get tired

or change their judgment criteria over time. So judgments

made early during testing may not match those made later in

testing. To explore this, we analyzed the data by entering the

instances in the order experienced by participants and exam-

ining accuracy across a range of sample sizes. Including the

sequentially ordered instances reduced accuracy, but random

forest and support vector machines still outperformed other

algorithms, especially at small sample sizes.

While other algorithms dropped in accuracy substantially, ran-

dom forest and support vector machines maintained very high

accuracy for the sequentially ordered data. At the smallest

sample size, these two algorithms correctly predicted 86%

of the judgments. This level of accuracy with such small

samples sizes is remarkable and bodes well for being able to

collect rather small samples and extrapolate more generally.

In summary, we have evidence that machine-learning algo-

rithms can take as input small amounts of data and make ro-

bust out-of-sample predictions. Leveraging these algorithms

can influence experimental designs by requiring fewer ques-

tions. By reducing numbers of questions, we can minimize

the burden on participants, which can either improve data

quality by not tiring participants or allow the opportunity to

add other experimental procedures when participant time is

limited. Either way, employing machine-learning algorithms

can enhance experimental design.

Limitations and future directions

This article expands the application of machine learning to

similarity judgments compared to Stevens and Soh [6] by in-

vestigating more algorithms, more measures of performance,

more sophisticated measures of predictor importance, and a

more nuanced approach to sample size. However, the tools

available in machine learning are many, and they are increas-

ing in number and sophistication. We limited our analysis

to eight algorithms, chosen based on suitability for our data

and previous frequency of use in the machine-learning liter-

ature. Of course, there are other algorithms that we could

have tested, some of which might have outperformed our top

models. Nevertheless, we used a standard set of models, many

of which had equally high performance. It seems unlikely

additional models would provide substantial new insights or

contradictory information.

A great deal of effort has focused on developing methods

to optimize model parameters to improve fit [7]. We took

a relatively basic approach to tuning model parameters, pri-

marily using default options in our analysis software. It is

possible that more sophisticated parameter tuning could yield

different results. However, more sophisticated tuning often

comes at the price of longer computation times. We have

opted to minimize computation time by using the default

tuning methods. Finally, optimizing parameters can result in

models overfitting data. We used standard cross-validation

techniques to reduce overfitting by both calculating predictive

performance measures on out-of-sample data fitted on training

data and fitting models to the training data using resampling

techniques [7].

In general, machine-learning models perform best with many

instances to work with. This allows for large training sets

that include representative instances from the population of



8 JEFFREY R. STEVENS1, ALEXIS POLZKILL SALTZMAN1,2, TANNER RASMUSSEN1, & LEEN-KIAT SOH2

possible instances. Though we have a large number of total

instances (over 11,000), we conducted the analysis at the

level of the participant and judgment type (amount or delay

judgment) because we were interested in being able to predict

individual participant judgments. This resulted in only 40-50

instances per analysis, which is rather small for machine-

learning analyses that use cross-validation. This is apparent

with the poor performance of CART at sample sizes of 15

samples but rapid improvement at 20 samples (Figure 3). The

other algorithms, however, show a more gradual increase in

performance with sample size, suggesting that sample sizes

used here are not too small to allow reasonable performance.

From a logistical perspective, having participants answer more

than 50 questions for each judgment is already rather tiring,

and increasing the number of questions could result in poor

data quality. So, though more instances could be better for

the model performance, the models perform well with these

sample sizes, and increasing them could produce more prob-

lematic data.

This article has focused on similarity judgments of mone-

tary amounts and time delays because they are the attributes

that are relevant to intertemporal choice. But the similarity

approach also applies to risky and strategic choice [42–44].

Thus, this approach can be expanded beyond amounts and

delays to probabilities of receiving rewards, an attribute of

risky choice. Probabilities, however, are bounded, which

could result in different algorithms and predictor importance

compared to amounts and delays. Though the similarity ap-

proach has not been formally applied to multiattribute choice

(e.g., choosing an apartment based on rent, size, distance from

work, etc.), this is another area to which it could be applied.

The scale and boundedness of the attribute values could influ-

ence how similarity is assessed, but these methods should be

able to apply to most quantitative attributes. Yet research on

similarity is not limited to quantitative attributes [45–47], and

machine learning has broad application to understanding both

quantitative and non-quantitative components of similarity

[48, 49].

Conclusions

Machine learning comprises a powerful set of tools to classify

outcomes. While some areas of psychology have been fruit-

fully using machine learning for a while [50, 51], the field has

not leveraged these tools fully [14]. Judgment and decision

making, in particular, is an area ripe for applying machine

learning, and some have taken advantage of these tools [52–

54]. Here, we used machine learning to achieve multiple goals.

First, we assessed the performance of several algorithms in

predicting similarity judgments from participant data. Though

evaluating algorithm performance is not typically a psycho-

logical question, in our case, we investigated whether decision

tree algorithms performed well, since they could offer cogni-

tive process-based models of actual decision making. Indeed,

previously, we found that CART outperformed regression we

found that the random forest algorithm—one that is based on

decision trees—topped the list of best-performing algorithms.

We can further probe this algorithm because, not only does

it accurately predict similarity judgments, it also may give

us a window into the process of classification by generating

measures of predictor importance and allowing the extraction

of a step-by-step set of rules used to generate the predic-

tions. Testing a broad range of machine-learning algorithms

allowed us to pinpoint a highly accurate model that may also

approximate the actual judgment process. Future research

will integrate these algorithms into the similarity model to

predict the intertemporal choices.

Second, our analysis provided the opportunity to examine

which predictors were most important in making the judgment

classifications. While regression alone can provide informa-

tion about predictor performance, it is only a single model,

and its predictions depend on its assumptions and methods.

Our analysis produced predictor importance measures across

a range of algorithms, which can provide information about

the robustness of importance across models. For instance,

we found rather consistent rankings of predictor importance

across four very different types of algorithms (Figure 2). But

differences across algorithms are interesting as well. For

example, while it has above average importance in most algo-

rithms, the predictor discriminability is ranked most important

by neural networks. This could inspire further investigations,

as assessing predictor importance across a range of algorithms

can be useful in drawing inferences about those predictors.

Finally, in addition to answering theoretical questions about

models and predictors, machine learning can inform the lo-

gistics of data collection. We evaluated algorithm accuracy

across a range of training set sizes to see how robust they

are to sample size. Moreover, we used samples ordered by

how they were experienced by participants to see how pre-

dictive different numbers of questions were to judgments

more generally. Our analysis showed that some algorithms

could predict judgments with quite high accuracy at rather

small sample sizes. This finding is useful for designing future

studies, where we can trim the number of questions that we

ask participants, which can reduce participant fatigue or allow

time to ask other questions. Thus, using machine-learning

algorithms can help us both understand our data in more depth

and design better ways of collecting those data.
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