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Abstract

Systems biology has experienced dramatic growth in the number, size,
and complexity of computational models. To reproduce simulation
results and reuse models, researchers must exchange unambiguous
model descriptions. We review the latest edition of the Systems Biol-
ogy Markup Language (SBML), a format designed for this purpose. A
community of modelers and software authors developed SBML Level
3 over the past decade. Its modular form consists of a core suited to
representing reaction-based models and packages that extend the
core with features suited to other model types including constraint-
based models, reaction-diffusion models, logical network models,
and rule-based models. The format leverages two decades of SBML
and a rich software ecosystem that transformed how systems biolo-
gists build and interact with models. More recently, the rise of multi-
scale models of whole cells and organs, and new data sources such
as single-cell measurements and live imaging, has precipitated new

, Henning Hermjakob?
& SBML Level 3 Community members*

. Bernhard Palsson**@, Hamid Bolouri®,
, John C Doyle*®,

ways of integrating data with models. We provide our perspectives
on the challenges presented by these developments and how SBML
Level 3 provides the foundation needed to support this evolution.
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Introduction
Systems modeling and numerical simulations in biology can be

traced to the mid-20th century. Though general theorizing about
systems began earlier, the application of systems analysis to biology
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gained attention in the 1950s thanks to the work of biologists such
as von Bertalanffy and Kacser (Von Bertalanffy, 1950; Kacser,
1957). The era of numerical simulation in biology truly began with
the landmark works of Chance on enzyme kinetics (Chance et al,
1940), Hodgkin and Huxley on the molecular basis of neuronal
transmission (Hodgkin & Huxley, 1952), and Turing on the chemical
basis of morphogenesis (Turing, 1952). Since then, the number and
variety of models have grown in all of the life sciences. As precise
descriptions of phenomena that can be simulated, analyzed, and
compared with experimental data, models provide unique insights
that can confirm or refute hypotheses, suggest new experiments,
and identify refinements to the models.

The availability of more data, more powerful modeling methods,
and dramatically increased computing power led to the rise of
systems biology as a compelling research theme around the turn of
the millennium (Kitano, 2000; Ideker et al, 2001). Though computa-
tional models were at first published as printed equations in journal
articles, the desire to reuse an ever-increasing number of models
called for digital formats that were interoperable between software
systems and could be easily exchanged between scientists (topics of
interest as early as the 1960s; c.f. Garfinkel, 1969). This drove
efforts to create tool-independent ways of representing models that
could avoid the potential for human translation errors, be stored in
databases, and provide a common starting point for simulations and
analyses regardless of the software used (Goddard et al, 2001;
Hucka et al, 2001; Lloyd et al, 2004). One such effort was SBML,
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the Systems Biology Markup Language. Its initial design was moti-
vated by discussions to create a “metabolic model file format”
following a 1999 workshop (recounted by Kell & Mendes, 2008). A
distributed community thereafter discussed ideas that informed
work at Caltech in late 1999/early 2000 and led (after a series of
public drafts) to the specification of the official version of SBML
Level 1 version 1 being released in March 2001 (Hucka et al, 2003).

While SBML was initially developed to exchange compartmental
models of biochemical reaction networks primarily formulated in
terms of chemical kinetics (Hucka et al, 2001), it was always under-
stood that there existed more types of models than the initial
version of SBML could represent explicitly. However, seeking
community consensus on a limited set of simpler features, which
could be readily implemented in software at the time, was deemed a
more pragmatic strategy. A deliberate decision was taken to delay
the addition of more advanced capabilities to a later time. As a
result, SBML has evolved in stages in a community-driven fashion
that has benefited from the efforts of many researchers worldwide
over two decades. As time passed, the need to support a broader
range of model types, modeling frameworks, and research areas
became apparent. SBML’s success in serving as an interchange
format for basic types of models led communities of modelers to ask
whether it could be adapted or expanded to support more types. In
addition to reaction-diffusion models, alternative modeling frame-
works have risen in popularity in the past decade (Machado et al,
2011), and researchers have faced interoperability problems
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between software tools developed for their use. These needs drove a
profound change in SBML’s structure: A facility to permit layering
the core of SBML with new features suited to more types of models,
together with a way for individual models to identify which sets of
extensions they need for proper interpretation. The release of SBML
Level 3 (Hucka et al, 2010) has provided a new foundation to
enable the exchange of a greater variety of models in various
domains of biology (Fig 1).

In the rest of this article, we begin by summarizing SBML’s
general structure and then describe the modularity introduced in
Level 3 and the wide range of modeling formalisms supported by
Level 3 packages. We follow that by describing the community
aspects of SBML development. We continue with a discussion of
SBML’s impact on both computational modeling and the modeling
community, and finally, we close with a discussion of forthcoming
challenges.

The structure of SBML

The core of SBML is focused on encoding models in which entities
are located in containers and are acted upon by processes that
modify, create, or destroy entities. The containers do not need to
correspond to physical structures; they can be conceptual or
abstract. Additional constructs allow parameters, initial conditions,
other variables, and other mathematical relationships to be defined
(Fig 2A). In the most common type of model, the “entities” are
biochemical substances, the “containers” are well-mixed and
spatially homogeneous, and the “processes” are biochemical reac-
tions happening within or between the containers. This originally
led to the SBML constructs being named species, compartments, and
reactions, respectively (Fig 2B), but these names are historical arti-
facts and belie the generality of the underlying scheme. Software
applications can map the names to other concepts to better suit their
purposes. For instance, “species” could be mapped to populations
of molecules, cells, or even organisms.

Modelers and software developers are encouraged to use
SBML’s reaction construct to define a model’s behavior in prefer-
ence to formulating the model explicitly as a system of equations.
This gives users freedom to convert the model into the final format
they prefer—a simpler operation than (for example) inferring a
reaction network from a system of differential equations. More
importantly, the approach also naturally handles models where
reaction kinetics are unknown or unneeded, such as interaction
maps, and supports the elaboration of the reaction construct using
SBML packages (discussed below). That said, the use of reactions
is optional, and SBML provides features sufficient for encoding a
large diversity of purely mathematical models, too. Whether using
reactions or not, values of model variables and their changes over
time may be fixed or determined by mathematical expressions,
either before or during simulation, continuously or in response to
discrete events, with or without time delays. Units of measurement
can be specified for all entities and values; in addition to adding a
layer of essential physical knowledge (after all, how else could one
interpret whether a time course is in milliseconds or years?), infor-
mation about units can be used to verify the relationships
expressed in a model. Units also facilitate reuse of models and
components, interconnection of models, conversion of models

© 2020 California Institute of Technology Published under the terms of the CC BY 4
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between different frameworks, and integration of data with
models.

SBML does not dictate which framework must be used to analyze
or simulate a model; in fact, it purposefully lacks any explicit way
to specify what is done with a model-—whether to run simulations
or other types of analyses, how to run them, or how to present the
results—because externalizing this information enhances model
reusability and permits independent innovation in separate but
complementary formats. Two of the most popular methods for time-
course simulation are commonly used: one is numerical integration
of differential equations created from the reactions and other rela-
tionships affecting model variables, and the other is simulating the
time evolution of the model as a stochastic system via algorithms
such as the one developed by Gillespie (1977). Alternative
approaches are also in use, particularly when a model is enhanced
with SBML packages.

Any element of an SBML model can be elaborated using
machine-readable metadata as well as human-readable notes. For
metadata, two schemes are supported. The first is direct labeling of
SBML elements with terms from the Systems Biology Ontology
(SBO; Courtot et al, 2011), which allows the mathematical seman-
tics of every element of a model to be precisely specified. The
second scheme uses semantic web technologies and provides
greater flexibility to capture additional metadata. For instance, a
molecular species in a model can be linked to a UniProt entry (The
UniProt Consortium, 2017) if it represents a protein, or to ChEBI
entry (Hastings et al, 2013) if it represents a simple chemical. Gene
Ontology terms (GO; Ashburner et al, 2000) can be attached to
species, compartments, and mathematical elements representing
biological processes and functions. Simple provenance data such as
identities of creators can be added to facilitate attribution and
versioning. To help standardize how annotations are stored, SBML
encourages the use of guidelines and resources established for this
purpose (Le Noveére et al, 2005). Finally, software tools can also use
annotations to encode tool-specific data in their own formats, thus
providing a way to capture data that might otherwise be lost. Anno-
tations thereby help enrich the meaning of model components, facil-
itate the understanding and reuse of models, and help software
work with SBML more flexibly (Neal et al, 2019).

The core features described above have been a backbone of
SBML ever since Level 2, even as SBML continued to evolve. The
development of the modular Level 3, discussed in the next section,
provided an opportunity to rethink and redesign a few other rarely
used features. For example, the species charge attribute, designed to
represent molecular charge, was removed in Level 3 in favor of
letting an SBML package introduce more complete support for the
relevant concepts.

SBML Level 3’s modularity and breadth

Constant evolution in scientific methods presents challenges for the
creation of software tools and standards. One challenge arises
because the creation of new standards requires labor, testing, and
time. This often causes standardization efforts to lag behind the
latest technical developments in a constantly moving field. A second
challenge is that users want support for new methods and standards
in software tools, which pressures developers to implement support

Molecular Systems Biology 16:€9110[2020 3 of 21
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Figure 1. SBML Level 3 (Hucka et al, 2019) consists of a core (center) and specialized SBML Level 3 packages (in blue), which provide syntactical constructs to

support additional modeling approaches.

The packages support new types of modeling (in the gray boxes) needed for large and complex models such as those used in various domains and fields of biology (in the light
red boxes). The meanings of SBML package labels such as “fbc” are given in Table 1, with additional package information in Box 1.

quickly. Combined with the first challenge, it means that sometimes
problems with a standard’s definition are not discovered until more
developers attempt to use it in different situations, which in turn
often means that revisions to a standard are needed after it is
published. Finally, another challenge is that software development
often takes place under resource constraints (funding and time),
limiting the scope of work that software developers can undertake—
including, sometimes, limiting how many features of a standard
they can support in their software.

The SBML community sought to address these challenges by
putting in place certain structural features in SBML’s develop-
ment process. The first is the notion of Levels. A Level in SBML
is an attempt to provide a given set of features for describing
models, with higher Levels providing more powerful features.
For example, the ability to express discrete events was added to
SBML Level 2 but does not exist in Level 1. SBML Levels are
mostly upwardly compatible, in the sense that the vast majority

4 of 21 Molecular Systems Biology ~16: 9110 | 2020

of models encoded in Level n can be translated to Level n + 1.
Versions are used to introduce refinements to a given Level to
account for realizations that come from real-life use of SBML.
Finally, SBML Level 3 introduced an extensible modular architec-
ture consisting of a central set of fixed features (named SBML
Level 3 Core), and a scheme for adding packages that can
augment the Core by extending existing elements, adding new
elements, and adjusting the meaning or scope of elements. A
model declares which packages it uses in order to guide its
interpretation by software applications. If a software tool detects
the presence of packages that it does not support, it may inform
users if it cannot work with the model. Together, these three
features (Levels, Versions, packages) help address the challenges
discussed above: they ease coping with evolution in methods by
collecting significant changes into discrete stages (SBML Levels),
they help deal with the inevitable need for revisions (Versions
within Levels), and they allow developers to limit the feature set

© 2020 California Institute of Technology Published under the terms of the CC BY 4.0 license
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<?xml version="1.8" encodin
<sbml xmlns="http://www.sbm
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g="UTF-8"7>
1l.org/sbml/level3/version2/core" level="3" version="2"

xmlns:fbc="http://www.sbml.org/sbml/level3/version1/fbc/version2" fbc:required="false"
xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true"
xmlns:layout="http://www.sbml.org/sbml/level3/version1/layout/version1" layout:required="false" ...>
declaration of packages
<model id="tiny_example" substanceUnits="mmole" timeUnits="second" volumeUnits="litre" ...>
<listOfUnitDefinitions> ... </listOfUnitDefinitions> units
<listOfFunctionDefinitions> ... </listOfFunctionDefinitions> functions
> | <listOfCompartments> ... </listOfCompartments>
> | <listOfSpecies> ... </listOfSpecies> variables
<listOfParameters> ... </listOfParameters>
<listOfInitialAssignments> ... </listOfInitialAssignments>
<listOfRules> ... </listOfRules>
<listOfConstraints> ... </listOfConstraints> . .
> | <listOfReactions> ... </listOfReactions> relationships
<listOfEvents> ... </listOfEvents> core
<layout:listOfLayouts xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<layout:layout layout:id="layout_1" ...>
<layout:dimensions layout:width="760" layout:height="7060" .../>
~— <layout:listOfCompartmentGlyphs> ... </layout:listOfCompartmentGlyphs>
S~ <layout:listOfSpeciesGlyphs> ... </layout:listOfSpeciesGlyphs>
N —~———_ <layout:listOfReactionGlyphs> ... </layout:listOfReactionGlyphs>
gg <layout:1listOfTextGlyphs> ... </layout:1listOfTextGlyphs>
c </layout:layout>
e </layout:listOfLayouts> paCkage
éy </model>
92 </sbml>
B <unitDefinition id="mmole">

<listOfUnits>

<unit kind="mole" exponent="1" scale="-

</listOfUnits>
</unitDefinition>

<compartment yid="c

<species metaid="meta_glc" id="glc

compartmeit="c" substanceUnits="mmol®\

name="cell compartment"” size="1e-05" units="litre" constant="true"

multiplier="1"/>

. >

initialConcentration="5" sboTerm="SB0:0000247"
asOnlySubstanceUnits="false" boundaryCondition="false"

constant="false" fbc:charge="0" fbc:chelicalFormula="C6H1206">

<annotation>

<bgbiol:is>

<rdf:1i rdf:resource="http://identifidrs.org/chebi/CHEBI:4167"/>

<species/>

<reaction id="GK" name="Glucokinase" rev

<speciesReference species="glc"
kineticLaw>

<apply>
<times/>
i> Vmax_GK </ci>
<apply>
<divide/>
<ci> glc <
<apply>
<plus/>
<ci> Km_glc </ci>
<ci> glc </ci>
</apply>

Figure 2.
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'SB0:0000027" constant="true" units="mM" ...>

sible="false" compartment="c" sboTerm="SB0:0000176" ...>

oichiometry="1" constant="true"/>

<math xmlns="http://www.w3.0rg/1998/Math/MathML">
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Figure 2. A closer look at SBML.

Sarah M Keating et al

(A) Fragments of the global structure of an SBML file. In this example, the use of several SBML packages is declared in the file header. Model elements in the file include the
descriptions of model variables, as well as their relationships. Elements of the same type are collected into “ListOf” elements; model parameters are in the ListOfParameters
element. SBML package elements can refer to elements in the SBML Core as necessary. (B) Model elements are linked through unique identifiers used in the mathematical
constructs and the elements describing the reactions, the molecular species, and their localization. The full model for this example is available in BioModels Database (Malik-

Sheriff et al, 2020) as the model with identifier MODEL1904090001.

they implement (SBML Levels on the one hand, and SBML Level
3 packages on the other).

Packages allow SBML Level 3 (Hucka et al, 2019) to represent
many model types and characteristics in a more natural way than if
they had to be shoehorned into SBML Core constructs exclusively.
Twelve packages have been proposed to date (Table 1); eight have
been fully developed into consensus specifications and are each used
by at least two software implementations (Box 1), and another two
have draft specifications in use by software tools. New packages can
be developed independently, within dedicated communities, at a
pace that suits them. This was the case for logical modeling with the
CoLoMoTo community (Naldi et al, 2015), constraint-based model-
ing within the COBRA community (Heirendt et al, 2019), and rule-
based modeling with a community of like-minded software creators
(Faeder et al, 2009; Zhang et al, 2013; Palmisano et al, 2014; Boutil-
lier et al, 2018).

Several benefits accrue from leveraging SBML as a starting point
rather than creating a new, independent format. One is it makes clear
where common features overlap. Most computational modeling
frameworks in the domain of biology share some common concepts
—variables that represent characteristics of different kinds of entities
and processes that represent interactions between entities, contain-
ers/locations, etc.—and reusing SBML Level 3 Core constructs makes
the conceptual similarities explicit. This in turn makes interpretation
of models easier (no need to learn new terminology) and reuse
simpler (no need to translate between independent formats). Another
benefit is that the creators of the format can leverage existing features
developed for SBML, such as mechanisms for annotations, rather
than spend time developing new approaches to achieving the same
goals in a new format. This in turn leads to another benefit: the ability
to reuse at least some parts of existing software libraries developed
for SBML. It also means that a software application may be able to
interpret at least some fundamental aspects of a model even if the
application is not designed to work with a particular SBML Level 3
package, by virtue of understanding SBML Core (and perhaps other
packages used by the model). This improves the potential for model
reuse, and benefits model creators and software developers alike.
Finally, a common foundation simplifies the creation of multiframe-
work models in which some parts of the model use one formalism
and other parts use others [e.g., coupling kinetic models with flux
balance analysis; Watanabe et al, 2018).

Though this modular approach has benefits, it is not without
potential pitfalls. The main risks are fragmentation of the commu-
nity, and incompatibility of packages due to complex feature depen-
dencies. The SBML community has addressed the former by
maintaining communications between package developers; the
community processes have such interactions built in. As for the
latter, API libraries (see Box 2) can handle some combinations of
packages and hide some of the complexity. Still, there remain some
combinations of packages that are not fully understood, and it
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remains for future work to define how (if ever) they can be
combined for use in a single model.

SBML as a community standard

SBML’s success can be attributed largely to its community-based
development and its consensus-oriented approach. SBML has
always been developed through engagement with its user commu-
nity to achieve goals expressed by that same community. To resolve
occasionally conflicting technical demands, a guiding principle has
been to seek consensus between different viewpoints and the needs
of different groups, to find a middle ground that would be—while
perhaps not a perfect solution—an acceptable and usable solution.
This attracted the researchers and software developers who consti-
tute SBML’s foremost stakeholders. By using SBML in everything
from software to textbooks, they helped drive further development
to face the real needs expressed by the people who have those
needs. This engagement allowed faster feedback from users to
developers and has helped produce a rich toolkit of software and
other resources that facilitate SBML’s incorporation into software
(Box 2).

Over the years, the community has designed rules to organize its
governance, develop and maintain the specifications, and facilitate
collaboration among users. The development of SBML and its Level
3 packages is shepherded by the SBML Editors, a group of commu-
nity-elected volunteers serving terms of 3 years who follow a writ-
ten and public process detailed on the web portal SBML.org." SBML
Editors write or review SBML specification documents, organize
discussions and vote on specific technical issues, and enact the deci-
sions of the community. Major proposed changes to the specifi-
cations and packages are discussed by the community via the SBML
mailing lists? as well as during annual face-to-face meetings.

The community currently comes together twice a year within the
context of meetings organized by COMBINE the Computational
Modeling in Biology Network; Hucka et al, 2015). HARMONY (the
Hackathon on Resources for Modeling in Biology) is a codefest that
focuses on the development of software, in particular via the devel-
opment of libraries, tools, and specifications; by contrast, the
COMBINE Forum meetings focus on the presentation of novel tools
and the discussion of proposed features. In addition to these general
meetings, special SBML working groups are organized as needed to
drive SBML package development. COMBINE’s central activity is
coordinating and harmonizing standardization in computational
biology, and SBML is one of its core standards. FAIRsharing, a
broader community network that covers life sciences more compre-
hensively (Sansone et al, 2019), maintains interconnected and orga-
nized collections of resources in many areas, including curated links
between SBML and many associated funders, databases, and stan-
dards.?
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Table 1. Summary of SBML Level 3 Package statuses. Symbols: @ = released; O = not released; »# = complete; © = in progress; n/a = not

applicable.’
libSBML JSBML Test
Package name Label Purpose Specification Support Support Suite Reference
- Distributions distrib Define statistical distributions for I I v ® Smith et al
quantitative values. (2020)
+ Flux Balance fbc Define constraint-based models (a.k.a. v v I 7 Olivier and
Constraints steady-state models) Bergmann (2018)
+ Groups groups Collect elements together for annotation I I v n/a Hucka and Smith
purposes. Groups have no mathematical (2016)
meaning and do not affect simulations
+ Hierarchical comp Define models composed of other models. 4 4 17 7 Smith et al
Model Composition The “submodels” can be stored in the same (2015)
file or as separate files.
+ Layout layout Store positions and sizes of model 4 4 17 n/a Gauges et al
components in network diagrams of SBML (2015)
models. (Cf. the Rendering package.)
+ Multistate, multi Define features such as states or binding I 4 v ® Zhang and
Multicomponent, & sites on molecular species, optionally in Meier-
Multicompartment combination with rule-based processes Schellersheim
Species (2018)
+ Qualitative qual Allow model where SBML species’ values 4 4 17 ® Chaouiya et al
Models represent qualitative activity levels rather (2015)
than amounts or concentrations
+ Rendering render Extend the Layout package to enable storing 4 » n/a Bergmann et al
graphical symbols and styles, curves, colors, (2018)
and gradients in network diagrams
o Arrays arrays Define arrays of elements, such as arrays of ® I 4 ®
compartments. (Core SBML Level 3 supports
only scalar values.)
o Dynamical dyn Describe the creation, destruction, and ® I » ®
Processes movement of model elements during
simulation
- Extended math math Additional constructs not included in the ® ® ® ®
subset of MathML used by SBML Level 3
Core for mathematical expressions
o Spatial Processes spatial Define spatially inhomogeneous ® Id 4 ®

compartment geometries and processes
such as diffusion

Impact of SBML

As contributors to developments in methods, software, and stan-
dards over the past two decades (Hucka et al, 2015), we can attest
to SBML’s profound impact on the field, both from our own first-
hand experiences and from surveys (Klipp et al, 2007) that indicate
SBML has become a de facto standard. The impact is a result of
SBML’s community-oriented development approach and its design.
The SBML development process has helped shape the field partly
by directly involving software developers and modelers. Frequent
workshops have provided essential feedback for developers to help
them better serve modelers’ needs (e.g., Waltemath et al, 2014).
Workshops as well as resources such as the SBML Software Guide
(see Box 2) helped raise awareness of existing tools, which in turn
increased their use and the use of SBML. This helped create a culture
of sharing models and building on existing work in systems biology
(Stanford et al, 2015). It also led to new activities centered on the

models themselves, including automatic model generation, analysis
of model structures, model retrieval, and integration of models with
experimental data (Drdger & Palsson, 2014). SBML’s successful
approach to community organization has led other standardization
efforts (BioPAX, NeuroML, SBGN, SED-ML) to adopt some of the
same approaches; SBML was also a founding member of COMBINE
(Hucka et al, 2015), discussed above. Some of the primary standard-
ization efforts in COMBINE, such as BioPAX (Demir et al, 2010) and
NeuroML (Gleeson et al, 2010), are more domain-specific than SBML;
others, such as CellML (Lloyd et al, 2004), overlap SBML’s primary
domains but offer alternative abstractions; and finally, still others,
such as SBGN (van Iersel et al, 2012), SBOL (Roehner et al, 2016),
and SED-ML (Waltemath et al, 2011), are complementary formats.
Before the advent of SBML, it was challenging to exchange
models incompatible definition
schemes. As models increased in size and complexity, manually
rewriting them became more difficult, error-prone, and eventually

because software tools used

SCorrection added on 4 September 2020, after first online publication: the symbol in row Distributions, column Specification was corrected to a checkmark.
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untenable. The development of SBML has enabled the use of a
single model description throughout a project’s life cycle even when
projects involve heterogeneous software tools (Box 3). SBML-
compatible software tools today allow researchers to use SBML in
all aspects of a modeling project, including creation (manual or
automated), annotation, comparison, merging, parametrization,
simulation/analysis, results comparison, network motif discovery,
system identification, omics data integration, visualization, and
more. Such use of a standardized format, along with standard anno-
tation schemes (Neal et al, 2019) and training in reproducible meth-
ods, improves research workflows and is generally recognized as
promoting research reproducibility (Waltemath & Wolkenhauer,
2016).

The availability of a well-defined format has also facilitated the
comparison of software tools to each other. Using SBML-encoded
models has become the norm to assess the accuracy of modeling
software: initially it is done manually using models from BioModels
Database (Bergmann & Sauro, 2008), and now, it is more commonly
done using the SBML Test Suite (Box 2). SBML’s semantics are
defined precisely enough that many simulation systems can produce
equivalent results for over 1200 test cases, lending confidence that
SBML-based simulations can be reproducible in different software
environments.

While chemical kinetics models have been a staple of systems biol-
ogy, other modeling frameworks exist. These have benefited from
efforts to extend Level 3 to better suit their specific characteristics.
Even when models could in principle be encoded using core SBML
constructs, the use of features explicitly adapted to the needs of a
domain can make model interpretation less error-prone and more
natural. The former issue was demonstrated vividly when ad hoc
methods of encoding genome-scale models led to incorrect interpreta-
tions, and a subsequent proposal to use SBML Level 3 “fbc” addressed
representational inconsistencies that had hindered reproducibility
(Ebrahim et al, 2015). The use of more domain-specific forms of
encoding has been preferred by several communities, such as the
qualitative and rule-based modeling communities. For example, the
quickly adopted package SBML Level 3 “qual” (Chaouiya et al, 2015)
supports software interoperability for qualitative modeling, illus-
trated by the use of CelINOpt (Terfve et al, 2012), which provides a
set of optimal Boolean models that best explains the causal relation-
ships between elements of a signal transduction network and associ-
ated data, and the subsequent use of GINsim (Chaouiya et al, 2012)
or Cell Collective (Helikar et al, 2012) to assess the dynamical proper-
ties of these models. Rule-based modeling can represent models that
are impossible to express as reaction networks, such as polymeriza-
tion (Faeder et al, 2009), or simply impractical to represent due to the
combinatorial number of reactions implied by the rules (Hlavacek
et al, 2003). Storing rule definitions in SBML is now feasible with the
“multi” package, allowing rule-based modeling tools such as
Simmune (Zhang et al, 2013) and BioNetGen (Faeder et al, 2009) to
read and write the same model definitions.

SBML has also eased the automated processing of models to the
point where they have become just another type of data in the life
sciences. SBML is used today as an import/export format by many
databases of mathematical models (Misirli et al, 2014; Norsigian
et al, 2019; Malik-Sheriff et al, 2020), as well as by pathway data-
bases (Caspi et al, 2015; Mi et al, 2016; Fabregat et al, 2017) and
reaction databases (Ganter et al, 2013; Wittig et al, 2017). SBML is
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the preferred format for model curation in BioModels Database
(Malik-Sheriff et al, 2020), not only because of its popularity but
also because of its provisions to precisely encode and annotate
models to support reproducible modeling. SBML is also used to
share models by more generic data management platforms such as
SEEK (Wolstencroft et al, 2016) and comprehensive online simula-
tion environments (e.g., Moraru et al, 2008; Weidemann et al,
2008; Lee et al, 2009; Peters et al, 2017). Moreover, having an
agreed-upon format has facilitated the introduction of better model
management strategies. This includes support for tasks such as
model storage and retrieval (Henkel et al, 2015), version control
(Scharm et al, 2016b), and checking quality and validity (Lieber-
meister, 2008; Lieven et al, 2020). The proliferation of derived
models has led to the development of methods to compare model
structure and semantic annotations (Lambusch et al, 2018), culmi-
nating in the development of several methods to quantify model
similarities (Henkel et al, 2016), that can then be used to improve
the relevance of model searches. Once model elements can be
compared, one can align, combine, and merge different models
(Krause et al, 2010).

A broader impact of SBML as a de facto standard has been the
support of publishers and funding agencies. Many journals, aware
of the challenges surrounding the reproducibility of scientific
results, encourage authors not only to describe their models but also
to make their models available in electronic form. Molecular Systems
Biology was the first supporter of submissions in SBML format (be-
ginning in 2005*%). Today, most journals still avoid requiring a
specific format, though some such as the BMC® and FEBS’ journals
do explicitly encourage authors to submit SBML files as supporting
material for research where it is relevant. Others, such as Biophysi-
cal Journal (Nickerson & Hunter, 2017), recommend authors deposit
models in repositories such as BioModels Database, which encour-
ages the use of common standard formats such as SBML. Many
funding agencies also now have policies related to data sharing, and
some program announcements suggested the use of SBML where
appropriate.®

Finally, the continued development of SBML has stimulated
collaborative work and the creation of consortia. This has led to
better awareness and communication within groups interested in
specific modeling frameworks. A good example is the CoLoMoTo
effort mentioned above; it was launched by researchers who
needed a format to exchange qualitative models between their soft-
ware tools and developed the Qualitative Modeling package for
SBML (Naldi et al, 2015) as the solution. Nevertheless, challenges
remain, as discussed in the next section. These will need to be
confronted to ensure the longevity of SBML as well as continued
developments.

Forthcoming challenges

For nearly two decades, SBML has supported mathematical model-
ing in systems biology by helping to focus the efforts of the commu-
nity and foster a culture of openness and sharing. The field is
evolving rapidly, which presents challenges that the community and
SBML must face.

The first challenge is to remain usable in the face of relentless
growth in model sizes. One of the drivers of larger size is the rising
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SBML Level 3 packages officially part of the standard

Distributions

The “distrib” package (Smith et al, 2020) provides the means to encode information about the distribution and uncertainty of numerical values assigned
to a model element. Biological models often contain elements that have inexact numerical values, since they are based on values that are stochastic in
nature or data that contains uncertainty; however, core SBML has no direct support for encoding values sampled from distributions. The recently-finalized
“distrib” package adds constructs for sampling of random values from probability distributions and describing uncertainty statistics about element values.

Hierarchical model composition

The “comp” package (Smith et al, 2015) allows users to build models from other complete models or from model fragments, as a way to manage com-
plexity and construct composite models. “Submodels” can be described within the same SBML file or linked from external files. A submodel can act as a
template, and the same definition can be reused multiple times in other models to avoid duplication and enable reuse of parts. The “comp” package also
enables submodels to have explicit interfaces (known as ports) for optional black-box encapsulation. Finally, “comp” was designed so that a hierarchical
model can be converted into a single SBML model that does not use any “comp” features, making it readable by software that does not directly support
the package. The library libSBML (Bornstein et al, 2008) provides a facility to do this.

Flux balance constraints

The “fbc” package (Olivier & Bergmann, 2018) provides a means of encoding constraint-based models and optimizations, such as is done in Flux Balance
Analysis (Bordbar et al, 2014). Constructs in the “fbc” package allow for the definition of a list of objectives for minimization or maximization, as well as
flux bounds on reactions and gene-reaction mappings. Additional information such as chemical formula and charge enable further model analyses,
including calculation of reaction mass balances, electron leaks, or implausible sources of matter.

Groups

The “groups” package (Hucka & Smith, 2016) provides constructs to describe conceptual relationships between model elements. Groupings can indicate
classification, partonomy, or merely a collection of things; a group’s meaning can be specified using semantic annotations. Groups have no semantic
meaning and cannot influence the mathematical interpretation of an SBML model.

Multistate, multicomponent, and multicompartment species

The “multi” package (Zhang and Meier-Schellersheim, 2018) manages the combinatorics produced by entities either composed of multiple components,
such as molecular complexes, or that can exist in multiple states, such as proteins with post-translational modifications. With the “multi” package, rules
can be defined for how reactions depend on the states of the entities and their locations. The package adds syntactic constructs for molecular species
types, compartment types, features, binding sites, and bonds. Entire families of molecular complexes sharing certain properties can be defined using pat-
terns created using these constructs.

Qualitative models

The “qual” package (Chaouiya et al, 2015) provides constructs to encode models whose dynamics can be represented by discrete, reachable states con-
nected by state transitions denoting qualitative updates of model elements. Examples include logical regulatory networks (Boolean or multivalued) and
Petri nets. The “qual” package introduces SBML elements to allow the definition of qualitative species, which are used to associate discrete levels of
activities with entity pools, as well as transitions, which define the possible changes between states in the transition graph.

Layout and rendering

The “layout” (Gauges et al, 2015) and “render” (Bergmann et al, 2018) packages extend SBML to allow graphical representations of networks or pathways
to be stored within SBML files. The “layout” package enables the encoding of positions and sizes of graphical elements such as nodes and lines, while
the information about colors, fonts, etc, is defined by the “render” package. This separation presents several advantages. For example, applications can
offer multiple styles for visualizing the same layout of a network map. Most of the essential aspects of a network diagram can be expressed using just
the “layout” package, and thus tools do not necessarily have to implement a full graphics environment if they do not need to support customizing a dia-
gram’s look-and-feel.

Molecular Systems Biology

popularity of genome-scale metabolic models (Bordbar et al, 2014),
which can be produced semi-automatically (Henry et al, 2010).
Modeling approaches have also been developed to combine the use of
several such models (e.g., Bordbar et al, 2011). It is reasonable to
expect models of ecosystems to be produced soon (microbiomes and
their host). Model sizes will also increase as more models of tissues
and organs are exchanged and reused, encouraged by the use of soft-
ware packages that facilitate this approach, such as the open-source
tools CHASTE (Mirams et al, 2013) and CompuCell3D (Swat et al,
2012). The challenge this presents is how to define, organize, and
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manage large models. Meeting the challenge will require a combina-
tion of novel approaches to model storage (e.g., Henkel et al, 2015)
and comparison (e.g., Scharm et al, 2016a,b), as well as more effec-
tive use of SBML Level 3 features. For example, the SBML Hierarchical
Model Composition (“comp”) package (Smith et al, 2015) provides a
way to encode models in SBML out of separate building blocks or from
preexisting models; this can make larger models easier to structure
and maintain, and it is a natural way to construct multiscale models.
Similarly, the Arrays package may help to define and structure larger
models by allowing models to be defined in a more compact form.
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Software infrastructure for SBML

Application Programming Interface (API)

Open-source (LGPL) libraries and code generators help read, write,
manipulate, validate, and transform SBML. They support all Levels and
Versions of SBML, and all Level 3 packages

1 LibSBML (Bornstein et al, 2008) (http://sbml.org/Software/libSBML), writ-
ten in C++, offers interfaces for C, C++, C#, Java, JavaScript, MATLAB,
Octave, Perl, PHP, Python, R, and Ruby

2 JSBML (Rodriguez et al, 2015) (http://sbml.org/Software/]SBML) offers a
pure Java API

3 Deviser (http://sbml.org/Software/Deviser) generates libSBML code for
rapid package prototyping

Sarah M Keating et al

Test Suite

The SBML Test Suite (http://sbml.org/Software/SBML_Test_Suite) helps
developers implement SBML compatibility and helps users check SBML
features supported in software

1 Thousands of test cases for

e Semantic interpretation of models (for both deterministic and
stochastic simulation)

® Syntactic correctness

2 Agraphical front end enables cases to be filtered by Level/Version and
type of test

3 An online database allows results to be uploaded and compared with
results from other simulators

Validation Facilities
Validation software can check files for compliance to the definition of SBML,
good modeling practices, and consistency of units

1 API libraries include built-in validation

2 Online validator has simple user interface (http://sbml.org/Facilities/val
idator)

3 Web services support software access
Validation ensures compliance with:

® SBML syntax

e SBML validation rules published as part of each accepted SBML speci-
fication

Conversion Facilities
Converters (http://sbml.org/Software/Converters) can translate some
other formats to/from SBML

1 Conversion tools support format conversions from MATLAB, BioPAX,
CellML, XPP, SBtab, and others

2 Online services such as SBFC (Rodriguez et al, 2016) convert uploaded
files to a variety of formats

3 AP libraries provide converters between different SBML Levels/Versions
and different SBML constructs

Software Guide

A catalog (http://sbml.org/SBML_Software_Guide) of software applications, libraries, and online services known to support SBML—over 290 entries to date

1 Atabular interface highlights supported SBML features of each software system.

2 Alist interface displays human-readable summaries of software systems.
3 Software can be added to the list upon request.

A related challenge concerns human usability of SBML and simi-
lar XML-based formats. Though SBML is intended for software, not
humans, to use directly, desire for a text-based or spreadsheet-based
equivalent is often voiced (e.g., Kirouac et al, 2019). Various
answers have been developed in the form of text-based notations
(e.g., Gillespie et al, 2006; Smith et al, 2009) and spreadsheet
conventions (e.g., Lubitz et al, 2016), with bidirectional translators
for SBML. These formats have undeniable appeal for many users
and use cases, despite that they do not capture the entirety of SBML
(often having limited or missing facilities to express units, annota-
tions, or SBML packages). Their chief drawback is that they become
error-prone to use as model size increases. Graphical user interfaces
(GUIs; e.g., Funahashi et al, 2003; Hoops et al, 2006; Moraru et al,
2008) can overcome this; software with GUIs can help with the
cognitive burden of tracking large numbers of model elements. On
the other hand, GUIs can be tedious to use when entering large
models, performance of some software does not scale well with
increasing model sizes, and some cannot be controlled programmat-
ically for automation purposes. A middle ground may be domain-
specific modeling languages layered on top of programming
languages such as Python (e.g., Lopez et al, 2013; Olivier et al,
2005. However, these tend to appeal only to users who are comfort-
able with (or willing to take time to learn) the programming
language used as a substrate. Overall, further innovation in this area
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would be welcome, both to help support SBML Level 3 packages
and to help users cope with ever-increasing model sizes.

Because of the diversity of biological phenomena amenable to
mathematical modeling, as well as their scales and properties, it is
likely that a broad variety of modeling approaches will be added to
every researcher’s essential toolbox (Cvijovic et al, 2014). Methods
such as multiagent and lattice approaches are coming into wider use
to represent evolving cell populations, cell migration, and deforma-
tion. Some researchers are experimenting with solutions using exist-
ing SBML packages (Watanabe & Myers, 2016; Varela et al, 2019).
Modeling the development of tissues and organ function may also
require combining these approaches with reaction-diffusion models,
or multiphysics approaches (Nickerson et al, 2016). Population
modeling will need to complement traditional instance-based
systems if we want to take into account patient variability or infor-
mation coming from single-cell measurements (Levin et al, 1997).
The coupling of different approaches within the same simulation
experiment is also becoming more frequent. Biomolecular reactions
modeled using ODEs, Poisson processes, and Flux Balance Analyses
have been coupled in the first whole-cell model (Karr et al, 2015).
At the organ level, liver lobules have been modeled using a combi-
nation of metabolism and multiagent models (Schliess et al, 2014).
Several approaches mixing modeling of cell mechanical properties
and gene regulatory networks or signaling networks have been used
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Examples of SBML use cases

SBML’s impact on computational systems biology includes its facilitation of collaborative work. In multiple instances, it has precipitated entirely new pro-
jects, as illustrated by the examples below.

SBML throughout the model life cycle

Encoding a model in a standard format such as SBML makes it easier to use different software tools for different purposes without format conversion,
and thus makes it easier to leverage the most suitable tools at different points in a workflow. The following is an example. A signaling pathway can be
designed graphically using CellDesigner (Funahashi et al, 2003). The resulting model can then be semi-automatically annotated using the online tool
semanticSBML (Krause et al, 2010). Experimental kinetic information can be retrieved in SBML format from the SABIO-Reaction Kinetics database (Wittig
et al,2017). Tools such as COPASI (Hoops et al, 2006) and PyBioNetFit (Mitra et al, 2019) provide facilities to estimate parameters and to simulate the
model with various algorithms. Other SBML-enabled tools such as Tellurium (Medley et al, 2018) and PySCeS (Olivier et al, 2005) provide capabilities such
as identifiability and bifurcation analysis. Each step of the process applied to a model from creation to publication of results—modeling, simulation, and
analysis—can be documented using notes attached to every model element. The model can even be turned into a publishable document using
SBML2LaTeX (Drager et al, 2009). Finally, the model can be exported from selected modeling tools, together with data and other information all bundled
together in COMBINE Archive format (Bergmann et al, 2014) and published in model repositories such as BioModels Database (Malik-Sheriff et al, 2020).

Pipeline for automated model building

Being able to describe model elements precisely using semantic annotations facilitates the creation of automated pipelines (Drager et al, 2010). Such
pipelines can combine existing models with databases of molecular phenotypes or reaction kinetics (Li et al, 2010). They can also generate models de
novo from data resources, as has been demonstrated by the Path2Models project (Biichel et al, 2013). Path2Models has produced 143,000 SBML models
—all fully annotated—for over 2,600 organisms, by using pathway data. Metabolic pathways were encoded in SBML Level 3 Core while signaling path-
ways were encoded with the SBML “qual” package (Chaouiya et al, 2013). Moreover, constraint-based models of genome-scale reconstruction were pro-
vided for each organism. Other pipelines have now been built, including ones that can systematically generate alternative models for different tissue
types (Wang et al, 2012) and patient data (Uhlen et al, 2017), an important step toward personalized medicine.

Development, sharing, and reuse of genome-scale models of human metabolism

Constraint-based modeling approaches such as Flux Balance Analysis and its variants permit the use of whole-genome reconstructions together with
experimental molecular phenotypes, in order to predict how mutations or different environments affect metabolism as well as predict drug targets and
biomarkers (O’Brien et al, 2015). With the availability of genome-scale metabolic reconstructions, the use of metabolic flux models at the same scale has
been increasing (Bordbar et al, 2014). A recent development in the field has been the curation of consensus metabolic models, in particular for human
metabolism (Brunk et al, 2018). Those community efforts rely on SBML for encoding and sharing the models, including annotations, which are crucial to
being able to reuse the reconstructions later, and also for visual representation using the Layout (Gauges et al, 2015) and Rendering (Bergmann et al,
2018) packages. The Flux Balance Constraint package (Olivier & Bergmann, 2018) enables encoding of the information required for model optimization
and flux calculation. Unambiguous encoding in SBML has been shown to be crucial for interpreting models and precisely computing fluxes (Ebrahim
et al, 2015; Ravikrishnan & Raman, 2015), and new validation tools for genome-scale metabolic models have been made available by the larger commu-
nity (e.g, MEMOTE; Lieven et al, 2020).
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to study morphogenesis (e.g., Tanaka et al, 2015). The coupling of
different approaches can be done within a single hybrid model, or
each model can be simulated using different software and with
dynamic synchronization at run time (Mattioni & Le Novere, 2013).
Once again, the SBML “comp” package can play a role in supporting
these approaches, but other methods and software will be needed in
the future, as well as better support for coupling models at run time
using, for example, SED-ML (Waltemath et al, 2011).

These developments are arising in a landscape where structural
models are sometimes not the central object of study, and instead
function as collection of integrated information. An example of this
is RECON3D, a comprehensive human metabolic network with
metabolite and protein structure information (Brunk et al, 2018).
SBML will continue to have a pivotal role here too. When SBML
was introduced, the state of modeling workflows and software tools
was more primitive and it was natural that a model was self-
contained. SBML-encoded models often had predefined parameter
values (as initial values for state variables or parameters for mathe-
matical expressions), but today, modelers increasingly want to use
the same model with different parameterizations, sometimes with
parameter values expressed as distributions, lists, or ranges rather
than unique values. A project may also use an ensemble of related

© 2020 California Institute of Technology Published under the terms of the CC BY 4

models that differ in parameters or in turning some model elements
on or off (Kuepfer et al, 2007). The semantic annotation of SBML
elements also has become increasingly important, forming a
bedrock for many of the analyses using SBML-encoded models. The
growth in size and scope of annotations has recently led the model-
ing community to propose a standard way of storing annotations in
separate linked files (Neal et al, 2019), relying on the COMBINE
Archive format (Bergmann et al, 2014) to bundle everything
together. Other formats that can complement SBML have been
developed, and further coordination and evolution will undoubtedly
happen in the future. As mentioned above, SED-ML is a format that
provides a way to encode what to do with a model, which comple-
ments SBML and compensates for its lack of features to define
procedures. Finally, experimentation in integrating SBML more
directly with other formats and data also continues. For instance,
preliminary work has shown that SBML can be enriched with SBOL
(Voigt et al, 2018) to provide models of DNA components’ behavior
(Roehner & Myers, 2014), and conversely, ongoing work in support-
ing genome-scale models of metabolism and gene expression
(known as ME-models, Thiele et al, 2012) augments SBML with
SBOL to more fully capture models for use with ME-modeling soft-
ware. Future developments in modeling paradigms may require
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similar flexibility in how models are represented: some may be best
served by implementing new SBML packages, others by extending
existing packages, still others by combining SBML with other
formats.

Besides the technical challenges, social and cultural challenges
also exist for formats such as SBML. One is to continue raising
awareness among researchers, software developers, and funders of
the existence of SBML and related COMBINE standards. Some may
not yet be using SBML simply because they are not aware of it, or
its recent addition of support for many modeling formalisms (Fig 1).
Raising awareness will require continual education and outreach,
especially to students and early-career scientists. Awareness would
be aided by greater promotion on the part of journals and reviewers
of the use of SBML and related formats in paper submission guide-
lines. Despite some progress in this area (discussed in the previous
section), the lack of stronger demands by journals and reviewers is
surely one reason authors are either not aware or not motivated to
publish their models in software-independent formats.

In addition, usability of standard formats depends crucially on
their implementation in software tools, and motivating this work is
another challenge for SBML. A pivotal factor for the success of SBML
has been the extensive software ecosystem, which provides relatively
easy import and export of SBML from popular software systems.
However, implementing full SBML compatibility in software is not a
simple matter, and problems with compatibility in the software
ecosystem can be a significant source of frustration. Improving the
software requires continuous investment in tool development.

That, in turn, is related to a final challenge: obtaining and main-
taining funding. By virtue of not being a native format of any partic-
ular software tool, a format such as SBML may require extra work
to define by consensus, and then again for developers to implement
in software—and still, it will lag behind the leading edge of research
because exchange formats only become important after more than
one software system has something to exchange. Funders may
wonder whether the resources, time and effort spent on standards
development would not be better applied to other goals. However,
these costs must be weighed against the costs to a whole research
field of not having standards—and there are many such costs. To
take one example, models in nonstandard formats are more difficult
to review, verify, and reuse. Journal reviewers may not have access
to the necessary software, or the software may not be well tested,
all of which increase the chances that the published model contains
errors. Researchers can spend substantial time attempting to repro-
duce the results, only to fail. Worse, this is a repeating cost: failures
to reproduce models are rarely published or publicized, which
means an untold number of researchers may spend time (and
research funding) on a futile effort. Funders recognize that too many
research results are irreproducible, and have urged community
action (e.g., Collins & Tabak, 2014). The continued development of
exchange formats, such as SBML, is a crucial and cost-effective
means to enable reproducible research.

Conclusion
SBML and associated software libraries and tools have been instru-

mental in the growth of systems biology. As modeling and simula-
tion grew in popularity, SBML allowed researchers to exchange and
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(reJuse new models in an open, well-supported, interoperable
format. SBML has made possible much of the research pursued by
the authors of this article and also helped us to structure our
thoughts about our models and the biology they represent. Today,
scientists can build, manipulate, annotate, store, reuse, publish, and
connect models to each other and to basic data sources. In effect,
SBML has turned models into a kind of data and transformed model-
ing in biology from an art to an exercise in engineering.

As the field of systems biology continues to grow and address
emerging challenges, SBML will grow along with it. This evolution
will (as it always has) depend on close cooperation between biolo-
gists and software developers. We hope that SBML will continue to
be a source of inspiration for many researchers, especially those
new to the field. In return, may they help develop the next genera-
tion of SBML to support more comprehensive, richer, and more
diverse models, and expand the reach of systems modeling toward
entire cells, organs, and organisms.
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