
EdgeBalance: Model-Based Load Balancing for Network Edge Data Planes

Wei Zhang Abhigyan Sharma∗ Timothy Wood

The George Washington University ∗AT&T Labs Research

Abstract

Edge data centers are an appealing place for telecommunica-

tion providers to offer in-network processing such as VPN

services, security monitoring, and 5G. Placing these network

services closer to users can reduce latency and core network

bandwidth, but the deployment of network functions at the

edge poses several important challenges. Edge data centers

have limited resource capacity, yet network functions are re-

source intensive with strict performance requirements. Repli-

cating services at the edge is needed to meet demand, but

balancing the load across multiple servers can be challenging

due to diverse service costs, server and flow heterogeneity,

and dynamic workload conditions. In this paper, we design

and implement a model-based load balancer EdgeBalance for

edge network data planes. EdgeBalance predicts the CPU

demand of incoming traffic and adaptively distributes flows to

servers to keep them evenly balanced. We overcome several

challenges specific to network processing at the edge to im-

prove throughput and latency over static load balancing and

monitoring-based approaches.

1 Introduction

Edge datacenters running network services such as 5G, VPN,

and broadband alongside 3rd party applications requiring low-

latency [20] face many of the issues of a larger centralized

datacenter such as multi-tenancy and workload dynamics.

However, these challenges are worsened due to: (1) a net-

work edge has fewer resources to begin with, and requires

constant adjustment among tenants to meet their time-varying

demands [15]; (2) a network edge runs computationally de-

manding applications and must meet strict throughput and

latency requirements. Network functions (NFs) comprising a

network service stretch performance of CPUs to their limits

to support line rate performance [10], and are often deployed

at the edge in part to reduce latency. Thus many applications

running on the edge are expected to have real-time perfor-

mance requirements, which requires resource allocation to

provide stronger guarantees [23].

Existing work on resource management for network ser-

vices has focused on two distinct parts of the problem. First,

coarse-grained resource management is addressed using algo-

rithms for placement of VMs and containers running network

functions, e.g., E2 [18], and Stratos [8]. Second, fine-grained

load management is achieved through load balancers that dis-

tribute work across service replicas. This can be achieved with

the connection-level load balancers used for cloud servers,

but as we show, such load balancers are not a good fit for the

needs of NFs, especially at the edge.

Connection load balancers can use static or dynamic poli-

cies for dispatching connections. Many of today’s cloud load

balancers, Ananta [19], Maglev [7], adopt simple static poli-

cies. But, more sophisticated policies are needed such as treat-

ing “elephant" flows separately to avoid impacting perfor-

mance for other “mice" flows at the edge. Further, connec-

tion load balancing at the network edge has several unique

constraints compared to prior work on designing dynamic

policies [2, 4, 5, 12, 14, 14]. (1) A connection’s duration or its

bandwidth cannot be estimated at the start. (2) A connection

assigned to an NF cannot be migrated to (or restarted at) a

different server. (3) The CPU use of NFs cannot be measured

by the cloud infrastructure because high-performance NFs

often use polling for network IO and report 100% CPU use

on cores independent of the traffic they are processing [6].

(4) NFs (e.g., NATs) are often middleboxes that transform

outgoing packets, yet affinity must be kept to ensure the re-

turn traffic also passes through the same function. These

constraints necessitate a new load balancing approach.

Our primary contribution is the design, implementation

and a preliminary evaluation of a model-based load balanc-

ing technique for edge network data planes. There are two

components to this solution. First is a model to estimate the

load of a network service on a core as a product of its per-

packet processing cost and the rate of packets processed by

the service on that core. Second is a local feedback-driven

controller (specifically, a Proportional-Integral-Derivative, or

a PID, controller [26]) that adapts load balancing weights if

1



our estimated load on cores becomes unbalanced due to traffic

changes, e.g., an arrival of an elephant flow or surge in traffic

demand of a service. Importantly, neither the model nor the

feedback controller requires load monitoring on NFs and uses

mostly local information to create dynamic policies.

We implement our approach as a DPDK-based stateful load

balancer named EdgeBalance. We evaluate EdgeBalance on

the CloudLab testbed [22] for load balancing network services

implemented in BESS [3]. Our results show that:

• EdgeBalance’s network model can estimate CPU load with

an absolute error of less than 5% for NFs with varying

computation costs and at varying traffic loads.

• In a workload with elephant and mice flows, EdgeBalance

achieves up to 50% higher throughput than the best static

load balancing and achieves up to 1/3-rd the latency of a

monitoring-based approach.

• For a time-varying workload with homogeneous flows,

EdgeBalance achieves an equal load among servers in 1

sec which is several seconds faster than a static policy.

2 Why a new load balancer?

We explain why existing connection load balancers, in partic-

ular cloud load balancers [7, 16, 17, 19], are not sufficient to

meet network edge load balancing needs.

Bidirectional affinity: A critical requirement for a net-

work edge load balancer is to maintain affinity of a connection

to an instance of a network service [19]. In fact, several cloud

load balancers such as Ananta and Maglev provide affinity

despite a changing pool of servers. However, they provide

affinity only for an inbound connection to a server. Traffic

sent by a server on the connection bypasses the load balancer

for efficiency.

Thus while many cloud load balancers are able to perform

optimizations such as bypassing the load balancer on the re-

turn path from a server, a network edge load balancer like

EdgeBalance must ensure bi-directional flow affinity for cor-

rect behavior. Unfortunately, this eliminates the possibility

of applying many existing load balancing frameworks in a

network edge context.

Limitations of static load balancing: Many cloud load

balancers support weighted load balancing across service in-

stances. These weights are used to determine the fraction

of new connections assigned to an instance. But, how these

weights are to be set is often left unspecified [17, 19]. In

practice, cloud operators can use simple static policies, e.g.,

weight of an instance is proportional to number of its cores.

But, simplistic static policies can be highly sub-optimal, espe-

cially for heterogeneous flows, shown in evaluation section.

Challenges in dynamic load balancing: The above exam-

ple shows that dynamic weight tuning is needed, but using

dynamic weights has two main challenges. The first challenge

is that of controller design. Dynamic control can be prone to

oscillations and herd behavior if weights are tuned using stale

traffic measurements or if the controller aggressively adjusts

weights in response to the input [24]. Hence, designing and

evaluating a stable controller for network services that bal-

ances controller responsiveness and stability is an important

question. The second challenge is that of measuring load on

network service instances. Weight adjustments depend on the

current load of services, but high performance NFs are imple-

mented using frameworks such as DPDK that perform polled

network IO. Due to polling, they report 100% CPU utilization

independent of the traffic they are processing. Thus inferring

the load on NFs comprising a network service is the second

important question.

3 EdgeBalance design

EdgeBalance is a dynamic, bidirectional load balancer for a

network edge datacenter. To evenly balance the load across

servers and cores, it adopts a model-based approach to esti-

mate loads and applies a PID controller using local informa-

tion to dispatch connections across network services.

Design goals: EdgeBalance aims to provide

• Bidirectional affinity: Provide affinity for inbound and out-

bound connections for NFs and other cloud applications,

even when NFs modify packet headers.

• Dynamic load balancing: Dynamically equalize the load

on all servers and cores to absorb any unexpected load on a

server core.

• Fast convergence: Respond quickly to load imbalance due

to flow skew, traffic fluctuations, etc..

• High performance: Achieve a high throughput in terms of

packets and connections and add minimal latency.

Architecture overview: EdgeBalance comprises a data

plane forwarder and control plane elements – policy, topology

controller and monitor – shown in Figure 1. Its packet process-

ing path goes through the forwarder, which can be replicated

across multiple threads for scalability. The forwarder must

efficiently redirect incoming packets to an edge server run-

ning the appropriate network service. A thread processes each

packet in a "run to completion" manner by fetching the packet

from a NIC RX queue, choosing a next-hop server, tracking

the connection through a flow table, encapsulating the packet

and delivering the packet into a NIC TX queue. Later, we will

describe how the packet is encapsulated. To avoid contention

between threads, each forwarder maintains its own statistics

about the flows it processes. This data is then periodically ag-

gregated by the monitoring component, which tracks statistics

on a per-service basis. The topology controller tracks which

services are active on which servers and cores and can start

and stop additional replicas. Information from these compo-

nents is fed to the policy component, which guides balancing

decisions made by the forwarders. On every forwarder core, a

garbage cleaner executes periodically to clean up the inactive

2



EdgeBalance

RX Queue
Connection

Tracking
Packet
Encap

TX Queue

Garbage Cleaner

Monitor

Policy
Topology 
Controller

Miss

Control Plane

Data Plane

Forwarder

Figure 1: EdgeBalance architecture

flow entries from its flow table.

Bidirectional affinity: Figure 2 shows the sequence of

nodes traversed by packets in both directions.

Processing at EdgeBalance: When a packet arrives (step

1), a datacenter router sends the incoming traffic from a client

into EdgeBalance. Upon the first packet of a connection, Edge-

Balance records the flow’s 5-tuple of <src IP, dst IP, proto,

src Port, dst Port> and its chosen network service <server

ID, core ID, network service ID> in a flow table entry. Then,

subsequent packets in this flow follow the same path. When a

new flow in one direction arrives, EdgeBalance estimates the

reverse flow information by swapping source IP, destination

IP, source port and destination port. It then inserts a reverse

flow entry with the same <server ID, core ID, network service

ID> as the forward flow. For consistency, garbage cleaner will

remove both of the flow entries from the flow table at the same

time. Then, EdgeBalance encapsulates the chosen network

service information including server ID, core ID, network

service ID, and an update flag (set to 0) into a VXLAN header

with the source mac address of the EdgeBalance server and

destination mac address of the chosen server (step 2).

Processing at edge server: An edge server assists Edge-

Balance in realizing bidirectional affinity. An edge server’s

data plane, called a datapath node, comprises a deparser mod-

ule, a nexthop module and one or more network services

implemented by NFs. The deparser module parses the outer

VXLAN header and gets the core ID and service ID, and then

delivers the packet to right core and network service. If an

NF modifies the packet header, it will set the update flag in

the packet meta data to 1. When nexthop module sees that

the update flag is set, it resends it to EdgeBalance, which

allows EdgeBalance to learn the network service mapping

for the transformed packets (not shown in Figure 2). If no

network service changes the packet header, the nexthop mod-

ule will bypass EdgeBalance and send the packet towards the

destination server (step 3).

Packets from server to client follow a similar procedure as

shown in step 4-6. In particular, EdgeBalance uses the flow

entry learned in steps 1-3 to send the packet to the correct in-

stance of the network service (step 5) to achieve bidirectional

affinity even if a network service modifies packet headers.

Model-based load estimation: The use of polling mode

on datapath nodes makes it hard to measure the real CPU

Client

Edge Cloud

ServerRouter EdgeBalance

Datapath Node Datapath Node

1

2 Encap 5

NF1 NF2 NF3 NF1 NF2 NF3

3

Decap

4

Decap

6

…

Router

Figure 2: EdgeBalance packet path

usage with traditional tools. Even if the datapath node can

report its CPU usage to load balancer, it can easily send stale

or noisy data, since in-network traffic changes rapidly. Edge-

Balance takes another approach. If we know (1) the network

services running on each core, (2) the per packet processing

cost for a network service and (3) the number of packets for

each network service, then we could predict the CPU usage

at the load balancer instead of measuring it at datapath nodes

as described next.

For question (1), the topology controller has the knowledge

of which cores a network service is running on. For question

(2), the processing cost of a network service is affected by

server heterogeneity. When a datapath node starts and network

service services are deployed, datapath internally generates

some UDP packets to go through each network service and

then measures the processing cost and reports the tuple of

<server ID, core id, service id, processing cost> to the monitor

component on EdgeBalance. For question (3), from Figure

2, we can see that EdgeBalance handles every packet going

through a network service. But, it needs to efficiently count

the packet arrival rate for each service on a core. A naive

way would be to aggregate the number of packets by stepping

through the flow table. However, when the number of flows is

huge, the aggregation time will dramatically increase and in-

cur large prediction delay. Instead, since the number of cores

and services are fixed, EdgeBalance maintains a three dimen-

sional array of <server ID, core ID, service ID> to record

the packet counts, which ensures that the CPU load can be

predicted efficiently as follows:

Predict_CPUi j =
n

∑
k=1

(Costi jk ∗Ratei jk)

Predict_CPUi j is the predicted CPU for <server i, core j>. n

is the total number of network services running on <server i,

core j>. Ratei jk and Costi jk are the packet rate and processing

cost of network service k for <server i, core j>.

Dynamic load balancing via PID controller: EdgeBal-

ance aims to evenly balance the load across servers and cores

running network services. It does so using a PID controller

to update the load balancing weight of each core at fixed in-

tervals. Initally, the system sets an equal weight for all cores.

The target for the controller is to set weights to ensure that

the predicted CPU usage of a core Predict_CPUi j remains

3







7 Discussion

This paper has shown promising preliminary results and the

potential of using PID controller and CPU prediction models

to dynamically distribute flows across network service chains

in an edge environment. We will discuss key challenges for

edge load balancing and look for feedback on our future work,

including:

Edge load balancing: We have argued that the edge envi-

ronment demands a new type of load balancer, particularly

when the edge is being used for network functions. We seek

feedback on what load balancing challenges attendees see as

the most pressing at the edge, such as balancing the complex-

ity of the load balancer’s policies versus the overhead they

incur.

Overhead and cost of state: Despite the trend towards

stateless services, we argue that EdgeBalance needs to track

flow state for flow affinity in case the backend server pool

changes dynamically (addition or removal). We expect the

discussion can focus in part on when stateful load balancers

are required, and how stateful systems can be designed to

achieve high scale.

Prediction robustness: In our preliminary experiments,

we evaluate the accuracy of CPU prediction model by varying

the length of service chains and computation cost on Intel

X86 platform. We plan to evaluate the robustness of the model

by conducting experiments on other hardware platforms with

other common network functions such as NATs, IDSes, and

stateful firewalls.

Cache interference: To efficiently use resources, multiple

NFs can be consolidated on the same server. In such a de-

ployment, NFs contend for resources such as LLC (last level

cache). For stateful NFs, the processing cost of a packet may

vary based on cache pollution level. We plan to investigate

and incorporate the cache interference in the CPU prediction

model.

Scale-up and scale-out scalability: Scalability is a key

factor for a load balancer. The load balancer itself should add

minimum latency to the users’ traffic. EdgeBalance leverages

lockless and per core data structure to efficiently scale up

across the cores. We are measuring the maximum throughput

by varying the number of cores. In a large scale network

deployment, multiple load balancers are required to avoid a

bottleneck at the load balancer itself. We are investigating

how to exchange minimum information across load balancers

to efficiently balance the flows for a large scale deployment.

Stateful NFs and real traces: Multiple network functions

are stateful, which means they need to manage and maintain

per-flow state internally. In future, we will use advanced state-

ful network functions (e.g., a stateful IDS) in conjuction with

real network edge traces to evaluate EdgeBalance.

Acknowledgements: This work was supported in part by

NSF grants CNS-1253575 and CNS-1763548.

References

[1] João Taveira Araújo, Lorenzo Saino, Lennert Buytenhek,

and Raul Landa. Balancing on the edge: Transport affin-

ity without network state. In 15th {USENIX} Sympo-

sium on Networked Systems Design and Implementation

({NSDI} 18), pages 111–124, 2018.

[2] Mohit Aron, Darren Sanders, Peter Druschel, and Willy

Zwaenepoel. Scalable content-aware request distribu-

tion in cluster-based network servers. In USENIX An-

nual Technical Conference, General Track, pages 323–

336, 2000.

[3] BESS. Berkeley Extensible Software Switch. https:

//github.com/NetSys/bess. Accessed: 2018-06-06.

[4] Emiliano Casalicchio and Michele Colajanni. A client-

aware dispatching algorithm for web clusters providing

multiple services. WWW, 1:535–544, 2001.

[5] Mark E. Crovella, Mor Harchol-Balter, and Cristina D.

Murta. Task assignment in a distributed system: Improv-

ing performance by unbalancing load, 1997.

[6] DPDK. DPDK data plane development kit. https:

//www.dpdk.org. Accessed: 2018-06-06.

[7] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody

Smith, Roman Kononov, Eric Mann-Hielscher, Ardas

Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-

nah Dylan Hosein. Maglev: A fast and reliable soft-

ware network load balancer. In 13th {USENIX} Sympo-

sium on Networked Systems Design and Implementation

({NSDI} 16), pages 523–535, 2016.

[8] Aaron Gember, Anand Krishnamurthy, Saul St

John, Robert Grandl, Xiaoyang Gao, Ashok Anand,

Theophilus Benson, Vyas Sekar, and Aditya Akella.

Stratos: A network-aware orchestration layer for virtual

middleboxes in clouds. arXiv preprint arXiv:1305.0209,

2013.

[9] Aaron Gember-Jacobson, Raajay Viswanathan,

Chaithan Prakash, Robert Grandl, Junaid Khalid,

Sourav Das, and Aditya Akella. Opennf: Enabling inno-

vation in network function control. In ACM SIGCOMM

Computer Communication Review, volume 44, pages

163–174. ACM, 2014.

[10] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Se-

ungjoon Lee. Network functions virtualization: Chal-

lenges and opportunities for innovations, 2015.

[11] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,

Dongsu Han, and Sylvia Ratnasamy. Softnic: A software

nic to augment hardware. Technical Report UCB/EECS-

2015-155, EECS Department, University of California,

Berkeley, May 2015.

6



[12] Mor Harchol-Balter. Task assignment with unknown du-

ration. In Proceedings 20th IEEE International Confer-

ence on Distributed Computing Systems, pages 214–224.

IEEE, 2000.

[13] Mor Harchol-Balter and Allen B Downey. Exploiting

process lifetime distributions for dynamic load balanc-

ing. ACM Transactions on Computer Systems (TOCS),

15(3):253–285, 1997.

[14] Guerney DH Hunt, Germán S Goldszmidt, Richard P

King, and Rajat Mukherjee. Network dispatcher: A con-

nection router for scalable internet services. Computer

Networks and ISDN Systems, 30(1-7):347–357, 1998.

[15] Sumit Maheshwari, Dipankar Raychaudhuri, Ivan

Seskar, and Francesco Bronzino. Scalability and

performance evaluation of edge cloud systems for

latency constrained applications. In 2018 IEEE/ACM

Symposium on Edge Computing (SEC), pages 286–299.

IEEE, 2018.

[16] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun

Lee, and Minlan Yu. Silkroad: Making stateful layer-

4 load balancing fast and cheap using switching asics.

In Proceedings of the Conference of the ACM Special

Interest Group on Data Communication, SIGCOMM

’17, 2017.

[17] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu,

and Costin Raiciu. Stateless datacenter load-balancing

with beamer. In 15th {USENIX} Symposium on Net-

worked Systems Design and Implementation ({NSDI}
18), pages 125–139, 2018.

[18] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,

Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott

Shenker. E2: a framework for nfv applications. In Pro-

ceedings of the 25th Symposium on Operating Systems

Principles, pages 121–136. ACM, 2015.

[19] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin

Murthy, Albert Greenberg, David A Maltz, Randy Kern,

Hemant Kumar, Marios Zikos, Hongyu Wu, et al.

Ananta: Cloud scale load balancing. In ACM SIGCOMM

Computer Communication Review, volume 43, pages

207–218. ACM, 2013.

[20] Larry Peterson, Ali Al-Shabibi, Tom Anshutz, Scott

Baker, Andy Bavier, Saurav Das, Jonathan Hart, Guru

Palukar, and William Snow. Central office re-architected

as a data center. IEEE Communications Magazine,

54(10):96–101, 2016.

[21] Pktgen-DPDK. Traffic generator: Pktgen-dpdk. https:

//git.dpdk.org/apps/pktgen-dpdk/.

[22] Robert Ricci, Eric Eide, and CloudLab Team. Intro-

ducing cloudlab: Scientific infrastructure for advancing

cloud architectures and applications. ; login:: the maga-

zine of USENIX & SAGE, 39(6):36–38, 2014.

[23] Mahadev Satyanarayanan. The emergence of edge com-

puting. Computer, 50(1):30–39, 2017.

[24] Abhigyan Sharma, Arun Venkataramani, and Antonio A

Rocha. Pros & cons of model-based bandwidth control

for client-assisted content delivery. In 2014 sixth in-

ternational conference on communication systems and

networks (COMSNETS), pages 1–8. IEEE, 2014.

[25] Trex. Cisco traffic generator: Trex. https://

github.com/cisco-system-traffic-generator/

trex-core.

[26] Wikipedia. PID Contoller. https://en.wikipedia.

org/wiki/PID_controller. Accessed: 2019-11-11.

7


	Introduction
	Why a new load balancer?
	EdgeBalance design
	Evaluation
	Related work
	Conclusions
	Discussion

