
Rumor Has It: Optimizing the Belief Propagation Algorithm
for Parallel Processing

Michael Trotter
The George Washington University

Washington, DC, USA

trotsky@gwu.edu

Timothy Wood
The George Washington University

Washington, DC, USA

timwood@gwu.edu

H. Howie Huang
The George Washington University

Washington, DC, USA

howie@gwu.edu

ABSTRACT

By modelling how the probability distributions of individuals’ states

evolve as new information flows through a network, belief prop-

agation has broad applicability ranging from image correction to

virus propagation to even social networks. Yet, its scant implemen-

tations confine themselves largely to the realm of small Bayesian

networks. Applications of the algorithm to graphs of large scale are

thus unfortunately out of reach.

To promote its broad acceptance, we enable belief propagation

for both small and large scale graphs utilizing GPU processing. We

therefore explore a host of optimizations including a new simple yet

extensible input format enabling belief propagation to operate at mas-

sive scale, along with significant workload processing updates and

meticulous memory management to enable our implementation to

outperform prior works in terms of raw execution time and input size

on a single machine. Utilizing a suite of parallelization technologies

and techniques against a diverse set of graphs, we demonstrate that

our implementations can efficiently process even massive networks,

achieving up to nearly 121x speedups versus our control yet opti-

mized single threaded implementations while supporting graphs of

over ten million nodes in size in contrast to previous works’ support

for thousands of nodes using CPU-based multi-core and host solu-

tions. To assist in choosing the optimal implementation for a given

graph, we provide a promising method utilizing a random forest

classifier and graph metadata with a nearly 95% F1-score from our

initial benchmarking and is portable to different GPU architectures

to achieve over an F1-score of over 72% accuracy and a speedup of

nearly 183x versus our control running in this new environment.

KEYWORDS

GPGPU, Parallelization, graph processing, parallel processing, Bayesian

Networks, Markov Random Fields

ACM Reference Format:

Michael Trotter, Timothy Wood, and H. Howie Huang. 2020. Rumor Has

It: Optimizing the Belief Propagation Algorithm for Parallel Processing. In

49th International Conference on Parallel Processing - ICPP : Workshops

(ICPP Workshops ’20), August 17–20, 2020, Edmonton, AB, Canada. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3409390.3409401

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8868-9/20/08. . . $15.00
https://doi.org/10.1145/3409390.3409401

1 INTRODUCTION

Born from “attempts to devise a computational model for humans’

inferential reasoning, namely, the mechanism by which people in-

tegrate data from multiple sources and generate a coherent inter-

pretation of that data” [13, p. 241], belief propagation (BP) models

broadly how a change to a node begins a chain reaction of updates

which permeates throughout a graph [10]. Such a simple yet general

model has thus wide utility in countless fields including physics,

medical imaging, artificial intelligence, computer vision, language

understanding, sociology and error correction [18]. However, the

few public implementations of BP limit themselves to graphs of

thousands of nodes in size in the inefficient Bayesian Interchange

Format (BIF) [4]. Thus, any application beyond such a small scale

is simply infeasible with what is available.

Moreover, BP’s amenability to parallelization holds much promise

for optimization research [13]. In the context of trees, updates flow

forward from the root nodes level by level to the terminal nodes

and then backwards from the terminal nodes to the source nodes

and thus can execute concurrently for all nodes in a given level

[10]. Furthermore, a variation of the algorithm called the loopy BP

better suits parallelization and supports general graphs versus just

trees [12]. In this case, all nodes in the graph emit their updates at

once continuously until the states of each of the nodes converge

individually within a given threshold [7]. This broadcasting has no

dependencies aside from the previous state of the graph beforehand

and thus runs simultaneously per iteration until the nodes converge

[12]. Thus, loopy BP in particular is ripe for further refinement.

Alas, there are many obstacles which stymie this endeavor. Op-

erators must take into account the numerous processing intricacies

inherent to the algorithm. Without doing so, naive optimization at-

tempts falter, as we demonstrate with our introductory analysis of

the OpenMP and OpenACC-based parallelization efforts. Hence, we

utilize a host of fine-grained improvements and techniques to realize

the potential of the loopy BP algorithm.

Herein, we describe in depth Credo which can perform BP ef-

ficiently on both large and small graphs by leveraging a suite of

refined solutions and a classification method to automatically match

the best solution to a given graph. To that end, we first detail two

valid approaches to parallelizing loopy BP. We then briefly discuss

our initial parallelization efforts with OpenMP and OpenACC before

exploring our CUDA work in depth. Moreover, we provide a method

to automatically execute the best suited implementation for a given

graph by its metadata a priori with portability in mind. Addition-

ally, we provide memory and processing optimizations to maximize

the performance of our custom built solution. Furthermore, to sup-

port processing graphs of a far larger scale compared to previous

works, we alter an existing large scale graph file format called the

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada Michael Trotter, Timothy Wood, and H. Howie Huang

Matrix Market file format utilized already to store graphs of sizes

beyond billions of nodes [16]. Finally, we evaluate all of our efforts

with a diverse benchmark of graphs. We thus make the following

contributions to realize the full utility of BP:

• A more flexible input file format to support massive sized

graphs to represent Bayesian networks, Markov Random

Fields or any similarly complex graph beyond the thousands

of nodes scale of the existing standard

• Optimized methods for processing graphs by node or edge

encompassing improvements such as memory footprint mini-

mization and supporting work queues tuned to this task

• Support for these methods on both CPU and GPU platforms

to enable our system to significantly outperform prior work

• A method for automatically matching the ideal implementa-

tion from our suite of approaches to an arbitrary graph ahead

of time based solely on its metadata which is portable to

different GPU environments

2 BACKGROUND

2.1 Belief Propagation

Belief propagation (BP) models how updates to one or more nodes’

internal set of beliefs percolate throughout the whole network [10].

The original networks used for BP are the Bayesian network and

Markov Random Field (MRF), which represent potentially complex

cause and effect relationships [13][3]. In particular, BP allows for de-

scribing how these relationships change when some new information

becomes available.

Bayesian networks detail how the probability distribution of an

event being in one of several states, i.e. its belief about its current

state, represented as the nodes in the graph depend on the distribu-

tions of their parent nodes in the graph [18]. Using the prior joint

probability distributions of an event occurring given n causes in

the form p(x |x0,x1, ...,xn) and treating the parents’ states as prior

distributions, Bayesian networks enable the calculation of posterior

distributions of events occurring [13]. The posterior calculation is

of value when there is new information about an event and how that

change impacts the graph in a process called observation [3].

During observation, one now knows for certain if an event oc-

curs and consequently statically sets the probability of that event

occurring which in turn sets of a chain of updates to the posterior

probabilities throughout the network in a process called belief prop-

agation [13].

We provide a slightly modified version of a popular example of a

Bayesian network: the family-out problem [3]. A family has a house

with a dog. They leave the dog outside the house if they are out or

the dog is being punished. Similarly, they may leave the lights on

when they are out. Finally, the dog may bark if it is out. The prior

probabilities and joint distributions are all given in Figure 1.

Although the direct posterior calculations in the family-out are

simple enough, they become unwieldy for more complex Bayesian

networks and typically necessitate the Markov assumption, wherein

an event node’s state only depends upon the immediate parents’

states and not on the other nodes in the dependency chain [3] How-

ever, this move necessitates using MRFs instead of Bayesian net-

works, as the latter does not allow for this assumption yet the former

family-out

(fo)

bowl-

problem(bp)

light-on (lo)
dog-out

(do)

hear-bark

(hb)

p(fo) 0.15

p(¬fo) 0.85

p(lo | fo) 0.6

p(¬lo | fo) 0.4

p(lo | ¬fo) 0.05

p(¬lo | ¬fo) 0.95

p(bp) 0.01

p(¬bp) 0.99

p(do | fo,bp) 0.99

p(do | fo,¬bp) 0.9

p(do | ¬fo,bp) 0.97

p(do | ¬fo,¬bp) 0.3

p(¬do | fo,bp) 0.01

p(¬do | fo,¬bp) 0.1

p(¬do | ¬ fo,bp) 0.03

p(¬do | ¬fo,¬bp) 0.7

p(hb | do) 0.7

p(¬hb | do) 0.3

p(hb | ¬do) 0.01

p(¬hb | ¬do) 0.99

Figure 1: The Prior Probabilities of the Root Nodes and the Associated

Joint Distributions Probabilities of the Children Nodes of the family-out

Problem

does at the expense of only allowing for undirected pairwise rela-

tionships [18].

The calculation of the state of an individual node xi with parents

x j and a joint probability distribution p(xi |x j) linking the two thus

is shown below.

p(xi) =

(i, j)÷

(j,i)∈E

p(xi |x j) (1)

Using the Markov assumption, each node in the dependency

chain must compute its new state before broadcasting it down the

chain. Due to the undirected nature of the MRF graph though, child

events can now affect their parents’ own states. Such an event occurs

with multiple parents, and in such a case, the child node does not

broadcast its update to the parent that initially prompted its update

[7]. Thus, this calculation must occur in both directions except for

the additional case of statically fixated observed nodes. Yet another

complication to this computation is that an event needs not have a

single binary state.

Indeed, an event may be in one of a wide range of discrete states

beyond merely true or false. Therefore, the probability of an event

being a given state is of particular value [18]. This marginal prob-

ability computation requires normalizing the final probabilities of

the event’s states [13]. Thus, the belief calculation of a node xi
with parent node x j , child node xk , functions �(i, j) = p(x j)p(xi |x j)

and � (i,k) = p(xk)p(xi |xk) both subject to the aforementioned

constraints and the marginalization factor Z is shown in the below

equation:

p(xi) =
1

Z

(i, j)÷

(j,i)∈E

�(i, j)

(i,k)÷

(i,k)∈E

� (i,k) (2)

To simplify processing, one can break up the BP into three phases.

First, one emits the �-based updates before emitting the � -based

updates. Afterwards, one calculates the marginals. A major limitation

of this method is that the updates must be ordered. The �-value

emissions must start from the root nodes and work their way down

the tree. Likewise, the� -value emissions must start from the terminal

nodes work their way up the tree to the roots.

An alternative to this processing is the loopy BP variant as shown

in Algorithm 1 as described by Gonzalez et al. [5].

This form provides two major benefits. First, all nodes emit all �-

values simultaneously before likewise emitting all� -values. Second,

these emissions relax the constraint that the graph needs to be acyclic.

Rumor Has It: Optimizing the Belief Propagation Algorithm for Parallel Processing ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada

Algorithm 1 Loopy Belief Propagation

1: sum ← ∞

2: while sum ≥ threshold do

3: sum ← 0

4: for all � ∈ V do

5: belie f spre�ious ← �belief s
6: for all p ∈ V | (p,�) ∈ E do

7: j ← joint_probabilit�_matrix[p,�]

8: update ← compute_update(pbelief s , j)

9: send(update,�)

10: �belief s ← combine_updates(�)

11: mar�inalize(�belief s)

12: sum+ = di f f (�belief s ,belie f spre�ious)

However, this method comes with the penalty that requires it to

run until the nodes’ beliefs converge rather than simply twice as

before. Although we implement both versions of the algorithm, an

initial, sequentially-processed evaluation reveals that the original BP

approach has enormous overheads due to determining the levels of

a graph and processing the graph by-level versus the by-node and

by-edge methods of implementing loopy BP presented next.

2.1.1 Comparison of Belief Propagation Algorithms. Using

the 10x40, 100x400, 1kx4k, 10kx4k, 100kx400k, 200kx800k,

400kx1600k, 600kx2400k, 800kx3200k, 1Mx4M and 2Mx8M syn-

thetic graphs alone presented in Table 1 in a single-threaded envi-

ronment, the non-loopy BP implementation is 1032x slower than the

by-edge version and 44x slower than the by-node 10kx40k bench-

mark. This gap in performance widens to at most 11427x and 379x

for the 2Mx8M benchmark respectively. The traditional BP approach

is on average circa 1014x and 300x slower than the by-edge and by-

node versions. Given such a drastic performance difference between

the two algorithms and loopy BP’s better affinity for parallelization,

we ultimately focus on it for the remainder of this paper.

2.2 Algorithmic Refinements for Large Graphs

We refine our broad description of the algorithm to reduce the mem-

ory footprint and to improve performance. Although loopy BP de-

fines unique joint probabilities per edge, this requirement represents

by far the largest amount of memory consumption for the graph.

The joint probability matrix is a floating point matrix whose dimen-

sions are that of the source and terminal nodes’ belief arrays as

shown in the Figure 1 as the probability tables below the fo and bp

nodes. Loading and unloading a separate matrix per belief update

computation also represents a significant performance and mem-

ory bottleneck. Thus, we come to a conclusion: this requirement is

untenable for large graphs.

Indeed, the matrix stems from the statistics assembled to define

the beliefs of a particular node given a specific neighbor’s beliefs [3].

For large scale networks, assembling such statistics is unwieldy and

necessitates using a single estimation for all nodes [3]. For instance,

the operator assumes that the same error rate for any pixel applies

to all others in an image or that a virus affects all people identically.

Consequently, this consideration drastically reduces the size of the

data and enables us to represent networks of millions of nodes.

To gauge the utility of a single joint probability matrix, we provide

a simple demonstration. With this alteration in place and utilizing a

micro-benchmark composed of a subset of just the graphs ranging

from 10x40 to 800kx1200k of the previously used synthetic graphs in

Section 2.1.1, we observe a 2x speedup on average with both C and

the CUDA Edge implementations. Given the high memory access

cost on the GPU and the CUDA Node application’s many more

memory accesses compared to the CUDA Edge version, the impact

of this change is far starker, yielding over 25x speedups for the

larger graphs. Unfortunately, this optimization does break Credo’s

ability to support the original use case and forces the network to

support nodes with beliefs of a constant size. For graphs not in that

form, our initial version of Credo lacking this refinement would

suffice for most cases, for they would also benefit from Credo’s

other processing optimizations.

2.3 GPU Architecture

GPU architecture departs significantly from CPU architecture and

being aware of its intricacies is vital to maximizing of the platform

[15]. A CUDA-compatible GPU consists of a set of Streaming Mul-

tiprocessors (SMX) consisting of numerous CUDA cores on which

a single GPU thread executes [11]. GPU code or kernels execute

on these SMX units in parallel by marshalling a grid consisting of

individual thread blocks running on a single SMX [1]. Within each

thread block are individual warps of 32 threads which may execute

concurrently as shown in Figure 2 [17]. Typically, each of these

Thread

Thread Block

Thread Grid

Local Memory Per-Block Shared
Memory

Global Memory

Read-Only
Constant

Memory Cache

Re-bindable
Texture Memory

Cache

Figure 2: GPU SMX Architecture with the Associated Memory Hierar-

chy

threads perform the same instruction on different sections of data in

parallel similar to SIMD architecture in Flynn’s taxonomy [15].

Threads have several options for placing said data which have

huge performance impacts. Each SMX has local memory used for

stack allocated data [15]. Additionally, each thread block is able to

access a small shared memory block for each thread block depending

on the GPU generation capable of fast memory read and write access

[11]. Constant and texture memory caches enable quick reads with

the difference being that the former must be set before the kernel

executes while the latter can be reset during kernel execution [15].

Finally, global memory, while slower than the others, is capable

storing large data in the Video RAM (VRAM) of the GPU [1].

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada Michael Trotter, Timothy Wood, and H. Howie Huang

Figure 2 shows the relationships between threads and these different

types of memory.

Given the benefits and drawbacks of each of these types of mem-

ory, the programmer must consequently take care in placing data

onto the GPU.

2.4 OpenMP and OpenACC Parallelization

Given the difficulty writing such meticulous code with low-level

APIs like CUDA, the programmer can instead use higher-level ones

like OpenMP and OpenACC. They utilize pragma statements which

the compiler then interprets at compile-time to generate parallelized

code for each target platform. These pragma statements include

information about data sharing, atomic operations, reduction opera-

tions, vectorization and in the case of OpenACC, placement on the

GPU versus CPU. Nevertheless, they lack the fine grained control

afforded by the likes of CUDA and come with additional overheads.

We utilize OpenMP to distribute work across 8 CPU cores and Ope-

nACC for the same across 1920 GPU cores as part of our preliminary

attempts at parallelization with the all of the aforementioned opti-

mizations enabled, save for the work queues which require finer

grained control than what OpenACC offers to implement. We apply

these statements directly on our fully-optimized, single-threaded C

implementations’ main loops which govern collecting the updates

from the parent nodes, compute the updated states and send out the

new information. The latter two operations also avail themselves

of the vectorization statements to optimize the vector and matrix

operations involved therein. Due to some aspects of the application

having critical sections, we additionally utilize the atomic statements

to ensure correctness. Moreover, the convergence check calculates

via a reduction hint the sum of the differences between the previous

and current iterations of the nodes’ beliefs. Finally, we utilize Ope-

nACC’s data placement directives to finely manage data transfers

between the CPU and GPU.

Unfortunately, our effort with OpenMP yields poor results. The

performance actually decreases for 131 of the 132 benchmark graphs

in Table 1 with the average performance penalty for running with 2

core case is circa 1.17x, with 4 cores is 1.65x and with all 8 cores

is 4.03x. There is simply not enough work per thread to justify the

overhead of spinning and shutting down threads in the aforemen-

tioned blocks of code as determined by gprof, taking on average

less than 1ms to complete. Additionally, the tail distribution of the

work described earlier which is a poor fit for the default scheduler as

determined by Intel vTune, yet switching to the dynamic scheduler

worsened the problem due to its additional overheads. Compounding

the problem is the memory stalls and hyperthreading due to its usage

of shared resources, yet disabling it only reduces the overhead to an

average of 1.1x for 2 threads and 1.2x for 4 threads. Alas, our effort

with OpenACC fares not much better.

At best, OpenACC offers a 1.25x increase in performance for the

K21 graph with the Edge paradigm. However, BP executes for far

more iterations compared with our other implementations due to

OpenACC’s API failing to precisely compute the convergence check.

Thus, they largely run for longer times than their C implementation

counterparts by terminating much closer to the cap on iterations.

However, the OpenACC execution times per iteration can be smaller,

resulting in the slightly better performance of such benchmarks like

2Mx8M and LJ. We are only able to achieve these results by keeping

most of the data on the GPU after the initial load and only transfer the

convergence check after predetermined number of batched iterations

after overriding the default behavior of the OpenACC scheduler

to try to schedule full transfers of the data between the CPU and

GPU after every iteration. Although both OpenACC and OpenMP

offer poor justification for parallelization, our efforts here act as a

guide for our CUDA work which is uninhibited by such scheduler

and platform overheads while providing the necessary finer grained

control to achieve high performance.

3 CREDO DESIGN

3.1 Overview

In the following subsections, we describe the various components

of Credo. The full system itself comprises of the optimized C and

CUDA implementations derived from our dual processing tech-

niques. Based on a given input graph and its metadata, Credo chooses

the best from these implementations before executing BP with that

method. To support this general functionality, Credo utilizes the

components described in the below subsections.

3.2 Input Processing

In order to begin processing massive graphs, we first need to load

them. There are two standards for this data: the Bayesian Interchange

Format (BIF) and its XML-based sibling (XML-BIF) [4]. The for-

mer necessitates constructing a custom parser for its context-free

grammar (CFG), while the latter requires an XML parser. To be-

gin assembling the input graphs, both parsers must load the entire

input file into memory first and then utilize hooks for each of the

grammars’ production rules for actions like defining a node and its

metadata and constructing an edge. Compounding this problem is

that both formats greatly exceed the size of the extracted graph. The

simple family-out network has a 2KB BIF file size compared to hand-

ful of bytes used for its in-memory representation, and even a graph

of 413 nodes and 602 edges occupying 5.3MB. Indeed, we could not

hold graphs larger than 100,000 nodes in memory on a machine with

32GB of memory. Consequently, we would only be able to operate

on 7 of the 34 binary belief benchmark graphs presented later on in

Table 1. Moreover, the overhead of building the graphs is far larger

than the actual BP execution time. Thus, we seek to obviate these

issues by defining a new input format better suited for large scale

graphs.

We propose a new format derived from the Matrix Market (MTX)

format. Although MTX can support graphs of massive size, it sim-

ply lists out the edges of the graph by node ids after a header line

defining the graph dimensions. Given that MRFs have many floating

point numbers for the probabilities of each node’s states, i.e. beliefs,

and the edge’s joint probability matrix, we break up the format in

two: one for node data and the other for edge data. For both files, our

structure is largely the same: two identifiers followed by the proba-

bilities for the node’s states or the edge’s joint probability matrix. In

preserving the original input format’s basic structure of edges linked

together by node ids, our node input format appears to be nothing but

self-cycling nodes. However, this format is simple enough that it can

be read line-by-line first by nodes and then edges without loading

either fully into memory unlike BIF and BIF-XML. Additionally,

Rumor Has It: Optimizing the Belief Propagation Algorithm for Parallel Processing ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada

parsing it is trivial, requiring a handful of simple regular expressions

rather than complex grammars. Moreover, it is general enough to

support any network composed of the interaction of random vari-

ables and their state probabilities. Thus, Credo can support graphs of

millions of nodes, compared with the thousands of nodes of previous

works [12] [5] [6], with our dual processing methods combined with

our other optimizations.

3.2.1 Comparison of Input Processors. We conduct a simple

set of benchmarks to demonstrate the value of this format. The

simple family-out graph presented in Figure 1 takes 162µs and 638µs

to process with the BIF and BIF-XML parsers respectively. The

largest BIF graph we have is circa of 1000 nodes and 2000 edges

in size and takes 21ms to parse, while a similar 1000 node and

2000 XML-BIF file takes 83ms to parse. However, our custom MTX

parser takes a mere 2ms to parse an equivalent file and produce the

same graph logically. The largest BIF-XML file of 100,000 nodes

and 200,000 edges we can parse without exceeding the 32GB of

memory for our test system takes 8.4s. In comparison, our MTX-

based parser can parse a similar 100,000 and 400,000 graph in .28s.

Our BP methods take between 0.05 and 4.7s to process that graph.

Indeed, our parser significantly reduces total execution time while

being capable of parsing a graph of over 250 million edges.

3.3 Per-Node and Per-Edge Processing

Credo supports two possible ways of processing a graph using BP:

by node and edge. In the former, each edge pulls the current state

of the parent node and combines it with the joint probability matrix

along the edge and the child node’s state to produce the new state of

the child node. In contrast, per-node processing pulls the states of

all the parent nodes of a given node, combines them with the joint

probability matrix for the edges linking the parents with the child

before combining the updates with the child node’s state to produce

its new state as shown in Figure 3. Thus, when treating the undirected

edges of an MRF as containing two separate edges to account for

observed nodes being statically set, these two approaches enable

Credo to perform the � and� calculations described in Equation 2

and implement lines 6-10 of Algorithm 1. All other BP operations

such as marginalization and the convergence check are the same

across these designs. However, there are some trade-offs between

the two which impact the performance of these approaches.

Parent

1

Parent

2

Parent

N

Update 1

Update 2

Update N

Node
Combined

Update

Parent

1

Parent

2

Parent

N

Update 1

Update 2
Node

Legend
Work Done by 1 Thread

Combined

Update

(Computed

Atomically)

Update N

By Node By Edge

Figure 3: Processing by Node and Edge

In particular, there is an issue of the overhead of extra atomic oper-

ations versus memory lookups when moving from a single threaded

environment to a multi-threaded one as shown in Figure 3. With

the edge approach, a child node may have many parents and thus

must combine each edge’s contribution to its new state atomically to

avoid race conditions. In contrast, the per-node approach does not

require the use of extra atomic operations but performs more mem-

ory lookups by querying the state of each parent node for a given

node. Additionally, these lookups occur in random order, hampering

effective caching. Afterwards, the node approach must combine all

of these states in memory with the joint probability matrix for the

combined update message sent to the recipient, while the edge ap-

proach merely only has one state to combine for its message. Given

there are far more edges than nodes in a graph, the latter-based ap-

proach requires more iterations to converge than the former. Yet, as

our evaluation demonstrates later on, deciding which of these two

different approaches for a given graph is not immediately obvious

and Credo provides a mechanism to help choose that approach which

includes both CPU and GPU-based implementations.

3.4 Data Structures

For all of our implementations, we make numerous data structure

optimizations to minimize the size of the graph in memory, to min-

imize costly memory lookups and to maximize performance. We

therefore only store the minimum necessary information about the

graph which is the nodes’ names and beliefs and indices for the edges

between nodes. Before our processing refinement, we also store the

joint probability matrices per edge. To minimize the overhead of

examining each of the edges of the graph during BP computation,

Credo indexes the edges’ nodes and utilize compressed adjacency

lists to represent the edges. Thus, Credo keeps itself largely to these

indices and only touches the actual edge and node values when

performing the actual mathematics involved in BP. However, we

consider two avenues to go about implementing these structures.

In particular, we have options of a struct of arrays (SoA) and an

array of structs (AoS) for storing the belief and joint probability

data, which are simply sequences of single precision floating point

numbers and their dimensions. During the initial development of

Credo, we implement both before the other optimizations below

and perform a limited analysis with the synthetic benchmark graphs

up to and including 100,000 nodes in size (10x40 to 100kx400k)

used for the algorithm comparisons in Section 2.1.1 and profile

the code using valgrind’s cachegrind utility. With the SoA design,

we have large, flattened, parallel-indexed arrays consisting for the

probabilities and dimensions, while for the AoS paradigm, we have

arrays holding structs consisting of a statically allocated float array

and unsigned integers for the dimensions. Regardless of the graph

and processing approach, we see that the AoS approach has circa

56% fewer data cache reads and writes. Thus, we opt to only use the

AoS design with Credo.

3.5 Work Queues

From profiling, we observe that most nodes converge quickly after

a few iterations and that graph convergence becomes dependent on

a few nodes. To only process these nodes, we utilize work queues

for both approaches. Instead of operating on a full list of node or

edge indices depending on the approach, the queues merely consist

of the indices of unconverged nodes or edges. However, after every

iteration, the queue clears itself and populates atomically with the

indices of elements which have yet to converge to a given threshold.

As a result, this computation can drastically reduce the processing

time overall at the cost of additional overhead in managing the queue.

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada Michael Trotter, Timothy Wood, and H. Howie Huang

they break the images down significantly to 256x256 blocks for the

actual computations which does introduce additional errors into their

results from not fully processing the graph. Thus, there is still much

opportunity for efficiently parallelizing BP for large graphs without

making the sacrifices to input size or actual processing.

Indeed, efforts utilizing parallelization techniques ranging from

dynamically scheduling to MapReduce and MPI have found great

success. Nevertheless, they too limit themselves to small graphs. Ma

et al. [12] implement a custom scheduler using pthreads to efficiently

schedule updates on a 40-core CPU to process graphs of roughly

4,000 nodes in 4s, while we can process a similar graph in about

1ms. Gonzalez et al. [5] utilize MapReduce to parallelize traditional

BP by performing the updates at a given level of a tree in parallel

to process a 460,000 node graph in about 12s, while in another

effort, Gonzalez et al.[6] take 6.4s for a 58,000 edge graph using 40

servers using pthreads and OpenMPI. In contrast, Credo can process

graphs of comparable size in 0.7s and 0.06s respectively. Kang

et al. [9] successfully employ BP to process massive-scale graphs

consisting of billions of edges using the message passing interface

(MPI) library, although this effort necessitates reprocessing the graph

into a form amenable to this distributed environment. Additionally,

due to network latencies from the frequent message passing inherent

to BP, their solution takes hours to process our benchmark graphs as

previewed during our analysis. However, Credo can process similar

graphs in 2-3s. In contrast to these previous works, our GPU design

for BP does not suffer from the overhead of CPU-based pthreads,

does not limit itself to trees in terms of input graph structure and can

process considerably larger graphs of at least an order of magnitude

greater size in seconds rather than hours.

5.2 Graph GPU-based Frameworks

Several GPU-based frameworks enable application developers to

process massive graphs using common algorithms such as single-

source shortest path (SSSP) and PageRank [17] such as Gunrock,

nvGRAPH and Groute [1] [15] [17]. Although they do not imple-

ment BP and are heavily reliant on the CSR format, there are several

optimizations they utilize of note. nvGRAPH [15] borrows the con-

cept of semi-rings from linear algebra to genericize common graph

operations and provides a custom scheduler optimized for semi-rings.

Gunrock abstracts all graph operations as a series of advance, filter

and computation steps operating either on nodes or edges utilizing

optimizations such as kernel fusion, push-pull traversal, idempotent

traversal and priority queues. Groute [1] asynchronous execution

using a custom scheduler for multi-GPU support using nVIDIA’s

NCCL library. However, all of these optimizations are useless to

complex graph algorithms like BP which do not adhere directly to

the CSR format and its assumption of one floating point number or

integer per node. Consequently, these frameworks cannot perform

complex graph processing on the level of BP, despite their impres-

sive results. Meanwhile, our solution can while also profiting from

several of their optimizations.

6 CONCLUSIONS

Through the course of our research, we successfully enable belief

propagation to run for small and large scale graphs utilizing Credo.

To support this endeavor, we present a simple yet flexible input

format to represent those graphs. We provide a host of designs

utilizing significant workload, memory and threading management

optimizations to handle a plethora of benchmark graphs. We even

attain speedups over 120x in some cases versus our control single

threaded implementations on our initial evaluation system and over

184x speedup in other environments. Finally, we describe a viable,

portable method for selecting a priori the best implementation for a

given graph and process the graph using that method automatically

with Credo.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grants 1763548, 1618706

and 1717774. We also would like to thank Huang Liu for his input

in the early parts of the project.

REFERENCES
[1] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute:

An asynchronous multi-GPU programming model for irregular computations. In
ACM SIGPLAN Notices, Vol. 52. ACM, 235–248.

[2] Filippo Bistaffa, Alessandro Farinelli, and Nicola Bombieri. 2014. Optimising
memory management for belief propagation in junction trees using GPGPUs. In
2014 20th IEEE International Conference on Parallel and Distributed Systems

(ICPADS). IEEE, 526–533.
[3] Eugene Charniak. 1991. Bayesian networks without tears. AI magazine 12, 4

(1991), 50–50.
[4] Gal Elidan. 1998. Bayesian Network Repository. http://www.cs.huji.ac.il/~galel/

Repository/.
[5] Joseph Gonzalez, Yucheng Low, and Carlos Guestrin. 2009. Residual splash for

optimally parallelizing belief propagation. In Artificial Intelligence and Statistics.
177–184.

[6] Joseph Gonzalez, Yucheng Low, and Carlos Guestrin. 2010. Parallel splash belief

propagation. Technical Report. CARNEGIE-MELLON UNIV PITTSBURGH
PA OFFICE OF SPONSORED RESEARCH.

[7] Joseph E Gonzalez, Yucheng Low, Carlos Guestrin, and David O’Hallaron. 2009.
Distributed parallel inference on large factor graphs. In Proceedings of the Twenty-

Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press, 203–212.
[8] Scott Grauer-Gray, Chandra Kambhamettu, and Kannappan Palaniappan. 2008.

GPU implementation of belief propagation using CUDA for cloud tracking and
reconstruction. In 2008 IAPR Workshop on Pattern Recognition in Remote Sensing

(PRRS 2008). IEEE, 1–4.
[9] U Kang, Duen Horng Chau, and Christos Faloutsos. 2011. Mining large graphs: Al-

gorithms, inference, and discoveries. In 2011 IEEE 27th International Conference

on Data Engineering. IEEE, 243–254.
[10] Frank R Kschischang, Brendan J Frey, Hans-Andrea Loeliger, et al. 2001. Factor

graphs and the sum-product algorithm. IEEE Transactions on information theory

47, 2 (2001), 498–519.
[11] Hang Liu and H Howie Huang. 2015. Enterprise: breadth-first graph traver-

sal on GPUs. In SC’15: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.
[12] Nam Ma, Yinglong Xia, and Viktor K Prasanna. 2012. Task parallel implemen-

tation of belief propagation in factor graphs. In 2012 IEEE 26th International

Parallel and Distributed Processing Symposium Workshops & PhD Forum. IEEE,
1944–1953.

[13] Judea Pearl. 1986. Fusion, propagation, and structuring in belief networks. Artifi-

cial intelligence 29, 3 (1986), 241–288.
[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, et al. 2011. Scikit-learn:

Machine Learning in Python. Journal of Machine Learning Research (2011).
[15] nVidia Corporation. 2019. CUDA Toolkit Documentation. https://docs.nvidia.

com/cuda/
[16] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with

Interactive Graph Analytics and Visualization. In AAAI. http://networkrepository.
com

[17] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, et al. 2016. Gun-
rock: A high-performance graph processing library on the GPU. In ACM SIGPLAN

Notices.
[18] Jonathan S Yedidia, William T Freeman, and Yair Weiss. 2003. Understanding

belief propagation and its generalizations. Exploring artificial intelligence in the

new millennium 8 (2003), 236–239.

