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In the presence of inertia-gravity waves, the geostrophic and hydrostatic balance that
characterises the slow dynamics of rapidly rotating, strongly stratified flows holds in
a time-averaged sense and applies to the Lagrangian-mean velocity and buoyancy. We
give an elementary derivation of this wave-averaged balance and illustrate its accuracy
in numerical solutions of the three-dimensional Boussinesq equations, using a simple
configuration in which vertically planar near-inertial waves interact with a barotropic
anticylonic vortex. We further use the conservation of the wave-averaged potential
vorticity to predict the change in the barotropic vortex induced by the waves.
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1. Introduction

Our understanding of the large-scale dynamics of the atmosphere and ocean rests on the
concept of geostrophic balance: motion with time scales much longer than the inertial
time scale f~!, with f the Coriolis parameter, is assumed to dominate, resulting in the
familiar balance between Coriolis force, buoyancy and pressure gradients. The idea of
dominant slow motion has stimulated decades of research extending balance beyond
geostrophy to define dynamics which filter out fast motion to a high degree of accuracy
— that is, dynamics restricted to a suitably defined slow manifold (e.g. Machenhauer
1977; Leith 1980; Allen & Newberger 1993; Warn et al. 1995; McIntyre & Norton
2000; Mohebalhojeh & Dritschel 2001; Vanneste 2013; Kafiabad & Bartello 2017, 2018).
However, the amplitude of the fast motion, e.g. in the form of inertia-gravity waves, can
often be large, corresponding to states well away from the slow manifold. For instance,
the velocities associated with near-inertial waves (NIWs) in the ocean frequently exceed
those of the (vortical) balanced motion (e.g. Alford et al. 2016). There is, therefore, a
need to reassess the notion of balance to account for the impact of waves. This can be
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achieved using reduced models which, rather than filtering the waves, average over their
rapidly oscillating phases to describe the slow interactions between waves and vortical
flow. We refer to these as wave-averaged models. Bretherton (1971), Grimshaw (1975) and,
more recently, Wagner & Young (2015) showed that wave averaging naturally leads to a
generalised-Lagrangian-mean (GLM) description of the flow, in which averaging is carried
out at fixed particle label rather than fixed Eulerian position. Wave-averaged models can
therefore be interpreted as approximations to the GLM equations of Andrews & MclIntyre
(1978) (see Biihler (2014) for an introduction to GLM). The wave-averaged models of
interactions between NIWs and quasi-geostrophic flow derived by Xie & Vanneste (2015)
and Wagner & Young (2016) fall into this category. Salmon (2016) provides an interesting
variational perspective into this class of models in which weakly nonlinear internal waves
interact perturbatively with quasi-geostrophic flow.

One of the most striking predictions of wave-averaged and GLM theories is that a form
of hydrostatic and geostrophic balance continues to hold in the presence of strong waves,
but that this balance applies to the Lagrangian mean flow, in the sense that

fzxat = -V +blz, (L1)

where z is the vertical unit vector, #" and b" are the Lagrangian-mean velocity and
buoyancy, and T is a mean pressure-like scalar that includes a quadratic wave-averaged
contribution (Moore 1970; Wagner & Young 2015; Xie & Vanneste 2015; Gilbert &
Vanneste 2018; Thomas, Biihler & Smith 2018). The balance in (1.1) follows expeditiously
by simplification of the exact GLM momentum equation (Andrews & MclIntyre (1978),
theorem I) in the small Rossby number limit. In § 3 we provide an alternative derivation
of (1.1) proceeding from the Eulerian equations.

The Lagrangian-mean velocity, #" in (1.1), is the sum of Eulerian-mean and Stokes
velocities,

d"=u+ua’, whereds =& -Vu, (1.2)

with & and &’ = & denoting wave displacement and velocity and the overline denoting
(Eulerian) time averaging. The appearance of the Stokes velocity #° in the Coriolis
term implies the existence of the Stokes—Coriolis force fz x &5 whose importance for
shallow currents driven by surface gravity waves has long been recognised (e.g. Ursell
& Deacon 1950; Hasselmann 1970; Huang 1979; Leibovich 1980; Biihler 2014). Here
we are concerned with the Stokes—Coriolis force associated with internal gravity waves
which operates in the ocean’s interior. Equation (1.1) is a remarkable generalisation of
the familiar geostrophic balance, with practical implications, e.g. for the interpretation
of ocean velocities inferred from satellite altimetry data, yet (1.1) is not widely known.
Another prediction of wave-averaged and GLM theories is the material conservation of
a form of potential vorticity (PV) which combines the PV of the mean flow with a
wave-averaged contribution. Together with (1.1) this leads to a wave-averaged form of
quasi-geostrophic dynamics which captures the feedback exerted by waves on the mean
flow.

The aim of this paper is to illustrate the validity and usefulness of the wave-averaged
geostrophic balance and PV conservation by testing these relations against numerical
solutions of the three-dimensional Boussinesq equations. Applying wave-averaged
relations to numerical simulations poses difficulties related to the definition of a suitable
time average and the estimation of particle displacements &’ in (1.2). We sidestep these
issues by focussing on a simple configuration: an NIW, initially with no horizontal
dependence, and the vertical structure of a plane travelling wave, is superimposed on
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an axisymmetric (Gaussian) barotropic anticyclonic vortex. This configuration has the
advantage that, because the NIW is approximately linear, it retains a simple vertical
and temporal structure proportional to exp(i(mz — ft)), with m the vertical wavenumber.
Time averaging can therefore be replaced by a straightforward vertical averaging and the
Eulerian-mean component of the flow can be identified with the barotropic component.
Moreover, it turns out that for NIWs, the Stokes drift #° can be deduced from the wave
kinetic energy, thus circumventing the need to estimate the displacements &'.

We describe our numerical simulation of the interaction between NIWs and an
anticyclonic vortex in § 2. The wave evolution follows a broadly understood scenario:
after a rapid adjustment, wave energy concentrates in the vortex core, giving rise to an
approximately axisymmetric trapped structure which is modulated periodically in time
(Llewellyn Smith 1999). Our focus is on the response of the mean flow to this wave
pattern. In § 3, we briefly sketch a derivation of the wave-averaged balance (1.1) and
of the wave-averaged PV. Particularising this to the case of vertically planar inertial
wave, following Rocha, Wagner & Young (2018), we relate (i) mean vertical vorticity to
mean pressure and wave energy, and (ii) wave-induced change of mean vorticity to wave
energy using PV conservation. We assess the accuracy of these predictions in numerical
solutions and find remarkably good agreement in spite of the complexity of the full
three-dimensional Boussinesq model and of the fact that the strong scaling assumptions
required by the theory are only marginally satisfied for the parameters chosen. Our results
illustrate the value of wave-averaged theories for the analysis of geophysical flows in the
context of three-dimensional nonlinear dynamics.

2. Numerical solution of the Boussinesq equations
We analyse solutions of the non-hydrostatic Boussinesq equations for an initial condition

consisting of an NIW superimposed on a barotropic anticyclonic vortex with the initial
vertical vorticity

to(r) = —Rofe™" 14, @1

where r is the radial coordinate, a the vortex radius and Ro the maximum Rossby number,

Ro = |€0|max/f' (22)

The NIW is initially horizontally uniform, with vertical structure e with vertical
wavenumber m and initial energy Ep. In addition to the Rossby number, the flow is
characterised by the Burger number

Bu = N?/(fma)?, (2.3)

where the inverse wavenumber m~! and vortex radius a are used to define the characteristic
vertical and horizontal scales, respectively. We focus on the regime where both Ro and Bu
are small, as required for nearly geostrophic mean dynamics and NIW dynamics (Young
& Ben Jelloul 1997).

The Boussinesq equations are solved in a triply periodic domain, using a code adapted
from that of Waite & Bartello (2006), which relies on a dealiased pseudospectral method
and a third-order Adams—Bashforth scheme with time step 0.06/f. The (27)? x 27/36
domain is discretised using a 1152% x 96 uniform grid. A hyperdissipation of the form
v (32 + 8y2)4 + vZBZS is used for the momentum and density equations. The simulation
parameters are listed in table 1. The domain size is much larger than the vortex radius
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f N a m Ro Bu Ey vy v,
200 1600 0.45 288 0.05 00038 12 5x1078® 5x10°2

Table 1. Simulation parameters. The horizontal domain size, L = 2, determines the unit of length; the unit
of time is defined so that the initial energy density of the NIW is Ey = 1/2. The vortex strength is such that
the initial Eulerian domain-averaged mean-flow kinetic energy density is 0.1; the Gaussian vortex in (2.1) has
maximum azimuthal velocity 0.32Rofa = 1.45 at r = 1.13a.

a)..-...
Eo10

Figure 1. (a) Horizontal slices of wave kinetic energy (' 2 + 2) /2, (b) vertical vorticity ¢ and (c¢) change

in Eulerian-mean vertical vorticity ;_’ — ¢o at times (from left to right) = 0, 20.4, 43.2, 76.3, 99.2 and 122.1
inertial periods 27t /f.

P — 00
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(21t /a ~ 14) to mitigate the effect of waves re-entering from the boundaries. The NIW is
initialised with a horizontal velocity

(ug, vy) = (cosmz, sinmz); 2.4)

thus the initial NIW kinetic energy density is Ey = (”0 + ;) ) /2 =1/2. The vortex
strength is such that the Eulerian mean-flow kinetic energy density is 0.1.
The evolution of the NIW in the presence of a vortex is illustrated by the sequence of

snapshots of horizontal slices shown in figure 1. The NIW kinetic energy (¢ 2 2) /218
displayed in the top row, the vertical vorticity in the middle row and the (barotropic) mean
vorticity in the bottom row (this is also the Eulerian mean vorticity). The wave-energy
concentration is modulated periodically in time, with a period much larger than the inertial
period. The dynamics of the vertical vorticity ¢ is dominated by the fast oscillation at
the inertial frequency induced by NIW advection of ¢o. This oscillation is filtered out by
vertical averaging, leaving an Eulerian mean vorticity ¢ that is almost axisymmetric and
oscillates slowly in unison with the wave energy.

In the top row of figure 1 the NIW energy level in the vortex core increases by over a
factor of five above that of the initial condition (2.4). This focussing by the mean flow
results in an approximately axisymmetric trapped structure; this is a finite-amplitude,
near-inertial normal mode of the vortex (Llewellyn Smith 1999). In anticipation of the
strong wave expansion in (3.2) below, we emphasise that this concentration of NIW energy
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happens even if the mean-flow velocity is much less than the NIW velocity: weak mean
flows shift the lowest frequency of the internal wave band to f + ¢ /2 (Kunze 1985; Young
& Ben Jelloul 1997). Thus vortices with ¢ /2 < 0 support trapped modes with frequencies
slightly less than f, and the initial condition (2.4) projects onto this mode. We now turn to
the mean-flow effects of this trapped mode.

3. Wave-averaged analysis

We first derive the wave-averaged geostrophic balance (1.1) and wave-averaged PV
conservation for general inertia-gravity waves, then consider their application to NIWs
and the numerical solution of § 2.

3.1. The strong-wave expansion

We provide only an informal sketch of the derivation and refer the reader to Wagner &
Young (2015) for details (and Thomas et al. (2018) for related shallow-water results). We
start with the Boussinesq equations

u+u-Vu+fzxu+ Vp = bz, 3.1a)
b+ u-Vb+ N*w =0, (3.1b)
V-u=0. (3.1¢)

For simplicity we take the Brunt—Viisild frequency N constant (see Wagner & Young
(2015) for the non-constant case).

We assume that the flow consists of fast waves, with small amplitude ¢ <« 1, interacting
with a slow flow, with smaller amplitude £2. This is the strong-wave assumption which
makes it possible to capture the impact of the waves on the flow without the need to carry
out the perturbation expansion to an unwieldy high order. The flow and wave amplitudes
are assumed to vary on the slow time scale of quasi-geostrophic dynamics, which is

O(¢™%f) in our notation. We expand all dynamical fields as
u=cu +e’u+---. (3.2)

Here the prime identifies the wave component, the overbar the Eulerian-mean component
obtained by averaging over the fast wave time scale, and the dots include a rapidly varying
0(e?) term as well as O(&?) terms. Introducing (3.2) into (3.1) gives, at order &, the linear
inertia-gravity-wave equations

u,+fzxu +Vp =0z, (3.3a)
b, + N*w =0, (3.3b)
V.d =0. (3.3¢)

Averaging the next-order equations gives

W -Vu +fzxu+Vp=bz, (3.4a)
W Vb + N =0, (3.4b)
V-u=0. (3.4¢)
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We can rewrite the nonlinear terms in (3.4a) in terms of the wave displacement &’. For
instance, we have

u-Vu =-§.Vu, (3.5a)
=fzx & -Vu + & -V)Vp — (& -V)bz (3.5b)
=fzx u’ + Vip° — bz (3.5¢)

In passing from (3.5b) to (3.5¢) we have used the remarkable result
(&' -V)Vp' = 3V(E - Vp) = 3Vp’, (3.6)

where p° = &' . Vp/ is the Stokes pressure. The identity (3.6) is established in Wagner
& Young (2015) and a simplified proof is given in appendix A. Using (3.5¢) the mean
momentum equations in (3.4a) are reduced to the wave-averaged balance equations (1.1)
with

bt =b+5° and 7 =p+1p° (3.7a,b)

where b5 =& .Vl is the Stokes buoyancy. Finally, with u' - Vb = —& . Vb, =
N2’ . Vw/, one finds from (3.4b) that wX = w + wS =0.

It is natural to introduce the stream function v/ = 7t/f to write the components of the
wave-averaged balance relations (1.1) as

i ==y YL0) and Bt =yl (3.8a,b)

z°

mirroring the familiar geostrophic and hydrostatic relations of quasi-geostrophy. The
vorticity of the Lagrangian-mean flow is then

b=k —ul = Ayt (3.9)

where A = 83 + 8y2 is the horizontal Laplacian. We emphasise that ¥ and ¢ are the
stream function and vorticity corresponding the Lagrangian-mean velocity (i, v%), but
are not themselves Lagrangian means of any specific fields. This is evident from the factor

1/2in (3.7a,b) and the fact that & £ ¢ + &' - V¢’ (the difference is related to the curl of
the pseudomomentum, see e.g. Biihler (2014) or Gilbert & Vanneste (2018)).

3.2. Wave-averaged balance with NIWs

The horizontal velocity («/, v") of the vertically planar NIWs can be written in the complex
form

W(x,y, 2,0 +iv'(x,y, 2, 1) = ¢(x,y, t) exp(i(mz — ft)), (3.10)

where ¢ is a slowly varying complex amplitude, known as the back-rotated velocity. The
form in (3.10) is an excellent approximation for the waves in our simulation. It makes clear
that vertical averaging is equivalent to time averaging over the fast wave time scale. The

wave kinetic energy is (u/ 24 2) /2 = |$|?/2 and thus the top row of figure 1 shows the
evolution of |¢|? /2. The back-rotated velocity ¢ evolves on the slow time scale e~2t, where
¢ is the order parameter in the strong-wave expansion (3.2). This long-term evolution is
obtained by proceeding beyond the leading-order wave equation in (3.3) so that mean-flow
effects, such as advection and ¢-refraction, are revealed in the Young and Ben Jelloul
(known as YBJ) equation (Young & Ben Jelloul 1997; Asselin & Young 2019, 2020).

911 R1-6


https://doi.org/10.1017/jfm.2020.1032
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. UCSD University of California San Diego, on 28 Jan 2021 at 17:46:07, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2020.1032

Wave-averaged balance

(@) | 1=4324 ‘ (b) 1=76.30

=500 500

—1000 r 1000 |

1500 ¢ 1500

—2000 | —-2000

0 0.2 0.4 0.6 0.8 1.0
r

r

Figure 2. Radial profiles of f times the Lagrangian- and Eulerian-mean vertical vorticity and of Ap. The times
(a) t =43.2 and (b) t = 76.3 inertial periods correspond to maximally concentrated and nearly uniform wave
energy, respectively.

Using the back-rotated velocity ¢ dramatically simplifies the wave-averaged balance
(1.1). First, p’ ~ 0 for NIWs, so © = p and taking the horizontal divergence of (1.1) gives

fet = Ap. (3.11)

Second, for vertically planar NIWs the horizontal part of the Stokes velocity can be
computed as

@, v°) = (Ay, —Ay), where A = |$|*/(2f) (3.12)

is the wave action density, whose negative plays the role of a stream function for the Stokes
velocity (see Rocha et al. (2018) and appendix A). Combining (3.11) and (3.12) relates the
Eulerian-mean vertical vorticity to the pressure according to

(¢ —AA) = Ap. (3.13)

This is the form of wave-averaged geostrophy that we test in our numerical simulation.
Figure 2 shows radial profiles (obtained by azimuthal averaging) of the Eulerian-mean
vorticity ¢, vorticity of the Lagrangian-mean flow ¢% and horizontal Laplacian of mean
pressure Ap evaluated from the simulation. Figure 2 shows snapshots at two times
corresponding to a maximum in the wave-energy concentration (panel a) and to a nearly
uniform wave field (panel b). It is clear that, when the wave energy is non-uniform
(panel a), geostrophic balance holds to a much better accuracy in the wave-averaged sense
(3.11) than in the conventional sense: it is the Lagrangian-mean velocity, rather than the
Eulerian-mean velocity, that is in geostrophic balance.

We have verified that the small difference between ¢~ and Ap in figure 2 results from the
cyclostrophic correction to vortex geostrophy (not shown). One restriction on the utility
of wave-averaged balance is that the Stokes—Coriolis force, proportional to fi®, should
be larger than non-wave ageostrophic terms such as the aforementioned cyclostrophic
correction. The formal justification of this restriction is in (3.2): the Stokes—Coriolis force
is of order £ while the non-wave ageostrophic terms are of order £*. For the numerical
solution summarised in table 1 there is not a large difference between the mean and
NIW kinetic energies, e.g. the maximum vortex velocity is only a factor of approximately
two smaller than the maximum NIW velocity attained at t = 43.2. Nonetheless, in this
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numerical solution the wave-averaged correction to geostrophic balance is much more
important than cyclostrophic effects and other higher-order non-wave corrections to
balance.

3.3. Potential vorticity

We can go beyond the diagnostic relation (3.8a,b) and make dynamical predictions using
the conservation of PV. After removing the constant contribution N2f and scaling by N,
the PV can be written as

q = vy — tty +fb/N* + (V x u) - Vb/N>. (3.14)
Because the linearised inertia-gravity wave equations (3.3) imply that v/, — u/y + b,/ N? =

0, the PV is an O(e?) quantity. Its material conservation d;¢ + u - Vg = 0 shows that its
leading-order approximation is evolving on the slow, O(¢ ~2f~!), time scale and hence that
it can be approximated by its time average. Using this we obtain, to leading order,

q =" +fPYL/N? =05 + ity — fB3/N* + (V x ) - V' /N?, (3.15)

qW

where (3.8a,b) has been used. The first two terms on the right-hand side of (3.15)
make up the familiar quasi-geostrophic PV, here involving the stream function of the
Lagrangian-mean flow. The remaining terms constitute the wave PV denoted ¢". We note
that the wave-averaged geostrophic balance and PV conservation under advection by "
also follow directly from GLM theory (Andrews & Mclntyre 1978; Biihler & Mclntyre
1998; Holmes-Cerfon, Biihler & Ferrari 2011; Xie & Vanneste 2015; Gilbert & Vanneste
2018).

For NIWs, ¢" can be expressed in terms of the back-rotated velocity ¢; retaining only
leading-order terms in the small Burger number the result is

q ="+ ULIN? + A1/ (4f) +13(8, )/ (2P, (3.16)
where d(-, -) denotes the Jacobian operator (see Xie & Vanneste 2015; Wagner & Young
2016). For an axisymmetric wave field ¢ (r, f) and barotropic mean flow (3.16) reduces to

q=2C"+AA)/2, (3.17)
where A(-) = r~19,(rd,-). For waves that are initially uniform in the horizontal, as in the
initial condition (2.4), the Stokes drift and horizontal Laplacian vanish initially, so the

conservation of g — which holds pointwise since ¢ is axisymmetric and & has no radial
component — implies that

th=1¢— AA/2, (3.18)

where ¢o(7) is the initial Gaussian vertical vorticity in (2.1). Using the expression for the
Stokes velocity in (3.12), the Eulerian-mean vorticity is

=200+ AA)2. (3.19)

This result explains the correlation between the evolution of the wave kinetic energy (i’ 24

v/ 2) /2 =fA and ¢ observed in figure 1. We test the prediction in (3.19) quantitatively
in figure 3 by comparing the change in mean vorticity, { — o, with AA/2 at three
different times corresponding to different phases in the oscillation of wave energy. The
good match between the two quantities confirms the validity of (3.19). Thus conservation
of wave-averaged PV predicts the dynamics of the mean flow in the presence of waves
with substantial amplitude.
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Figure 3. Comparison of mean-vorticity change ¢ — o (o, red) with AA/2 (solid line) along a radial line
and for (a) t = 12.7, (b) t = 30 and (c) t = 43.2 inertial periods.

4. Discussion

This paper examines the way geostrophic balance — a cornerstone of geophysical fluid
dynamics —is altered in the presence of inertia-gravity waves to become a balance between
the Coriolis force associated with the Lagrangian-mean velocity and a wave-modified
mean pressure. The wave-induced correction to geostrophy has long been known (e.g.
Moore 1970) but it has received much less attention than the issue of non-wave
finite-Rossby-number corrections associated with higher-order balance (e.g. Machenhauer
1977; Leith 1980; Allen & Newberger 1993; Warn et al. 1995; Mclntyre & Norton 2000;
Mohebalhojeh & Dritschel 2001; Vanneste 2013; Kafiabad & Bartello 2017, 2018). By
focusing on numerical simulations in a very simple set-up, in which vertically planar
NIW waves are superimposed on a barotropic vortex, we are able to show unambiguously
that the wave-induced correction matters and, for NIWs, can be estimated from the wave
energy, consistent with theoretical predictions, at least in the simple case considered here.
We further show that the material conservation of a wave-averaged PV can be exploited
to predict mean-flow changes from the wave energy. We emphasise that the concepts
of wave-averaged balance and wave-averaged PV are not limited to the present case of
vertically planar NIWs propagating through a barotropic mean flow. They apply in the
presence of vertically sheared mean flows, as in the numerical NIW simulations in Asselin
& Young (2020), Thomas & Arun (2020) and Thomas & Daniel (2020), and to generic
inertia-gravity waves. In the case of baroclinic mean flows, however, the waves cannot
be extracted by removing the vertical average as done here. The standard normal-mode
decomposition (e.g. Bartello 1995) also falls short for this task: in the case of strong waves,
because of the importance of the Stokes—Coriolis force fz x &5, balanced flow is poorly
approximated by the linearised part of PV, and an appropriate form of time filtering is
required to separate waves from balanced flow.

To assess the importance of wave-induced corrections to geostrophic balance in
an oceanic context, we need to compare the size of the Stokes velocity induced by
inertia-gravity waves with typical mean-flow velocities. We focus here on the case of
NIWs in the ocean’s mixed layer represented, as is standard, by a slab model (e.g. Alford
et al. 2016). We note that the relation #5 = (—.A,, A,) applies to (vertically independent)
waves in a slab model as well as to the vertically planar waves considered so far. We
estimate .4 from the values of inertial-wave kinetic energy inferred by Chaigneau, Pizarro
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& Rojas (2008) from drifter data. In parts of the ocean with strong wind forcing, they
found this kinetic energy per unit area to be of the order of 10°> J m~2. This corresponds
to (u/2 + v’z)/2 =10°/(ph) ~ 107> m? s~2, taking the water density p = 10° kg m™3
and mixed-layer depth 7 = 100 m, and hence A ~ 10> m? s~! for f = 10* s~!. Using a
spatial scale of 10 km based on recent simulations of NIWs (Asselin & Young 2020), we
finally estimate |#5| ~ 1072 m s~!, a substantial fraction of typical geostrophic velocities
at the ocean surface. Larger values are obtained for smaller f (lower latitudes) and a
shallower mixed layer. The NIW Stokes velocity is also comparable in magnitude to
the Stokes drift of surface gravity waves. However, unlike the latter, near-inertial Stokes
drift extends across the mixed layer and into the ocean interior, hence it is potentially
more important for transport. The contribution from other types of inertia-gravity waves,
including internal tides, also deserves attention.

Our order-of-magnitude estimate raises the possibility that wave-averaged corrections
to geostrophic balance affect the inference of sea-surface geostrophic velocity from
satellite altimetric measurements. Assuming that sea-surface-height measurements
provide an approximation to the Eulerian-mean height and hence, for NIWs, also of the
Lagrangian-mean height (since NIWs have little effect on the sea-surface height), the
surface velocity inferred by standard geostrophy is a Lagrangian mean rather than an
Eulerian mean, as normally assumed. It would be useful to examine whether and how
this difference can be accounted for.

We conclude by noting that, while the present paper concentrates on the relation between
wave energy and wave-induced mean flow, it is also desirable to analyse the mechanism
that leads to the slow wave-energy oscillations seen in figure 1. We leave this analysis for
another publication (Kafiabad, Vanneste & Young 2020).
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Appendix A. Derivation details
We establish (3.6) by rewriting the wave momentum equation (3.3a) as

—3?  f9, 0
Vp =LE, whereL=|—f3, —d? 0 . (A1)
0 0 —3>—N?

The linear operator L is self-adjoint in the sense that a-Lb = b-La for arbitrary
time-periodic vectors a and b. Using this we compute

(& - Vp) =0;(&" - LE) =26 Log" =28 - 0;Vp =2(8 - V)ap'  (A2)

and (3.6) follows.
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Wave-averaged balance

We now turn to (3.12). The unaveraged Stokes velocity is
& -Vyu' =3[3(E -V)E] -3V xh, (A3)

where h = &' x u' contributes to the absolute angular momentum density, and we used the
standard vector identity for the curl of a cross product and that V - § = V - &/ = 0. The
time average of (A3) gives the explicit solenoidal representation of the Stokes velocity

i’ =1V x h. (A4)
For vertically planar waves 8,k = 0, hence
@, 0%) = 3(=hy, hy), (A5)

where h = £'v' — n/u/’ is the vertical component of &. For NIWs, u, — fv' = v/ + fu' =0,
soh = (E'u, + n'v)/f = —u'* +v'*)/f = —Aand (A5) gives (3.12).
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