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ABSTRACT

The iASSIST is an iPhone-based assistive sensor solution for independent and safe travel for people 
who are blind or visually impaired, or those who simply face challenges in navigating an unfamiliar 
indoor environment. The solution integrates information of Bluetooth beacons, data connectivity, visual 
models, and user preferences. Hybrid models of interiors are created in a modeling stage with these 
multimodal data, collected, and mapped to the floor plan as the modeler walks through the building. 
Client-server architecture allows scaling to large areas by lazy-loading models according to beacon 
signals and/or adjacent region proximity. During the navigation stage, a user with the navigation 
app is localized within the floor plan, using visual, connectivity, and user preference data, along an 
optimal route to their destination. User interfaces for both modeling and navigation use multimedia 
channels, including visual, audio, and haptic feedback for targeted users. The design of human subject 
test experiments is also described, in addition to some preliminary experimental results.
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INTRODUCTION

According to data from the World Health Organization, there are at least 2.2 billion people, more 
than a quarter of the world population, suffering from various degrees of visual impairment or 
blindness (Geneva: World Health Organization, 2019). Among those people, an earlier report shows 
that there were 285 million people with low vision worldwide and 39 million people were suffering 
from blindness (Geneva: World Health Organization, 2012). In the US alone, the blind or visually 
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impaired (BVI) population has reached 6.6 million people and is expected to double by 2030 (Varma 
et al., 2016). As their vision deteriorates, BVI individuals will often rely on a cane or a guide dog to 
find their way. Although existing technologies, such as GPS, have been leveraged to provide outdoor 
navigation, there is a need for an assistive technology that aids these individuals in indoor navigation. 
Indoor navigation requires information that is unavailable to BVI individuals simply due to a lack 
of visual input. 

In the BVI community, the most popular technologies used to meet this need are still long 
canes and guide dogs (Sato et al., 2019). From our studies and discussions with orientation 
and mobility professionals, and BVI users themselves, it seems this may be due to a lack of 
consideration of users’ needs and low availability, or production-readiness, of new and upcoming 
technologies. We were unable to find any suitable existing commercial products for use in 
our navigation studies, prompting us to develop and test our own testing system, ASSIST (an 
acronym for Assistive Sensor Solutions for Independent and Safe Travel) (Nair et al., 2018; 
Nair et al., 2020). The first prototype of the ASSIST app localizes mobile devices via a hybrid 
positioning method that utilizes Bluetooth Low Energy (BLE) beacons for coarse localization 
in conjunction with fine positioning via an augmented reality framework based on Google 
Tango. However, Tango has been deprecated by Google, which leads to our current work on 
integrating ARCore on Android and ARKit on iOS for newer prototypes of the ASSIST apps 
(Chen et al., 2019; Chang et al., 2020). 

In this paper, we present iASSIST, an iOS assistive application built with ARKit (Apple: ARKit 
2020) that provides turn-by-turn navigation assistance using accurate, real-time localization over large 
spaces without the installation of expensive infrastructure. This paper is an extension and continuation 
of the work reported in Chang et al. (2020), with new developments in system architecture, generalized 
localization and personalized path planning algorithms, and a number of system evaluation designs. 
The approach can also be easily extended to Android devices, for example, using Google’s ARCore. 
The mobile client is only one part of iASSIST, which itself is a multimedia information system with 
the following key components: 

1. 	 An iOS-based application that provides turn-by-turn indoor navigation for BVI users with 
multimedia interaction, including voice interaction, haptic feedback, and visual directions.

2. 	 A client-server architecture for iASSIST hybrid models including information of visual, beacons, 
connectivity, destinations, landmarks, and other features, which allows scaling to large areas by 
lazy-loading models using beacon signals and/or adjacent region proximity.

3. 	 A highly accurate and low-cost indoor positioning solution with a generalized localization 
algorithm to address regional model transition problems faced when large areas must be divided 
into smaller regions.

4. 	 A graph-based representation that connects local regions with traversable paths between nodes 
defined as interactively selectable destinations and landmarks, which are either manually 
designated or automatically extracted along paths during the modeling stage.

5. 	 A personalized route planning algorithm weighted by user preference and hazard potential, with 
consideration of the Wi-Fi/cellular download speed along the planned path.

The rest of the paper is organized as follows. After the discussion of related work, the details of the 
iASSIST implementation is provided, including an overview of the system architecture, a description 
of our hybrid modeling, the procedure of real-time navigation, and designs of multimedia interfaces. 
Next, plans of the iASSIST evaluation experiments are offered, together with some preliminary 
experimental results. Finally, we conclude with discussion of future work.
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RELATED WORK

Researchers have investigated various methods to assist the blind and visually impaired in complex 
and unfamiliar indoor environments. Compared to solutions for outdoor environments, which have 
matured with GPS technology and fully equipped sensor packages on cars, progress toward indoor 
navigation has stagnated due to the unique challenges it presents (Real et al., 2019; Modsching 
et al., 2006). Methods of indoor positioning have proposed the use of various technologies 
(Karkar & Al-Maadeed, 2018; Real et al. 2019), including but not limited to the use of cameras 
on smartphones or other mobile devices (Mulloni et al., 2009, Caraiman et al., 2017), passive 
radio frequency identification (RFID) tags (Ganz et al., 2012), near field communication (NFC) 
signals (Ozdenizci et al., 2011), inertial measurement unit (IMU) sensors (Sato et al., 2019), 
BLE beacons (Sato et al., 2019, Murata et al., 2019) and wireless networks such as Wi-Fi and 
cellular (Liu et al., 2007; Gallagher et al., 2012). Where passive RFID and NFC typically have 
significantly limited ranges (Ganz et al., 2012), and thus limited to proximity detection, BLE 
beacon signals can be detected more than several meters away, allowing for localization based 
on signal strengths with pre-installed infrastructure. Google Tango, which uses a 3D sensor and 
computer vision, has also been of interest (Li et al., 2016) and provides an informative comparison 
of computer vision and BLE approaches.

Many indoor localization techniques described above often need to consider multiple factors 
in the indoor environment to determine location, such as the effect of indoor obstacle location or 
size, and device signal strength and/or stability. This leads to difficulty in developing a unimodal 
approach for accurately detecting the user’s location over time. On top of this, using a standalone 
model in a mobile edge computing environment can easily overburden phones’ processing power 
and memory. To address these problems, many studies have integrated multimodal solutions for 
localization, incorporating cloud servers for the data storage and/or computation, making mobile 
indoor localization more feasible and accurate (Gu et al., 2017; Molina et al., 2018; Li et al., 2018). 
Most commonly, localization is achieved using multiple modalities, such as Wi-Fi, beacons, audio, 
images, points of interest, and the like (Levchev et al., 2014; Molina et al., 2018). In particular, such 
a framework combining various models for each environmental condition, has been proposed for 
localization according to the signal strength of Wi-Fi access points (Li et al., 2018). As each model 
handles only one condition, it provides higher accuracy and requires lower computation power 
in unstable environments. To this end, several solutions have been proposed, working toward the 
combinatorial optimization problems of the framework.

Vision-based positioning methods (Bai et al., 2014) have also been proposed because they offer 
highly accurate localization without expensive infrastructure installation. Visual-Inertial Odometry 
(VIO) (Usenko et al., 2016) is one of the well-known visual positioning methods to track a user’s 
current position using previous positions, step length, and motion direction in cooperation with visual 
sensors. Since smart devices nowadays are equipped with various kinds of powerful on-board sensors, 
including accelerometers, gyroscopes, compasses, proximity sensors, depth sensors, cameras, etc., this 
method can be implemented for these platforms with no further peripheral requirements. The major 
disadvantage of these methods, however, is cumulative drift error. For long-distance and long-term 
tracking, additional global mapping and/or other physical constraints are necessary to eliminate the 
cumulative error. 

ARKit (California: Apple Inc), Apple’s augmented reality (AR) platform for iOS devices, uses 
the VIO technique described above to track the world around the iPad or iPhone. Across 2D video 
frames captured by an iOS device’s camera, it follows the movement of detected visual feature 
points and uses the aforementioned onboard motion detection to estimate their position in 3D space. 
However, one of the major disadvantages of ARKit is the size limitation of its working model. For 
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a large region, it is difficult to store all the information within only one model. If the model is too 
large, it can significantly impact localization performance. In addition, the cumulative drift error 
will increase during long-term tracking in a large region. Dividing a large region into multiple small 
regions and modeling these regions separately is an efficient way to solve both problems, as proposed 
in our previous work (Nair et al., 2018; Chen et al., 2019), but it causes a delay in localization while 
switching models from the previous region to the next. In (Dilek & Erol, 2018), ARKit is used to 
demonstrate real-time data acquisition in educational settings and elaborates further regarding the 
ARKit’s limitations here.

Another major obstacle is that, before tracking the real space with respect to a spatial model, 
ARKit requires the user hold a smartphone aloft, aimed at one of a predefined set of reference images 
in the real space and those references, such as a wall-mounted room number plate, must be pre-
recorded in the model in order to synchronize it with the real world. This process can be a difficult 
task for BVI. By comparison, in ASSIST (Nair et al., 2018, Nair et al., 2020), we used a 3D sensor 
with Google Tango on an Android phone to build accurate 3D models of an indoor environment, 
bypassing the need to detect visual references for localization aside from landmark recognition and 
semantic understanding of the scene. With Google’s discontinuation of support for Tango, however, 
we were compelled to study how best to guide users in scanning landmarks for localization with only 
a 2D camera. While our first implementation is made for the iPhone, the more common device among 
BVI users, our next extension will be for Android devices using ARCore, the successor of Tango.

IASSIST IMPLEMENTATION

System Architecture Overview
The front end of the iASSIST system is an iOS-based application (“app”) that provides turn-by-turn 
indoor navigation for BVI users with multimedia interaction, including voice interaction, haptic 
feedback, and visual directions. The overall iASSIST system consists of three major components: 
hybrid modeling, with the modeling app; a RESTful web service; and real-time navigation, with the 
navigation app (Figure 1). 

Figure 1. The iASSIST system diagram, with three major components: (1) hybrid modeling; (2) real-time navigation; and (3) a 
web service
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During the Hybrid Modeling stage, a modeler will first divide an area – i.e., a floor of a building 
– into local regions and set the boundary for each region through the modeling app interface and install 
a beacon for each region (the Region Segmentation and Beacon Installation module) then walk around 
each pre-defined local region to scan the spatial data and record destinations and key landmarks by 
selecting the floor plan locations in the app along with location identities and accessibility information 
(the Local Region Modeling with Multimodal Data module). While the modeler is scanning the region, 
the app automatically collects the information like Wi-Fi signal strength and geolocation features. After 
the modeler finishes scanning a region, all collected information will be processed to construct the 
region graph and connect it with the global map represented in a global graph (the Graph Construction 
and Updating module), which is saved in the web service. The modeler will repeat the process for 
each local region until finished with the building. The modeling app’s interface displays the floor 
plan, allowing the modeler to place destinations and landmarks interactively, building associations 
between floor plan coordinates and the real world.

The Web Service is the central component that serves modeling data used by the navigation 
components. It stores the multimodal map and ARKit models received from the modeling component 
in a database and sends it to the navigation component based on the requested resource. To efficiently 
manage the building information, the web service provides a resource management system with a 
simple user interface, allowing the modeler to update the global map, region connections, and models 
themselves without coding knowledge or special technical expertise. 

In the Real-Time Navigation stage, two different user interfaces of the navigation app are designed 
to increase app accessibility and user-friendliness for both sighted and BVI users. The navigation 
app first asks the user to specify a destination either by voice or typing, and then uses the beacon 
signals to determine the user’s initial region (the Destination Selection and Region Detection module). 
A suitable route will be planned for users based on their selected preferences (the Path Planning 
module) and the model download request will be sent to the web service based on the planned route 
and Wi-Fi strength of each region (the Task Scheduling module). Downloading models ad hoc keeps 
the app lightweight, as it only stores in memory the region models required for navigation, and also 
allows for scaling to an arbitrary number of mapped interiors. 

To streamline the navigation user experience (the Real-time Localization and Navigation module), 
our navigation app provides a Navigation App Interface that includes voice navigation for step-by-step 
moving directions along with guided visual pointers and haptic feedback to remind the user to make 
the turn. The iASSIST app also automatically updates the route to compensate when users leave the 
intended path. With high-accuracy position detection, adjustable paths, and easy-to-follow guidance, 
iASSIST allows BVI to travel independently and safely indoors. 

Hybrid Modeling
The ARKit platform provides a powerful feature called ARWorldMap that stores all the raw feature 
points that represent the spatial mapping of the physical world and can be used for determining the 
user’s local position. While ARKit alone cannot achieve indoor positioning on a large scale, as it is 
not designed for this purpose, this location determination feature is used as the basis for our hybrid 
modeling, integrating the region segmentation, automatic data collection algorithm, and graph 
construction process.

Region Segmentation, Alignment and Beacon Installation
Generally, it is difficult and inefficient to store the entirety of the data for a large area into a single 
model. With the large size model, ARKit will shunt portions of the spatial model from working 
memory to avoid slowing the localization process. Our solution for this size limitation of ARKit is 
to divide a large area into multiple small regions with overlap space between neighborhood regions 
and align the coordinate system of each ARWorldMap model with the floor plan of the area in a 2D 
global coordinate system. The modeler can use the modeling app to set the region’s boundaries with 
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a beacon installed in each region before modeling the region. For example, we divided the corridor 
into six regions (Figure 2(a)) with the overlapping space (the shaded area within dash lines in Figure 
2(a)) added to avoid repeated switching models by accident when users walk across around region 
boundary.

For the following, mi  is the local ARKit spatial model of the i th region, and 
P X Y Zm m m m

t
i i i i
= ( , , , )1  is a position vector in the coordinate system of the model mi , where Ymi

 
is the direction of gravity. The transformed position vector Pw  in the real-world coordinate system 
w  based on the floor plan is ( , , , )X Y Zw w w

t
1 , where Xw  and Zw  are the vertical and horizontal 

dimensions of the 2D floor plan, respectively. The transformation matrix Mm wi
 aligns position 
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Note that for simplicity, the region index i  is dropped on the right-hand side of the Mm wi
 

equation for easy notation. Also, the above relation is a full 3D alignment of the model coordinate 

Figure 2. Modeling a corridor: (a) Segment the corridor into 6 regions with the overlapping gray areas; (b) Download speed 
(Mb/s) heat map
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system and the world, thus allowing navigation in 3D; e.g., across floors via stairs. That said, in the 
current implementation, we divide a building into 2D floors and did not model stairs and elevator 
interiors, based on the assumption that the user can navigate stairwells and elevator cars to the intended 
floor after guided to their entrances. Thus, an affine transformation is applied to align each ARKit 
model mi  is coordinate system with the 2D floor plan in the real-world coordinate system (Figure 
3) disregarding the resulting Y coordinate. To compute the transformation matrix, at least three pairs 
of corresponding points ( P Pmi w, ) need to be provided and can be obtained from the destination and 
key landmark locations that the modeler indicated. After applying the estimated transformation matrix 
Mm wi

, the spatial model mi  is aligned with the floor plan.

Figure 3 shows the alignment with 14 pairs coordinates (red marks: ground truth points on the 
floor plan in X Zw w , blue marks: their corresponding coordinates in X Zmi mi

. The model coordinate 
system skews at the real-world coordinate system before the alignment (left of Figure 3) and after 
alignment with the affine transformation, the blue marks in the model coordinate system nearly 
coincide with the red marks in the real-world coordinate system (right of Figure 3). The alignment 
has a mean square error of only 0.136 m in this example region of 196 m2.

Local Region Modeling with Multimodal Data
The data collection process for modeling a local region is shown in Figure 4. When modeling a region, 
its respective ARKit spatial model will be built while the modeler scanning the region for collecting 
the feature points. The modeling app will also automatically collect the 3D location of a landmark in 
the ARKit model coordinate system every second, tracking the modeler’s walking path. The app will 
also benchmark network download speed (“connectivity”) every 5 seconds by computing the amount 
of received data in a 5 second interval from the network adapter (Wi-Fi/cellular) with the strongest 
signal strength in each area. This process will be repeated until modeling ends. The download speed 
heat map in Figure 2(b) contains the three network access sources available in the test area, with the 
number as the download speed in megabyte per second. Each automatic landmark will be assigned 
by the most recent download speed. 

Modelers are required to input the destination or key landmark information (including identities 
and accessibility data) when they are in front of the destination by selecting the location from the 
floor plan in the app interface. The key landmarks are the locations that are essential for navigation, 

Figure 3. Aligning the ARKit model of region i and the floor plan
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such as the stairs or elevators for floor transition, and obstacle or congested areas that are difficult 
for BVI users to access. 

Once a region label is applied by the modeler, the application stops region data collection and 
calculates the transformation matrix mapping the region model and world coordinate systems using 
the destination and key landmark coordinate pairs provided in the model and on the floor plan (as 
described in the previous section). A process in extracting essential landmarks will be applied to 
remove the unnecessary automatically collected landmarks. The automatic “essential” landmarks 
extraction algorithm will first find the essential landmarks (e.g., turning points) between the two 
locations/key landmarks and padding several unessential landmarks if the distance between two 
essential landmarks is long. Next, all the selected landmarks will be filtered to remove landmarks that 
are too close together to be considered distinct, and add intermediate connections between landmarks. 

Figure 5 depicts the landmark extraction process for a small area. After removing unselected 
intermediate landmarks in (4), the local region graph is formed with nodes (destinations and 
selected essential landmarks) that contain identity, coordinates, Wi-Fi connectivity, and accessibility 
information, and connected by edges (orange lines in (4)) as traversable paths.

With extensive experiments, the total data storage required for modeling a large 8-floor building 
with each floor having about 1,200 m2 modeled areas is about 800MB, including about 96 ARKit 
models (each about 8MB), and a very small amount of additional data for beacon information, the 
2D floor plan, connectivity information, and the destination/landmark information for a multimodal 
graph, which will be used in the personalized route planning algorithm.

Graph Construction and Updating
A building is segmented into a set of regions 

{ | , , ,R R B m M Gi i i i m w ii
� � � 	 (2)

Figure 4. Local region modeling data flow diagram
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where N is the total number of regions in the building, Bi  is boundary information of the region i 
on the floor plan, mi  is its ARKit spatial model, Mm wi

 is the mapping between the model coordinate 
system and the floor plan, and Gi  is the local graph corresponding to the region i. Each local graph 
G V Ei i i� � �, includes a set Vi  of vertices (nodes) and a set Ei  of edges (connections), connecting 
to neighboring nodes (in this region and other regions) as traversable paths. Each of the nodes v Vk i∈  
can be represented as

v I P C A ek k k k k k� � �, , , , 	 (3)

where:

Ik : identity of the node vk such as destination, key or essential landmark;	

Pk : coordinates of the node vk in the model mi and in the world;	

Ck : Wi-Fi/Data connectivity at node vk ;	

Ak : Accessibility of the node vk (stairs, elevators, escalators, obstacles, etc.);	

ek : Edges, as traversable paths to and from vk ;	

The global graph of a building consists of the set of all the local region graphs and connections 
between the regions. The multimodal graph can be represented as 

G G i Ni� � �� �| , ,1 	 (4)

Each local graph Gi  is connected with neighboring graphs via traversable paths to form the 
global graph. Therefore the global graph is updated whenever a new local model is built. Typically, 
the current modeling region is connected with the previous modeled region on the same floor. 

Figure 5. Landmark extraction process for a small area
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By comparing the local graph create time, the previous region graph can easily be found, then 
the start node of the current region will be connected with the end node of the previous region 
in the global graph. 

The app will also find the neighboring regions by comparing the region boundaries and connect 
the two closest points of the two neighboring regions. Elevators, escalators, and stairs may not have 
the connection edges using the time stamp approach for the floor transition, the app uses the real-
world coordinates of these landmarks to find and connected the landmarks with the same type and 
has the distance less than a certain threshold in the connected floors.

Real-Time Navigation
Accurate localization and optimal path planning are essential for indoor navigation, especially for 
BVIs. Multiple transformations and alignment procedures are needed to deal with the three different 
coordinate systems involved in the determination of the user’s localization, as well as transitions 
between regions. We propose a personalized path planning algorithm based on Dijkstra’s shortest path 
algorithm (Dijkstra, 1959) using the graph constructed above to provide the most suitable route for 
each user based on the user’s preference. The download task scheduling algorithms are also provided 
to increase the scale of the available navigation locations and reduce the app’s memory usage. 

Localization and Region Transition
Figure 6 illustrates the steps in the global localization and region transition of the iASSIST navigation 
app using the iPhone camera. Region numbers R1  and R2  and the locations of the user according 
to timestamps t0, t1, t2, t3, and t4 mark the stages of a hypothetical case. The app determines the initial 
region (R1  in Figure 6 at time t0) by detecting the beacon with the strongest signal strength and 
downloading the corresponding model m1 , along with the transformation matrix Mm w1

,  from the 
web service. At the initial time t0 , ARKit processes images captured by the camera to detect pre-
defined landmarks in the local model m1 . Once a match point is found, the app calculates the 

Figure 6. Global localization and region transition procedure
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transformation matrix Mcm
t

1

0 mapping the camera pose in its camera coordinate system c  to the 
coordinate system of the spatial model m1 , then maps this in turn using the pre-defined transformation 
matrix (Mm w1

) from the model coordinate system for the region R1  to that of the world coordinate 

system w . In this way, the app determines the user’s pose M t  (including position and orientation) 
from the camera coordinate system with respect to the world coordinate system; i.e., the floor plan: 

M M Mt
m w cm

t
i i

= 	 (5)

Note that we use a general form of transformation from model of mi  to the world at time t; 
in our example, it is for time t t= 0 , and model i =1 . In our implementation, we simply assume 
that the location and orientation of the user are the same as the location and the orientation of 
the phone camera. With the destination and preference provided by the user, the app will use the 
personalized route planning algorithm described below to find a suitable route and guide the 
user to the destination. Within the same region, using the ARKit tracking and matching functions, 
the app tracks the user’s moving path, and if the user goes off track, the app will remind the user 
to come back to the path, or update the route to compensate. In Figure 6, this works nicely from 
time t0 to time t1, then to time t2, where the user enters the second region and the app initiates 
the switch from region R1  to region R2 .

Here, the region-based modeling method brings a new challenge: the transition between models. 
When a user walks from one region to another, the app needs to switch from the previous region 
model to the new one, and it takes time to align the new model to the new region; i.e., to find the 
relationship between the camera coordinate system and the coordinate system in the new model. At 
time t2 in Figure 6, the app has just switched models, so the transformation Mm w1

 for region R1  is 
still used to generate the correct pose of the user on the floor plan using the camera pose relative to 
the previous model Mcm

t
1

2 , even though a new spatial model m2  for region R2  (together with its 
transformation matrix Mm w2

, ) has been loaded in the app, and the camera pose in the camera 
coordinate system has been initialized as an identity matrix I (no rotation or translation). However, 
if the app still does not find a match to the new spatial model m2  after a while, e.g. in time t3, neither 
the previous model-to-world transformation nor the new model-to-world transformation can be used. 
In this case, the good news is that the world tracking functionality of ARKit still works, which would 
provide a camera pose (Mc

t3 ), but this time it is relative to the camera pose at the initial time t2 in 
model R2 , instead of to any ARKit model. In this transition period, the iASSIST app uses the 
following equation:

M M M Mt
m w cm

t
c
t

i i

s�
� �1 1

	 (6)

where ts (i.e., t2 in our example) is the start time in the new region, and i-1 is the index of the previous 
model (i-1=1 in our example), and t is the current time (t = t3 in our example). This equation actually 
also works for time t2 where Mc

t  = I, but it will be the same as using equation (5). Here we would 
like to note that there may be about 1 to 2 seconds delay while loading the new model. During this 
period, the world tracking functionality will not work. That will lead to some offset when estimating 
the relationship between the camera coordinate system of the new region and the coordinate system 
of the previous region. To solve this problem, we calculate the average of the moving distance of the 
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last few (e.g., 10) frames and extrapolate the user’s motion linearly to estimate the user’s current 
location. As soon as the app matches the camera view with the new model in the new region, the 
localization functions resume to normal, using equation (5). In our example in Figure 6, it is i = 2 
and t = t4.

Personalized Route Planning Algorithm
Dijkstra’s algorithm (Dijkstra, 1959) can be used for finding the shortest path from a single source 
node to all other nodes in a weighted graph, whether directed or undirected. Classical Dijkstra’s 
algorithm implementations use distances as weights. In our modified algorithm, we not only consider 
the distance between two linked nodes in the graph constructed above but also other attributes, such 
as model download speed S, the level of BVI accessibility impediment A, of each node and each edge, 
and user preference modifiers a , b , and c :

Weights v Weights u Distance u v Cost u v a A v� � � � �� � � � � � � �, * , * 	 (7)

In equation (7), Weights i� �  stores the least cumulative weight from the initial node to node 

i , and u  and v  represent connected and adjacent nodes. Assume that Weights u� �  is known, such 

that determining Weights v� �  in Equation (7) requires adding the computed the edge length 

Distance u v,� �  scaled by Cost u v,� �  and modified by the node accessibility difficulty A v� �  

at the destination. If node v  is a regular landmark, then A v� �  will be 0 . The cost of the edge 
between nodes u  and v  in equation (7) is affected by the average download speed S  between nodes 
u  and v  and the path accessibility difficulty A u v,� � , and is defined as:

Cost u v b S u v c A u v, / , * ,� � � � � � � � �1 	 (8)

For BVI users, impediments include stairs, doorways, congested areas, turning points around a 
node, and obstacles such as furniture or plants (Figure 7). 

Different users have unique needs for route planning. Based on the user preferences, the algorithm 
will consider all or some of these attributes by varying the three additional factors, a  in Equation 
(7) and b , c  in Equation (8), in the weights and cost function to compute the weights. In this way, 
it may offer a different route. When they are non-zeros, their values control the contributions of the 
extra costs for considering downloading speed and accessibility. Figure 8 depicts three different routes 
between two chosen “destinations” across two floors based on five different user preferences. In each 
of the cases in Figure 8, the start and end “destinations” are denoted as route endpoints (green stars), 
with the start point on one floor shown on the left, the end point on another floor, shown on the right. 
In (a), it is the distance-based route that didn’t consider any attributes besides the distance, with 
a b c= = = 0 . The route is the shortest, but it passes through an obstacle’s location and a bad 
network connection area in floor 1 (left) and the congested area in floor 2 (right). In comparison, the 
general user preference aims to navigate to the destination faster or easier by considering the download 
speed of the path, which will have large a  but small b  and c . The resulting route (yellow line in 
Figure 8 (b)) deliberately avoids the bad network connection area and guides the user to the less 
crowded area. The BVI user preference greatly affects by accessibility difficulty (with large a  and 
c ), so this route (Figure 8 (c)) takes the elevator instead of the stairs for a shorter distance, of course 
it also avoids the crowd. In this case, wheelchair accessibility and avoid crowd preferences also result 
in the same route as the BVI user preference, but with different values for a , b , and c  chosen.  
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Task Scheduling Algorithms
The planned route often involves multiple regions and the app required to download the corresponding 
models of these regions from our web service for navigation. To avoid a potentially long delay while 
downloading all relevant models once, the app will download these models separately. As long as 
the current region model is downloaded, the app will start to navigate, and the rest of the region 
downloads will be queued for completion in the background during navigation, ordered either by 
route priority or download priority based on user selection. 

The planned routed-based algorithm assigns the route priority to a region based on the reverse 
access order of the route if the region is involved in the planned route, else it will be 0. For example, 
if a planned route involves 10 regions, then the route priority for the first region in the route will be 
10, the second region will be 9, and so on. The download task scheduling algorithm integrates the 
download speed heat map with the planned route-based algorithm. It assigned the priority for each 
region based on the route priority and model download time using equation (9): 

Figure 7. The personalized route planning algorithm



International Journal of Multimedia Data Engineering and Management
Volume 11 • Issue 4 • October-December 2020

51

DownloadPriority i RoutePriority i a DownloadTime i� � � � � � � �* 	 (9)

in which the planned routed-based algorithm will have a = 0. Both algorithms will always download the 
next region model in the planned route first, then download other models based on the corresponding 
region priority and any region with priority equal to 0 will not be downloaded.

The download priority of the region is also affected by the model download time with multiplying 
by the factor a . The model download time is calculated by dividing the model size and the average 
download speed of the region according to the download speed heat map. When user enters a new 
region, the priority for each region will be re-determined. 

If the network is slow to download the current region model from the server to the local storage, 
the app will ask the user to pause and wait until the download is completed to avoid reducing the 
accuracy of localization. However, the user can elect to continue the navigation with the tracking 
technique. The position information of the new region will be obtained by using the information from 
the previous model and the ARKit world tracking functionality to predict user’s motion. The app uses 
the tracking result to check if the new region matches the planned route, if these two results do not 
match, then the user might have seriously deviated from the planned route. In this case, the app will 
first ask user to stop and wait, then obtain the new region through the beacon system and download 
and align the corresponding region model. Next, it will reroute to the destination and reset the model 
download scheduling to continue the navigation. 

Figure 8. Three planned routes based on five user preferences: 1 in (a), 1 in (b) and 3 in (c)
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User Interfaces
This section describes the traditional graphical UI (GUI) presented to users with normal or low vision 
and the audio-tactile interface (ATI) presented to BVI users. 

User Interface for Traditional or Low-Vision Users
The application has three core views corresponding to the phases of a given user’s navigation 
workflow: landmark-based localization; destination selection; and navigation process. Upon initiating 
a new session in the app, either when first opening or after the application is unloaded from working 
memory, the first phase of the user workflow is localization using landmark scanning. In this view, 
we use the familiar ARKit coaching overlay for landmark tracking with some modifications.

The user is guided by the overlay to move their camera until a landmark is established using a 
graphical illustration and on-screen text prompts seen in Figure 9. These visual indicators update 
according to the orientation of the device and whether a landmark has been detected. Once the proper 
angle with respect to the x-axis has been established, the user is instructed to hold their current 
position and move the phone around slowly. If no landmark has been detected, the user is prompted 
to turn left with a new graphical illustration and text. The text will update telling the user to continue 
turning slowly, as it scans for landmarks. If no landmarks are found after a full rotation, the user is 
directed to move to a different location to scan again.

Once localized, the user is prompted to choose a destination and the app transitions to the free 
move and destination selection view. Here there are two status indicators in the header, a dynamic map 
overlay in the body area, and a drop-down menu button and debug info bar in the footer (Figure 10). 
The header area contains location context and tracking status. The body area of the layout contains a 
toggleable map. On load, the map fills the body area of the layout (left). When tapped, it minimizes to 
a small bubble-style map in the corner, revealing dynamic animated arrows on a live view for guiding 
the user visually (right). The footer contains a drop-down menu destination selection. Selecting a 
destination transitions the app to the route planning view.

Figure 9. Coaching overlay graphical and textual states for landmark based localization
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The GUI layout for route planning and navigation is similar to the free move and destination 
selection view, however, certain components are changed. The status widgets in the header are replaced 
by a dynamic navigation step ticker, which shows one or two moves ahead. In the footer area, the 
destination drop-down menu button is removed. In its place is a red exit button to allow the user to 
cancel their current navigation context. The route planning view can be exited manually in this way, 
or automatically by arriving at the chosen destination. 

Audio-Tactile Interface for the Blind
Similar to the GUI presented to traditional users, while the touch-based interaction requirements 
of BVI users with the ATI is limited, a key challenge in designing our interface was to present 
equivalent information to the blind as to users with full or partial vision. The three core 
views we described before are less distinct to a blind user due, in part, to a design decision 
we made to avoid translating the components in favor of communicating data directly in the 
most intuitive way possible.

When a blind user enters a new place, the app will audibly ask the user to scan the surroundings 
slowly for localization guide the user to find a landmark pre-defined in the model. First, the procedure 
will ask the user to tilt the phone up or down a certain degree to ensure the phone remains upright, 
then will ask the user to keep this position and move the phone around slowly to detect landmarks. 
We obtain the tilt information through the native iOS APIs. If landmark detection was successful, 
the method will obtain the current position of the user by an algorithm based on this landmark. If 
unsuccessful after two periods (one period is seven seconds, and the value can be set), the app will 
ask the user to turn left and the process will restart. If the user turns a circle (i.e., after three left turns 
or six periods) and a landmark has not yet been detected, the method will ask the user to move to 
another place to start the above process again.

Voice guidance is very useful for blind users when they are walking in an unfamiliar place. 
To make sure these users get navigation information, the app will repeat navigation instruction 
every 2 meters. Turning left or right is key information for navigation instruction, so the app 
will notify users to prepare to turn and walk slowly at 1 meter before the turn. The voice and 
vibration remind the user when it is time to turn and to stop turning. When the user is close to 
the destination, the app will tell the user the specific distance to the destination until the user 
is directly in front of it. 

Figure 10. Visual interface: (a) and (b) two map modes for free move and destination selection, and (c) for route planning and 
during the real-time navigation



International Journal of Multimedia Data Engineering and Management
Volume 11 • Issue 4 • October-December 2020

54

Evaluation: Design and Preliminary Results 
A system demo of our iASSIST app can be viewed at https://youtu.be/bm4gxJf-dkw. Due to the 
COVID-19, we are unable to conduct all the experiments. We planned to conduct the system evaluation 
and usability evaluation to test the efficiency and usability of the iASSIST. All the planned experiments 
will take place on campus and an IRB approval has been in place.

Evaluation of Localization
To evaluate the accuracy of localization of the application, 32 ground truth points in the 
experimental place were selected as testing locations as shown in Figure 11(a). A sighted 
participant stood on each point and used the app to estimate a position respectively. In Figure 
11(b), the red dots marks refer to the position of 32 ground truth test points and blue cross marks 
refer to the 32 estimated positions of these test points. The variance between each pair of the 
positions estimated by the method and the ground truth values in the experimental place are 
range from 0.02 m to 0.35 m, and the RMS error is less than 0.15 m, which means the app can 
offer very accurate indoor localization for the whole corridor (about 600 m2). We want to note 
here that without the region transition treatment, the average error would be 1.50 m, as shown 
in our previous study (Chen et al., 2019), mainly due to large localization errors across region 
boundaries. Figure 12 shows that with the region transition treatment, the larger errors were not 
correlated with region transition boundaries (the vertical dashed lines).

Figure 11. Localization accuracy. (a) & (b) Red dots refer to the position of ground truth points; (b) Blue crosses refer to the 
estimated positions of test points by the app.
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Evaluation of Region-Based Modeling
The purpose of this evaluation is to test the accuracy of the region transition modeling method 
and investigate how the walking speed and Wi-Fi speed will affect region transition. By doing this 
evaluation, we are trying to answer three questions: 1) how easy it is to build the region modeling. 
2) how the walking speed affects the accuracy of the downloaded region model. 3) how the Wi-Fi 
condition affects region transition.

The key components of an accurate region transition are the download speed of regions, the 
time of downloading, and the download order from the previous region to the current region. We 
first plan to recruit 12 sighted participants and divide them into three groups. Group 1 is asked 
to walk from experiment room to a destination under a good, neutral and weak Wi-Fi condition 
sequentially. Group 2 will complete the tasks from the experiment room to the 2nd floor with the 
same Wi-Fi setup as well. 

The application will automatically collect the data of the download speed of at different regions, 
the total time and speed of downloading current regions, the delay of transforming from the previous 
region to the current region, and the order of downloading regions. Although walking speeds can vary 
greatly depending on many factors such as height, weight, age, the average human walking speed at 
crosswalks is about 5.0 kilometers per hour (km/h), or about 1.4 meters per second (m/s). After the 
test, we planned to calculate each participant’s walking speed and categorized it into three groups 
which are fast speed (larger than 1.4m/s), normal speed (equal to 1.4m/s), and slow speed (less than 
1.4m/s). At last, we will calculate the mean value, average, and variance of the datasets and compare 
the difference of each data under different Wi-Fi conditions. 

Evaluation of Usability
The user evaluation we planned to conduct included a brief interview, the orientation of the system, 
interface trials, and a user experience survey. Through the evaluation, we want to understand if and 
how people with visual impairments could explore the indoor using the iASSIST navigation app. 
To investigate the usability of our indoor localization system and to identify users’ needs, we plan 

Figure 12. Localization accuracy: error plots for the 32 tested points. Vertical dashed lines are locations of the region transition.
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to recruit 12 people with visual impairment and ask them to complete two tasks which is addressed 
below. Each participant will have an experimenter accompanied to ensure their safety and another 
experiment to take records and video of the procedure. All the experiments with participants will 
have four stages:

1. 	 Introduction: Each participant will receive explanations of the experiment purpose, tasks, and 
the procedure of the whole experiment. 

2. 	 Training Session: Each participant will learn how to use the app and will be allowed to play the 
app with a training route until they feel comfortable with it. 

3. 	 Interface Evaluation: Users will be asked to use the audio-tactile interface by themselves. Each 
participant Performed a selection of three different destinations and speak out their feelings and 
thought loud while they are navigating the interface. At the same time, the experimenter will 
take anecdotic records with key data and observations of the users’ interaction with the software. 
Experimenter could only assist them in safety issues.

4. 	 Task Performance: Each participant is asked to perform two tasks. The participant is asked 
to stand at the beginning point of the experiment room then select a destination of the current 
floor. After arriving at the destination, he or she is asked to select next destination located on 
different floors. The participant should walk from a new starting point to the endpoint taking 
elevators. The total time to complete two tasks of each participants, their feelings, feedbacks and 
pain points during the tasks will be recorded by the application and experimenters. Experimenter 
could only assist them in safety issues.

5. 	 Experience Evaluation: We ask each participant to complete usability questionnaires and surveys 
about their experience, feelings, and pain points during the navigation. Experimenter could only 
assist them in safety issues.

After the experiments with the visually impaired participants, we will collect all the data and 
analyze it to understand their needs. After this we intend to further modify and improve our system. 

CONCLUSION

In this paper, we introduce iASSIST, a navigation application accessible to BVI people for navigating 
unfamiliar indoor environments using an iOS device. Our key contribution is a multi-model framework 
for localization in a large indoor environment with high accuracy and low cost. We also propose 
a solution to smooth the transition between models, and a simple process for modeling that pairs 
automatic and manual data collection processes with a straightforward online data management 
system. Also, with region segmentation, our application can work in numerous buildings without 
increasing the size of the app. Additionally, we provide a personalized route planning algorithm and 
simultaneous interfaces optimized for sighted and BVI users. 

Our current models for the single floor outside our lab do show fairly accurate localization, but 
due to our ongoing efforts to control the spread of COVID-19 in our city, we are unable to perform all 
the experiments we planned, even though the studies have been approved by the Institutional Review 
Board (IRB) of the City College of New York. Our next step, for example, was to model rest of the 
building and validate the accuracy of our multi-model framework on a larger scale. In the future, we 
would like to further expand the assistive features of our application, by experimenting with novel 
modeling techniques to provide accessible navigation at a larger scale, introducing obstacle detection, 
object recognition and scene understanding via the ARKit model features, enhancing environment 
interpretation through audio-tactile feedback.
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