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Distributed systems are critical to reliable and scalable computing; however, they are complicated in nature
and prone to bugs. To manage this complexity, network middleware has been traditionally built in layered
stacks of components. We present a novel approach to compositional verification of distributed stacks to verify
each component based on only the specification of lower components. We present TLC (Temporal Logic of
Components), a novel temporal program logic that offers intuitive inference rules for verification of both safety
and liveness properties of functional implementations of distributed components. To support compositional
reasoning, we define a novel transformation on the assertion language that lowers the specification of a
component to be used as a subcomponent. We prove the soundness of TLC and the lowering transformation
with respect to a novel operational semantics for stacks of composed components in partially synchronous
networks. We successfully apply TLC to compose and verify a stack of fundamental distributed components.
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1 INTRODUCTION

Distributed systems are the backbone of the modern computing infrastructure. They support the
reliable, scalable and responsive execution of Internet services and replicated aviation control
systems, and are at the core of crypto-currencies. However, due to their combinatorially large state
spaces, and node and network failures, distributed systems are complicated and prone to bugs.
Therefore, they repeatedly suffer data and currency loss, and service outage [Guo et al. 2013; Web
2018a,b,c]. Several projects [Dragoi et al. 2016; Hawblitzel et al. 2015; Lesani et al. 2016; Padon et al.
2016; Rahli 2012; Sergey et al. 2017; Wilcox et al. 2015] have been recently successful in verification
of various distributed systems. However, they either do not benefit from a program logic and carry
out verification in the semantic domain [Hawblitzel et al. 2015; Lesani et al. 2016; Wilcox et al.
2015], do not consider compositional reasoning [Dragoi et al. 2016; Hawblitzel et al. 2015; Padon
et al. 2016; Rahli 2012], or do not verify liveness properties [Sergey et al. 2017].
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Both operating systems, and and network middleware have been traditionally built in layers

[Biagioni et al. 2001; Gu et al. 2016; Peterson and Davie 2003]. Each node hosts a stack of protocol
layers and communicates with other nodes by the communication primitives at the bottom layers.
This modular approach brings separation of the implementation from the interface. A higher layer
only uses the interface and is separate from the implementation of the lower layers. Similarly,
modular verification of each layer using only the specification of the lower layers reduces the
proof engineering effort and brings scalability to the development of reliable distributed systems.
Layers can be verified separately and composed to build verified stacks of distributed systems.
Further, a layer remains correct if one of its lower layers is replaced with a new layer with the same
specification.

This paper presents a novel framework for compositional specification and verification of distributed

system stacks. Protocol designers and practitioners do reason about their distributed systems. We
observe that they often state the properties of a protocol as natural language statements on events,
assume the properties of the sub-protocols, and argue about correctness using intuitive arguments

about the temporal precedence of the events that the protocol and the sub-protocols exchange [Cachin
et al. 2011]. They find it more natural to state properties about the past events rather than add
ghost state. Similarly, they prove liveness properties by simple reasoning about future events. This
observation led us to the following questions: Can we capture the properties in a temporal logic
for composable components? Can we capture the use of the specifications of subcomponents as a
sound transformation? Can we formalize the principles used in these intuitive proofs as logical
inference rules? Program logics have been traditionally developed as extensions of the classical
Floyd-Hoare logic [Hoare 1969]. In the past decade, the community has witnessed increasingly
complicated Hoare logics for concurrent programs that can be effectively used by experts. This
project takes a distinct approach and strives to keep the formal techniques as close as possible to
the practitioner language. It presents a new compositional and temporal approach to verification of
stacks of distributed protocols.
We present a layered programming model to separately capture functional implementations of

distributed components. Layers of components communicate through the interface of request and
indication events: request events are input from the higher layer and output to the lower layers
while indication events are input from the lower layers and output to the higher layer. We present
a temporal assertion language on event traces to specify properties of components. The assertion
language can naturally capture both safety and liveness properties of components in terms of their
interface: incoming requests and outgoing indications. We present a novel program logic called
TLC (Temporal Logic of Components) that features intuitive inference rules to directly reason about
implementations of distributed components. We want to compositionally verify each component
based on only its own implementation and the specifications of its subcomponents. Thus, we
present a novel syntactic transformation to lower the temporal specifications of a component to be
used as a subcomponent. We present an operational semantics for stacks of distributed components
where events propagate across layers in a node, and nodes communicate via the bottom link layer
in partially synchronous networks where nodes may crash. We prove the soundness of TLC and
the lowering transformation with respect to the operational semantics. We successfully applied
the programming model, the lowering transformation and TLC to compose and verify stacks of
fundamental distributed components including stubborn links, perfect links, best-effort broadcast,
uniform reliable broadcast, epoch Paxos consensus. Further, we present our progress in proof
mechanization towards building certified middleware.

The main contribution of this paper is the novel program logic TLC and the lowering transforma-
tion for compositional verification of both safety and liveness properties of distributed components.
On the whole, the paper makes the following contributions: (1) a compositional programming
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(a) (b) (c)

Fig. 2. (a) Events. IR: Input Request, OR: Output request, II: Input Indication, OI: Output Indication (b)

Uniform Reliable Broadcast stack at two nodes and (c) Paxos Consensus stack

model for distributed stacks (§ 2) and its novel semantics (§ 6), (2) a temporal assertion language on
event traces to specify safety and liveness properties of components (§ 3), and a sound composable
verification technique based on lowering specifications (§ 4), (3) a program logic to reason about
components (§ 5) and its soundness with respect to the semantics (§ 7) and (4) verification of stacks
of fundamental distributed components (the appendix [Appendix 2020] § 5.2), and the encodings
and mechanized proofs in Coq (§ 8). We start with an overview.

2 OVERVIEW

In this section, we present compositional verification of a small property of a simple component
that uses a subcomponent. We summarize the future sections of the paper including the necessary
parts of the assertion language and selected inference rules. We present the specification of the
properties of the component and the subcomponent, lower the specification of the subcomponent
and then apply TLC to verify a property of the component. We present a small intuitive proof in
the natural language in one paragraph and then illustrate how each step of this proof is directly
supported by TLC.
Component Composition. We define the type of components Comp as a parametric record

that is represented in Fig. 1. A component is parametric for the type of the events at the top and
the bottom of the component as depicted in Fig. 2.(a). The events at the top are the interface of
the component. They are the input requests of type IR and the output indications of type OI . A
component may have multiple subcomponents. The events at the bottom are the output requests
of types OR to and the input indications of types II from the subcomponents. We use the overline
notation to denote multiple instances; for example, we use OR to denote multiple output request
types, one per subcomponent. A component defines the State type and its initial value per node
as the function init. It also defines three handler functions, request, indication and periodic, that
are called in response to input request, input indication and periodic events. Periodic events are
automatically issued regularly on correct nodes. Nodes may have crash-stop failures. A node is
correct if it does not crash. The periodic handlers usually react to certain conditions; for example,
when enough acknowledgements are received, an output indication is issued. Each of the three
functions get the current node identifier (of typeN) and the pre-state of the component (of type State)
as parameters. As the next parameter, the request function gets the input request from the higher
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component and the indication function gets the input indication from one of the subcomponents.
The handler functions return the post-state, a list of output requests (to subcomponents) and a list
of output indications (to the parent component).

Comp IR OI (OR, II) B
∐︀ State∶Type,
init∶N→State,

let Out=State × List (Σ OR) × List OI in

request∶N × State × IR→Out,

indication∶N × State × Σ II →Out,

periodic∶N × State→Out ̃︀

Stack∶Type→Type→Type B

⋃︀ stack∶Comp IR OI (OR, II) ×
∏ (Stack OR II) →
Stack IR OI

⋃︀ link∶ Stack Req
l
Ind

l

Fig. 1. Component and Stack. IR: input requests type,

OI : output indications type, OR: output requests types

(one per subcomponent), II : input indications types

(one per subcomponent). Σ and Π are parametric sum

and product types. A component is defined as record of

its State type, initialization function init and the three

handler functions, request, indication and periodic,

that are executed in response to input request, indi-

cation and periodic events. A stack is inductively con-

structed as either a component and its matching sub-

stacks, or a bottom link.

As Fig. 1 presents, we define the stack of
components Stack as an inductive type that
is parametrized on the interface of the stack.
The interface of a stack is the top events IR

and OI of its top component. A stack is induc-
tively constructed as either a component and
its matching substacks (as the inductive case)
or a bottom link (as the base case). Basic links
are the weakest components at the leaves of a
stack. They accept requests sendl(n,m) of type
Req

l
to send messagem to node n and issue in-

dications deliverl(n,m) of type Indl to deliver
message m from node n. The semantics of a
link can drop messages. However, it does not
unfairly drop a particular message that is re-
peatedly sent. If a sender keeps resending a
message and the receiver has not failed, the
message is eventually delivered.
As Fig. 2.(b) and (c) show, increasingly

stronger components can be built on top of
basic links: stubborn links, perfect links, best-
effort broadcast, uniform reliable broadcast,
epoch consensus, epoch change, and Paxos (uni-
form) consensus. We have spent extensive ef-
fort to write proofs of correctness for these components. The implementation, properties and
detailed proofs of all these components are available in the appendix [Appendix 2020] § 4 and 5.3.
Fig. 2.(b) shows the stack of the uniform reliable broadcast. Two identical stacks are drawn to show
replication at two different nodes. The bottom horizontal lines show the low-level message passing
by the basic link. Fig. 2.(c) shows the Paxos consensus [Lamport 1998] stack. The Paxos consensus
component is at the top and uses epoch change and epoch consensus as its two subcomponents. In
the epoch consensus component, a leader tries to impose a value to the correct nodes. The epoch
change component initiates the next epoch with a new leader if the current one fails. The two
subcomponents are horizontally composed and Paxos consensus is vertically composed on top of
them.
The stubborn link repeatedly resends messages by the basic link so that they are eventually

delivered. However, retransmission results in multiple deliveries that may not be desired by the
higher-level components. Thus, the perfect link component is built on top of the stubborn link to
eliminate duplicate messages. It keeps track of delivered messages and ignores duplicates. Fig. 3.(a)
presents the perfect link component, PLC. (We will visit the parts (b) and (c) of Fig. 3 later in this
section.) PLC provides the perfect link interface and uses a substack with the stubborn link interface.
The state of each node stores the number of messages sent by the current node, counter, initialized
to zero and the set of received message identifiers, received, initialized to empty (at L2-L4). The
counter is used to assign unique numbers to messages that the node sends. Each message can be
uniquely identified by the pair of the sender node identifier and the number of the message in
that node. Upon a request to send a message (at L6-L9), the counter is incremented (at L10) and the
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PLC∶Component Req
pl
Ind

pl
(Req

sl
, Ind

sl
) B

L1 let slc ∶=0 in
L2 ∐︀State ∶=∐︀counter∶Nat,
L3 received∶ Set(︀∐︀N,Nat̃︀⌋︀̃︀,
L4 init ∶=λn. ∐︀0,∅̃︀,
L5
L6 request ∶=λ n,s,ir .
L7 let ∐︀c,r̃︀ ∶=s in
L8 match ir with
L9 ⋃︀ send

pl
(n′,m) ⇒

L10 let c′ ∶=c + 1 in
L11 let or ∶=(slc,send

sl
(n′,∐︀c′,m̃︀)) in

L12 ∐︀∐︀c′,r̃︀,(︀or⌋︀,(︀⌋︀̃︀,
L13 end

L14
L15 indication ∶=λ n′,s,ii .
L16 let ∐︀c,r̃︀ =∶ s in
L17 match ii with
L18 ⋃︀ (slc,deliver

sl
(n,∐︀c′,m̃︀) ⇒

L19 if (∐︀n,c′̃︀ ∈ r)
L20 ∐︀s,(︀⌋︀,(︀⌋︀̃︀
L21 else

L22 let r ′ ∶=r ∪ {∐︀n,c′̃︀} in

L23 let oi ∶=deliver
pl
(n,m) in

L24 ∐︀∐︀c,r ′̃︀,(︀⌋︀,(︀oi⌋︀̃︀
L25 end

L26
L27 periodic ∶=λ n,s . ∐︀s,(︀⌋︀,(︀⌋︀̃︀ ̃︀

(a)

SL1 (Stubborn delivery):
n ∈ Correct ∧ n′ ∈ Correct→
(n ● ⊺ ↓ send

sl
(n′,m)) ⇒ □◇(n′

● ⊺ ↑ deliver
sl
(n,m))

If a correct node n sends a messagem to a correct node n′,
then n′ deliversm infinitely often.

SL2 (No-forge):
(n ● ⊺ ↑ deliver

sl
(n′,m))f (n′

● ⊺ ↓ send
sl
(n,m))

If a node n delivers a messagem with sender n′,
then n′ previously sentm to n.

(b)
PL1 (Reliable delivery):
n ∈ Correct ∧ n′ ∈ Correct→
(n ● ⊺ ↓ send

pl
(n′,m)⇝ (n′

● ⊺ ↑ deliver
pl
(n,m))

If a correct node n sends a messagem to a correct node n′,
then n′ will eventually deliverm.

PL2 (No-duplication):
(︀n′

● ⊺ ↓ send
pl
(n,m) ⇒

⊟̂¬(n′
● ⊺ ↓ send

pl
(n,m))⌋︀ →

(︀n ● ⊺ ↑ deliver
pl
(n′,m) ⇒

⊟̂¬(n ● ⊺ ↑ deliver
pl
(n′,m))⌋︀

If a message is sent at most once,
it will be delivered at most once.

PL3 (No-forge):
(n ● ⊺ ↑ deliver

pl
(n′,m))f (n′

● ⊺ ↓ send
pl
(n,m))

If a node n delivers a messagem with sender n′,
then n′ previously sentm to n.

(c)
The assertion (n ● ⊺ ↓ send

sl
(n′,m)) describes an event at node n at the top level interface ⊺ for the request ↓

to send the messagem to the node n′, i.e., send
sl
(n′,m). The assertion (n ● ⊺ ↑ deliver

sl
(n′,m)) describes an

event at node n at the top level interface ⊺ for the indication ↑ to deliver the messagem from the node n′, i.e.,
deliver

sl
(n′,m). Correct is the set of nodes that have not crashed.

Fig. 3. (a) Perfect Link Component PLC. (b) Stubborn Links Specification. (c) Perfect Links Specification.

message is sent together with the new counter value using the stubborn link subcomponent (at
L11-L12). Upon a delivery indication of a message from the stubborn link subcomponent (at L15-L18),
if the message is already received, it is ignored (at L19-L20). Otherwise, the message identifier is
added to the received set and a delivery indication event is issued (at L21-L24). (In component
descriptions, we write a sum term constructed from a term t of the i-th type parameter as (i,t) for
brevity.) Finally, PLC does not need a periodic handler (at L27).
Semantics. In § 6, we define the operational semantics of distributed components. It models

the propagation of events across the stack, message passing across nodes in partially synchronous
networks and node failures. Here, we illustrate the structure of a stack and a fragment of a round
of a trace in Fig. 4. Components are represented as boxes and the orientation o of request, periodic
and indication events are shown as ↓,

⇝

and ↑ respectively. Incoming events are executed on the
component itself and outgoing events are issued to be executed on other components. The distinct
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location identifier d of a component in the tree of a distributed stack is the reverse list of branch
indices from the top component to that component. Going down and up the tree simply corresponds
to adding and removing a subcomponent index at the head of this list. For example, the identifier
d for the top component C1 is (︀⌋︀, for its left child C2 is (︀0⌋︀ and for its right grandchild C5 is (︀1,0⌋︀.
The interface of each component is the events immediately above it and they share its identifier.
For example, the identifier d of the right child C3 and its interface events are both (︀1⌋︀. Similarly,
the location identifier of a substack is the location identifier of its top component. For example, the
left substack rooted at C2 is at location (︀0⌋︀. A simple trace is shown on the right of Fig. 4 where
the lines show a sequence of events from left to right at different interface levels. The execution
of an event at a component updates the state of the component and may issue other request and
indication events. The issued events are subsequently executed. The trace starts with e1, a request
↓ at the top (︀⌋︀from the client. When e1 is processed in the top component C1 at (︀⌋︀, e2, a request ↓
on the left child component C2 at (︀0⌋︀ is issued. When e2 is processed in C2, in turn, e3, a request
↓ to its right child C5 at (︀1,0⌋︀, is issued. Processing of e3 on C5 issues e4, an indication ↑ event at
(︀1,0⌋︀. When e4 is processed in the parent component C2 at (︀0⌋︀, e5 that is an indication ↑ at (︀0⌋︀, is
issued. (We note that C2 could instead issue another request like e3 to one of its children.) When e5
is executed at the parent component C1 at (︀⌋︀, finally, e6 that is an indication ↑ at the top level (︀⌋︀, is
issued (that is executed in the client). An (infinite) sequence of event labels is an execution trace.
Given a stack, the semantics defines its set of execution traces.

Fig. 4. Semantics of Component Stacks.

Assertion Language. To represent
the specifications of distributed compo-
nent stacks, we define a temporal asser-
tion language that can describe traces
of events across the stack. It features
specific variables for the properties of
the handler calls and a location variable
to distinguish the unique places of the
composed components in the stack. It
can concisely capture safety and liveness
properties of distributed components. In
§ 3, we will describe the assertion language and here, briefly describe the parts that we use in
the overview. The always assertion □𝒜 states that the assertion 𝒜 holds at every event in the
future including the current event. The always in the past assertion ⊟𝒜 states that𝒜 holds at every
event in the past including the current event. The eventually assertion ◇𝒜 states that 𝒜 holds at
some future event. The eventually in the past assertionx𝒜 states that 𝒜 holds at some past event.
The strict versions □̂, ⊟̂, ◇̂ and x̂ exclude the current event. The strong implication 𝒜 ⇒ 𝒜

′ is
syntactic sugar for □(𝒜 →𝒜′

) where→ is the logical implication. The leads-to assertion 𝒜⇝ 𝒜
′

is syntactic sugar for □(𝒜 →◇𝒜
′
). Similarly, the preceded-by assertion𝒜f 𝒜

′ is syntactic sugar
for □(𝒜 →x𝒜

′
). An assertion is non-temporal if it does not include any temporal operators.

The user events are the event objects that the protocol handlers take as argument and issue,
for example sendpl(n,m). A trace event represents the execution of a user event by a handler. The
assertion language can describe event traces across the stack. Variables are partitioned into rigid and
flexible variables. A rigid variable has the same value in all events of an execution, while a flexible
variable may assume different values in different events. We represent the flexible variables with
the bold face. The flexible variables for an event are the identifier n of the node that executes the
event, the round number r that executes the event, location identifier d that the event is executed at,
the orientation o of the event, the user event e that is processed, the output requests ors and output
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indications ois that the event issues, the pre-state s of the event, and the post-state s′ of the event.
The pre and the post-state represent functions from node identifiers to the state of the component
at the nodes. We call the top component self as it is the top component that is verified assuming
the correctness of the subcomponents. We use the syntactic sugar assertion self to describe events
that are applied to the top component. A self event is either a request or periodic event at the top
or an indication event from a subcomponent at the second level. The constants Correct represents
the set of identifiers of correct node, i.e., the nodes that have not crashed.
The syntactic sugar assertion n ● 𝒜 (where ● is used as a separator) is sugar for n=n ∧𝒜; it

describes an event that is executed at node n and satisfies 𝒜. The syntactic sugar assertion ⊺o e
stands for d =(︀⌋︀∧ o =o ∧ e =e; it describes an event that is at the top (⊺) level interface (︀⌋︀,
its orientation is o (either the constant ↓ for requests,

⇝
for periodics or ↑ for indications) and

its user event is e . For example, the assertion (n ● ⊺ ↓ sendsl(n
′,m)) describes an event at node n

at the top level interface (︀⌋︀where the request (↓) event sendsl(n′,m) is executed. As the periodic
handler is not called with a user event, we use the constant per to represent periodic user events.
Similarly, the syntactic sugar assertion i o e stands for d =(︀i⌋︀ ∧ o =o ∧ e =e; it describes an
event that is at the interface of the i-th subcomponent at location (︀i⌋︀, its orientation is o and its
user event is e . For example, the assertion (n ● 1 ↑ deliversl(n′,m)) describes an event at node n at
the interface location (︀1⌋︀ where the indication (↑) event deliversl(n′,m) is executed. It is notable
that as a pleasant result of compositional reasoning, we only need to refer to the events at the top
and events at the second level. Therefore, we defined syntactic sugar for only the first two levels.

Specifications. Fig. 3.(b) and (c) shows the specification of stubborn links and perfect links that
are written almost verbatim from their natural language descriptions. A stubborn link stubbornly
retransmits messages. The stubborn delivery property SL1 states that once a message is sent, it
is delivered infinitely often. The no-forge property SL2 states that a stubborn link never forges a
message. The properties SL1 and SL2 are liveness and safety properties respectively. Intuitively, a
safety property states that a bad state never happens and a liveness property states that a good
state eventually happens. The reliable delivery property PL1 states that perfect links can reliably
transmit messages between correct nodes. The no-duplication property PL2 states that perfect links
do not redundantly deliver messages. (It is notable that (p ⇒ ⊟̂¬p) →(p ⇒ □̂¬p); hence the □̂
conjunct is omitted in the no-duplication property.) The no-forge property PL3 states that perfect
links do not forge messages. The property PL1 is a liveness and the properties PL2 and PL3 are
safety properties.
The specification of a component is simply written when it is the main component at the top

of the stack in terms of its interface: its incoming requests and outgoing indications. It can then
be lowered to any subcomponent location. We note that as the location is always the top ⊺ in
specifications, it can be elided in specifications for brevity. Further, if we add the convention that
the event names such as send and deliver are used for only either requests or indications, the
orientation arrows ↓ for request and ↑ for indication can be removed from the specifications as
well; they can be derived from the event. For example, send is a always a request and deliver is
always an indication. Then, for example, the no-forge property of stubborn links SL2 in Fig. 3 can
be summarized as the following assertion: (n ● deliversl(n

′,m))f (n′
● sendsl(n,m)). If a node n

delivers a messagem with sender n′, then n′ previously sentm to n. This specification seem to be
the bare minimum to match the corresponding natural language statement. To keep the uniformity
of assertions, we make the location and orientation explicit in the specifications.

Lowering Specifications. We now showcase lowering specifications and the program logic
inference rules with the short proof of the no-forge property of the perfect link component PLC.

PLC uses the stubborn link interface and relies on its properties. The specification of the stub-
born link in Fig. 3.(b) is stated on its interface as the top-level component but PLC uses it as a
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(a) (b) (c)

Fig. 5. Illustration of Lowering. (a) Stack 𝒮0 and its specification ℐ(︀⌋︀

0 . (b) Stack 𝒮1 and its specification ℐ(︀⌋︀

1 .

(c) Stack 𝒮 that composes 𝒮0 and 𝒮1 as subcomponents. To prove the assertion𝒜 for 𝒮 , it is sound to assume

the lowering of ℐ(︀⌋︀

0 and ℐ(︀⌋︀

1 , and derive 𝒜 in TLC, i.e., lower(i,ℐ(︀⌋︀

i ) ⊢c 𝒜.

subcomponent. When a component is used as a subcomponent, its events are at lower locations
and are also interleaved with the events of the parent and sibling components. Given the top-level
specification of the stubborn link, how can we transform it to be used as the specification of a
subcomponent for the perfect link? Not every assertion can be lowered. In § 4, we present an
invariant assertion language that is restrictive enough to be lowered by a syntactic transformation
and expressive enough to capture component specifications.
Fig. 5 illustrates the lowering transformation lower. The specification of each stack 𝒮i is given

as an invariant ℐ(︀⌋︀

i (Fig. 5.(a) and (b)). Consider that we have a stack 𝒮 with the component c at the
top and the substacks 𝒮i , i.e., 𝒮 =stack(c,𝒮i). We want to verify that 𝒮 satisfies its specification𝒜
(Fig. 5.(c)). What can we assume for each subcomponents 𝒮i? We define the translation function
lower on invariants and show that to prove the validity of𝒜 for 𝒮 , it is sound to assume lower(i,ℐ(︀⌋︀

i )

and derive 𝒜 in TLC, i.e., lower(i,ℐ(︀⌋︀

i ) ⊢c 𝒜.
The SL2 assertion is in the invariant sub-language. Applying the lower transformation to SL2 to

use it as the 0-th subcomponent results in the following:
SL

′
2 = lower(0,SL2) = lower(0,(n ● ⊺ ↑ deliversl(n

′,m))f (n′
● ⊺ ↓ sendsl(n,m))) =

(n ● 0 ↑ deliversl(n′,m))f (n′
● 0 ↓ sendsl(n,m))

(1)

We will see the transformation details later in § 4, but notice here that top ⊺ is changed to 0. The
lowering transformation can be similarly applied to SL1 to result in SL

′
1.

The judgements of the logic are of the form Γ ⊢c 𝒜 that states that under assumptions Γ, the
assertion 𝒜 holds for the component c . We assume the two lowered assertions; thus, we have
Γ =SL

′
1,SL

′
2.

Program Logic. We now showcase the program logic using a simple example. The no-forge
property of perfect links states that a perfect link delivery event is preceded by a corresponding
perfect link send event. We want to apply TLC to prove the following judgement that states that
assuming Γ, the no-forge property is valid for PLC.

Γ ⊢PLC (n ● ⊺ ↑ deliverpl(n
′,m))f (n′

● ⊺ ↓ sendpl(n,m))

At a high-level level, the proof shows a precedence sequence that transitively imply the desired
precedence. The proof steps are illustrated in Fig. 7. Step 1: A perfect link delivery event is executed;
hence, the event should have been previously issued. Step 2: By the component implementation
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OR′

⊢c n ● i ↓ e ⇒ x̂(n ● (i,e) ∈ ors ∧ self)
OI′

⊢c n ● ⊺ ↑ e ⇒ x̂(n ● e ∈ ois ∧ self)
InvL

∀e . ⊺ ↓ e ∧ requestc(n,s(n),e) =(s′(n),ois,ors) →𝒜
∀e,i . i ↑ e ∧ indicationc(n,s(n),(i,e)) =(s′(n),ois,ors) →𝒜

⊺

⇝

per ∧ periodicc(n,s(n)) =(s′(n),ois,ors) →𝒜
𝒜 non-temporal
⊢c self⇒𝒜

Transx
(𝒜⇒x𝒜′ ∧ 𝒜′ ⇒𝒜′′) →
𝒜⇒x𝒜′′

Transxx
(𝒜⇒x𝒜′ ∧ 𝒜′ ⇒x𝒜′′) →
𝒜⇒x𝒜′′

Fig. 6. Three Selected TLC Inference Rules and Two Basic Temporal Logic Lemmas

Fig. 7. Illustration of the Proof Steps. The trace is a sequence of events from left to right. Each rectangle

represents an event. In a sequence of steps, the proof shows that a perfect link deliver event deliver
pl
is

preceded by a perfect link send event send
pl
.

(in Fig. 3.(a)), a perfect link delivery event is issued by only the indication handler function. Thus,
the issuing event is a stubborn link delivery event. Step 3: By the no-forge property of stubborn
links, a stubborn link delivery is preceded by a stubborn link send. Step 4: A stubborn link send
event is executed before; thus, it should have been previously issued. Step 5: By the component
implementation (in Fig. 3.(a)), a stubborn link send event is issued by only the request handler
function. Thus, the issuing event is a perfect link send event. By the transitivity of precedence, it is
concluded form the above steps that A perfect link delivery is preceded by a perfect link send.

The rules and lemmas that we use for this proof are presented in Fig. 6. We will look at the rules
closely in § 5. Here, we use two basic rules: rule OR′ and rule OI′, one derived rule: rule InvL and
two basic temporal logic lemmas Transx and Transxx. Intuitively, the two rules OR′ and OI′
state that if an event is executed, it should have been previously issued. The rule OR′ states that if
at a node n and the subcomponent i , a request ↓ event e is processed, then in the past, at the same
node n, the request (i,e) is issued by a self event. Similarly, the rule OI′ states that if at a node n
and at the top level ⊺, an output indication ↑ event e is processed, then in the past, at the same node
n, the indication e is issued by a self event. The rule InvL states that if a non-temporal assertion
holds for all the three handler functions of the component, request, periodic and indication, then
the assertion holds in every self event. It is notable that InvL reduces a temporal global assertion to
non-temporal local proof obligations: each premise of this rule is a non-temporal assertion about
a single handler function. Thus, the functional implementation of the component can be directly
used to infer its properties. The two temporal logic lemmas Transx and Transxx state basic
temporal transitivity properties. By rule OI′, we have

Step 1: Γ ⊢PLC (n ● ⊺ ↑ deliverpl(n
′,m)) ⇒ x(n ● deliverpl(n

′,m) ∈ ois ∧ self) (2)

that states that if a perfect link indication is executed, it is previously issued by a self event. We
now prove that it is issued only when a stubborn link delivery is executed. We use rule InvL with

𝒜=n ● deliverpl(n
′,m) ∈ ois→∃c . (n ● 0 ↑ deliversl(n′,∐︀c,m̃︀)) (3)
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Considering the implementation in Fig. 3.(a), the two cases for request and periodic are straight-
forward as ois=(︀⌋︀in both and the premise is refuted. The other case is for indication where the
stubborn link indication is executed. Thus, by rule InvL (and then reducing two implications to
one), we have:

Step 2: Γ ⊢PLC (self ∧ n ● deliverpl(n
′,m) ∈ ois) ⇒ ∃c . (n ● 0 ↑ deliversl(n′,∐︀c,m̃︀)) (4)

By Lemma Transx on Eq. 2 and Eq. 4, and existential elimination for c , we have
Γ ⊢PLC (n ● ⊺ ↑ deliverpl(n

′,m)) ⇒ x(n ● 0 ↑ deliversl(n′,∐︀c,m̃︀)) (5)
that states that the perfect link delivery event is preceded by a stubborn link delivery event.

From Γ, and Eq. 1 (lowered SL
′
2), instantiatingm with ∐︀c,m̃︀ and unfolding⇝, we have

Step 3: Γ ⊢PLC (n ● 0 ↑ deliversl(n′,∐︀c,m̃︀)) ⇒ x(n′
● 0 ↓ sendsl(n,∐︀c,m̃︀)) (6)

that is the assumption that every stubborn link delivery event is preceded by a stubborn link send
event. By rule OR′, we have

Step 4: Γ ⊢PLC (n′
● 0 ↓ sendsl(n,∐︀c,m̃︀)) ⇒ x(n′

● (0,sendsl(n,∐︀c,m̃︀)) ∈ ors ∧ self) (7)
that states that every executed stubborn link send event is previously issued by a self event. We
use rule InvL again with the assertion

𝒜=n′
● (0,sendsl(n,∐︀c,m̃︀)) ∈ ors→(n′

● ⊺ ↓ sendpl(n,m))

Considering the implementation in Fig. 3.(a), the two cases indication and periodic are straightfor-
ward as ors=(︀⌋︀in both. The other case is request where the perfect link request is executed. Thus,
we have

Step 5: Γ ⊢PLC (self ∧ n′
● (0,sendsl(n,∐︀c,m̃︀)) ∈ ors) ⇒ (n′

● ⊺ ↓ sendpl(n,m)) (8)
By Lemma Transx on Eq. 7 and Eq. 8, we have

Γ ⊢PLC (n′
● 0 ↓ sendsl(n,∐︀c,m̃︀)) ⇒ x(n′

● ⊺ ↓ sendpl(n,m)) (9)
From Lemma Transxx on Eq. 5, Eq. 6 and Eq. 9, we have

Γ ⊢PLC (n ● ⊺ ↑ deliverpl(n
′,m)) ⇒ x(n′

● ⊺ ↓ sendpl(n,m))

that is
Γ ⊢PLC (n ● ⊺ ↑ deliverpl(n

′,m))f (n′
● ⊺ ↓ sendpl(n,m))

The implementations, specifications and proofs of the other components are available in the
appendix [Appendix 2020] § 4 and 5.2. After this overview, we first define the assertion language
(§ 3). Next, we define the lowering transformation and prove its soundness for compositional
reasoning (§ 4). Then, we present TLC inference rules (§ 5). We finally present the mechanization
framework (§ 8).

3 ASSERTION LANGUAGE

We now present the assertion language of TLC in Fig. 8. It is a temporal language on event traces
of stacks composed of distributed components. It can concisely capture both safety and liveness
properties. We have already seen parts of the language in § 2; we consider the rest here.

The constants N and Correct are the set of participating and correct node identifiers respectively.
Similar to classical first-order logic, a term t can be a variable, a constant or an application of a
function f to other terms. As the pre-state s and post-state s′ variables have function values, a
term can be constructed by applying a variable to terms as well.

An atomic assertion is an application of a predicate p to terms. All propositional and quantified
formula can be constructed as syntactic sugar to conjunction, negation and universal quantification.
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x ∶= Variable
⋃︀ n ⋃︀ d ⋃︀ o ⋃︀ e Rigid
⋃︀ ors ⋃︀ ois ⋃︀ s ⋃︀ i
⋃︀ n ⋃︀ r ⋃︀ d ⋃︀ o ⋃︀ e Flexible
⋃︀ ors ⋃︀ ois ⋃︀ s ⋃︀ s′

c ∶= Constant
⋃︀ (︀⌋︀ ⋃︀ ↓ ⋃︀ ↑ ⋃︀

⇝

⋃︀ per

⋃︀ N ⋃︀ Correct

f ∶=+ ⋃︀ ∶∶ ⋃︀ .. Function
t ∶= Term

⋃︀ x ⋃︀ c
⋃︀ f (t1, ..,tn) ⋃︀ x (t1, ..,tn) Function App

p ∶= Predicate
⋃︀ < ⋃︀ = ⋃︀ ∈ ⋃︀ ⊆ ⋃︀ ..

a ∶=p (t1, ..,tn) Atom
𝒜 ∶=a Assertion

⋃︀ 𝒜 ∧𝒜 ⋃︀ ¬𝒜 Proposition
⋃︀ ∀x . 𝒜 Quantification
⋃︀ □̂𝒜 ⋃︀ ⊟̂𝒜 Temporal
⋃︀ ◇̂𝒜 ⋃︀ x̂𝒜 ⋃︀ ◯𝒜 Temporal
⋃︀ Ⓢ 𝒜 Self Assertion

Assertion for the stack at location d :
𝒜d ∶=𝒜 such that
a ∶=(n=t ∧ d=d′ ∧ o=t ∧ e=t) d′ ⊇ d

⋃︀ t ∈ Correct
and ◯ andⓈ are not used.

Invariant for the stack at location d :
ℐd ∶=□𝒜d

Invariant:
ℐ ∶=□𝒜 such that
◯ andⓈ are not used.

Syntactic Sugar:
n ● 𝒜 ≜ n=n ∧ 𝒜
⊺ o e ≜ d=(︀⌋︀∧ o=o ∧ e=e
i o e ≜ d=(︀i⌋︀ ∧ o=o ∧ e=e
self ≜ (d=(︀⌋︀∧ o=↓) ∨

(d=(︀⌋︀∧ o=

⇝

) ∨
(∃i . d=(︀i⌋︀ ∧ o=↑)

□𝒜 ≜ 𝒜∧ □̂𝒜
⊟𝒜 ≜ 𝒜∧ ⊟̂𝒜
◇𝒜 ≜ 𝒜∨ ◇̂𝒜
x𝒜 ≜ 𝒜∨ x̂𝒜

𝒜⇒𝒜′ ≜ □(𝒜 →𝒜′)
𝒜⇝ 𝒜′ ≜ □(𝒜 →◇𝒜′)
𝒜f 𝒜′ ≜ □(𝒜 →x𝒜′)

Fig. 8. Assertion Language

Similarly, the grammar only shows the strict versions of the temporal operators as the non-strict
versions can be defined as syntactic sugar. The temporal operators that we did not introduce in
§ 2 are ◯ and Ⓢ . The next operator ◯ states that its operand assertion holds in the immediate
next event. The self subtrace is the sequence of events executed on the top component. The self
operatorⓈ allows stating assertions about the self subtrace. The assertionⓈ 𝒜 asserts 𝒜 on the
self subtrace. The self operator is usually used as the outermost operator.
We use ℐd to represent invariant assertions for the substack at location d . The specification of

a component is written when it is at the top (︀⌋︀as a top-level invariant ℐ(︀⌋︀. An invariant ℐd is of
the form □𝒜d . To support lowering, the atomic assertions used in an assertion 𝒜d are constrained
to have the form n =t ∧ d =d ′

∧ o =t ′
∧ e =t ′′ such that d ′

⊇ d . The location variable d is
explicitly equal to an extension d ′ of d , i.e., the event is executed under the substack at location d .
For example, the event at location (︀2,1,0⌋︀ is executed under the 0-th child of the top component,
i.e., (︀2,1,0⌋︀ ⊇ (︀0⌋︀. The assertion also includes explicit equalities for the executing node n, the
orientation o and the user-level event e. Further, invariant assertions do not use the next ◯ or self
Ⓢ operators.

4 SPECIFICATION LOWERING

The presented programming model allows a component to be programmed using subcomponents.
The goal of compositional verification is to verify the component using only the specifications (and
not the implementations) of the subcomponents. The specification of each component is written
when it is the main component at the top of the stack; however, it should be later used as the
specification of a subcomponent. A fundamental question is how the specification of a component
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Definition 1 (Lowering Assertions). lower(i,ℐ(︀⌋︀)
lower(i,ℐ(︀⌋︀) ≜ restrict(d ⊇ (︀i⌋︀, push(i,ℐ(︀⌋︀))

Definition 2 (Pushing an Assertion).
push(i,𝒜(︀⌋︀)∶
push(i,n=t1 ∧ d=d ∧ o=t2 ∧ e=t3)

≜
n=t1 ∧ d=i ∶∶∶ d ∧ o=t2 ∧ e=t3

push(i,t ∈ Correct) ≜ t ∈ Correct
push(i,𝒜(︀⌋︀

1 ∧𝒜(︀⌋︀

2 ) ≜ push(i,𝒜(︀⌋︀

1 ) ∧
push(i,𝒜(︀⌋︀

2 )
push(i,¬𝒜(︀⌋︀) ≜ ¬push(i,𝒜(︀⌋︀)

push(i,∀x . 𝒜(︀⌋︀) ≜ ∀x . push(i,𝒜(︀⌋︀)
push(i,□̂𝒜(︀⌋︀) ≜ □̂push(i,𝒜(︀⌋︀)
push(i,⊟̂𝒜(︀⌋︀) ≜ ⊟̂push(i,𝒜(︀⌋︀)
push(i,◇̂𝒜(︀⌋︀) ≜ ◇̂push(i,𝒜(︀⌋︀)
push(i,x̂𝒜(︀⌋︀) ≜ x̂push(i,𝒜(︀⌋︀)

Definition 3 (Restricting an Assertion).
restrict(𝒜′,𝒜)∶

restrict(𝒜′,a) ≜ a
restrict(𝒜′,𝒜1 ∧𝒜2) ≜ restrict(𝒜′,𝒜1) ∧

restrict(𝒜′,𝒜2)
restrict(𝒜′,¬𝒜) ≜ ¬restrict(𝒜′,𝒜)

restrict(𝒜′,∀x . 𝒜) ≜ ∀x . restrict(𝒜′,𝒜)
restrict(𝒜′,□̂𝒜) ≜ □̂(𝒜′ → restrict(𝒜′,𝒜))
restrict(𝒜′,⊟̂𝒜) ≜ ⊟̂(𝒜′ → restrict(𝒜′,𝒜))
restrict(𝒜′,◇̂𝒜) ≜ ◇̂restrict(𝒜′,𝒜)
restrict(𝒜′,x̂𝒜) ≜ x̂restrict(𝒜′,𝒜)

Fig. 9. Lowering (Pushing and Restricting) Assertions. An atomic assertion is denoted by a.

should be lowered to be used as a subcomponent. The lowered specifications of the subcomponents
are used as assumptions to verify the specification of the new parent component (that is programmed
on top of the subcomponents). In this section, we define the lowering transformation on specification
assertions and prove its soundness. Lowering is not possible for every assertion. We observed
that lowering specifications requires certain information, such as the location of events, to be
present and certain operators, such as next, to be absent from the specification. We identify a subset
of the assertion language that is both restrictive enough to allow the definition of the lowering
transformation and expressive enough to represent specifications.

As we saw in Fig. 5, the specification of each stack 𝒮i is given as an invariant ℐ(︀⌋︀

i (Fig. 5.(a) and (b)).
We have a stack 𝒮 with the component c at the top and the substacks 𝒮i , i.e., 𝒮 =stack(c,𝒮i). We
want to verify that 𝒮 satisfies its specification𝒜 (Fig. 5.(c)). We define the translation function lower
on invariants and show that to prove the validity of 𝒜 for 𝒮 , it is sufficient to assume lower(i,ℐ(︀⌋︀

i )

and derive 𝒜 in TLC. Fig. 9 represents the the function lower on the invariant sub-language ℐ(︀⌋︀. It
first pushes and then restricts the assertion. We visit each in turn.
Pushing. For the component at the top, the semantics of stacks models the most general client

that may issue any request. However, when the component is used as a subcomponent, the parent
component may only issue a subset of the possible requests. Therefore, if a stack is pushed from
the top to a lower layer, its set of subtraces can only become smaller (or stay the same). Thus, the
specification of a stack at the top level can serve as a starting point for its specification as the
substack i . However, the stack is now used at a deeper level. The location of every event of the stack
is now under branch i . For example, the location of its highest events is (︀⌋︀when it is at the top and
is (︀i⌋︀ when it is at the i-th substack. Similarly, an event at location (︀1⌋︀ is pushed to location (︀1,i⌋︀.
Therefore, the first transformation is to push the locations under branch i . The function push is
defined in Fig. 9. As we saw in the definition of the invariant sub-language ℐd ∶=□𝒜d , the location
values d ′

⊇ d are explicit in assertions 𝒜d . Given a top-level assertion 𝒜(︀⌋︀and a branch index i , the
function push translates the location value from d ′ to i ∶∶∶ d ′. Appending i to d ′ effectively pushes
the events to branch i .

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 123. Publication date: August 2020.



TLC 123:13

SL
′
2 = lower(0,SL2) = (10)

lower(0,(n ● ⊺ ↑ deliversl(n
′,m))f (n′

● ⊺ ↓ sendsl(n,m))) = (11)
restrict(d ⊇ (︀0⌋︀, push(0, □(︀(n ● ⊺ ↑ deliversl(n

′,m)) →x(n′
● ⊺ ↓ sendsl(n,m))⌋︀)) = (12)

restrict(d ⊇ (︀0⌋︀, □(︀(n ● 0 ↑ deliversl(n′,m)) →x(n′
● 0 ↓ sendsl(n,m))⌋︀) = (13)

□(︀d ⊇ (︀0⌋︀ →(n ● 0 ↑ deliversl(n′,m)) →x(n′
● 0 ↓ sendsl(n,m))⌋︀ = (14)

□(︀(n ● 0 ↑ deliversl(n′,m)) →x(n′
● 0 ↓ sendsl(n,m))⌋︀⌋︀ = (15)

(n ● 0 ↑ deliversl(n′,m))f (n′
● 0 ↓ sendsl(n,m)) (16)

Fig. 10. Lowering Example

Restricting. When a stack is at the top, all events belong to that stack. However, when it is
pushed to a substack, its events are interleaved with events from the top component and the sibling
substacks. Therefore, the second transformation is to restrict the specification to remain valid on
traces that are extended with interleaving events. Consider a specification □𝒜 for a stack. After
pushing the assertion to the i-th substack, the resulting assertion □push(i,𝒜) does not necessarily
remain valid because although the assertion push(i,𝒜) is valid on events under branch i , it may
simply not be valid on events of the top component and the sibling substacks. Thus, the restricting
condition of being under branch i should be added and the assertion □push(i,𝒜) is translated to
□(d ⊇ (︀i⌋︀ →push(i,𝒜)). (The assertion push(i,𝒜) should be recursively translated as well.) As
the definition of the function restrict in Fig. 9 shows, the other variants of the always operator are
translated similarly. On the other hand, an eventually assertion ◇𝒜 remains the same. If an event
will happen in the future, it will still happen if other events are interleaved before it. Similarly, the
other variants of the eventually operator remain the same.

As an example, Fig. 10 elaborates lowering of SL2 that we saw in Eq. 1. The property SL2 is in the
invariant language ℐ(︀⌋︀and can be easily lowered by the syntactic transformation. The steps follow
the definition in Fig. 9. We only explain a couple of subtleties. In Eq. 12 - Eq. 13, the push function
translates d=(︀⌋︀to d=(︀0⌋︀. Thus, in the syntactic sugar, ⊺ is translated to 0. In Eq. 14, the syntactic
sugar (n ● 0 ↑ deliversl(n′,m)) includes the conjunct d=(︀0⌋︀. From basic propositional logic, for any
𝒜 and𝒜′, we have that d ⊇ (︀0⌋︀ →((d=(︀0⌋︀ ∧𝒜) →𝒜

′
) simplifies to (d ⊇ (︀0⌋︀ ∧d=(︀0⌋︀ ∧𝒜) →𝒜

′.
Since d=(︀0⌋︀ is stronger than d ⊇ (︀0⌋︀, it further simplifies to (d=(︀0⌋︀ ∧ 𝒜) →𝒜

′.
We note that if the location was not explicit in the assertion, the assertion could not be pushed and

would remain too general. For example, consider the assertion e=send(n,m) ⇒m > 0 for a stack
𝒮1 that states that all the messages that it sends are positive. This assertion is too general for a stack
𝒮 that composes 𝒮1 as a subcomponent because the top component or the sibling subcomponents
may send negative messages. Further, if the assertions included the next operator ◯ , they could not
be restricted to remain valid after the trace is interleaved with events of the top component and the
sibling subcomponents. For example, consider the assertion (d=(︀⌋︀∧ o=↓) ⇒ ◯(d=(︀⌋︀∧ o=↑)
for a stack 𝒮1 that states that every top-level request is immediately followed by a indication. The
pushed assertion (d=(︀1⌋︀ ∧ o=↓) ⇒ ◯(d=(︀1⌋︀ ∧ o=↑) is not valid for a stack 𝒮 that composes
𝒮1 as a subcomponent because the events of the other components may be interleaved between
the request and indication. Similarly, assertions that use the self operatorⓈ cannot be lowered.
For example, consider the assertion Ⓢ(∀n. s(n) > 0) for a stack 𝒮1 that states that the state of
the top component of 𝒮1 remains positive. Obviously, this assertion does not necessarily hold for
the new top component. Thus, the next and self operators are not useful for the specification of
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components. However, they are useful for intermediate verification steps. For example, the basic
inference rule PostPre that we will see in the next section uses both of these operators.
Soundness. The following theorem states the soundness of the lowering transformation for

compositional reasoning. If a top-level invariant ℐ(︀⌋︀

i is valid for the stack 𝒮i and 𝒮i is a substack of
the stack 𝒮 , then the lowered invariant lower(i,ℐ(︀⌋︀

i ) is valid for 𝒮 . We use the validity judgement
⊧𝒮 𝒜 that states that 𝒜 is valid in every trace of 𝒮 . (Validity is defined more precisely in § 7.) The
detailed proofs are available in the appendix [Appendix 2020] § 5.2.

Theorem 1. For all 𝒮 , c , and 𝒮i , such that 𝒮 =stack(c,𝒮i), if ⊧𝒮i ℐ
(︀⌋︀

i then ⊧𝒮 lower(i,ℐ(︀⌋︀

i ).

We now state the compositional proof technique and its soundness. The specifications of substacks
can be lowered and used to derive the specification of the stack. Judgements of TLC are of the form
Γ ⊢c 𝒜 where Γ is the assumed assertions and 𝒜 is the deduced assertion. Consider valid top-level
invariants ℐ(︀⌋︀

i for stacks 𝒮i , and a stack 𝒮 built by the component c on top of 𝒮i . The following
theorem states that assuming the lowered invariants lower(i,ℐ(︀⌋︀

i ), any assertion that TLC deduces
for c is valid for 𝒮 .
Corollary 1 (Composition Soundness). For all 𝒮 , c , and 𝒮i such that 𝒮 =stack(c,𝒮i), if

⊧𝒮i ℐ
(︀⌋︀

i and lower(i,ℐ(︀⌋︀

i ) ⊢c 𝒜 then ⊧𝒮 𝒜.

5 TLC INFERENCE RULES

In this section, we present the basic and derived inference rules of TLC. The basic inference rules
are intuitive and fit in half a page. Yet, they provide the basis for verification of full stacks such
as Fig. 2.(b) and (c). During the verification of the use-case protocols, we incrementally captured
the fundamental reasoning steps as the basic rules. Further, we captured the higher-level reasoning
steps as derived rules. The sequent judgements are of the form Γ ⊢c 𝒜 where c is the component, Γ
is a set of assumed assertions and 𝒜 is the deduced assertion. The inference rules axiomatize the
properties of the semantics and the low-level communication primitive. More importantly, they
allow deducing assertions about execution traces from the functional definition of the component.
Fig. 11 presents the basic inference rules of TLC. (We elide the standard rules of sequent logic to
the appendix [Appendix 2020] § 1.1). Further, we present a few derived rules in Fig. 12. A full list of
derived rules are available in the appendix [Appendix 2020] § 1.3.

The first three rules IR, II and Pe state that when an event is executed on the top component, the
corresponding handler function of the component is applied. These rules take the reasoning to the
functional definition of the component. (Rule IR): The rule IR (for input request) states that if at the
top level ⊺, a request ↓ event e is executed then the requestc handler function is called at that step.
The requestc function of the component c represents a relation between its inputs: the stepping
node n, the pre-state s(n) of n, and the user event e , and its outputs: the post-state s′

(n), the
issued output requests ors and the issued output indications ois. The rules II (for input indication)
and Pe (for periodic) are similar. (Rule II): The rule II states that if an indication ↑ event e from the
i-th subcomponent is executed then the indicationc handler function is called. (An indication event
e from a subcomponent i is passed to the indicationc function as the sum term (i,e).) (Rule Pe):
The rule Pe states that if at the top ⊺, a periodic

⇝

event per is executed then the periodicc handler
function is called.
The next four rules axiomatize the relation of issued and executed events. The rules OR and

OI state that an event that is issued for a component is eventually executed on the component,
and the rules OR′ and OI′ state that executed events are previously issued. These rules let the
reasoning follow a chain of steps. (Rule OR): An output request from the top component is an
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IR
⊢c ⊺ ↓ e ⇒ (s′(n),ors,ois) =requestc(n,s(n),e)

II
⊢c i ↑ e ⇒ (s′(n),ors,ois) =indicationc(n,s(n),(i,e))

Pe
⊢c ⊺

⇝

per ⇒ (s′(n),ors,ois) =periodicc(n,s(n))
OR
⊢c n ● (i,e) ∈ ors ∧ self ⇒ ◇̂(n ● i ↓ e)

OI
⊢c n ● e ∈ ois ∧ self ⇒ ◇̂(n ● ⊺ ↑ e)

OR′

⊢c n ● i ↓ e ⇒ x̂(n ● (i,e) ∈ ors ∧ self)
OI′

⊢c n ● ⊺ ↑ e ⇒ x̂(n ● e ∈ ois ∧ self)
APer
⊢c n ∈ Correct ↔ □◇(n ● ⊺

⇝

per)
ASelf
⊢c Ⓢ □ self

SInv
⊢c (Ⓢ ℐ) ↔ restrict(self,ℐ)

Init
⊢c Ⓢ (s=λn. initc(n))

PostPre
⊢c Ⓢ (s′ =s ⇔ ◯ s=s)

SEq
⊢c n ≠ n ⇒ s′(n) =s(n)

RSeq
⊢c r=r ⇒ ⊟̂(r ≤ r)

GST
⊢c n′ ∈ Correct ∧ r ≥ r

GST
∧

(n ● d ↓ send
l
(n′,m) ∧ r=r) ⇒

◇(n′
● d ↑ deliver

l
(n,m) ∧ r=r)

FDup
⊢c □◇(n′

● d ↑ deliver
l
(n,m)) →

□◇(n ● d ↓ send
l
(n′,m))

NForge
⊢c (n′

● d ↑ deliver
l
(n,m)) ⇒

x(n ● d ↓ send
l
(n′,m))

Node
⊢c □ n ∈ N

UniOR
⊢c (occ(ors,e) ≤ 1 ∧

⊟̂(n=n ∧ self→(i,e) ⇑∈ ors) ∧
□̂(n=n ∧ self→(i,e) ⇑∈ ors)) ⇒

(n ● i ↓ e) ⇒
⊟̂¬(n ● i ↓ e) ∧ □̂¬(n ● i ↓ e)

Fig. 11. TLC Basic Inference Rules. We use requestc , indicationc and periodicc to refer to the handler

functions of the component c . The function call occ(l ,e) counts the number of the element e in the list l .

event e to a subcomponent i that is issued as the sum term (i,e). The rule OR (for output request)
states that if at a node n, an output request (i,e) is issued by a self event, then eventually at n and
the subcomponent i , the request ↓ event e is executed. (Rule OI): Similarly, the rule OI (for output
indication) states that if at a node n, an output indication e is issued by a self event, then eventually
at n and the top level ⊺, the indication ↑ event e is executed. The rules OR′ and OI′ state the relation
of issued and executed events in the opposite direction of the rules OR and OI. (Rule OR′): The
rule OR′ states that if at a node n and a subcomponent i , a request ↓ event e is executed, then in
the past, at that node n, the request event for that subcomponent (i,e) is issued by a self event.
(Rule OI′): Similarly, the rule OI′ states that if at a node n and the top level ⊺, an output indication ↑
event e is executed, then in the past, at that node n, that indication event e is issued by a self event.
(Rule APer): The rule APer (for always periodic) states that if a node is correct, it infinitely often
executes the periodic event.

(Rule ASelf): The self subtrace is the sequence of events executed on the top component. The rule
ASelf (for always self) states that every event in the self subtrace is a self event. (Rule SInv): The
rule SInv (for self invariant) states that an invariant for the self subtrace can be transformed to an
invariant for the whole trace and vice versa using the restrict function that we saw earlier in Fig. 9.
An invariant ℐ holds in the self subtrace if and only if the restriction of the assertion restrict(self,ℐ)
holds in the whole trace. As the invariant continues to hold in the self events of the whole trace,
the restriction condition is the self assertion. The rules ASelf and SInv lead to the derived rule
InvLSe (in Fig. 12). (Rule InvLSe): The rule InvLSe states that if a non-temporal assertion holds for
all the three handler functions, request, indication and periodic, then the assertion holds in every
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self event. We note that this rule reduces a global temporal assertion down to local non-temporal
proof obligations about the handler functions. Let us see how the the rule InvLSe is derived. First,
the self assertion in the rule ASelf is expanded to the disjunction of three request, indication or
periodic events:

⊢c Ⓢ □(∃e . (⊺ ↓ e) ∨ (i ↑ e) ∨ (⊺

⇝

per)) (17)
Then, for the three cases, the rule SInv is applied to the assertions that the rules IR, II and Pe state
(for the whole trace) to derive the same assertions under the self operator (for the self subtrace).
For example, after basic logical rewriting, the assertion of the rule IR can be restated as

⊢c □(︀self→(⊺ ↓ e → (s′
(n),ors,ois) =requestc(n,s(n),e))⌋︀ (18)

that is equivalent to the following assertion. (We remember that𝒜⇒𝒜
′ is defined as □(𝒜 →𝒜′

).)
⊢c restrict(self, ⊺ ↓ e ⇒ (s′

(n),ors,ois) =requestc(n,s(n),e)) (19)
Then, the result of applying the rule SInv is

⊢c Ⓢ ⊺ ↓ e ⇒ (s′
(n),ors,ois) =requestc(n,s(n),e) (20)

which is the same assertion as the rule IR but for the self subtrace. Then, by the classical temporal
logic, the three non-temporal implications in the assumptions of the rule InvLSe can be generalized
to strong implications. For example, the first assumption of the rule InvLSe can be generalized to

⊢c Ⓢ (⊺ ↓ e ∧ requestc(n,s(n),e) =(s′
(n),ois,ors)) ⇒ 𝒜 (21)

From Eq. 20 and Eq. 21, we immediately have
⊢c Ⓢ (⊺ ↓ e ⇒𝒜) (22)

Therefore, the request event ⊺ ↓ e in Eq. 17 can be rewritten to 𝒜. The other disjuncts can be
similarly rewritten. The result isⓈ □𝒜 that is the conclusion of the rule InvLSe. Similarly, the rule
InvL that we saw in the overview section (in Fig. 6) is in fact derived by applying the rule SInv to
the rule InvLSe (in Fig. 12).

(Rule Init): The rule Init states that at the beginning of the execution, the state s of every node n
is the state defined by the initc function of the implementation. (Rule PostPre): The rule PostPre
states that in the self subtrace, the post-state s′ of every event is the pre-state s of the next event.
We note that this assertion does not hold on the whole trace as the events of different components
are interleaved. (Rule SEq): The rule SEq (for state equality) states that if the stepping node n is not
a node n, then the state of n stays unchanged ie. its pre-state s(n) and post-state s′

(n) are equal.
The above four rules derive inductive inference rules for the state of the top component. Let us

consider the derived rule InvSSe′ in Fig. 12. (Rule InvSSe′): The rule InvSSe′ states that if a state
predicate S holds in the initial state and all the three handler functions, request, indication and
periodic preserve S , then S always holds in the self events. This rule is used to prove state invariants.
Similar to the rule InvLSe, this rule reduces a global temporal assertion to local non-temporal
assertions about the handler functions. To derive this rule, the rule Init is used in the base case.
For the inductive case, the rule PostPre brings the invariant S on the post-state of an event to the
pre-state of the next event. To show that each step preserves the invariant, there are two cases. If
the node is not stepping, the rule SEq is used. If it is, expanding self in the rule ASelf leads to a
case-analysis for the handler functions that directly proved by the assumptions of the rule InvSSe′.

(Rule RSeq): The rule RSeq (for round sequence) states that the round numbers are non-decreasing.
Messages are transmitted using basic links at the leaves of the stack. A basic link is a weak
communication primitive; it can drop, reorder and duplicate messages. The next three rules, GST,
FDup and NForge, state the properties of basic links. Stronger communication primitives can be
programmed based on these properties. (Rule GST): The rule GST states that after the round rGST
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InvLSe
∀e . ⊺ ↓ e ∧ requestc(n,s(n),e) =(s′(n),ois,ors) →𝒜

∀e,i . i ↑ e ∧ indicationc(n,s(n),(i,e)) =(s′(n),ois,ors) →𝒜
⊺

⇝

per ∧ periodicc(n,s(n)) =(s′(n),ois,ors) →𝒜
𝒜 non-temporal
⊢c Ⓢ □𝒜

InvSSe′

S(initc(n))
∀s,e,s′

. S(s) ∧ requestc(n,s,e) =(s′
,_,_) →S(s′)

∀s,i,e,s′
. S(s) ∧ indicationc(n,s,(i,e)) =(s′

,_,_) →S(s′)
∀s,s′

. S(s) ∧ periodicc(n,s) =(s′
,_,_) →S(s′)

⊢c Ⓢ □S(s(n))
FLoss
⊢c n′ ∈ Correct→□◇(n ● d ↓ send

l
(n′
,m)) →□◇(n′ ● d ↑ deliver

l
(n,m))

Quorum
⋃︀Correct⋃︀ > t1 ⊢c N ⊆ N ∧ ⋃︀N ⋃︀ > t2 ∧ t1 + t2 ≥ ⋃︀N⋃︀ ⇒ ∃n. n ∈ N ∧ n ∈ Correct

Fig. 12. A subset of the TLC Derived Inference Rules. S is a predicate on Statec . N is a set.

(Global Stabilization Time) if a message is sent to a correct node, it is delivered in the same round.
It axiomatizes the partial synchrony of the network and is used to prove liveness properties. (We
will consider the semantics of partially synchronous networks and GST in the next section.) In
particular, the rule GST is used to show that the eventual failure detector component eventually
suspects no correct node. The rule GST also derives the rule FLoss (in Fig. 12). (Rule FLoss): The
rule FLoss (for fair-loss) states that links are fair in dropping messages in the sense that they do
not systematically drop any particular message. If a node sends a message infinitely often and the
receiver is correct, then the message is delivered to the receiver infinitely often. The rule FLoss
is used to verify stubborn links that are implemented on top of basic links. (Rule FDup): The rule
FDup (for finite duplication) states that basic links duplicate a message only a finite number of
times. If the same message is delivered to a node infinitely often, then it is sent infinitely often.
(Rule NForge): The rule NForge (for no-forge) states that links do not forge messages. If a message
is delivered, it is previously sent.
(Rule UniOR): The rule UniOR (for unique output request) states that if a request is issued at

most once, then it is executed at most once. If an output request e is issued at most once at the
current event and it is not issued at any other event, then if e is executed at an event, it is never
executed before or after that event. The rule UniOI (unique output indication) states a similar fact
for indications and is elided.

(Rule Node): The rule Node states that the current node n is always in the set of executing nodes
N. This rule is used to reason about the subsets of nodes such as quorums. (RuleQuorum): The
derived rule Quorum states that assuming that the number of correct nodes is more than t1, if
the size of a subset N of nodes (called a quorum) is more than t2 and the sum of t1 and t2 is more
than the total number of nodes, then there is at least one correct node in N . Usually t1 and t2 are
both half the number of nodes N. Intuitively, this rule holds because the two sets are large enough
to have at least one common element. Quorums are the basis of many distributed protocols and
theQuorum rule presents an intuitive reasoning principle for them. We illustrate the use of the
quorum rules in verification of the uniform reliable broadcast in the appendix [Appendix 2020] § 2.
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6 DISTRIBUTED STACK SEMANTICS

In this section, we present the semantics of distributed components. It is a novel operational
semantics that models the interaction of composed components in partially synchronous networks.
The transitions are labeled with traces of events. Thus, the operational semantics leads to a trace
semantics for composed components. TLC is proved sound with respect to this semantics in § 7.
Given a stack 𝒮 of components, the semantics defines the transitions that nodes deploying 𝒮

take. It models propagation and processing of downward request and periodic events, and upward
indication events across layers of components. It also models the crash-stop failure of nodes, and
propagation, loss and duplication of messages. After a node crashes, it does not take any steps; a
node is called correct if it does not crash.

The semantics models partially synchronous networks. In synchronous networks, a fixed upper
bound on message delivery time is known. In contrast, no such bound exists for asynchronous
networks and many distributed computing abstractions including consensus are impossible in this
model [Fischer et al. 1985]. However, most practical networks including the Internet fall in the
partially synchronous model. In these networks, either a bound holds but is not known a priori, or
a bound eventually holds. Partial synchrony [Dwork et al. 1988] presented the basic round model
for partially synchronous networks. Our semantics follows the basic round model. In this model,
each round consists of sending, delivering and processing messages. In each round, only a subset
of sent messages may be delivered; the rest are lost. However, after a round rGST called the Global
Stabilization Time (GST), every message that is sent to a correct node is delivered in the same
round. After this round, the network stabilizes and protocols can rely on its synchrony. In practice,
the network will eventually remain stable long enough for the protocol to achieve its goal.

n ∶ N Node ID
d ∶ 𝒟 =List Nat Distinct Location
cs ∶ Statec Component State
s ∶ S =Map N Statec Dist. Comp. State
σ ∶ Σ =Map 𝒟 S Stack state
m ∶ M Message Payload
ms ∶ ℳ=MultiSet (N ×N ×𝒟 ×M) Messages
f ∶ N Failed nodes
r ∶ ℛ Round
w ∶ 𝒲 =Σ ×ℳ×N ×ℛ World

w0(𝒮) = ∐︀(λd, n . let stack(c, _) =𝒮(d) in Initial World
initc (n)),∅,∅, r0̃︀

e, oi ∶ E User Event
or ∶ IE =Nat × E Output request
fe ∶ FE Event or Fail
∶= e ⋃︀ fail

o ∶ O Orientation
∶= ↓ ⋃︀ ↑ ⋃︀

⇝

ℓ ∶ N ×ℛ×𝒟 ×O × FE × Σ × Σ × IE × E Event Label
τ ∶∶= ℓ∗ Trace

Fig. 13. Operational Semantics Variables

The variables used in the opera-
tional semantics are defined in Fig. 13.
We denote the set of node identifiers
n by N. As mentioned before, we
uniquely identify each component in
a stack by the (reverse) list of branch
numbers in the path from the top to
that component. With the reverse list,
moving up and down the tree corre-
sponds to adding and removing an in-
dex at the head of the list. We call this
sequence the distinct location d ∈ 𝒟

of the component. The substack at
location d of a stack 𝒮 is denoted
by 𝒮(d). The definition of each com-
ponent declares the component state
type Statec . The state of a distributed
component s ∈ S is a mapping from
N to Statec . The state of a distributed
stack σ ∈ Σ is a heterogeneous map
from 𝒟 to S types. A message is a tuple of the sender node, the receiver node, the location of the
receiver component and the message payloadm. We usems ∈ ℳ to denote a multi-set of messages.
The state of the transition systemw ∈ 𝒲 (for world) is a tuple (σ ,ms, f ,r) where σ is the state of
the distributed stack,ms is the multi-set (or bag) of in-transit messages, f is the set of failed nodes
and r is the round number. Given a stack 𝒮 , the initial statew0(𝒮) maps the state of every node
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and location to the state that the init function of the component at that location returns, sets the
initial bag of messagesms and failed nodes f to the empty set, and sets the round to the initial
round r0. We use e to denote user-level events such as sendl(n,m). The orientation o of an event is
either ↓ for request, ↑ for indication or

⇝

for periodic events.
An event label ℓ is a record (n,r ,d ,o,fe,σ ,σ ′,or ,oi) where n is the stepping node, r is the round

and d is the location where the event is executed, o is the orientation of the event, fe is either fail
or an executed user event e , σ and σ ′ are the stack pre-state and post-state, or is the issued request
event and oi is the issued indication event. (To access the fields of a label, we use functions with
the same names as fields.) An output request event or is a tuple (i,e) of the target subcomponent
number i and the user event e . (We note that to present a core semantics, the request, indication and
periodic handler functions of the components return one rather than a list of request and indication
events. A list of events can be similarly processed in sequence. We also elide the complication that
o, or and oi are option values.) A trace τ is a sequence of label events. The i-th event of a trace τ
is denoted by τ(i). The trace τi ..j denotes the sub-trace of τ from and including location i to and
excluding location j, and the trace τi .. denotes the sub-trace of τ from and including location i
onward. Given a predicate p on event labels, the sub-trace τ ⋃︀p is the projection of τ for events that
satisfy p. We use the overline notation to denote multiple instances; for example, we use τi to denote
multiple traces τi one for each index i in the context. The trace τ ⋅τ ′ denotes the concatenation of
the traces τ and τ ′, and⋅τi denotes the concatenation of the traces τi .

Given a stack of components 𝒮 , Fig. 14 presents the operational semantics for 𝒮 . The semantics
is parametric in the round rGST (Global Stabilization Time). We start with an overview. A roundÐ→
comprises two parts. (1) The first part τ

Ð→
∗
t (with t for top-level) is a finite sequence of (a) top-level

request transitions (and their following request and indication transitions) and (b) node failure
transitions. Send request transitions at the leaf layers result in messages. (2) The second part τ ′

Ð→p
(with p for periodic) is a transition that delivers and processes messages and executes the periodic
handlers. The two parts result is a round transition τ ⋅τ ′

ÐÐÐ→. The trace semantics T (𝒮) of 𝒮 is the
set of traces τ of infinite transitions τ

Ð→
∗ starting from the initial statew0(𝒮). We consider infinite

traces to reason about liveness properties.
In the rules, we use _ as a placeholder for variables that are not used in the context. The two

rules Reqest and Fail make top-level transitions→t . The rule Reqest uses the helper transition
→r eq . The transition→r eq processes request events; it is taken by the two rules Req and Req′. The
rule Req uses the helper transition→ind . The transition→ind processes indication events; it is
taken by the two rules Ind and Ind′. The rule Ind, in turn, uses the helper transition→r eq . The
transitions→r eq and→ind are interdependent; the rule Req that makes the transition→r eq uses
the transition→ind and the rule Ind that makes the transition→ind uses the transition→r eq .

The rule Periodic makes periodic transitions→p . It uses the helper transitions→msд and→per .
The transition→msд that processes messages is taken by the rule Msg. The transition→per that
executes the periodic functions is taken by the rules Per and Per′. Next, we take a closer look at
each rule.

The rule Fail makes a top-level transition with a fail event for a node that has not already failed,
and adds it to the set of failed nodes f . Similarly, the other rules require that the executing node
has not already failed.
The rule Reqest executes a top-level request. It makes a transition→t , if a request transition

→r eq can be taken with a trace starting with a top-level (request) event. The top-level request, in
turn, may result in a sequence of requests and indications. The rule Req makes transitions→r eq
for request events on the internal (non-leaf) components. We take a close look at the rule Req
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and the other rules are similar to it. The first event of the trace represents that at a node n and a
component at location d , a request ↓ event e is executed that takes the pre-state of the stack σ to
the post-state σ ′, issues the request event e1 to the i-th subcomponent and issues the indication
event e2. Let c be the top component of the stack at location d . The state s for the component c is
obtained from the stack state σ . The request function requestc is called with the node identifier
n, the pre-state for the node s(n) and the request event e , and results in the post-state s′

n for n,
the request event (i,e1), i.e., the request e1 for the i-th subcomponent, and the indication event
e2. The state s of the component is updated to s′ with the new state s′

n for the node n, and the
state of the stack σ is updated to σ ′ with the new state s′ at location d . The issued request event
(i,e1) inductively results in a transition→r eq at the i-th substack whose location is i ∶∶ d . Similarly
the issued indication event e2 inductively results in a transition→ind at location d on the parent
component. The trace for the whole transition is the original request event concatenated with the
two subsequent transition traces for the issued request and indication events.

Basic links are used as the leaves of a stack. the rule Req′ makes a transition for a send request
on a leaf component. The rule adds tuples to the in-transit messages that contain the sender and
the receiver node identifiers, the component location and the message payload. A message can be
duplicated in the network. Therefore, the overline notation indicates a finite number of duplicate
message. Further, we note that messages are added to an unordered multi-set of messages. Therefore,
messages can be arbitrarily reordered.

The rule Ind makes a transition→ind for indication events from components except the topmost.
(We note that the location of the first event in the trace label of this rule is i ∶∶ d to exclude the
top.) The rule is similar to the rule Req in structure but executes an indication instead of a request
event. The indication event is executed at the parent component that is at location d . The rule Ind′

makes a transition→ind for indication events from the topmost component. In this case, there is
no explicit parent component; thus, the rule simply records the issued indication in its label.
The rule Periodic delivers messages and executes periodic functions. It drops messages sent

to failed nodes f (using the drop function). In addition, before the round rGST , it may drop some
other messages and retain a subset of messagesms′. The set of remained messages are delivered
by the message transition→msд , and calls to the periodic handlers are started at the top level by
the period transition→per . The rule Msg that makes the transition→msд delivers all the messages
in its pre-state. For every message, it issues a delivery indication event at the recipient node and
component location. The trace of the transition is the concatenation of the traces of the indication
transitions for all the messages. The rule Per executes the periodic function of a component at a
(non-leaf) location d and recursively for every subcomponent i at location i ∶∶ d . The rule Per is
similar to the rule Req in structure but in addition to calling the periodic function on the component,
it propagates the periodic calls to lower-level components as well. At the leaf layers, the rule Per′

makes trivial periodic transitions.

7 SOUNDNESS OF TLC

In this section, we define the semantics of assertions on execution traces and prove the soundness of
TLCwith respect to distributed stack semantics (that we saw in § 6).We note that TLC is independent
of the distributed stack semantics and its soundness can be studied for other semantics.

We define a modelm as a tuple (τ ,i,I) of a trace τ , a position i in the trace and an interpretation
I . A trace τ is the sequence of event labels of an execution. To evaluate temporal operators, the
model includes a position i in the trace. The model also includes an interpretation I that maps
free rigid variables, and interpreted functions and predicates to concrete values, functions and
predicates. We define the set of models M(𝒮) of a stack 𝒮 as the set of tuples (τ ,0,I0) where τ
is a trace of 𝒮 , 0 is the first position and I0 is an initial interpretation that includes mappings for
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Reqest
n ∈ N ∖ {f }

(σ ,ms, f ,r) τÐ→r eq (σ ′
,ms′)

τ =(n,r ,(︀⌋︀,_,_,_,_,_,_) ⋅τ ′

(σ ,ms, f ,r) τÐ→t (σ ′
,ms′
, f ,r)

Fail
n ∈ N ∖ {f }
(σ ,ms, f ,r)

(n,r ,(︀⌋︀,�,fail,σ ,σ ,�,�)
ÐÐÐÐÐÐÐÐÐÐÐÐ→t
(σ ,ms′

, f ∪ {n},r)

Periodic

{ms′ =drop(ms, f ) if r ≥ r
GST

ms′ ⊆ drop(ms, f ) else
(σ ,ms′

, f ,r) τÐ→msд (σ0,ms0)

(σn ,msn , f ,r + 1) τnÐ→per (σn+1,msn+1)n∈N∖{f }
τn =(n,r + 1,(︀⌋︀,

⇝
,per,_,_,_,_)⋅τ ′

nn∈N∖{f }
σn =σn+1 msn =msn+1n∈f

(σ ,ms, f ,r)
τ ⋅⋅τnn∈N∖{f }
ÐÐÐÐÐÐÐÐ→p (σ⋃︀N⋃︀,ms⋃︀N⋃︀, f ,r + 1)

Req
n ∈ N ∖ {f } 𝒮(d) =stack(c,_) σ(d) =s

requestc(n,s(n),e) =(s′
n ,(i,e1),e2)

s′ =s(︀n ↦ s′
n⌋︀ σ ′ =σ(︀d ↦ s′⌋︀

(σ ′
,ms, f ,r) τ1Ð→r eq (σ1,ms1) τ1 =(n,r ,i ∶∶ d,↓,e1,_,_,_,_) ⋅τ ′

1
(σ1,ms1, f ,r)

τ2Ð→ind (σ2,ms2) τ2 =(n,r ,d,↑,e2,_,_,_,_) ⋅τ ′
2

τ =(n,r ,d,↓,e,σ ,σ ′
,(i,e1),e2) ⋅τ1 ⋅τ2

(σ ,ms, f ,r) τÐ→r eq (σ2,ms2)

Req′

n ∈ N ∖ {f } 𝒮(d) =link

(σ ,ms, f ,r)
(n,r ,d,↓,send

l
(n′,m),σ ,σ ,�,�)

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→r eq

(σ ′
,ms ⊎ {(n,n′,d,m)})

Ind
n ∈ N ∖ {f } 𝒮(d) =stack(c,_) σ(d) =s

indicationc(n,s(n),(i,e)) =(s′
n ,(i′,e1),e2)

s′ =s(︀n ↦ s′
n⌋︀ σ ′ =σ(︀d ↦ s′⌋︀

(σ ′
,ms, f ,r) τ1Ð→r eq (σ1,ms1) τ1 =(n,r ,i′ ∶∶ d,↓,e1,_,_,_,_) ⋅τ ′

1
(σ1,ms1, f ,r)

τ2Ð→ind (σ2,ms2) τ2 =(n,r ,d,↑,e2,_,_,_,_) ⋅τ ′
2

τ =(n,r ,i ∶∶ d,↑,e,σ ,σ ′
,(i′,e1),e2) ⋅τ1 ⋅τ2

(σ ,ms, f ,r) τÐ→ind (σ2,ms2)

Ind′

n ∈ N ∖ {f }
(σ ,ms, f ,r)

(n,r ,(︀⌋︀,↑,e,σ ,σ ,�,�)
ÐÐÐÐÐÐÐÐÐÐÐ→ind

(σ ,ms)
Msg
ms ={(ni ,n′

i ,di ,mi)i∈I } σ0 =σ ms0 =∅

(σi ,msi , f ,r)
τiÐ→ind (σi+1,msi+1)i∈I

τi =(n′
i ,r ,di ,↑,deliverl(ni ,mi),_,_,_,_) ⋅τ ′

i i∈I

(σ ,ms, f ,r)
⋅τi i∈IÐÐÐ→msд (σ⋃︀I ⋃︀,ms⋃︀I ⋃︀)

Per′

n ∈ N ∖ {f } 𝒮(d) =link

(σ ,ms, f ,r)
(n,r ,d,

⇝

,�,σ ,σ ,�,�)
ÐÐÐÐÐÐÐÐÐÐÐ→per (σ ,ms)

Per
n ∈ N ∖ {f } 𝒮(d) =stack(c,𝒮′) k =⋃︀𝒮′⋃︀ σ(d) =s

periodicc(n,s(n)) =(s′
n ,(i,e1),e2) s′ =s(︀n ↦ s′

n⌋︀ σ ′ =σ(︀d ↦ s′⌋︀
(σ ′
,ms, f ,r) τ1Ð→r eq (σ ′′

,ms′′) τ1 =(n,r ,i ∶∶ d,↓,e1,_,_,_,_) ⋅τ ′
1

(σ ′′
,ms′′

, f ,r) τ2Ð→ind (σ0,ms0) τ2 =(n,r ,d,↑,e2,_,_,_,_) ⋅τ ′
2

(σi ,msi , f ,r)
τiÐ→per (σi+1,msi+1)i∈{0..k−1} τi =(n,r ,i ∶∶ d,

⇝

,_,_,_,_,_) ⋅τ ′
i i∈{0..k−1}

τ =(n,r ,d,

⇝

,per,σ ,σ ′
,(i,e1),e2) ⋅τ1 ⋅τ2 ⋅⋅τi i∈{0..k−1}

(σ ,ms, f ,r) τÐ→per (σk ,msk)

Fig. 14. Semantics of Distributed Stacks.

commonly used integer, list and set functions and predicates. The traces of a stack 𝒮 is the set of
traces of the executions of 𝒮 (for any rGST ).

In Fig. 15, we define the models relation,m ⊧ 𝒜, that is read as the modelm models or satisfies
the assertion 𝒜. We also use the models relation for terms,m ⊧ t ∶v , that is read as the modelm
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evaluates the term t to the value v . We remember from the classical temporal logic [Manna and
Pnueli 1992] that a rigid variable has the same value in all elements of a trace, while a flexible
variable may assume distinct values in different elements. The rule VarM evaluates a rigid variable
x using the interpretation I . On the other hand, separate rules evaluate the flexible variables n, r, d,
o, e, s, s′, ois and ors based on τ(i), the event at the i-th position in the trace τ . For instance, the
rule NM evaluates the flexible variable n for the current node to the first element n of τ(i). Let us
take a closer look at the rule SM that evaluates the flexible variable s (pre-state). We remember
from the distributed stack semantics that if an event at location d is a request or periodic event,
then it is applied to the component at location d , but if it is an indication event, it is applied to
the parent component at location tail(d). Therefore, if the event at location d has a downward
orientation, i.e., ↓ or

⇝

then the location d is applied to the stack state σ to obtain the component
state. However, if it has an upward orientation, i.e., ↑ then the location tail(d) is applied to σ . The
rule SM′ for the post-state s′ is similar. The rule CM evaluates constants except Correct by the
interpretation I . The rule CSM evaluates the constant Correct to the set of nodes in N that do not
have a fail transition in the trace. As the pre-state s and post-state s′ variables take function values,
not only a function but also a variable can be applied to terms. The two applications are evaluated
in FunM and FunM′ respectively.
The rule PredM evaluates predicates using the interpretation I . The definition of the models

relation for conjunction, negation and quantification is standard. The strict always operator □̂
requires the assertion to hold in every future position starting from the position after the current.
The strict always in the past operator ⊟̂ requires a similar condition in the past. The strict eventual
operator ◇̂ requires the assertion to hold in at least one future position starting from the position
after the current. The strict eventual in the past operator x̂ requires a similar condition in the past.
As we defined the non-strict temporal operators as syntactic sugar for strict ones, their semantics
are derived from the above semantics. The next operator ◯ requires the assertion to hold in the
position after the current. As defined at the bottom of Fig. 15, we say that an event label ℓ is on
the self component mself(ℓ), if it is a request (↓) or periodic (

⇝

) at the top location ((︀⌋︀) or is an
indication (↑) at the second level (at location (︀i⌋︀ for some i). The self operator Ⓢ requires the
assertion to hold on the self subtrace, i.e., the projection of the trace overmself. More precisely, the
self operator requires the assertion to hold on the first self position after the current position.
We are now ready to state the soundness of TLC. An assertion 𝒜 is valid for a stack 𝒮 , written

as ⊧𝒮 𝒜, if and only if every model of 𝒮 satisfies 𝒜.

Definition 4 (Valid Assertion). For all 𝒮 and 𝒜, ⊧𝒮 𝒜 iff for allm ∈M(𝒮),m ⊧ 𝒜.

We say that a set of assertions Γ entail an assertion 𝒜 if and only if every modelm of 𝒮 that
models Γ also models 𝒜.

Definition 5 (Models Relation). For all Γ, 𝒮 and 𝒜, Γ ⊧𝒮 𝒜 iff for allm ∈ M(𝒮), ifm ⊧ Γ
thenm ⊧ 𝒜.

The following theorem states the soundness of TLC. If assuming assertions Γ, TLC derives an
assertion 𝒜 then Γ entails 𝒜.

Theorem 2 (Soundness). For all Γ, 𝒮 , c , 𝒮 ′
,𝒜, such that 𝒮 =stack(c,𝒮 ′

), if Γ ⊢c 𝒜, then Γ ⊧𝒮 𝒜.

The detailed proofs are available in the appendix [Appendix 2020] § 5.1. The following corollary
is immediately derived. It states that if assuming valid assertions, TLC derives an assertion then that
assertion is valid as well. In other words, TLC derives only valid assertions from valid assertions.

Corollary 2. For all Γ, c , 𝒮 , 𝒮 ′
, 𝒜 such that 𝒮 =stack(c,𝒮 ′

), if ⊧𝒮 Γ and Γ ⊢c 𝒜, then ⊧𝒮 𝒜.
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Definition 6 (Model relation).
VarM (τ ,i,I) ⊧ x ∶ I(x) if x rigid

NM (τ ,i,I) ⊧ n ∶n(τ(i))
RM (τ ,i,I) ⊧ r ∶ r(τ(i))
DM (τ ,i,I) ⊧ d ∶d(τ(i))
OM (τ ,i,I) ⊧ o ∶o(τ(i))
EM (τ ,i,I) ⊧ e ∶e(τ(i))

SM (τ ,i,I) ⊧ s ∶σ(τ(i))(d′) where d′ ={d(τ(i)) if o(τ(i)) =↓ ∨ o(τ(i)) =

⇝

tail(d(τ(i))) else

SM
′ (τ ,i,I) ⊧ s′ ∶σ ′(τ(i))(d′) where d′ ={d(τ(i)) if o(τ(i)) =↓ ∨ o(τ(i)) =

⇝

tail(d(τ(i))) else

ORSM (τ ,i,I) ⊧ ors ∶ors(τ(i))
OISM (τ ,i,I) ⊧ ois ∶ois(τ(i))
CM (τ ,i,I) ⊧ c ∶ I(c) if c ≠ Correct
CSM (τ ,i,I) ⊧ Correct ∶ {n ⋃︀ n ∈ N ∧ ⇑∃ j ≥ 0. τ(j) =(n,(︀⌋︀,�,fail,_,_,_,_)}
FunM m ⊧ f (t1, ..,tn)∶ f ′(v1, ..,vn) if I(f ) =f ′, m ⊧ t1∶v1, .., m ⊧ tn ∶vn
FunM

′ m ⊧ x(t1, ..,tn)∶ f ′(v1, ..,vn) if m ⊧ x ∶ f ′, m ⊧ t1∶v1, .., m ⊧ tn ∶vn
PredM m ⊧ p(t1, ..,tn) iff I(p) =p′,

m ⊧ t1∶v1, .. m ⊧ tn ∶vn ,
p′(v1, ..,vn) =true

AndM m ⊧ 𝒜 ∧𝒜′
iff m ⊧ 𝒜 and m ⊧ 𝒜′

NotM m ⊧ ¬𝒜 iff m ⇑⊧ 𝒜
ForallM (τ ,i,I) ⊧ ∀x . 𝒜 iff (τ ,i,I(︀x ↦ v⌋︀) ⊧ 𝒜 for all v ∈ dom(I)
AlwaysM (τ ,i,I) ⊧ □̂𝒜 iff (τ , j,I) ⊧ 𝒜 for all j, j > i
PAlwaysSM (τ ,i,I) ⊧ ⊟̂𝒜 iff (τ , j,I) ⊧ 𝒜 for all j, 0 ≤ j < i

EventualSM (τ ,i,I) ⊧ ◇̂𝒜 iff (τ , j,I) ⊧ 𝒜 there exists j, j > i

PEventualSM (τ ,i,I) ⊧ x̂𝒜 iff (τ , j,I) ⊧ 𝒜 there exists j, 0 ≤ j < i
NextM (τ ,i,I) ⊧ ◯𝒜 iff (τ ,i + 1,I) ⊧ 𝒜
SelfM (τ ,i,I) ⊧ Ⓢ 𝒜 iff τ ′

1 =τ0 .. i−1⋃︀mself, τ
′
2 =τi .. ⋃︀mself,

τ ′ =τ ′
1 ⋅τ

′
2, i

′ =⋃︀τ ′
1⋃︀, (τ ′,i′,I) ⊧ 𝒜

mself(ℓ) ≜ (d(ℓ) =(︀⌋︀∧ o(ℓ) =↓) ∨ (d(ℓ) =(︀⌋︀∧ o(ℓ) =

⇝

) ∨ (∃i . d(ℓ) =(︀i⌋︀ ∧ o(ℓ) =↑)

Fig. 15. Models Relation.m ⊧ 𝒜 andm ⊧ t ∶v .

8 MECHANIZATION

The ultimate goal of this project is mechanized distributed middleware. This goal is a huge un-
dertaking and fully achieving it may take multiple years. The main topic of this paper is TLC,
its compositionality and applicability. We have finished all the proofs of the components in the
appendix to ensure that TLC is comprehensive. Nonetheless, we have been mechanizing the proofs
in Coq. The TLC Coq framework provides a deep embedding of an enriched lambda calculus for
defining functional components, an evaluation engine for embedded terms, an inductive definition
of TLC, and a set of tactics for constructing TLC proof terms. We have used this library to success-
fully mechanize the verification of the stubborn link and the perfect link components and we are
extending mechanization to the other components.

Embedding Approaches. We tried different approaches for encoding TLC in Coq. The earliest
attempts were shallow embeddings of TLC. The intent was to utilize Coq’s Gallina functional
programming language to capture component definitions and its Ltac proof language to construct
proof terms. These approaches proved unsuccessful due to the syntactic nature of proofs in TLC.
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The syntactic rules of TLC require recursive analysis of the syntax of terms, which cannot be
done directly on Gallina terms. We define a deep embedding of a minimal functional programming
language to program component terms. This embedding is an untyped lambda calculus enriched
with pattern matching terms, externally defined functions, value literals, value constructors, and
locally nameless parameters. Similarly, we define a deep embedding of the syntax of TLC as well.

Embedding. The syntax of terms is defined as the inductive type presented in Fig. 16.(a). The
TParameter, TAbstraction, and TApplication terms come directly from untyped lambda calculus. We
adopted the locally nameless representation [Charguéraud 2012] to separately define parameters
and variables. We chose this encoding instead of implementing capture-avoiding substitution of
arbitrarily named variables. Coq requires all recursive functions to be structurally decreasing.
Algorithms for capture-avoiding substitution are not strictly decreasing and are rejected by Coq.
Bound variables, represented by the TParameter constructor, are referenced using deBruijn indices.
Free variables, represented by the TVariable constructor, are named strings.

The TConstructor term represents a constructor of an inductive type. The TLiteral term represents
a literal value of a Coq type, such as the natural numbers. The TFunction term represents a function
that is not defined explicitly in the term language, such as recursively defined functions. These
terms are lifted into Coq, evaluated, and the result is lowered into the embedded term type. The
TMatch constructor represents a pattern matching expression. The TFailure term is the empty term,
produced when an ill-formed term is evaluated.
To simplify the definition of terms, we have defined a library of Coq notations for the term

language. The library allows for the relatively direct translation of the implementation of the
components into embedded terms. Similarly, Coq notations are provided for the assertion language
and the sequent judgements. These notations allow writing judgements in the commonly used
form. The context of a sequent is the set of variable names that are universally quantified along
with the list of assumed assertions. As an example, Fig. 16.(b) shows the statement of the stubborn
delivery property: if a message is sent, it is infinitely often delivered. The context declares the list
of free variable n, n’ and m and no assumed assertions [::]. The conclusion is read as follows:
if two nodes n and n’ are correct and n at the top level [] sends a request event -> to send the
message m to n’, then infinitely often at n’, at the top level [], the indication event <- that delivers
the message m from n is executed.

Logic. The basic rules and axioms of TLC are encoded as an inductive type. Fig. 16.(c) shows
three constructors that are representative of the encoding of the rules and axioms of TLC. The rules
are extended with rules specific to the implementation of the extended term language. The first
constructor, DAEvaluateP, states that if the terms within the first premise can be simplified then
proving the conclusion assuming the premise can be reduced to proving the conclusion assuming
the simplified premise. The [[A Ap]] notation represents assertion evaluation, which replaces
all computational terms within an assertion with the terms produced by their evaluation. Terms
are evaluated recursively inside of a monad, which produces a failure case when a failure term is
evaluated. The second constructor, DSCut, is a sequent logic rule that can be used to introduce an
assertion as a premise. The third constructor, DPIR, is an axiom of the TLC program logic, the rule
IR that we saw in § 5.
The framework provides tactics to facilitate applying TLC. For example, it provides a set of

tactics that mirror a subset of Coq’s Ltac tactics for producing Gallina proof terms, as well as a
library of lemmas. These tactics allow proofs to be written in a more natural, Coq-like style. These
are tactics such as d_left (d refers to the derives relation), d_right, d_splitp (p for premise),
and d_splitc (c for conclusion), which mirror the primitive Coq tactics left, right, destruct
(on conjunctive hypotheses), and split. In addition to these basic tactics, there are tactics that
automate some multi-step common tasks. For example, the d_evalc imitates the Coq simpl tactic,
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evaluating all terms in the conclusion assertion, and the d_have tactic automates the application of
the DSCut rule that we saw above.

9 RELATEDWORK

Inductive term :=
| TParameter (p : parameter) (* Nameless bound params *)
| TVariable (v : variable) (* Named free variables *)
| TAbstraction (tb : term) (* Function abstraction *)
| TApplication (tf ta : term) (* Function application *)
| TConstructor (c : constr) (* Value constructors *)
| TLiteral (l : literal) (* Value literals *)
| TFunction (f : function) (* External functions *)
| TFailure (* Computation error *)
| TMatch (ta : term) (cs : cases) (* Pattern matching *)
(* Cases of pattern matching *)
with acase :=
| TCase (p : pattern) (t : term)
with cases :=
| TCNil
| TCCons (c : acase) (cs : cases).

(a)
Theorem SL_1 :

Context [:: V "m"; V "n’"; V "n"] [::]
|- stubborn_link, {A:
correct "n" /\ correct "n’" ->
on "n", event []-> CSLSend $ "n’" $ "m" =>>
always eventually

on "n’", event []<- CSLDeliver $ "n" $ "m" }.

(b)
Inductive derives : context -> assertion -> Prop :=
| DAEvaluateP Delta Gamma Ap Ap’ Ac :

(* Replaces the head premise with its evaluation *)
[[A Ap]] = Success Ap’ ->
Context Delta (Ap’ :: Gamma) |- Ac ->
Context Delta (Ap :: Gamma) |- Ac
(* ... *)

| DSCut Delta Gamma Ap Ac :
(* Add a proven assertion to the proof context *)
Context Delta Gamma |- Ap ->
Context Delta (Ap :: Gamma) |- Ac ->
Context Delta Gamma |- Ac
(* ... *)

| DPIR ctx :
ctx |- {A: forall: "?e": event []-> "?e" =>>

("Fs’" $ "Fn", "Fors", "Fois") =
request C $ "Fn" $ ("Fs" $ "Fn") $ "?e"}

(c)

Fig. 16. Mechanizing TLC

High-level DSLs, language extensions
and tools [Bakst et al. 2017; Biely et al.
2013; Burckhardt et al. 2012; Cejtin et al.
1995; Kato et al. 1993; Ketsman et al.
2019; Killian et al. 2007; Liu et al. 2012;
Miller et al. 2016; Salvaneschi et al. 2019;
Samanta et al. 2013; Weisenburger et al.
2018] have been used to raise the level
of abstraction, and improve the reli-
ability of distributed systems. Model
checking has been extensively applied
for bounded verification [Dutertre et al.
2018; Jackson 2006; John et al. 2013; Kil-
lian et al. 2007; Konnov et al. 2017; Marić
et al. 2017; Musuvathi and Engler 2004;
Yabandeh et al. 2009; Yang et al. 2009;
Zave 2012] of distributed algorithms. Re-
cently, domain specific logics and verifi-
cation frameworks have gained momen-
tum to establish the absence of bugs.
Temporal logic [Manna and Pnueli

1992] is a modal logic that can abstract
and reason about time. It can be used to
state and check properties of programs
specially reactive programs [Alur et al.
2004; Cave et al. 2014; Cook et al. 2011;
Das et al. 2018; Jeffrey 2012]. TLA (Tem-
poral Logic of Actions) [Lamport 1994,
2000] is a logic for description, specifica-
tion and verification of distributed pro-
tocols. The transition system of a proto-
col can be described as action assertions
and its specification can be written as
temporal logic assertions [Manna and
Pnueli 1992]. It has been used [Chaud-
huri et al. 2010; Lamport 2002] for model
checking [Newcombe et al. 2015] and in-
teractive verification [Chand et al. 2016]
of distributed systems. A TLA protocol
is described as a monolithic transition
system. In contrast, TLC defines event interfaces between components and supports their com-
position. More importantly, it supports compositional verification of components. In addition, in
contrast to TLA that requires the protocol to be described as a transition system, TLC supports
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functional implementation of protocols that can be directly executed. Further, in contrast to TLA,
TLC defines an operational semantics to support the soundness of the logic.

I/O Automata [Lynch and Tuttle 1989] models specifications and protocols as transition systems
and provides simulation proof techniques [Lynch and W. Vaandrager 1995] between automata. In
contrast, TLC captures component implementations as functional programs and specifications as
descriptive temporal assertions, and provides a program logic and a compositional proof technique
to derive the specification for the implementation.
Both I/O Automata [Lynch and Tuttle 1989] and Reactive Modules [Alur and Henzinger 1999]

model protocols as transition systems. They capture specifications in the semantic domain as
either transitions systems or properties of execution traces. In contrast, TLC captures component
implementations as functional programs and specifications as temporal assertions. I/O Automata
provides simulation proof techniques [Lynch and W. Vaandrager 1995] between automata. The
simulation proofs are written in the semantic domain. In contrast, TLC provides a program logic
to derive the specification for the implementation. Both I/O Automata and and Reactive Modules
support composition of interacting modules with matching input and outputs. They support
assume-guarantee reasoning where each module can be verified based on the specification of the
other module. TLC models distributed systems as structured stacks of components where each
component composes with its subcomponents below and its parent component above. Similar to
the assume-guarantee reasoning, it supports compositional verification of each component based
on the specification of its subcomponents. However, no assumptions for the parent component is
needed. The specification of each component is for the most general parent. A verified component
can serve as the subcomponent of any parent component.

EventML [Rahli 2012] is a functional domain-specific language for distributed protocols. Protocols
written in EventML can be translated to Nuprl [Constable et al. 1986] and then interactively verified.
It has been used to verify monolithic replicated services [Rahli et al. 2018; Schiper et al. 2014];
however, it does not address compositional verification.
IronFleet [Hawblitzel et al. 2015] models a distributed system as a hierarchy of state transi-

tion systems at multiple levels of abstraction from the high-level specification to the low-level
implementation. It proves a refinement [He et al. 1986; Lynch and W. Vaandrager 1995] between a
layer and the layer immediately above it. However, it only considers monolithic protocols without
subcomponents and the verification is carried out using refinement in contrast to a program logic.
Similarly, network refinement [Koh et al. 2019] presents specifications for a swap server that

can be both tested and verified using observational refinement. The server is well-integrated with
several other verified systems. To contrast, TLC is a temporal logic and can verify liveness in
addition to safety properties. Further, TLC focuses on composition of distributed protocols and
builds component stacks on basic links that are much weaker than TCP.

Verdi [Wilcox et al. 2015; Woos et al. 2016] models several network semantics and provides trans-
formations from correct protocols in one semantics to another. It has been applied to verification of
state machine replication. Similar to TLC, Verdi provides a form of vertical composition. However,
its proofs are based on simulation [He et al. 1986; Lynch and W. Vaandrager 1995] in the semantic
domain rather than a program logic.

Chapar [Lesani et al. 2016] presents an operational semantics and a proof technique for verifica-
tion of causally consistent distributed stores. Similar to TLC, Chapar considers the interface between
clients and store implementations; however, only for causal consistency. Further, verification is
based on simulation rather than program logic.

PSync [Dragoi et al. 2016] is a DSL for distributed protocols based on the heard-of round-based
model [Charron-Bost and Schiper 2009]. This lockstep model enables proof automation that has
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been successfully applied to verification of consensus variants. However, PSync left composition as
future work.
Ivy [Padon et al. 2016] is an interactive tool that assists in finding inductive invariants. It has

been applied to verification of a few distributed protocols. A follow-up work [Taube et al. 2018]
lets the user split a protocol into logical modules with explicit invariants. Modules facilitate an
assume-guarantee reasoning such that verification of each falls in a separate decidable theory.
While the main focus of Ivy is automatic verification of separate parts of monolithic protocols,
TLC’s focus is compositional verification of stacks of protocols. Further, in contrast to Ivy, TLC
supports verification of liveness properties.
Disel [Sergey et al. 2017; Wilcox et al. 2017] is a program logic for distributed protocols that

provides Floyd-Hoare-style specification [Floyd 1967; Hoare 1969; Reynolds 2002] and proof rules
for horizontal composition. In Disel, the specification of a component is written in terms of its state
and the message pool. On the other hand, in TLC, the temporal specification is written in terms of
the interface events almost verbatim from the natural language description. Disel and Hoare-style
reasoning require definition of stable invariants and sometimes ghost variables. However, TLC does
not require additional annotations on the components. Disel can state and prove safety properties
while TLC can state and prove both safety and liveness properties. A follow-up work [García-Pérez
et al. 2018] similarly applies the rely-guarantee reasoning to verification of a decomposition of
Paxos [Boichat et al. 2003]. However, it does not consider the leader election subcomponent. This
paper considers leader election and epoch change as well.

Also related is recent work by Merten et al. [Merten et al. 2018] on Cage, a system for verifying
the complexity and optimality of distributed systems in domains like routing and load balancing.
Rather than verifying such systems using a program logic, as in TLC, Cage builds protocols and
associated implementations that are correct by construction by recasting distributed systems as
games with close-to-optimal equilibria, which it then executed using a distributed implementation
of no-regret dynamics.

10 CONCLUSION

TLC is a temporal program logic for compositional verification of stacks of distributed components.
Its assertion language can capture both safety and liveness properties. Using a transformation
function that lowers the specification of components to be used as subcomponents, TLC supports
compositional verification of components based on only the specification of their subcomponents.
It features intuitive inference rules and induction principles that can deduce assertions about a
component based on its functional implementation. TLC and the lowering transformation are
proved sound with respect to the operational semantics of distributed stacks in partially synchro-
nous networks. TLC has been successfully applied to verify a stack of fundamental distributed
components as the first steps towards certified distributed system stacks.
We hope that the design of TLC motivates further exploration for compositional verification

methods in the rich space beyond the traditional structure of the Floyd-Hoare logic. In particular,
concurrent and distributed program logics that directly support reasoning about the execution
order of events seem to capture intuitive proofs.
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