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Abstract—The value of cryptocurrencies is highly volatile
and investors require fast and reliable exchange systems. In
cross-chain transactions, multiple parties exchange assets across
multiple blockchains which can be represented as a directed
graph G with vertexes V as parties and edges E as asset transfers.
In a simple form, cross-chain transactions are cross-chain swaps
where each edge e transfers an asset that the head of e already
owns. However, in general, a cross-chain transaction includes a
sequence of exchanges at each blockchain. Further, transactions
may have off-chain steps and hence may not be strongly connected.
Given a transaction, protocols are desired that guarantee the
following property called uniformity. If all parties conform to
the protocol, all the assets should be transferred. Further, if any
party deviates from the protocol, the conforming parties should
not experience any loss. Previous work introduced a uniform
protocol for strongly connected cross-chain swaps and showed
that no uniform protocol exists for transactions that are not
strongly connected. We present a uniform protocol for general
cross-chain transactions with sequenced and off-chain steps when
a few certain parties are conforming. Further, we prove a new
property called end-to-end that guarantees that if the source
parties pay, the sink parties are paid. We present a synthesis
tool called XCHAIN that given a high-level description of a cross-
transaction can automatically generate smart contracts in Solidity
for all the parties.

I. INTRODUCTION

With the promise of an open, verifiable and global financial
system, the blockchain technology has attracted attention and
investment. Bitcoin’s market value surged from less than
$20 billion to more than $200 billion and venture-capital
funding for blockchain were up to $1 billion in 2017 [1].
Considering the volatility of cryptocurrencies, investors need
fast and reliable exchange mechanisms and trading platforms
[2]–[4]. Although a transfer within a blockchain is atomic, the
individual transfers of an exchange across blockchains are not
atomic. Atomic execution of an exchange is challenging since
single transfers are immutable and irreversible.

A cross-chain transaction can be modeled as a directed
graph where parties are the vertices and the transfers are
the edges. Edges are realized by smart contracts on different
blockchains. In a simple form, a cross-chain transaction is a
cross-chain swap. In a cross-chain swap, each edge transfers
an asset that the source already owns. Fig. 1a is an example
of cross-chain swap (adopted from [5]) in which Alice sends
her ethers to Bob, Bob sends his bitcoins to Carol, and Carol
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sends her Cadillac to Alice. However, in general, a cross-
chain transaction includes a sequence of exchanges at each
blockchain. A party may need to execute steps in sequence
instead of executing single independent swaps. For example,
a broker may borrow an asset and trade it in sequence.
For example, Fig. 1c shows a cross-chain transaction with
sequencing. Bob wants to trade 3 bitcoins for 3 ethers and
Carol wants to trade 3 ethers for 2 bitcoins. Alice mediates this
trade and earns 1 bitcoin. Alice receives 3 bitcoins from Bob
before she trades 2 of them with Carol. She has to execute two
steps in sequence on the bitcoin blockchain: borrowing and
then spending. To be able to create contracts for the bitcoins
on her outgoing edges, she needs to own them. However, it
is Bob that owns them. Thus, to execute this transaction, it
should be transformed to an equivalent transaction shown in
Fig. 1d. Two transactions are equivalent if each party’s gain
is the same in them.

Further, as a special case, transaction graphs can be strongly
connected. Fig. 1a is an example. However, transactions may
have off-chain steps and may not be strongly connected.
Fig. 1b is an example where Alice eats at Carol’s restaurant
(off-chain); she sends her ethers to Bob who pays Carol in
bitcoins. In addition, the transformed transactions such as
Fig. 1d are often not strongly connected.
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Fig. 1. Cross-chain Transactions

Transaction protocols are desired that given a transaction,
guarantee the following liveness and safety properties called
uniformity. If all parties follow the protocol, the assets on
all the edges are transferred. Further, if any of the parties
deviates from the protocol, the protocol should be strong
enough to prevent loss for conforming parties. Previous work
[5] introduced a protocol for strongly connected cross-chain978-1-7281-6680-3/20/$31.00 2020 IEEE



swaps and showed that no uniform protocol exists unless the
transactions are strongly connected. In this paper, we assume
that a few parties called representative sources are conforming.
We present a uniform protocol for general transaction graphs
including graphs that involve a sequence between their steps
and graphs with off-chain steps (that may not be strongly
connected). We present a transformation that given a trans-
action graph, a vertex and a blockchain, outputs an equivalent
transaction graph with no sequence for that vertex on that
blockchain. Subsequently, we present a transaction execution
protocol called 3PP that in addition to uniformity, guarantees
a new property called end-to-end for transactions with off-
chain steps. The end-to-end property states that if the source
parties pay, the sink parties are eventually paid. Further, we
present a synthesis tool called XCHAIN that given a high-level
description of a transaction graph, analyses the transaction
and automatically synthesizes smart contracts in the Solidity
language [6] for all the parties.

In the following sections, we first present basic definitions:
the definition of cross-chain transactions, protocols and their
properties (II). Then, we present the transformation algorithm
(III), the exchange protocol and its properties (IV), and the
implementation of the XCHAIN contract synthesis tool (V).
Then, we discuss the related works (VI) before conclusion.

II. CROSS-CHAIN TRANSACTIONS

Basic Definitions. A directed graph (or digraph) G is a pair
〈V,E〉, where V is a finite set of vertexes, and E is a finite
set of ordered pairs of distinct vertexes called edges. Consider
an edge e = 〈u, v〉; we say that u is the head of e, e is an
outgoing edge of u, v is the tail of e and e is an incoming
edge of v. The (direct) predecessors of a vertex v are the set
of vertices u such that 〈u, v〉 are in E. A vertex is a (local)
source if it has no predecessors. The (direct) successors of a
vertex u are the set of vertices v such that 〈u, v〉 are in E.
A vertex is a (local) sink if it has no successors. A path is a
sequence of edges such that the tail of each edge is the head
of the next. The head of a path is the head of its first edge
and the tail of a path is the tail of its last edge. A vertex is
reachable from another if there is a path from the latter to the
former. A cycle is a path with the same head and tail. A graph
is acyclic if it has no cycles. A feedback vertex set of a graph
is a set of vertices whose removal leaves a graph acyclic. A
graph is strongly connected if all vertices are reachable from
each other. The strongly connected components (SCC) of a
directed graph are its maximal strongly connected subgraphs.
A directed acyclic graphs (DAG) is a directed graph with no
cycles. Every DAG has source and sink nodes. Every vertex of
a DAG is reachable from a source and can reach a sink. The
condensation of a graph is the result of contracting each of its
SCCs into a single super-vertex. Every condensation graph is
a DAG. Consider a condensation graph C of a graph G. We
call a source of C a super-source and a sink of C a super-
sink. We call a vertex in a super-source or super-sink of C a
pseudo-source or pseudo-sink of G respectively.

Cross-Chain Transactions. A cross-chain transaction T
is a directed graph 〈V,E〉 where each vertex in V is a
party and each edge in E is an asset transfer. An edge is a
tuple 〈u, v, b, a〉 where u and v are the sending and receiving
parties, b is the blockchain hosting the transfer and a is
the transfer amount. Edges may be transferring assets from
different blockchains and for different amounts. The transfers
are performed by smart contracts. Thus, we use vertex and
party, and, edge and smart contract interchangeably. In a
transaction graph, each party agrees to relinquish assets on its
outgoing edges if she receives assets on its incoming edges.
Two transactions are equivalent if they have the same set of
vertices and the net gain of each party is the same in the two
transactions. For example, the two transactions in Fig. 1c and
Fig. 1d are equivalent.
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Fig. 2. Cross-chain Transactions

Cross-chain Swaps and Cross-chain Transactions. A
cross-chain swap is a special form of a cross-chain transaction.
In a cross-chain swap, each edge transfers an asset that the
source already owns. The transactions in Fig. 1a, Fig. 1d and
Fig. 1b are all cross-chain swaps. However, in general, a cross-
chain transaction involves a sequence of exchanges at each
blockchain. A party may need to execute steps in sequence
instead of executing single independent swaps. For example, a
broker may borrow an asset and spend it in sequence. We saw
a cross-chain transaction with sequencing in Fig. 1c and its
equivalent transaction in Fig. 1d. As another example, Fig. 2a
is a transaction where Alice is shorting bitcoin with respect
to ethereum. She borrows a bitcoin from Bob and promises
to return two. She then sells it for an ether to Carol and then
sells the ether for three bitcoins to David! She then returns
two bitcoins to Bob and gains a bitcoin herself. Alice has to
execute sequences of transfers for both bitcoin and ethereum.

To execute such a transaction, it should be transformed to
an equivalent transaction such that each party owns the assets
on his outgoing edges. The two transactions in Fig. 2a and
Fig. 2b are equivalent since each party’s gain is the same. The
cross-chain transactions may be strongly connected such as
Fig. 1a, or they may have off-chain steps such as Fig. 1b, or
they may transform to a not strongly connected graph such as
Fig. 1c to Fig. 1d, and Fig. 2a to Fig. 2b.

Transaction Execution. We say that an edge 〈u, v, b, a〉
is triggered if the amount a of asset b is transferred from u
to v. After a transaction execution, every vertex v can have
four different states: Deal : all the incoming and outgoing
edges of v are triggered, NoDeal : no incoming or outgoing
of v is triggered, UnderWater : at least one outgoing edge is



triggered, but at least one incoming edge is not triggered, and
FreeRide: some incoming edges are triggered but no outgoing
edge is triggered. Parties only lose in UnderWater states and
we will present an algorithm that prevents them. The possible
executions of a cross-chain transaction T are subgraphs of T :
an edge is in the subgraph iff it is triggered. An execution is
committed iff it is a complete subgraph.

Transaction Protocols. Given a cross-chain transaction,
a transaction protocol defines the steps that parties have to
follow. As the correctness property for protocols, previous
work [5] defined uniformity as the following two conditions.
If all parties follow the protocol, the transaction should be
committed. If any of the parties deviate from the protocol, the
protocol should be strong enough to prevent UnderWater for
conforming parties. A party is rational if it acts in its own
self-interest and deviates from the protocol only if deviation
increases its gain. A protocol is desired only if rational parties
follow it. A protocol P is a Nash equilibrium if no party
improves its gain when it deviates from P . Rational parties can
collude with each other to increase their gain at the expense
of other parties. A protocol P is a Strong Nash equilibrium if
no coalition improves its gain by deviating from P . We note
that for cross-chain swaps, the second condition of uniformity
implies strong Nash equilibrium. Consider a coalition that
deviates from the protocol P . As P is uniform, no conforming
party loses. Therefore, the coalition cannot gain anything.

In general transaction graphs with sources and sinks, the
sources want to pay the sinks (with or without an off-chain
incentive). For example, in the example in Fig. 1b, Alice
has the incentive to pay Carol because she has eaten in her
restaurant. Executions of transaction are desired that when the
sources pay, the sinks are eventually paid. The two conditions
above do not capture this property. In particular, a source or a
sink party cannot end up in an UnderWater state as they do
not have any incoming and outgoing contracts respectively. We
define a new property called end-to-end on general graphs that
precludes executions where pseudo-sources pay but pseudo-
sinks are not. We say that an execution of a transaction
is source-paid if an outgoing contract of a pseudo-source
is triggered. Similarly, we say that it is sink-paying if all
the incoming contracts of the pseudo-sinks are triggered. A
protocol is end-to-end iff for every transaction that it executes,
if the transaction is source-paid, it is sink-paying as well.

Thus, we make uniformity stronger by adding the third
conjunct. A protocol P is uniform iff (1) If all parties
follow P , then the transaction is committed. (2) If any set
of parties deviate from P , no conforming party finishes with
an UnderWater state. (3) P is end-to-end.

Previous work [5] showed that if the transactions are not
strongly connected, no uniform (and strong Nash equilibrium)
protocol exists. Intituively, when the transaction is not strongly
connected, there should be a set of vertices that pay another set
but not vice versa. The first set of vertices can form a coalition
that only trades internally and does not pay the other set. Thus,
the first set can increase its gain by deviating from the protocol.
We note that if the source vertices are conforming, no coalition

T1 TRANSFORMSEQ(T , v, b)
T2 let 〈V,E〉 := T in
T3 E′ := E
T4 ivs := {〈u, a〉 | 〈u, v, b, a〉 ∈ E}
T5 ovs := {〈u′, a′〉 | 〈v, u′, b, a〉 ∈ E}
T6 E′ := E′ \ ({〈u, v, b, a〉 | ∃a. 〈u, a〉 ∈ ivs} ∪

{〈v, u′, b, a〉 | ∃a′. 〈u′, a′〉 ∈ ovs})
T7 foreach (〈u′, a′〉 ∈ ovs)
T8 if (ivs 6= ∅)
T9 ovs = ovs \ {〈u′, a′〉}
T10 foreach (〈u, a〉 ∈ ivs)
T11 ivs = ivs \ {〈u, a〉}
T12 E′ := E′ ∪ {〈u, u′, b,min(a, a′)〉}
T13 if (a > a′)
T14 ivs := ivs ∪ {〈u, a− a′〉}
T15 if (a′ > a)
T16 a′ := a′ − a
T17 if (ivs = ∅)
T18 ovs = ovs ∪ {〈u′, a′〉}
T19 else continue T7

T20 if (ivs 6= ∅)
T21 E′ := E′ ∪ {〈u, v, b, a〉 | 〈u, a〉 ∈ ivs}
T22 if (ovs 6= ∅)
T22 E′ := E′ ∪ {〈v, u′, b, a′〉 | 〈u′, a′〉 ∈ ovs}
T23 return 〈V,E′〉

Fig. 3. Sequence Transformation

can increase its gain by deviation. Any coalition of vertices is
reachable from a source (or includes a source). The coalition
cannot include a conforming source. Further, the coalition will
lose some assets on the path from the conforming source to
the coalition. In this paper, we show that if a few parties called
representative sources are conforming, uniform protocols exist
for general transaction graphs including not strongly connected
graphs.

III. SEQUENCE TRANSFORMATION

A transaction has a sequence between an incoming edge
and an outgoing edge of a vertex if both edges transfer assets
on the same blockchain. The vertex often does not own the
asset that is on the outgoing edge and only acquires it when
the incoming edge is triggered. For example, in Fig. 1c, Alice
does not own the bitcoins that she should pass to Carol before
she acquires them from Bob. Similarly, Alice does not own
the outgoing ethers. Importantly, a transaction that involves a
sequence cannot be directly executed. A contract should be
issued for each edge of the graph by the head vertex of the
edge. If the head vertex does not own the asset, it cannot
issue the contract. For example, in Fig. 1c, Alice cannot issue
contracts to pay Bob and Carol. Therefore, the first step for the
market clearing service is to transform the transaction graph to
an equivalent transaction graph such that each vertex owns the
assets on its outgoing edges. We remember that two transaction
graphs are equivalent if the net gain of each vertex is the
same in the two transactions. The transaction in Fig. 1c can
be transformed to the equivalent transaction in Fig. 1d. The
gain of each party stays the same. Alice acquires 1 bitcoin,
Bob spends 3 bitcoins and acquires 3 ethers and Carol spends
3 ethers and acquires 2 bitcoins. Intuitively, the transformation
bypasses the middle party so that paying parties own the assets.
Now, we explain the transformation more precisely.



The function TRANSFORMSEQ in Fig. 3 transforms the
given transaction T to an equivalent transaction with no
sequence at the given vertex v and blockchain b. The function
should be called for every vertex and blockchain. The input
transaction T is 〈V,E〉 (lines T1-T2) and the output is an
equivalent transaction with the same set of vertices V and
transformed edges E′ with no sequence at vertex v and
blockchain b. The set E′ is first set to be equal to E (lines T3)
and is gradually transformed. The algorithm looks for a trade
sequence and transforms it. The set ivs is the set of pairs
of vertices u that pay v, and their amounts a (line T4) and
similarly, ovs is the set of pairs of vertices u′ that are paid by
v and their amounts a′ (line T5). The incoming and outgoing
edges to v on b are removed from E (line T6). The algorithm
iterates over all the outgoing edges to vertices u′ with amounts
a′ (lines T7-T9). To have an equivalent transaction, for each
such edge, it iterates over incoming edges from vertices u with
amounts a (lines T10-T11). A new direct edge is added from
u to u′ with the minimum of the amounts a and a′ (line T12).
If the incoming amount a is more than the outgoing amount
a′, an incoming edge with the extra input amount is added
(lines T13-T14). If the outgoing amount a′ is more than the
incoming amount a, the remainder output amount should still
be compensated using the other incoming edges (lines T15-
T16) or if there is no incoming edges left, an outgoing edge
with the remained amount should be added back (lines T17-
T18). Otherwise, this outgoing edge is totally compensated and
the iteration continues for the next (line T19). After iteration,
if any paying vertices remain in ivs (line T20), edges form
those vertices with their corresponding amounts are added to
the current vertex v (line T21). There is a similar case for the
outgoing edges (lines T22-T23).

For example, the transaction shown in Fig. 1c that has
sequences for both bitcoin and ethereum on the vertex A
can be transformed to the equivalent transaction in Fig. 1d.
There are 3 incoming bitcoins from the predecessor B and 2
outgoing bitcoins to the successor C. The vertex A is bypassed
to transfer 2 bitcoins directly from B to C. The remaining 1
bitcoin is transferred from B to A herself. Further, the vertex A
is bypassed to transfer 3 ethers directed from C to B. Similarly,
the transaction in Fig. 2a can be transformed to the equivalent
transaction in Fig. 2b. The vertex A is bypassed to transfer 1
bitcoin directly from B to C, 1 ether directly from C to D, and
2 ethers from D to B. The remaining 1 bitcoin is transferred
from D to A. In the transaction of Fig. 2b, although an apparent
sequence exists on Bob, every party owns the outgoing assets.
thus, the transaction is executable.

IV. TRANSACTION PROTOCOL

In this section, we incrementally present the three-phase
protocol (3PP) to execute cross-chain transactions and prove
its properties. We assume that sequences are removed from
the input transactions by the transformation presented in III.

Distrust Tie. In a transaction, each party is willing to
transfer assets on her outgoing edges if she receives assets
on her incoming edges. A uniform protocol should prevent

any conforming party from getting UnderWater if other
parties deviate from it. In particular, no party should find
herself paying her outgoing edges but not receiving her in-
coming edges. A contract that is processed by a blockchain
is irreversible. Further, contracts executed by two blockchains
are independent and not atomic. A party cannot risk issuing
unrestrained contracts to transfer her assets. In return, the other
parties may not issue contracts to transfer assets to her. As the
two parties symmetrically do not trust each other, there is a
tie in the order of issuing contracts.

Hashed Timelock Contracts. To break the tie in the order
of issuing contracts, hashed timelock contracts are used. A
hashed timelock contract is locked by a secret s and expires
after a certain time period t. It stores the two values hash h
and timeout t where h is the result of applying a known hash
function H to the secret s. The contract takes the secret as an
input and calculates its hash. If the resulting hash matches h,
it transfers the asset. Thus, by the collision-resistance property
of the hash function, the contract can be triggered only by the
correct secret; we say that the contract is hashlocked. Further,
if the contract does not receive the matching secret before
the time t, it refunds the asset; we say that the contract is
timelocked. The tie between two parties of a transaction can
be broken using hashed timelock contracts as follows: Alice
generates a secret, calculates its hash and creates a contract
with that hash to transfer her asset to Bob. Although she has
issued the contract, she can protect her asset by holding the
secret. Bob has received an incoming contract with a hash.
He creates a contract with the same hash to transfer his asset
to Alice. He knows that his contract can be triggered only
with the matching secret and then he can learn and use the
secret to trigger Alice’s contract. To give Bob enough time, the
timeout for Alice’s contract should be twice as much as Bob’s
contract. In the case of inaction from the counterparty, each
party is refunded by the contract after the timeout is elapsed.

Leaders and Followers. What is the protocol to safely
issue contracts for multi-party transactions? The two-party ex-
change that we saw above is generalized to strongly connected
graphs. To break the tie in the order of cycles in the graph,
a feedback vertex set called leaders generate secrets. Every
contract should be locked with all these secrets. A party that
generates and holds a secret protects assets on her outgoing
contracts even if her incoming contracts are not issued yet.
Thus, leaders can safely initiate the creation of contracts by
issuing their outgoing contracts. Parties other than the leaders
are called followers. A follower issues outgoing contracts
from him once he observes all the incoming contracts to
him. Previous work [5] presented a two-phased protocol and
proved that if the graph is strongly connected, contract creation
eventually propagates to every edge in the graph.

We assume that the transaction is assembled by a market-
clearing service. Each party offers the service the trades he is
willing to do. In addition, each party creates a secret s and
calculates its hash h by applying a known hash function H .
The party sends its hash value h together with his offers to
the service. The service matches offers from several parties to



THREE-PHASE PROTOCOL (3PP)
P1 . Phase 1: Contract Creation
P2 if (the party is a leader)
P3 Issue all the outgoing contracts.
P4 Wait for all the incoming contracts and validate them;
P5 on invalid incoming contracts, stop.
P6 if (the party is a representative source)
P7 Wait for messages from all representative sinks.
P8 else . the party is a follower
P9 Wait for all the incoming contracts and validate them;
P10 on invalid contracts, stop.
P11 Issue all the outgoing contracts.
P12 if (the party is a representative sink)
P13 Send messages to all representative sources.
P14 . Phase 2: Release and Propagation of Secrets
P15 if (the party is in the feedback vertex set)
P16 Release the secret on the incoming contracts.
P17 Apply every secret that appears on the
P18 outgoing contracts on the incoming contracts.
P19 . Phase 3: Relay and Propagation of Secrets
P20 if (the party is a representative source)
P21 Upon receipt of a secret, pass it to pseudo-sinks.
P22 else
P23 Apply secrets that are received from sources and
P24 from outgoing contracts to incoming contracts.

Fig. 4. Three-phase Transaction Protocol (3PP). The feedback vertex set, and
the representative sources and sinks are given by the market-clearing service.
The leader set is a feedback vertex set and representative sources.

assemble a transaction. Then, it analyses the transaction graph
to find the leaders. It sends to the parties their roles (i.e. leader,
follower, etc.), the parties that they will directly trade with and
the hash values for the leaders. Then, the parties can execute
the transaction with no coordination from the clearing service.
Further, the parties do not need to trust the clearing service as
they can check the validity of the contracts that they receive.

As we saw earlier, general transaction graphs may not be
strongly connected and may have sources or sinks. Thus, if the
contract creation starts from the feedback vertex set, it does
not necessarily propagate to all vertices and some contracts
may not be created. In particular, source vertices are not in
the feedback vertex set and do not have any incoming edges.
Therefore, contract creation does not propagate to sources.
Further, we note that parties can protect their outgoing assets
in two ways. The first is to be a leader, generate a secret, lock
the contract with its hash and keep the secret. The second
is to wait for all incoming contracts and then publish the
outgoing contracts with the same hashes collected from the
incoming contracts. Sources do not have any incoming edges.
Thus, the only way to protect their outgoing assets is to
include them in the leader set. More generally, a graph may
not have source vertices but its condensation has super-source
vertices. The vertices in a super-vertex are strongly connected
and are reachable from each other. We call a vertex in a
super-source, a pseudo-source. The market clearing service
can choose an arbitrary pseudo-source in each super-source
as a representative source. The leader set should include the
representative sources in addition to the feedback vertex set.

Fig. 4 presents the three phase protocol (3PP). In the first
phase, the contracts are created. In the second phase, leaders
in the feedback vertex set release their secrets and the secrets

are propagated. In the third phase the representative sources
send the collected secrets to the representative sinks and the
secrets are fully propagated.

Contract Creation. In the first phase (lines P1-P13) the
leaders issue their outgoing contracts (lines P2-P3) and wait
for their incoming contracts (line P4). A follower issues
outgoing contracts from himself once he observes all the
incoming contracts to him (lines P8-P11). Each party validates
its incoming contracts. The contracts should be paying the
right amount and protected by the hash values of the leaders.
Parties proceed only if the validation is successful (lines P5

and P10). Every contract is created with a timeout to return the
escrowed assets to the original owner if the transaction does
not proceed as expected. We will consider how the timeout
values are calculated after we see the structure of the protocol.

Representative sources kick-start the propagation in the
super-sources. Further, the order tie in cycles is broken by the
feedback vertex set and the representative sources. Therefore,
if all the parties comply with the protocol, contract creation
eventually propagates to the whole graph and all the contracts
are issued. However, the protocol looks out for deviation.
Before releasing the secrets in the next phases, the leaders
wait to receive their expected incoming contracts (line P4).
They stop if the incoming contracts are invalid (line P5). To
make sure that the contract creation has propagated throughout
the graph, representative sources wait and move to the next
phase only after sinks notify that they have received their
incoming contracts. More precisely, general graphs have super-
sinks. The market clearing service can choose an arbitrary
pseudo-sink in each super-sink as a representative sink. If
the representative sink can observe its incoming contracts,
the enclosing super-sink should have received its incoming
contracts. Further, as the vertices in a super-vertex are strongly
connected and are reachable from each other, the other pseudo-
sink vertices in the super-sink will eventually receive their
incoming contracts. Therefore, before moving to the next
phase, the representative sources wait to receive messages
from representative sinks (lines P6-P7). The representative
sinks send a message to the representative sources when
they receive their incoming contracts (lines P12-P13). The
representative sources authenticate their received messages
to ascertain the identity of the senders, using orthogonal
cryptographic mechanisms.

Secret Release and Propagation. In the second phase, the
secrets of the feedback vertex set are released and propagated
(lines P14-P18). In the first phase, the feedback vertex set has
observed that their expected incoming contracts are created.
Thus, they release their secrets on their incoming contracts
(lines P15-P16). Parties monitor their outgoing contracts. If a
party observes that a secret is applied to one of her outgoing
contracts, she applies it to her incoming contracts (lines P17-
P18). Parties have the incentive to apply secrets to their incom-
ing contracts to receive the assets. Therefore, the secret of each
leader in the feedback vertex set propagates from her to parties
reachable in the reverse order of contracts. To commit the
transaction, all of its contracts should be triggered. Therefore,



all secrets should reach all parties. In a strongly connected
graph, every vertex is reachable from every other vertex and
the secrets trivially propagate to all vertices. However, in
general graphs, not all the vertices are reachable (backwards)
from the feedback vertex set. Intuitively, the secrets propagate
back to sources (more precisely pseudo-sources) of the graph.
Since secrets do not propagate to every vertex, a follow-up
phase should complete the propagation.

Secret Relay and Propagation. The second phase of the
3PP protocol propagated secrets back to pseudo-sources. In the
third phase (lines P19-P24), the secrets are relayed from the
pseudo-sources to the pseudo-sinks and propagated back from
them. More precisely, if the party is a representative source,
she relays every secret that she has to the pseudo-sinks (lines
P20-P21). These secrets include the secrets of the feedback
vertex set and the secret of the representative source herself.
Other parties propagate secrets that are received from sources
and their outgoing contracts to their incoming contracts (lines
22-24). We note that although the second and third phases are
conceptually two phases, the sources can propagate secrets to
sinks as soon as they receive them.

We now calculate the time complexity of 3PP. Contract
creation propagates from sources to sinks. The distance be-
tween the sources and sinks is at most the diameter diam(T )
of the transaction graph T . Thus, it takes O(diam(T )) time
to create the contracts. The secrets are propagated from the
feedback vertex set back to the sources and sent from the
sources to the sinks and then propagated from the sinks back
to sources. Thus, it takes O(diam(T )) time to propagate the
secrets. Therefore, the time complexity is O(diam(T )).

Timeouts. Previous work [5] proposed timeouts for
strongly connected graphs. We extend it for general graphs
where a leader may be indirectly reachable.

The timeouts on the incoming contracts of each party should
leave enough time ∆ for the party to put the secrets that she
observes on her outgoing contracts to her incoming contracts.
A first idea is to simply set the timeout of the incoming
contracts to the maximum of the timeouts of the outgoing
contracts plus the time ∆. However, this approach is not
applicable in cycles. Instead, different timeouts are set for
different paths to a leader. In a transaction graph T , each
contract is hashlocked with hashes from each leader. Consider
a leader vl with the secret s and the hash h. The leader
vl may be directly reachable from a node v. In addition,
a leader may be indirectly reachable through a pseudo-sink
vs and a representative source ws where there is a path
from v to vs and then there is a path from ws to vl. The
secrets propagate through indirect paths when representative
sources relay secrets to pseudo-sinks. Each contract 〈u, v〉 is
hashlocked for h that can be opened by multiple hashkeys.
There is a hashkey σ and an associated timeout t for each
path p from v to vl. The hashkey σ is the result of each party
in the path from vl back to u signing s. The time out t is
(diam(T ) + |p| + 1) × ∆ time units after the start of the
protocol, where diam(T ) is the diameter of T and |p| is the
length of the path and accounts for the propagation time of

the secret back from the leader. A hashlock on a contract has
timed out when all of the hashkeys have timed out.

Uniformity of 3PP. We prove that 3PP is uniform if the
representative sources comply with it.

Lemma 1 (Uniformity): If the representative source vertices
are conforming, 3PP is uniform.

Uniformity is the conjunction of three conditions: (1) If all
parties follow 3PP, then the transaction is committed. (2) If any
set of parties deviate from 3PP, no conforming party finishes
with an UnderWater state. (3) P is end-to-end. We proved
each separately in the appendix [7] section VIII.

As we stated in section II, when the transaction is not
strongly connected, there should be a set of vertices that pay
another set but not vice versa. The first set of vertices can form
a coalition that only trades internally and does not pay the
other set. Every coalition is reachable from a representative
source. Thus, the assumption about the conformity of the
representative sources opens up possibilities to circumvent the
impossibility result.

Examples. We now consider the execution of the protocol
on a few examples. Consider the transaction in Fig. 1b. Alice
is trying to pay Carol through an exchange with Bob. The
transaction graph is acyclic. Thus, the leader set is only
Alice as a representative source. Alice generates a secret and
calculates the hash of it. Then, Alice creates a contract to Bob.
Bob observes this incoming contract and creates a contract to
Carol. Carol, the sink, observes the incoming contract and
notifies Alice, the representative source, that she has received
the incoming contract. In response, Alice passes her secret to
Carol. Carol applies the secret to the incoming contract from
Bob and receives a bitcoin. Thus, Bob learns the secret and
applies it to the incoming contract from Alice to receive an
ether. Thus, the transaction is successfully committed.

The second example shown in Fig. 2b is similar. There is
a cycle between Bob, Carol and Dave and they constitute
the super-source of the graph. Any one of them can be the
representative source and the leader. Let’s assume that Carol
is that party. Carol generates a secret, calculates its hash and
creates a contract to David. David observes the incoming
contract and in response, creates contracts to Alice and Bob.
In response, Bob creates a contract to Carol. Alice, the sink,
notifies Carol, the representative source, that she has received
her incoming contract. In response, Carol releases her secret
to Alice. Alice applies the received secret to the contract
coming from David. Then, David learns and applies the secret
to the contract coming from Carol. Similarly, Carol applies
it to the contract coming from Bob and Bob applies it to
the contract coming from David. Thus, the transaction is
successfully committed.

The presented approach can be extended to the auction
problem illustrated in Fig. 5. Alice wants to sell her Cadilac
in the auction, and Carol, Bob and David want to buy it. The
auction is executed in rounds. The first round is shown in
Fig. 5a. Carol, Bob and David have to generate their own
secrets and calculate its hash. Then, each of them creates a
contract with the hash of his or her own secret and sends



it to Alice. Alice compares the suggested bids and selects
the highest offer. Let’s assume that the highest bid of this
round is 3 bitcoins. Then, Alice notifies all parties that the
highest bid is 3 bitcoins. If no one suggests a higher price,
then David wins the auction as shown in Fig. 5b. In this case,
Alice creates a contract with the hash of the David’s secret
to pass her Cadilac to him. Then, David applies his secret to
the incoming contract to get the Cadilac and Alice learns the
secret and applies it to the contract coming from David to
get 3 bitcoins. The second case is that someone may want to
suggest a higher price. Fig. 5c is an example that Carol and
Bob want to increase the deposit of their contracts to 5 ethers
and 4 bitcoins respectively. Thus, the next round starts with
new offers. This process may repeat multiple times.
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3

(a) First round of the auction

BC A
1

D

1
3

(b) First case for the first round
of the auction

BC A
4
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3
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(c) Second case for the first
round of the auction

Fig. 5. The auction graphs

1 contract EdgeContract {
2 address senderP, receiverP;
3 bytes20[] hashedSecret;
4 uint delta, diameter;
5 bool[] unlocked, leaders;
6 uint initTime;
7 uint256 amount;
8 function initiate() { /* initialize variables */ }
9 function redeem_path_i (bytes32 _secret, Sig _sig) {

10 /* The tail of receiverP of the path_i is the leader.
11 the length of the path_i is len. */
12 if (msg.sender == receiverP
13 & H(_secret) == hashedSecret[leader]
14 & verify(_sig, _secret)
15 & block.timestamp <
16 initTime + (diameter + len + 1) * delta)
17 unlocked[leader] = true;
18 }
19 function claim() {
20 if (msg.sender == receiverP
21 & foreach leader: unlocked[leader] == true)
22 Pay amount to receiverP;
23 }
24 function refund() {
25 if (msg.sender == senderP & exists leader:
26 /* with maximum length maxlen for paths to it */
27 unlocked[leader] == false
28 & block.timestamp >=
29 initTime + (diameter + maxlen + 1) * delta)
30 Pay amount to senderP;
31 } }

Fig. 6. Pseudo code of Smart Contract for an edge in Solidity.

1 function redeem_i (bytes32 _secret) {
2 /* leader generates the secret and maxLen
3 is maximum path length from source to leader. */
4 if (msg.sender == receiverP
5 & H(_secret) == hashedSecret[leader]
6 & block.timestamp <
7 initTime + (diameter + maxLen + 1) * delta)
8 unlocked[leader] = true;
9 }

Fig. 7. Special redeem function

TABLE I
EVALUATION OF XCHAIN

# #Nodes #Leaders Synthesis
Time (ms)

Average
Gas

Average
Price (Ether)

1 2 1 294 1400331 0.02801
2 3 1 324 1440434 0.02881
3 4 1 330 1722722 0.03445
4 5 1 310 1520925 0.03042
5 6 2 318 1673709 0.03347
6 7 2 343 1716544 0.03433
7 8 4 351 2070887 0.04142

V. IMPLEMENTATION

In this section, we present our synthesis tool called XCHAIN
and its experimental results. XCHAIN is a Java application
that takes the transaction graph as input. It also inputs the
address of each party in each blockchain. XCHAIN analyzes
and transforms the input graph and synthesizes contracts for
each edge of the transformed graph in the Solidity language
[6]. XCHAIN can be used by a market clearing service.

Given a transaction graph, XCHAIN performs the following
tasks in sequence: (1) It first finds the SCCs of the transaction
graph. (2) It then finds a feedback vertex set for each of the
SCCs using a 2-approximation algorithm [8]. (3) It calculates
the condensation graph, finds its sources and sinks and chooses
representative sources and sinks. (4) It determines the leader
set as the union of the feedback vertex set of each SCC and
representative sources. (5) It finds all the possible paths for
each of the parties to each of the leaders. As we saw in IV, for
the hashlock of each party for each leader, different timeouts
are set for different paths. (6) It generates hashed timelock
contracts in the Solidity language.

Fig 6 shows the outline of a contract that is generated for
each edge in Solidity (with pseudo-code for readability). The
contract has an initiate function that initializes the state of
the contract when the sender deploys it. It has multiple redeem
functions one for each path path i from the receiver party
to each leader. A redeem function gets the secret secret

of a leader and a hashkey sig as input. It checks that the
caller is the receiver party, the hash of secret is the known
hash value for leader, the hashkey sig can be decoded
back to the secret, and considering the length len of the
path, the hashkey has not timed out. If all the checks pass,
the hashlock of the leader is unlocked. The contract also has
a claim function for the receiver party to receive the asset.
If the caller is the receiver party, and the hashlock for all the
leaders are unlocked, then the receiver can claim the escrowed



amount. The contract also includes a refund function for the
sender to reclaim the escrowed amount if there is an unlocked
and timed out hashlock. The hashlock of a leader times out
when even the hashkey of its longest path times out. As we
show in Fig. 7, we generate specific redeem functions for
pseudo-sink parties. Pseudo-sinks receive secrets directly from
the representative sources. They have to check the hashkeys.
Thus, the redeem functions for pseudo-sink parties only take
the secrets as input and check if hashing them result in the
expected hash values.

We have evaluated XCHAIN using transaction use-cases
with varying number of vertices and leaders. The use-cases
are available in the appendix [7] . We evaluate the time that it
takes to synthesize the contracts and also the price to execute
the generated contracts. We ran XCHAIN on an Intel Core
i7 processor with 3.5 GHz speed and 16 GB Memory with
MacOS version 10.14.3 with kernel version Darwin 18.2.0
and the JDK version 10.0.1. We used Remix’s JavaScript
Ethereum VM environments [9] to deploy the contracts. The
cost needed for transactions to be committed is measured by
gas. The consumed gas depends on upcodes of the contract’s
bytecode [10]. We recorded the gas consumption which is
calculated and reported by Remix. This includes a call to
initiate, multiple calls to redeem, and a call to claim.
We calculated the average gas consumption over the generated
contracts and reported the average. The value of one unit of a
Gas is set to 0.00000002 ethers to calculate the average price.
Table I represents the results. XCHAIN can generate contracts
in less than a second for the use-cases. Further, although
the execution of the contracts involves hashing, decoding and
checking, the average price for the execution of a contract is
a few hundredths of ether. In addition, we observe that the
gas consumption depends on the number of hashlocks in the
contract that is determined by the number of leaders.

VI. RELATED WORKS

Protocols. The fair exchange problem arises when two
parties want to exchange their assets. The outcome of a fair
exchange must be either that the two parties end up trading
their assets, or that they both keep their assets. This problem
has been studied even before the blockchain technology [11]–
[15]. The optimistic fair exchange protocol [11] relies on
invisible trusted parties: parties that work as a background
service and intervene only in case of a misbehaviour. Similarly,
the secure group barter protocol [12] studies multi-party barter
with semi-trusted agents. To the best of our knowledge, it
was back in 2013 when the notion of cross-chain swaps first
emerged in an online forum [16]. Atomic cross-chain swap
is since a known problem to the blockchain community [16]–
[19]. The two wiki pages [17] and [16] proposed protocols for
bilateral swaps: two-party transactions. Later, platforms such
as Komodo BarterDEX [20] and deCRED [21] emerged. How-
ever, these projects offer bilateral swaps and do not support
the notion of borrowing and sequence [2]–[4]. Previous works
[5], [22] presented a protocol for strongly connected cross-
chain swaps and showed that no uniform protocol exists unless

the transactions are strongly connected. This paper considers
general transaction graphs including graphs with a sequence
and graphs with off-chain steps that are not strongly connected.

Verification and Synthesis. Programming smart contracts
is a subtle task; a simple flaw in a critical contract can
lead to catastrophes. For example, DAO hack [23] led to
the loss of $55M worth of digital money. Therefore, formal
verification of blockchain protocols as well as smart contracts
has been an area of interest. A verification effort [24] uses a
combination of temporal logic and strategy logic to precisely
specify pre-conditions and post-conditions for a bilateral swap
protocol and applies the MCK model checker to verify it.
Post-condition for such an algorithm states that a fair trade
must happen between two parties. Automatic generation of
smart contracts has also been studied in the literature [25]–
[27]. In [27], a function in a contract on one chain can call
functions in contracts on other chains. In [26], smart contracts
are automatically generated from semantic rules and constraint
specifications. In [25], smart contracts are automatically gener-
ated from institutional specifications. Pluralize [28] addresses
the problem of trusting external sources of information such
as IoT sensors for contracts. It introduces a new formal
framework equipped with a formal smart contract language
to specify accountability for external sources and to verify
contracts based on their accountability.

Scilla [29], [30] is an intermediate-level programming
language that presents stateful contracts as communicating
state transition systems. This language can be translated to
the Gallina language of the Coq proof assistance to verify
temporal properties of contracts formally. Further, the trans-
lated contracts can be compiled to bytecode to execute on
blockchain nodes. A similar work [31] translates contracts
from Solidity to an embedding in F ∗ and uses it to verify
and compile the contracts. EthIR [32] is a bytecode analysis
tool for ethereum contracts. It decompiles the bytecode into
a high-level representation called rule-based form that keeps
the control-flow and data-flow analysis results.

Matching and Optimization. The matching problem is
to maximize the number [33] or to minimize the cost [34] of
pair-wise matchings for the given objects. In the remote area
of kidney exchange markets, clearing algorithms for barter
exchange are used [35]–[37]. Optimization techniques have
been applied to maximize the profit of off-chain transactions
[38]. Further, routing protocols have been optimized for off-
chain transactions [39]. These algorithms can be applied to
maximize the matchings or fees. Given a multi-party transac-
tion, this paper presents a protocol to safely execute it.

VII. CONCLUSION

This paper presented the 3PP protocol for general cross-
chain transactions with both sequenced and off-chain steps. It
showed the uniformity of the protocol with the additional end-
to-end property that guarantees that if the source parties pay,
the sink parties are paid. It presented the XCHAIN synthesis
tool that analyzes high-level descriptions of transactions and
quickly generates contracts in Solidity.
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