394

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Towards Efficient Scheduling of Federated
Mobile Devices Under Computational and
Statistical Heterogeneity

Cong Wang“, Member, IEEE, Yuanyuan Yang"“, Fellow, IEEE, and Pengzhan Zhou

Abstract—Originated from distributed learning, federated learning enables privacy-preserved collaboration on a new abstracted level

by sharing the model parameters only. While the current research mainly focuses on optimizing learning algorithms and minimizing
communication overhead left by distributed learning, there is still a considerable gap when it comes to the real implementation on mobile
devices. Inthis article, we start with an empirical experiment to demonstrate computation heterogeneity is a more pronounced bottleneck
than communication on the current generation of battery-powered mobile devices, and the existing methods are haunted by mobile
stragglers. Further, non-identically distributed data across the mobile users makes the selection of participants critical to the accuracy and
convergence. To tackle the computational and statistical heterogeneity, we utilize data as a tuning knob and propose two efficient
polynomial-time algorithms to schedule different workloads on various mobile devices, when data is identically or non-identically distributed.
Foridentically distributed data, we combine partitioning and linear bottleneck assignment to achieve near-optimal training time without
accuracy loss. For non-identically distributed data, we convert it into an average cost minimization problem and propose a greedy algorithm
to find a reasonable balance between computation time and accuracy. We also establish an offline profiler to quantify the runtime behavior of
different devices, which serves as the input to the scheduling algorithms. We conduct extensive experiments on a mobile testbed with two
datasets and up to 20 devices. Compared with the common benchmarks, the proposed algorithms achieve 2-100 x speedup epoch-wise,

2-7 percent accuracy gain and boost the convergence rate by more than 100 percent on CIFAR10.

Index Terms—Federated learning, on-device deep learning, scheduling optimization, non-IID data

1 INTRODUCTION

HE tremendous success of machine learning stimulates a
Tnew wave of smart applications. Despite the great conve-
nience, these applications consume massive personal data, at
the expense of our privacy. The growing concerns of privacy
become one of the major impetus to shift computation from
the centralized cloud to users’ end devices such as mobile,
edge and IoTs. The current solution supports running on-
device inference from a pre-trained model in near real-
time [23], [24], whereas their capability to adapt to the new
data and learn from each other is still limited.

Federated Learning (FL) emerges as a practical and cost-
effective solution to mitigate the risk of privacy leakage [2],
[4], [5], [6], [8], [9], [10], [11], [12], which enables collaboration
on an abstracted level rather than the raw data itself. Origi-
nated from distributed learning [1], it learns a centralized
model where the training data is held privately at the end
users. Local models are computed in parallel and the updates
are aggregated towards a centralized parameter server. The

o Cong Wang is with the Department of Computer Science, Old Dominion
University, Norfolk, VA 23529. E-mail: clwang@odu.edu.

o Yuanyuan Yang and Pengzhan Zhou are with the Department of Electrical
and Computer Engineering, Stony Brook University, Stony Brook, NY
11794. E-mail: {yuanyuan.yang, pengzhan.zhou }@stonybrook.edu.

Manuscript received 22 May 2020 revised 30 Aug. 2020; accepted 7 Sept. 2020.
Date of publication 14 Sept. 2020; date of current version 25 Sept. 2020.
(Corresponding author: Cong Wang.)

Recommended for acceptance by J. Wang.

Digital Object Identifier no. 10.1109/TPDS.2020.3023905

server takes the mean of the parameters from the users,
pushes the averaged model back as the initial point for the
next iteration. Previous research mainly focuses on the prom-
inent problems left from distributed learning such as improv-
ing communication efficiency [8], [9], [10], [11], [12], [13],
security robustness [19], [20], or the learning algorithms [12]
to address new challenges in FL.

Most of these works only contain proof-of-concept imple-
mentations on cloud/edge servers with stable, external
power and proprietary GPUs. Though pioneering efforts to
improve FL at the algorithm level, they still leave a gap to
the system-level implementations at the mobile data source,
where FL was originally targeting at. Meanwhile, the dra-
matic increase of mobile processing power has enabled not
only on-device inference, but also moderate training (back-
propagation) [6], [7], [27], thus providing a basis to launch
FL on battery-powered mobile devices.

Unfortunately, the vast heterogeneity of mobile processing
power has yet to be addressed. Even worse, the high variance
among user data adds another layer of statistical heterogene-
ity [12] and makes the selection of participants a nontrivial
problem. An inappropriate selection would adversely cause
gradient divergence and diminish every effort to reduce com-
putation time. From an empirical study, we first validate that
the bottleneck has actually shifted from communication back
to computation on consumer mobile devices. The runtime
behavior depends on a complex combination of vendor-spe-
cific software implementations and the underlying hardware
architecture, i.e., the System on a Chip (SoC), power manage-
ment policies and the input computation intensity of the

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TOWARDS EFFICIENT SCHEDULING OF FEDERATED MOBILE DEVICES UNDER COMPUTATIONAL AND STATISTICAL... 395

neural networks. These challenges are magnified in practices
when users behave differently. For example, in activity recog-
nition, some users may perform only a few actions (e.g., sit-
ting for a long time), thus leading to highly skewed local
distributions, which breaks the independent and identically
distributed (IID) assumptions held as a basis for distributed
learning. When averaged into the global model, these skewed
gradients may have a damaging impact on the collaborative
model. Thus, efficient scheduling of FL tasks entails an opti-
mal selection of participants relying on both computation and
data distribution.

To tackle these challenges, we propose an optimization
framework to schedule training using the workloads (amount
of training data) as a tuning knob and achieve near-optimal
staleness in synchronous gradient aggregation. We build a
performance profiler to characterize the relations between
training time and data size/model parameters using a multi-
ple linear regressor. Taking the profiles as inputs, we start
with the basic case when data is IID (class-balanced), and for-
mulate the problem into a min-max optimization problem to
find optimal partitioning of data that achieves the minimum
makespan. We propose an efficient O(n? logn) algorithm [37]
with O(n) analytical solution when the cost function is linear
(n is the number of users). For non-IID data, we introduce a
new accuracy cost and a quantitative derivation from the
analysis of gradient diversity [34]. Then we re-formulate the
problem into a min average cost problem and develop a
greedy O(mn)-algorithm to assign workloads with the mini-
mum average cost in each step using a variation of the bin
packing problem [40] (m is the number of data shards). The
observation suggests a nontrivial trade-off between staleness
and convergence. The proposed algorithm aims to leverage
users’ class distributions to adaptively include/exclude an
outlier in order to improve model generalization and conver-
gence speed without sacrificing the epoch-wise training time
too much. Finally, the proposed algorithms are evaluated on
MNIST and CIFAR10 datasets with a mobile testbed of vari-
ous smartphone models.

The main contributions are summarized below. First, we
motivate the design by a series of empirical studies of launch-
ing backpropagation on Android. This expands the current
research of FL with new discoveries of the fundamental cause
of mobile stragglers, as well as offering an explanation to the
subtlety in non-1ID outliers through the lens of gradient
diversity. Second, we formulate the problem to find the opti-
mal scheduling with both IID and non-IID data, and propose
polynomial-time algorithms with analytical solutions when
the cost profile is linear. Finally, we conduct extensive evalua-
tions on MNIST and CIFAR10 datasets under a mobile
testbed with 6 types of device combinations (up to 20 devi-
ces). Compared to the benchmarks, the results show 2-100x
speedups for both IID /non-IID data while boosting the accu-
racy by 2-7 percent on MNIST/CIFAR10 for non-IID data.
The algorithms demonstrate advantages of avoiding worst-
case stragglers and better utilization of the parallelled resour-
ces. In contrast to the existing works that decouple learning
from system-level implementations, to the best of our knowl-
edge, this is the first work that not only connects them, but
also optimizes the overall system performance.

The rest of the paper is organized as follows. Section 2
discusses the related works and background. Sections 3 and

4 motivate this work with a series of empirical studies. Sec-
tions 5 and 6 optimize training time for IID and non-IID
data. Section 7 describes the profiler. Section 8 evaluates the
framework on the mobile testbed and dataset. Section 9 dis-
cusses the limitation and Section 10 concludes this work.

2 BACKGROUND AND RELATED WORKS

2.1 Deep Learning on Mobile Devices

The continuous advance in mobile processing power, bat-
tery life and improvement of power management reaches
its culminating point with the debut of Al chips [21], [22].
Their power spans from executing simple algorithms like
logistical regression or supported vector machine, to the
resource-intensive deep neural networks. The research com-
munity quickly embraces the idea to migrate inference com-
putations off the cloud to the mobile device, and develops
new applications for better user interaction and experi-
ence [23], [24]. To fit the neural network within the memory
capacity, some optimization is necessary such as pruning
the near-zero parameters via compression [25] or directly
learning a sparse network before deployment [26]. Recently,
there are new efforts to incorporate the entire training pro-
cess on mobile devices for better privacy preservation and
adaptation of the new patterns in data distribution [7], [27].
Their implementation attempts to close the loop of the
learning process from data generation/pre-processing to
decision making all on user’s end devices, which has also
laid the foundation of this paper.

The implementation of federated learning on mobile
devices is subject to physical limitations from the memory
and computation. Unlike desktop or cloud servers that the
GPUs have dedicated, high-bandwidth memory, the mem-
ory on consumer mobile devices is extremely limited. The
mobile SoC typically has unified memory, where the mobile
GPU only has some limited on-chip buffer. Further, on the
O6S-level, Android has limited memory usage for each appli-
cation (e.g., setting the LargeHeap would give the applica-
tion 512 MB). Though using the native code can bypass the
limit, it is still subject to the memory limits about 3-4 GB on
most mobile devices, where a majority is shared by other
system processes. This largely constrains us from running
ultra-deep models. As shown later, the bottleneck still lies
in the computational side due to limited paralleled resour-
ces, since most mobile devices have about 8 CPU cores and
similar number of GPU shader cores. Thus, it is expected
that the computation time would increase parabolically
with a more complex neural network model, especially on
the low-grade devices.

The collaboration of mobile devices brings more uncer-
tainties to the system. Vendors typically integrate different
IP blocks under the area and thermal constraints, thus
resulting a highly fragmented mobile hardware market: 1)
unlike the ubiquitous of CUDA to accelerate cloud GPUs,
programming support is inadequate for mobile GPUs; 2)
most mobile GPUs have similar computational capability
compared to the multi-core CPUs [50]. Thus, for better pro-
gramming support, we execute learning by the multi-core
CPUs in this paper.

Like any other applications in the userspace, the learning
process is handled by the Linux kernel of Android, which

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

396 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

controls cpufreq by the CPU governor in response to the
workload. For example, the default interactive gover-
nor in Android 8.0 scales the clockspeed over the course of
a timer regarding the workload. For better energy-efficiency
and performance, off-the-shelf smartphones are often
embedded with asymmetric multiprocessing architectures,
i.e., ARM’s big.LITTLE [28]. For instance, Nexus 6P is pow-
ered by octa-core CPUs with four big cores running at
2.0 GHz and four little ones at 1.53 GHz. The design intui-
tion is to handle the bursty nature of user interactions with
the device by placing low-intensity tasks on the small cores,
and high-intensity tasks on the big cores. However, the
behavior of such subsystem facing intensive, sustained
workload such as backpropagation remains underexplored.
Further, since vendors usually extend over the vanilla task
scheduler through proprietary designs of task migration/
packing, load tracking and frequency scaling, the same
learning task would incur heterogenous processing time
depending on the hardware and system-level implementa-
tion. Our goal is to mitigate such impact on FL while still
using the default governor and scheduler for applications in
the userspace.

2.2 Federated Learning

McMabhan et al. introduce FedAvg that averages aggregated
parameters from the local devices and minimizes a global
loss [2]. Formally, for the local loss function I(-)(k €
{1,2,...,N}) of N mobile devices, FL minimizes the global
loss L by averaging the local weights w,

M=

mu%n{L('w) =) h(w)}. 1

k=1

In each round, mobile device k performs a number of £
local updates,

wiyy = wf — 0, Vip(w)),)

with learning rate n; and ¢ = {0,1, ..., E'}. The local updates
wh, are aggregated towards the server for averaging, and
the server broadcasts the global model to the mobile devices
to initiate the next round. From the user’s persecutive, one
may advocate designs without much central coordination.
As most of the FL approaches pursue the first-order syn-
chronous approach [2], [4], [5], [6], [8], [9], [10], the starting
time of the next round is determined by the straggler in the
last round, who finishes the last among all the users. Hence,
from the service provider’s perspective, it is far from effi-
cient due to the straggler problem. It leads to slower conver-
gence and generates a less performing model with low
accuracy and ultimately undermines the collaborative
efforts from all the users.

A solution is to switch to asynchronous update [14], [15].
Asynchronous methods allow the faster users to resume
computation without waiting for the stragglers. However,
inconsistent gradients could easily lead to divergence and
amortize the savings in computation time. Though it is pos-
sible to estimate the gradient of the stragglers using second-
order Taylor expansion, the computation and memory cost
of the Hessian matrix become prohibitive for complex mod-
els [14]. In the worst case, gradients from the stragglers that

are multiple epoches old could significantly divert model
convergence to a local minima. For example, the learning
process typically decreases the learning rate to facilitate
convergence on the course of training. The stragglers’s stale
gradients with a large learning rate would exacerbate such
divergence [16]. The practical solution from Google is to
simply drop out the stragglers in large scale implementa-
tion [6]. Yet, for those small-scale federated tasks, e.g., learn-
ing from a small set of selected patients with rare disease,
such hard drop-out could be detrimental to model generali-
zation and accuracy. Gradient coding [17] replicates copies
of data between users so when there is a slow-down, any
linear combination from the neighbors can still recover the
global gradient. It is suitable for GPU clusters, where all the
nodes are authenticated and data can be moved without pri-
vacy concerns. Nevertheless, sharing raw data among users
defeats the original privacy-preserving purpose of FL,
thereby rendering such pre-sharing method unsuitable for
distributed mobile environments.

As a key difference from distributed learning, non-IID-
ness is discussed in [3], [4], [5]. It is shown in [3] that for
strongly convex and smooth problems, FedAvg still retains
the same convergence rate on non-IID data. However, con-
vergence may be brittle for the rest non-convex majorities
like multi-layer neural networks. As a remedy, [4] pre-
shares a subset of non-sensitive global data to mobile devi-
ces and [5] utilizes a generative model to restore the data
back to IID, but at non-negligible computation, communica-
tion and coordination efforts. Another thread of works
address the common problem of communication efficiency
in FL [8], [9], [10], [11], [12], [13]. The full model is com-
pressed and cast into a low-dimensional space for band-
width saving in [8]. Local updates that diverge from the
global model are identified and excluded to avoid unneces-
sary communication [9]. Decentralized approaches and con-
vergence are discussed in [10] when users only exchange
gradients with their neighbors. Evolutionary algorithm is
explored to minimize communication cost and test error in
a multi-objective optimization [11]. The challenges from sys-
tem, statistics and fault tolerance are jointly formulated into
a unified multi-task learning framework [12]. A new archi-
tecture is proposed with tiered gradient aggregation for sav-
ing network bandwidth [13]. Such aggregation re-weights
the individual’s contribution to the global model, that may
unwittingly emphasize the share of non-IID users. As rec-
ommended by [18], a practical way to save the monetary
cost of communication is to schedule FL tasks at night when
the devices are usually charging and connected to WiFi.
These efforts are orthogonal to our research and can be effi-
ciently integrated to complement our design.

Our study has fundamental difference from a large body
of works in scheduling paralleled machines [31], [32], [33].
First, rather than targeting at jobs submitted by cloud users,
we delve into a more microcosmic level and jointly consider
partitioning a learning task and makespan minimization,
where the cost function is characterized from real experi-
mental traces. Second, FL calls for the scheduling algorithm
to be aware of non-IIDness and model accuracy when work-
loads are partitioned. Hence, our work is among the first to
address computational and statistical heterogeneity on
mobile devices.

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TOWARDS EFFICIENT SCHEDULING OF FEDERATED MOBILE DEVICES UNDER COMPUTATIONAL AND STATISTICAL... 397

LeNet - 3K samples (5% of MNIST)

80

VGG6 - 3K samples (5% of MNIST)

3% [_]Computation Time []Computation Time | |
[__JWiFi Comm. Time 2.6% [C__]WiFi Comm. Time
60 I LTE Comm. Time [LTE Comm. Time
. 4.5%
< 5.4% Z10°
© 40!
g 40 6.5% GE) 104% 12.0%
= 8% = 13.9% 14,69
10.9%
20 ﬁ 25.5%
0 102
© ® ° Q@ o © ® o @ o
N 0(23 3 Q\é‘ & P N \)%é? R q}z\ RO
S W Sy S
(a) (b)

TABLE 1
Hardware Configurations of Benchmarking Testbed
model SoC CPU big.LITTLE
Nexus 6 Snapdragon 805 4x2.7GHz x
Nexus 6P Snapdragon 810 4x1.55 GHz v
4x2.0 GHz
Samsung J8 Snapdragon 450 8x1.8GHz x
Mate 10 Kirin 970 4%2.36GHz v
4%x1.8GHz
Pixel2 Snapdragon 835 4x2.35 GHz v
4x1.9 GHz
P30 Pro Kirin 980 2x2.6 GHz v
2x1.92 GHz
4%x1.8 GHz

3 CoOMPUTATION VERSUS COMMUNICATION TIME

In this section, we are motivated to answer the basic question:
how large is the gap of the computational time among mobile devices
and how does it compare to communication? We demonstrate this
through an empirical study to launch a training application
using neural network models of LeNet [38] and VGG6 [39] on
the mobile testbed (shown in Table 1 in Section 8).

To benchmark the computation time, we trace the train-
ing time per data batch (20 samples) on different devices
shown in Fig. 1 and the average of CPU clock speed every
5s versus the temperature in Fig. 3. Though the CPUs can
switch frequencies much faster, this experiment shows how
the frequency and temperature interact over time to reach
stability under the power management policy (in /sys-
tem/etc/thermal-engine.conf).

To measure the communication time, we establish an
AWS server for communicating the model between the
cloud (Washington D.C.) and local devices (Norfolk, VA).
The server pushes (pulls) the model to (from) the devices in
each epoch and iterates through 5 percent of the dataset
with 3K samples. We measure the transmission time of the
LeNet (2.5 MB) and VGG6 (65.4 MB) model over the 1 Gbps
wireless link and T-mobile 4G LTE (-94 dBm), to emulate
different networking environments. The WiFi uplink/
downlink speed achieves around 80-90 Mbps on our cam-
pus network and LTE reaches about 60 Mbps and 11 Mbps
for the uplink and downlink respectively. The makespan
for each device is shown in Fig. 2 with the percentage of
communication overhead on top. Based on all the experi-
ments above, we summarize the observations below.

Training time per batch (LeNet-MNIST)

© Nexus6
Nexus 6P
Samsung J8
Mate 10 Mate 10
Pixel 2 Pixel 2
Huawei P30 * Huawei P30

Training time per batch (VGG-MNIST)

Nexus 6
Nexus 6P
Samsung J8

seo0e 0

o

W%‘Jd"’m%oo

@00 o
o o @0 B, I
°

@O@OO%%OW&OCU"O" Y
°

o
o’

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Data batch (batchsize=20) Data batch (batchsize=20)

(a) (b)

Fig. 1. Benchmark training time on different mobile devices (MNIST
dataset) (a) LeNet, (b) VGG6 (best view in color).

Fig. 2. Computation versus communication time of training on MNIST
samples per epoch (s) (a) LeNet. (b) VGG6.

3.1 Key Observations

Observation 1. Computation time is mainly governed by the
processing power/performance of the CPUs/SoC (with
some variations from the OEM implementations), as well
as the computation intensity of the neural network model.

Observation 2. The continuous neural computation leads
to thermal throttling, where the governor quickly reacts to
reduce the cpufreq, or even shuts down some cores,
thereby causing a performance hit with large variance in
the subsequent batch iterations (especially running
heavy-weight networks like VGG6 on Nexus6/6P). Such
phenomenon adds to the diversity of computation time.

Observation 3. In contrast to the hypothesis in [2] that com-
munication overhead dominates in FL, our experiments
indicate that communication only takes a small portion of
the training time (below 10 percent on average as seen in
Fig. 2). This confirms that with today’s networking speed
and the upcoming 5G, the bottleneck of FL on battery-
powered mobile devices is expected to remain on the com-
putational side. Part of the reason is because the consumer
mobile devices cannot host heavy-weight neural architec-
tures (such as increasing VGG6 to 16 layers), which easily
overwhelm the memory limit of 512 MB per application set

Nexus 6: CPU Frequency

w25

s

e,

&

8

s

3 10 20 a0 I 50 0 o 10 20 B P 50 60

Data batch (20 samples/batch) Data batch (20 samples/batch)
Nexus 6: Temperature Nexus 6P: Temperature

280
<
gm
e

0 10 20 30 4 50 60 0 10
Data batch (20 samples/batch)

(a) (b)

Samsung J8: CPU Frequency

Nexus 6P: CPU Frequency

‘Small Cluster

Freq. (GHz)

Small Gluster
- - - Big Cluster

Temp. (Celsius)

2 40 50 60
Data batch (20 samples/batch)

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Data batch (20 samples/batch) Data batch (20 samples/batch)
Mate10: Temperature Samsung J8: Temperature

55 J_ﬁ!_/ﬂ—L___wW"‘“
50

0 10 20 30 P 50 60 0 10 20 30 40 50 60
Data batch (20 samples/batch) Data batch (20 samples/batch)

(© (d)

Fig. 3. CPU clock speed versus temperature. (a) Nexus6. (b) Nexus6P.
(c) Mate10. (d) SamsungJ8.

‘Small Cluster

- = =Big Cluster

Temp. (Celsius)

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

398 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

by Android [29]. Even if more memory is permitted to exe-
cute large models, the bottleneck would still remain on the
computational side because of the parabolical increase of
computation time, compared to the relatively linear increase
in communication time.

Observation 4. To process the same amount of data, the
mobile devices exhibit substantial heterogeneity in their
completion time. For example, the straggler takes more than
3x compared to the mean completion time from other devi-
ces, and this deviation is expected to get larger with higher
workloads such as more complex models or data iterations.

3.2 CPU Frequency Versus Temperature

We observe two major factors: hardware architecture and
thermal throttling, that impact the computation speed for
such sustained workloads of running backpropagation. Of
course, speed is dominated by the hardware architecture
such as the CPUs/SoC, and should be in general consistent
and predictable with the hardware configurations. How-
ever, unlike desktops, thermally constrained mobile devices
result higher diversity in runtime as per to the different
workloads and computation intensity.

We show the trace of CPU frequency and temperature of
four devices in Fig. 3. Before analyzing the results, we
briefly describe their CPU microarchitectures: 1) Nexus 6
has a single quad-core CPU cluster running at 2.7 GHz; 2)
Nexus 6P has octa-core CPU clusters. The four big cores are
running at 2.0 GHz and the four little cores are running at
1.55 GHz; 3) Matel0 also has octa-core CPU clusters. The
four big cores are running at 2.4 GHz and the four little
cores are running at 1.8 GHz; 4) Samsung]8 features octa-
core all running at 1.8 GHz in a single cluster. All of them
are the maximum frequencies of the CPU. For clarity, we
average the frequency and temperature for all the homoge-
neous cores in Fig. 3.

We can see that different devices exhibit distinct behaviors
of how the governor reacts to temperature surge. Nexus 6
allows the temperature to stay above 60°C and even surpass
the 70°C level, in exchange for running the CPU only 20-30
percent below the max. frequency. In contrast, Nexus6P is
more conservative due to the controversial Snapdragon 810
SoC [35]. It actively reduces the frequency of the big cores to
below 50 percent, and even switches off all the cores in the big
cluster, in order to maintain the temperature around 50°C.
The big cores go offline and migrate the tasks to the little cores
after a moderate temperature surge, that occurs fairly often
during the testing. The big cores never stay around their maxi-
mum frequency at 2.0 GHz, thus making Nexus 6P much
slower than Nexus 6 even with more CPU cores. The recent
generations of Matel0 and Samsung]J8 exhibit more stability.
The governors manage to maintain the temperature around
50°C with only 20-30 percent discounted clockspeed.

The throttling process is controlled by the vendor-spe-
cific driver for frequency scaling. Obviously, Nexus 6 has a
more relaxed throttling temperature, which allows the
CPUs to stay at high frequency and persistently online than
Nexus 6P. Such possible overclocking has made it outclass
the newer versions of Matel0 on some low intensity tasks
(about 3x speedup calculated in from Fig. 1a), though
Nexus 6 back in 2014 were not designed for intensive

workload like neural computations. These experimental
studies suggest that we should factor in both the device-spe-
cific characteristics and the workload intensity in estimating
the computation time.

Since FL takes more than 10 epoches to converge, as
shown in Fig. 2, only processing 5 percent MNIST for 10
epoches leads to 0.7 to 2.6 hours time difference to wait for
the stragglers. If each model update entails more local itera-
tions, this delay is expected to increase exponentially (with
more thermal throttling on the stragglers). An optimized
scheduling mechanism should be built to account for these
factors. In cloud environments, stragglers may be caused by
resource contention, unbalanced workload or displacement
of workers on different parameter servers [32], which are
typically handled by load balancing. In mobile environment,
they are caused by the fundamental disparity among users’
devices: can we do the opposite and leverage load unbalanc-
ing to offset the computation time of those stragglers? If so,
what about the side effects and how to mitigate? Since each
epoch requires a full pass of the local data, among a variety
of tunable knobs, workload is directly proportional to the
amount of training data. Nevertheless, distributed learning
often assumes a balanced data partition among the work-
ers [2]. Would data imbalance (either in the case of IID or
non-IID data distribution) lead to significant accuracy loss?
We further study additional impact from the data distribu-
tions before formulating our problem.

4 IMPACT OF DATA DISTRIBUTIONS

4.1 Impact of Data Imbalance to IID Data

We partition the datasets of MNIST and CIFAR10 among 20
users. E.g., for MNIST, the training set of 60K images results
an average of 3K images per user. Then we utilize a Gauss-
ian distribution to sample around the mean and adjust the
standard deviation to induce data imbalance among users.
The ratio between different classes is uniform so no class
dominates the local set. We utilize an index of imbalance ratio
between the standard deviation and the mean as the z-axis
(larger ratio means more extreme), and benchmark the accu-
racy against the centralized and distributed learning with
balanced data in Fig. 4. The results indicate that as long as
the data remains IID, imbalance does not lead to accuracy
loss. It is reasonable since the local gradients still resemble
each other when data is IID. The accuracy even trends up a
little for CIFAR10. This provides the basis for optimization
discussed in the next section.

4.2 Impact of Non-lID Data

Non-IIDness is shown to have negative impact on collabora-
tive convergence [2], [4] and data imbalance could exacer-
bate this issue. Instead of investigating data imbalance and
non-IIDness together, we investigate how non-IID data
alone is enough to impact accuracy and convergence. We
seek answers to the fundamental question: How can we iden-
tify and deal with the users having non-IID distributions?
Weight divergence, ||w; — S N, w;/N||3 is used in [4] to
compare the norm difference between the local weights w;
and the global average. Local loss is an equivalent indicator
with less complexity, since it does not require pairwise
weight computations. Fig. 5a compares the local loss of the

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TOWARDS EFFICIENT SCHEDULING OF FEDERATED MOBILE DEVICES UNDER COMPUTATIONAL AND STATISTICAL... 399

Impact of data imbalance on accuracy (CIFAR)

995 Impact of data imbalance on accuracy (MNIST)

701

= Centralized (Baseline) = Centralized (Baseline)
4 Distributed (Balanced) 68 4 Distributed (Balanced)
99 © Distributed (imbalanced) | | © Distributed (Unbalanced)
9 Trend Line 66" Trend Line
> > m
98.5
8 gear e e
3 a3 LN
8 . . o 862 . I S o"
< % @ o < . e
B }:‘ i : 2 P £, ¢ . °c
s P s . 260 - .
97 Ve el 0, . ,_._....(..4-,
. 581 oo ® .
.
.
97 - . s56L—* o . . .
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
Imbalance ratio Imbalance ratio
(@) (b)

Fig. 4. Impact of data imbalance (still [ID) on FL accuracy (a) MNIST.
(b) CIFAR10.

non-IID outlier with the average loss from the rest users and
the ideal case when the data is IID. The outlier user with
only one class can be easily identified from the rest IID
ones, which has over an order of magnitude loss value and
is unable to converge compared to the rest.

While identifying outliers is simple, the existing stud-
ies [4], [5], [9] have yet to reach a consensus on how to deal
with them. With the outlier user only having a subset of
classes, our intuition is that accuracy is directly associated
with the distribution of classes among the users [9]. To see
how the number of classes impacts accuracy, we conduct
the second experiment by iterating the number of classes
per user from 2-8 (out of 10 classes) plus a standard devia-
tion of samples among the existing classes as the z-axis. It is
observed in Fig. 5b that higher disparity of class distribu-
tions among the users indeed leads to more accuracy degra-
dation with a substantial loss of 10-15 percent on CIFAR10.

Since the presence of non-IID outliers is inevitable in
practices, we are facing two options: 1) simply exclude
them from the population based on loss divergence [9]; 2)
keep them in training. We take a closer look of these options
and argue that the decision should be actually conditioning
on the class distributions, rather than only based on the
local loss or weight divergence. We demonstrate through a
simple case to distribute CIFAR10 dataset among 4 users in
different ways, and introduce a fifth user to act as the non-
IID outlier.

o Ideal IID(10): the ideal baseline when all 4 users have
identical distribution and all 10 classes are evenly
distributed among them.

o Include Non-1ID(10): the population has 10 classes. A
fifth user with only one class is included, but her class
has already presented in the population. The popula-
tion becomes non-1ID because of the fifth user.

Loss comparison of non-1ID outlier Impact of non-IID data (CIFAR10-LeNet)

1021 outi (Non-IID) %
t —— Outlier-one user (Non- ®
= Bearon e 1 2T aeores] e,
I - - -Ideal (ID) rendne ®og® 2 0; -
. oy |
o 550 o0 0.!—3; °
= ~~ AN M © o
§ | > o060, ° .:‘! o
2 I o o0 -8
- 545 oo °
210 3 ol L) °
3 < L% T ¢
g L ’ .
8 °
= 40 . e o
P e S S 352 3 4 5 6 7 8
10 20 30 40 50
Avg # of classes per user (total 10 classes)
(a) (b)

Fig. 5. Impact of non-1ID data on local convergence and model accuracy
(CIFAR10) (a) comparison of local loss, (b) relation between the degree
of non-IID class distribution and accuracy.

Impact from non-IID outlier

Comparison of gradient diversity

0.65 1.2
Ideal 1ID(10)
06 —mIEIy T Non-1ID Rest Users(9)
--------- 1.1 Non-1ID Outiier User(1)

0s5) AT e > |1 Exclude 1ID(9)
> %
§ 05h 5% accuracy gap g 1
g s
<045 5 09
B R
° i
~ 04 5

Ideal IID(10) 08
0.35 | Include Non-IID(10) :
————— Include Non-1ID(9)
0.3+ Exclude 1ID(9) 07 . . . |
10 20 30 40 50
0 10 20 30 40 50
Epoches (global training)
(a) (b)

Fig. 6. Impact of non-1ID data on model accuracy in CIFAR10 (a) relation
between the degree of non-1ID class distribution and accuracy, (b) influ-
ence from individual outliers.

e Include Non-1ID(9): the population has 9 classes. A
fifth user with that missing class (one-class outlier) is
included. The population is also non-IID.

o Exclude IID(9): the population has 9 classes. Exclude
the fifth user despite she possesses class samples
from the missing class so the population remains
1D [9].

From the results in Fig. 6a, we have two key observa-
tions: 1) if the class of the outlier user is also found in the
population, inclusion of the outlier has minor influence on
accuracy (but slows down convergence); 2) if such class is
missing from the population, including the outlier user
results 1-2 percent accuracy loss compared to the ideal IID
case, but achieving a significant improvement of 5 percent
accuracy compared to when the outlier user is completely
removed from training. Based on these observations, we
hypothesize that the selection of participants should not
only rely on the local losses, but also whether they contain
classes that are not yet included in the training set.

Summary. The findings are inline with two fundamental
principles of machine learning and the generality is effective
for other experimental setup and datasets as well. FL adopts
the principles of data parallelism [1]. As long as the training
data is partitioned in an IID fashion, it does not negatively
impact the test accuracy. In fact, data parallelism will
improve the accuracy during a fixed training time because
of fast convergence. It is applicable to any neural network
architecture and is model-agnostic. For non-IID data, our
findings are based on: 1) class imbalance/non-IID data has
negative impact on accuracy as validated in [2], [4]; 2) mod-
els generalize poorly on unseen data samples, since
machine learning is good at interpolation on the data it has
been trained on, but bad at extrapolation to the out-of-distri-
bution data. We discover more subtleties that simple exclu-
sion of the “outliers” depending on the degree of class
imbalance may undermine model generalization. We need
to look into whether the users possess unseen samples that
can help generalize the model.

4.3 Gradient Diversity

We further investigate this issue through the lens of gradient
dissimilarity. Backpropagation relies on gradient descent to
minimize the loss objective. High similarity between concur-
rently processed gradients may cause degraded saturation
during gradient descent. A notion called gradient diversity is
introduced in [34] for quantifying the difference between
gradients from batched data samples. Here, we extend the

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

400 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

concept to FL and evaluate the gradient difference between a
user and the global model (without the user’s gradients). We
represent the n-layer network as a function fij(w), i€
{1,...,n}. The gradient diversity is,

_ S IV A w)l
> Vi (w)Hé +2h Ei:j(vf’i (w), fo(w)) 7
(3)

DA('w)

where the nominator is the sum of /[» norm of the gradients
from all the layers, and the second term of the denominator
is the inner products of gradients between the local f and
global model f¢ for each user. If the local gradient has a posi-
tive correlation to the global one, Dy (w) < 1 and vice versa.
If the gradients are orthogonal, the inner product is zero and
Da(w) — 1. A larger diversity value means more diverse of
the user’s data compared to the global model (rest users).

Fig. 6b shows the trace of gradient diversity for the 3
cases above (the results are averaged over the number of
users shown). Clearly, the outlier user has the highest diver-
sity value with an average above 0.95 compared to the IID
baseline at 0.9 (sometimes above 1). In other words, the
inner product between the outlier and global updates is
approaching zero, which indicates their gradient directions
are almost orthogonal. In contrast, the diversity contribution
from the rest users with 9 classes are much weaker (Non-IID
Rest Users) and excluding the outlier user yields the worst
diversity. These results coincide with Fig. 6a and suggest
gradient diversity as a good explanatory metric: although
the outliers may induce local divergence and slightly higher
variance in training, they might be conducive to the learning
process depending on the gradient directions. The above
discussion leaves the door open for further optimizations
while jointly considering factors from computation and
data distribution. We follow these guidelines to optimize
the training time when data distributions are IID and non-
IID in the next two sections.

5 OPTIMIZATION WITH IID DATA DISTRIBUTION

When the resource permits, we should strive to pursue IID
settings first. The efforts in [4], [5] attempt to restore the
data back into IID. On the other hand, a partial reason of
non-IIDness is due to the imperfect data collection process.
For example, the collection period is inadequate or a neces-
sary data cleaning/augmentation is missing. With the abun-
dance of mobile data, the scheduler can ask the users to
carefully select the data from a sufficiently longer period of
time. Meanwhile, the application could also incentivize
users to perform those activities that are needed in order to
remain IID defined by the task objectives. To this end, we
start with the case that the local dataset contains data from
all the classes (i.e., IID) and optimize the training time per
epoch in this section.

5.1 System Model

The success of machine learning algorithms relies on a large
and broad dataset. The goal is to minimize the expected
generalization error between training and testing by fitting
the distributions of D data. A theoretical bound between
the amount of data needed for achieving certain error rates

is available in [30]. The FL training task requires a total
amount of data D, where D can be either obtained empiri-
cally or estimated using [30]. We use shards to represent the
minimum granularity of samples (e.g., 100 samples/shard).
The parameter server has sufficient bandwidth and simulta-
neous transmissions do not cause network congestion or
performance saturation [6]. Our framework mainly tackles
heterogeneity from computation and data distribution, and
is amenable to decentralized topologies without a parame-
ter server [10]. The users will agree on a protocol to execute
training from the demanded amount of data requested by
the scheduler. The training data can be a subset of the local
data collected during a long time period. For comparison
and reproducibility, we follow the same approach as [2], [4]
to partition public datasets on different devices. We dele-
gate the role of management to the server to gather users’
meta data such as smartphone model and information
about non-IID class distribution. For simplicity, we assume
the server is honest and does not attempt to infer user pri-
vacy from the collaborative model or class information as
we can always resort to security protocols to protect the
intermediate gradients, model and differentially-private
class information [19]. We formalize the optimization prob-
lem for IID data distributions next.

5.2 Problem Formulation (lID)

FL follows the stochastic gradient descent to randomly
select a number of users for training in each epoch [2]. Our
objective is to optimize the execution time of the selected
n = [N users. As shown in Section 4.1, we can leverage
unbalanced local data with minimum accuracy loss as long
as the data is IID among the users. This gives enough lati-
tude for task assignments. For all the permutations ¢ that
partition the total data D, the computation time T (D;) for
user ¢ is a function of her data size D;. Depending on the
networking environments, the uplink and downlink net-
work latency for user i is a linear function of model size M,
T (M) + T4(M). Our goal is to find an optimal assignment
of training data so that the maximum processing time is
minimized per epoch. The problem is formalized below.

: i °(D; u d
P1: min - max (T7(Dy) + T (M) + T{ (M),

4)

> Di=D, (5)

s.t.

ieN

¢_{D17D27 7Dn} (6)
Zm,j =n. ()]
ieN

The objective in Eq. (4) is to minimize the makespan given
all possible data partitions and the assignment of D; data to
user i. Eq. (5) states that the sum of local data should be
equal to D. Eq. (6) denotes the permutations of all data par-
tition. For completeness, Eq. (7) requires all the users to par-
ticipate in training. The decision variable x; =1 if a user
participates; otherwise, it is zero.

P1 can be viewed as a combination of a partitioning prob-
lem and a variant of the linear bottleneck assignment problem

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TOWARDS EFFICIENT SCHEDULING OF FEDERATED MOBILE DEVICES UNDER COMPUTATIONAL AND STATISTICAL... 401

(LBAP) [36]. The classic assignment problem finds an opti-
mal assignment of workers to tasks with minimum sum of
cost. LBAP is its min-max version. It assigns tasks to parallel
workers and ensures the latest worker uses minimum time.
We adopt the same analogy here to ensure each training
epoch is finished in minimum time. The problem is different
from both the classic assignment problem and LBAP. The
number of potential tasks is not equal to the number of work-
ers (mobile devices), but rather, a much wider potential
range to choose from due to the combinatorial partitions of
the dataset. The final choice would be determined by the set
of constraints that optimizes Eq. (4). A naive solution is to
list all the partitions of D in brute force, construct cost val-
ues per user for all the potential permutations, solve an
LBAP and find the assignment with the minimum make-
span. For a total number of s shards, the possible permuta-
tions are in the order of s", which makes it intractable even
for small n.

5.3 Joint Partitioning and Assignment

Though the naive method turns out to be futile in polyno-
mial time, the following property of mobile devices helps
simplify the problem.

Property 1. For data D;, T¢(D;) + T (M) + T4(M) is a non-
decreasing function.

Then it is not necessary to test a large number of potential
partitions, if a partition of smaller size has already satistied
Eq. (5) with less computatlon time. For example, consider
possible permutations of Zl 1 D; =13 among three users.
If the first or the second user is the straggler in partition
(4,4,5), then partitions such as (5,53), (6,6,1) definitely
leadnA to more running time. This allows us to potentially
skip a large number of sub-optimal solutions.

The classic LBAP has a polynomial-time thresholding
algorithm in O(nilog n) [36]. This algorithm checks whether
a perfect matching exists in each iteration using the Hopcroft-
Karp algorithm, that takes O(n3). Here, when D is divided
into s shards, perfect matching between user and data shard
is no longer needed as introduced in the following property.

Property 2. A bipartite graph G = (U, V; E) can be constructed
with [U| =n, |V| = ¢ and edges (i, j) € €. Each vertex in U
should have degree of 1 and vertices in V can have degree of 0
(as long as the sum of vertices having degree 1 equals D).

Fed-LBAP Algorithm. Based on Properties 1 and 2, we can
further reduce the time complexity by extending [36]. We
propose a joint partitioning and assignment algorithm to
solve the problem in polynomial time. The procedure is
explained in Fig. 7. For the n users, we define a cost matrix
C = {c¢;;} of dimension n x s (i.e., the matrix represents the
cost to assign j shards to user i). A thresholding matrix C
with the same setting is also initiated. We sort all the ele-
ments from the cost matrix in ascending order and perform
binary search by utilizing a threshold ¢*: if ¢;; > ¢, ¢; = 0;
otherwise, ¢;; = 1. The sum of all cost values found in each
iteration is compared to D. If larger, find a new median for
the left half; otherwise, find a new median for the right half
until the optimal median value is reached. In short, our
algorithm first performs sorting of all the cost values and

Enum. of data partitions

12 3 45 e e ____ .
Nexus6 | 2 | 6 |10(|14[18 h i
Mate10 1.5 3 [4.5(6 [7.5 = °e

Flatten and sort in ascending order

10

Set elements larger than A& —> 0

Pixel2 [1.0/1.9| 2 |2.5/ 3
Cost Matrix C

Whether data partitions:
Here: 1+2+5>D

kit ™ o® |

quate cursor as per to Thresholding Matrix C
binary search rules

Fig. 7. llustration of the procedures in Fed-LBAP: @ cost matrix C with
columns representing the enumeration of data partitions; @ flatten C
and sort elements in ascending order; © set elements larger than the
threshold in C' to zero and performs binary search to find the optimal
threshold.

conducts a binary search for the minimal threshold ¢* such
that Property 2 and Eq. (5) hold. The procedures are summa-
rized in Algorithm 1.

The time complexity is analyzed below. In the worse
case, binary search takes O(logns) iterations. We need to
check whether ¢;; = 0 during the iterations. This takes O(s)
time for one user and is repeated for n times. The time com-
plexity is O(nslogns) with s>mn. To be consistent
with [36], when s = n, our algorithm is O(n? log n).

Analytical Solution (Linear Case). When the training time
Tf(-) has a linear relationship with the number of data
shards, the problem has a (relaxed) analytical solution.
Denote the function by 7; in short and data size D; of a user
1, we have

Di =T,/a; — bi/a;, ®)
where a; and b; are device and model-specific parameters
found by the profiler discussed in Section 8.1.

Property 3. If the integer requirements of data shards are
relaxed, for a solution to be optimal, the training time is equiva-
lent on all the mobile devices.

Proof. We prove this property by contradiction. Assume the
optimal solution 7™ is reached when all users have the
same training time of 7', except a user j that takes 7" + AT
On the other hand, we can always reduce D; by AD and
proportionally increase the rest users by AD - r;, Vi € N'\j,
such that 7, =T; =T" < T + AT, where ZieN\j r; = 1.
This results a contradiction with 7% = T+ AT, thus prop-
erty 3 holds. O

Based on Property 3, we replace 7} in (8) with 7* and take
summation over all the users on both sides, we obtain the
optimal solution and data partitions,’

b; b;
" D+Zie/\f;,- D"’ZieNE b;
T = D= Ry ©
Zie/\/’a_i 1€/\/u @i

1. The data partitions are derived by plugging the optimal time into
Eq. (8) and treating T; = T™.

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

402 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

We reuse notation 7™ as the optimal solution derived by
the relaxed solution in R. By rounding off the number of
data shards to integers, we can obtain an (1 + €) approxima-
tion, and integral gap is bounded by ¢ = max(ay, ag, ..., a,).
The analytical solution reduces the time complexity to O(n)
for computing the assignment and O(1) for calculating the
training time. Note that it only holds for the linear case. For
some mobile devices that exhibit superlinear or even weak
quadratic running time (due to thermal throttling), we refer
to the general mechanism of Algorithm 1.

Algorithm 1. Fed-LBAP (for IID Data)

1: Input: Total data size D, cost matrix C' = {C};}, number of
users n.
: Output: The assignments of tasks {4} for each user j.
C « C sorted in the ascending order.
min « 0, max < |C|, median — |mibmax| 7y
while min < max do
C* « C(median)
forj=1tomdo
Aj — argmaxj{Cij\Cij S C*}
Dl — Dl + Al
10: ifVi,A; =0or D' < D then
11: min « median
12: else

13: max < median

VRN TR

6 OPTIMIZATION WITH NON-IID DATA
DISTRIBUTION

Non-IIDness is inherent in mobile applications due to the
diverse behaviors and interests from users. This section
studies the situations when we are unable to restore the dis-
tribution back to IID.

6.1 Problem Formulation (Non-IID)

To connect non-IIDness with the scheduling decisions, we
introduce an accuracy cost o with a base parameter « to the
power of a weight w; for user ¢. & balances the makespan and
the potential convergence time. For the same weight, a large «
weighs more on those non-IID outliers and possibly excludes
them from selection. A small « weighs less on the data distri-
butions and focuses more on the makespan. Its value is deter-
mined empirically in Section 8.5 and the construction of the
weight value w; is discussed in the next subsection. We for-
mulate the optimization problem first. The new objective is to
find a schedule with the minimum average cost.

P2: minz (T8(Dy) + (T (M) + THM) + o) y;),
ieN
(10)
s.t.
> Di=D, (11)
ieN
D, <U,ieN (12)

We re-use most of the notations from P1 and assume an ini-
tial equal partition of D among the users, but to be adjusted

afterwards. The new objective is to determine the data
shards D; to be assigned to user ¢ such that the sum of com-
putation/communication and cost of accuracy (scaled by «)
is minimized. We can consider the accuracy cost as a fixed
cost when a user is involved, which gradually changes
defined by Eq. (15) later. Constraint (11) ensures that all the
data partitions sum up to D in total. Constraint (12) states
that the size of data does not exceed user i's capacity U;,
which can be quantified by storage or battery. Constraint
(13) makes y; equal to 1 if user i is selected; otherwise, y; is
0. In addition to the accuracy cost, the difference between
P1 and P2 is that P2 allows the users to be deselected
because of high overall cost.

6.2 Accuracy Cost
Given the disparity of class distributions, user selection is
vital to the computation time and accuracy. One may use the
previous LBAP algorithm to weigh more on those devices
with higher processing power. But if those users are non-I1ID
outliers, they may adversely prolong global convergence,
though each epoch is time-optimized. On the other hand, the
study in Section 4.2 suggests further look into those outliers:
if a class is not yet included in the population, inclusion is
beneficial to convergence and model generalization; while at
the same time, it is necessary to screen non-contributing out-
liers out of the population. The design behind this new accu-
racy cost is to encourage/penalize the assignments that
empirically lead to accuracy gain/loss. As mentioned, we
utilize a parameter «, increased to the power of w;, so users’
accuracy cost is sufficiently distinctive regarding their class
distributions. Denote the class set of each user as C; and all
classes as C. In most cases, the weight should be inversely
proportional to the number of classes of a user,
w]’ = |C — CL| (14)
We also define the lowest weight w;(w; < w;,Vie N)
(w; = |C] — max;e|C;| in experiment, where the second term
is the maximum number of classes a user has). Eq. (14) can
be illustrated by an example. Using MNIST as an example,
an outlier user with only class {7} has cost «” and another
user with classes {2,5,6,8,9} has cost &°, and o° > o
when « is larger than 1. It captures the general case that the
cost grows with a reducing number of classes. However,
when the intersection between class set of user ¢, C; and
population P; is empty, C; N P; =, i’s classes are not pres-
ent in the population (P; = U jcp j4C))- The weight should
take a small value, so we set w; = w; to encourage these con-
tributing outliers.

In practice, we should implement the above design more
carefully. Consider a special case with two users having
only class {7}, which also happens to be the only users with
this class. Yet, viewing from either one of them, they would
think that the population has already included {7} so their
weights are set to o’ together, causing the algorithm to
exclude both of them from the population. Then the popula-
tion cannot learn from this class and the accuracy is greatly
undermined. Obviously, coordination is needed but includ-
ing both of them is unnecessary. After the first user has
been included, the second one becomes an outlier since the
class has been covered by the first user already. Our

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TOWARDS EFFICIENT SCHEDULING OF FEDERATED MOBILE DEVICES UNDER COMPUTATIONAL AND STATISTICAL... 403

experiment suggests that these contributing outliers having
the same classes are mutually exclusive: introducing the
second user would have negative impact on training.
Hence, we keep the number small by assigning a higher
cost to the subsequent users. More formally, when C; = C;,
we set w; = w; and pursue a higher cost for w; = |C —C;j|.
The strategy is summarized as,

[1€ — maxien|Ci,
“‘{w—m,

GNP, =0

otherwise * (15)

If C; € P; and 35 € M\ 4, such that C; = C;, overwrite w; =
|C| — max;cpr|C;| in Eq. (15) and w; remains |C — Cj|.

6.3 Min Average Cost Algorithm

After the problem is fully formulated, we can see that the
previous min-max problem is converted into a min average
cost problem, which is in close analogy to the bin packing
problem with item fragmentation [40]. The problem finds an
assignment of items to a fixed number of bins by splitting
them into fragments. For each fragmentation, there is an
associated unit cost. In our scenario, the items correspond
to the learning tasks splittable into data shards and the users
represent the bins. Unlike the original bin packing, the
objective no longer minimizes the number of users (with
unit cost); instead, it is characterized by the functions of
computation time and accuracy cost. The fragmentation
cost is also different from the unit cost in [40]. It actually
depends on which destined user the fragments are assigned
to. If the user has been already involved in training (bin/
user is open), the cost depends on the increment of compu-
tation time from the new fragments, plus the initial cost of
accuracy as described next.

We propose the Min Average Cost Algorithm to tackle the
problem. The main idea is to iteratively assign the data
shards to the user with the minimum average cost in a
greedy fashion. Consider the dataset of D data shards and n
users. The initial cost is 7T;(d) + i, if a user i is open for
training with d data (omit the communication cost here for
clarity). Starting from ¢ with the lowest initial cost, we
assign d; = d to i. Denote the set of users that are already
involved in training as O C V. For d; = d, we compare the
cost by either assigning it to ¢ with cost 7;(2d) + i, or to j
with cost Tj(d) + " (j € N\ O), and select the one with
less cost. For all the users ¢ € O and a potential user j €
N\ O, we assign d according to,

i* = argmin {T;((l; + 1) - d) + ", Tj(d) + "/ }, (16)
i€0,jeN\O

where [; is the current number of data shards of user . If all
the users are involved (i, j € O), we compare T;((l; + 1) -
d) + o with T;((l; 4+ 1) - d) + «" and select the one with
less cost. If i reaches the capacity that [;-d > U,;, it is
excluded from further selections (bin is closed); otherwise,
it remains open. The algorithm repeats until D is exhausted
and runs in O(mn) time, where m is much larger than n.
The procedure is summarized in Algorithm 2.

Analytical Solution. Similar to the IID case, when the cost
function is linear, the solution process can be visualized
analytically. We illustrate with the simplest case of two
users and their cost functions are, y;(z) = bz + o™, ya(x) =

Cost

Cost
A Avg_Cy/ B
Avg_Cost (A)

O I N
d Cost (B) a%z
a1

> ,
Data dB di dA #Data
Case 2

Fig. 8. Visualize solutions of the Mincost algorithm when cost function is
linear.

box + a2, represented by lines A and B in Fig. 8. z is the
number of data shards. y is the cost and b, b, are the slopes
representing the computational capacity of the devices.
Recall that ", o2 are defined as the accuracy cost of the
users in Eq. (15) based on their class distributions. Since it
does not change with the number of data so «*! and «*? can
be treated as constants here (the intercept on the y-axis in
Fig. 8). Shown in Fig. 8, A either has lower initial cost and
climbs faster than B, or lower cost than B throughout. In both
scenarios, the strategy is the same: @ data is assigned to the
one with lower initial cost until the current cost equals the
initial cost of the other user (at d; in Fig. 8); O alternate
between the two users with the data assignment in propor-
tion to the ratio of slopes. If b; > by, assign Lz—lj data to B for
every one unit of data to A4, and vice versa. The average cost
indicated by the median line is equal for A and B, i.e., the
assignment does not stop if the current cost to both A and B
is not equal. The process is illustrated in Fig. 8, which can be
generalized to multiple users. We omit it due to space limit.

Algorithm 2. MinCost Algorithm (for Non-1ID Data)

1: Input: Number of data shards D and size d per shard, N/
users, cost profiles T'(-), class coverage C; and population
viewing from i, P; = |J ;cu j4,Cj, user coverage O, parame-
ters o, number of data shards [; for user «.

: Output: Data assignment for each user /;.

: Initialize O «— 0, d = 1.

1 Vi e Nif C;N'P; = () then

w; — |C] — max;en|Cyl.
else
w; = |C — Cl|
ifC; CP; (lndﬂj GN\i,Cj = C; then
wj = [C = Cjl.

10: whiled < D do

11: if M\ O # 0 then

120 i e argmingg v o{ T (L +1) - d) + o, Ty(d) + o }.

13: else

14: i arg Inin,-ﬁjE@{T,; ((Li+1)-d) +o" T;((1;+ 1) - d) + o }.

16: ifl; > U, then

17: w; «— 00

188 O~ O0O+i,N—N—i,d—d+1.

RN AN LI IO

7 PROFILING DEVICE HETEROGENEITY

The optimization algorithm relies on the estimation of com-
putation time using a function 77 (D;) given the neural net-
work model M, when the training data is D; for user i. In
this section, we develop a method that the server can

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

404 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

leverage to build profiles for the participants. In practice,
profiling can be done either online through a bootstrapping
phase or offline measured on users” devices. The objective is
to estimate the training time given the model parameters and
data size, where both of them hold linear relationships with
the training time in VGG-type networks. Thus, we take a
two-step approach to first profile the computation time
regarding model parameters while fixing the data size.
Since the convolutional layers have higher computation
intensity, their parameters are separated from the dense
layers. We profile a number of % different model architec-
tures and their training time of d data, denoted by, y® =
[y1, Y2, - .. 7yk](d). xf;d) = [zi1, mi‘g](d) are the number of param-
eters for convolution and dense layers of different models.
We employ a multiple linear regression model,

Yi = o + an

2
;i + €i,

J=1

where ¢; is a noise vector to compensate measurement error.
The parameters are found by solving the least square prob-
lem, B=y-X"!, which is computed by & = argmin,|ly—
BX||3. The output of the first step is {a, a1, ax Y9 for different
d < D. With an unknown model architecture, the first step
provides d estimates [y, ¥, . . . , ¥4] of computation time. The
second step extends the estimates from the first step for
unknown data sizes by applying (linear) regression again to
fit the estimations. We evaluate this method next and derive
{a, &1, 2} for different mobile devices.

8 EVALUATION

In this section, we evaluate the proposed algorithms on a
testbed of various combinations of mobile devices using
two public datasets. The main goals is to investigate the
effectiveness of: 1) the profiling method; 2) the proposed
algorithms for both IID and non-IID cases in terms of com-
putation, accuracy and convergence.

Mobile Development. The mobile framework is developed
in DL4] [43], a java-based deep learning framework that can
be seamlessly integrated with Android. Training is con-
ducted using multi-core CPUs enabled by OpenBLAS in
Android 8.0.1. We use AsyncTask to launch the training
process by the foreground thread with the default inter-
active governor and scheduler. To avoid memory error,
we enlarge the heap size to 512 MB by setting largeHeap
and use a batch size of 20 samples. This allows us to train
VGG-like deep structures.

Experiment Setting. We use the collection of devices to
construct five combinations of mobile testbeds as shown in
Table 2. The experiment is conducted on two commonly
used datasets: MNIST [41] and CIFARI10 [42] with 60K
and 50K training samples. We fully charge all the devices,
pre-load both datasets into the mobile flash storage and
read them in mini-batches of 20 samples. Users perform
one epoch of local training in each round and the global
gradient averaging iterates 50 and 100 epoches for MNIST
and CIFARI10 respectively.

To emulate the dynamics of mobile data, we generate
random distributions among the users: 1) For IID data,
each user retains all the classes and the ratio between

TABLE 2
Experimental Mobile Testbeds
N6 N6P J8 Matel0 Pixel2 P30 Total
T1 1 - - 1 1 - 3
T2 2 2 - 1 1 - 6
T3 4 2 - 2 2 - 10
T4 6 2 1 2 2 1 14
T5 8 3 2 2 3 2 20

samples from different classes is equivalent; 2) For non-1ID
data, each user has a random subset of classes and each class
may also have different number of samples. We set the maxi-
mum number of classes in the subset to 7 (out of the total 10
classes), i.e., on average, a user would have about 3.5 classes.
The purpose is to see whether our algorithm can handle vari-
ous random cases of non-IID distributions. Two fundamen-
tal networks of LeNet [38] and VGG6 [39] are evaluated and
their efficiency has been proved to handle learning problems
at sufficient scales. To meet the input dimensions, we tailor
the original 16 layers of VGG16 by stacking five 3 x 3 convo-
lutional layers with one densely connected layer. We set
parameter « in Mincost to 1.8 and 2.45 for LeNet and VGG6
empirically as discussed in Section 8.5. The uplink and
downlink latencies are added to computation time.

Benchmarks. The proposed algorithms are compared with
several benchmarks: 1) Proportional: a simple heuristic that
assigns training data proportional to the processing power
of mobile devices statically measured by their max CPU fre-
quencies; 2) Random: random data partitions among the
users; 3) FedAvg [2]: assign equal shares of data to users.
Since the model architecture is fixed, we mainly compare
the computational time and treat the communication time
as a constant. To facilitate the evaluation, we also adopt
pytorch with GTX1080/K40 GPUs to evaluate different
benchmarks.

8.1 Profiling Performance

As the basis to launch optimization, we evaluate the effec-
tiveness of the profiling method in Section 8.1. We learn the
regressor on 25 neural networks and test on 8 networks
with parameters ranging from 0.2M to 12M. Recall that in
the first step, we model the relation between the parameters
and training time. Some results are shown in Fig. 9. We can
see that the slope of the hyperplane of Nexus6 is steeper
than Matel0, representing more computational time from
the older smartphone generations. The upward trend is
more pronounced in the convolutions and this validates the
operation to separate convolution from the dense layers.
Table 3 shows the learned parameters by the linear regres-

Regression of compute time (Nexus6 vs. Mate10)

3 6000

Compute Time (:

2000

x10° 2 25
#of param. (Conv Layer)

o
#31 param. (Dense Layer)

Fig. 9. Step 1, profile training time with model parameters.

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TOWARDS EFFICIENT SCHEDULING OF FEDERATED MOBILE DEVICES UNDER COMPUTATIONAL AND STATISTICAL... 405

TABLE 3
Learned Parameters (Eq. (17)): «o, Intercept; a1,
Conv. Layer; as, Dense Layer

Device [0[[),0[1,0[2]

Nexus6 [578, 0.02, 2e-5]
Nexus6P [647, 8e-3, 3e-4]
SJ8 [183, 1e-2, 9e-5]
Matel0 [47, 2e-3, 2e-5]
Pixel 2 [68, 2e-3, 1e-5]
P30 [42, 2e-3, 1e-5]

sion model. The values «y,« directly associate with the
computational capabilities in conducting matrix multipli-
cations for the convolution and dense layers. A larger value
indicates less computational power and the ranking order is
consistent with the rest experiments.

Fig. 10a shows the second step of the estimation versus
true measurement on some examples, while a small gap is
observed. Though generally small on our testing data, the
gap could become larger if there is not enough training sam-
ples collected around the targeted architecture. Note that
the estimation has a little bias towards a longer execution
time after processing about 30 data batches on Nexus 6, and
the estimation curve is not perfectly linear. This is because a
majority of the data used to train the linear regressors exhib-
its thermal throttling on Nexus 6. Thus, our method gener-
ates estimations with a little bias assuming the Nexus 6
would underperform. Fig. 10b, we plot the root mean
square error (RMSE) against the number of parameters for
the 8 testing cases to see in which situation the regression
model could potentially yield higher error. It is observed
that the devices with less computational power are the ones
having higher prediction error (about an order of magni-
tude), because of thermal throttling in the later iterations
when the device heats up. It drives up the time curve into a
slightly superlinear region, causing imperfect fitting from
the linear regressors.

8.2 Computation Time

We first evaluate the computation time in each epoch by
comparing the Fed-LBAP (IID) and MinCost algorithms
(Non-IID) with the benchmarks shown in Fig. 11. We enu-
merate all the combinations between the testbed, datasets
and models. Fed-LBAP achieves the lowest computational
time with 2x to 100x speedup compared to the benchmarks
(time-optimal). Mincost adjusts the workload assignment
based on the Non-IID distributions to trade epoch-wise

Training time (MNIST-LeNet) Training time (MNIST-VGG6)

Step 2: Compute time vs. data size (batches) _ Profiling error ontestset

102
© Estimation (Nexus 6) A A
3500 | © Actual Measurement(Nexus 6) G ° ° ° °
o Estimation (Mate10) ,gt"‘ . *)
30001 | © Actual Measurement(Mate10) ﬂ ° A . * Higher RMSE
10’ A A
2500) = & [
z & Y o *s
© 2000 5o -
£ @53-“ z o - o g8 =, o
1500 f = Nexus 6 op W 3 o M Nowss
A NexuséP
1000 Pa0 8 + SamsungJ8
/ = 4 Mate10
mwg@gmwfﬂm © Pixel2
......... { .o
0 wle . 7 e
0 10 20 30 40 50 60 10 10f 10 10f
Training data (# of data batch) # of Parameters
(@) (b)

Fig. 10. Step 2: predict training time versus data size. a) Nexus 6 versus
P30, b) profiling error on test set.

computation time for faster convergence, which requires 5-
10 percent time in most cases.

By taking a closer look of the testbed devices, we can see
that the mobile processing power (both individual and col-
lective) and their workloads play key roles in the computa-
tional time, which sum up to nontrivial relations. First,
unlike cloud settings in which computation time scales well
with the number of workers, mobile stragglers easily slows
down the entire training even if more users are involved:
the time surge from T1 (3 users) to T2 (6 users) is due to the
addition of Nexus6P, impacted by the severe thermal throt-
tling. This drag is magnified with complex network archi-
tectures of higher computation intensity (VGG6 with more
convolutional layers) and more training data (60K of MNIST
versus 50K CIFAR10). The shares from the 10K data addi-
tion exacerbate the computation time parabolically by 20
times (T2 between Figs. 11b and 11d running VGG6 on
MNIST and CIFAR10), if the scheduling is done inappropri-
ately. Bringing more devices could ease up the bottleneck as
the time declines from T3 to T5 with more participants.

Using the vanilla schemes (Prop., Random and FedAvg),
we hardly see any consistent parallelism when more users
are involved, where the stragglers defeat the original pur-
pose of distributed learning. In contrast, Fed-LBAP and
Mincost are capable of utilizing the additive computational
resources by appropriately assigning workloads to the more
efficient users, so the training time accomplishes a down-
trend with more users, even when the worst-case stragglers
are present. This is because the proposed algorithms can
purposely assign data in proportion to the device’s capacity,
once the thermal effects have been quantified. Although
naive schemes may look for an optimal scheduling that is
proportional to device CPU frequency or equally assign
workloads as [2], the runtime behavior may be drastically
different due to complex system dynamics, and our

Training time (CIFAR10-LeNet) Training time (CIFAR10-VGG6)

1047

I Random 50
I Prop. 10
[FedAvg t
[LBAP-IID

[Mincost-NonlID

[Mincost-NonlID

Time per global update (s)
Time per global update (s)

T T2 T3 T4 T5 m T2 T3 T4 5
Testbed Testbed

(@) (b)

104
I Random Il
[Prop.
[FedAvg
[LBAP-IID

=)
2w

I LBAP-IID
[Mincost-NonliD

[Mincost-NonlID |

am
Time per global update (s)

Time per global update (s)

o

T T2 T3 T4 T5 T T2 T3 T4 T5
Testbed Testbed

(© (d)

Fig. 11. Comparison of computation time when data is IID (time in log-scale) (a) training MNIST with LeNet, (b) training MNIST with VGG, (c) training

CIFAR10 with LeNet, and (d) training CIFAR10 with VGG6.

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

406 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

. Different schemes (MNIST)
[LeNet

0 é)ifferent schemes (CIFAR10)

[L eNet

[vaGs

o« &“0@ Q@S’g &Q & q$°°& Q@b‘*& @V“Q
& s

o Different testbeds (MNIST) 0 8Different testbeds (CIFAR10)

¢

0.7
9] S = H =LeNet
& & —O—VGGs
060 - —p
T‘ - Ll -~
0.5
™ T2 T3 T4 T5 T T2 T3 T4 T5

Fig. 12. Comparison of accuracy across different schemes and testbeds
(1ID).

experiment shows that such schemes are on par with a
purely random schedule. Note that we only perform one
local epoch in each iteration. More local epoches can acceler-
ate global convergence [2]. Our strategy is invariant to the
upper-layer learning algorithms and the time saving would
be indeed much higher if more than one local epoches are
performed.

8.3 Accuracy
It is essential to evaluate the test accuracy after workload re-
assignment, especially our efforts to improve accuracy in
case of non-IID data. Fig. 12 summarizes the test accuracy
under different scheduling schemes and testbeds when data
is IID. The two upper plots compare the average accuracy of
Fed-LBAP with the benchmarks. Our findings in the large-
scale experiment are consistent with the previous motiva-
tion discovery, which drives the design of Fed-LBAP. For
IID data, even random assignments do not have accuracy
loss. Since Fed-LBAP can be considered as one special per-
mutation from the random partitions, the results indicate
that we can always leverage load unbalancing to optimize compu-
tation time without worrying about accuracy loss, if user data is
IID. The two lower plots show that accuracy trends down
(with LeNet) when more users are involved (from 3 to 20
users). The observation is inline with [2] and suggests an
inherent trade-off between parallelism and global conver-
gence, which is furthered discussed in the next subsection.
Fig. 13 compares Mincost with the benchmarks when
data is Non-IID. We vary the random seeds to generate dif-
ferent class distributions, i.e., each user has a random subset

Non-IID Accuracy (MNIST-LeNet) Non-IID Accuracy MNIST VGG)

from all the classes. Each point in the figure corresponds to
an accuracy measurement. Mincost surpasses all the bench-
marks by 0.02 in MNIST and 0.04 in CIFAR (2-7 percent
increase in accuracy), including the Fed-LBAP algorithm
which we directly apply on the Non-IID data. This justifies
the introduction of accuracy cost in Mincost — though using
Fed-LBAP for non-IID data is time-optimal, its accuracy is on
the same level of the benchmarks. It is interesting to see that
the accuracy actually climbs up with more users in Non-IID
data, where the opposite is perceived in Fig. 12 with IID
data. This is because more users increase the class coverage
of the population. Mincost can utilize these dynamics from
more dispersed class distributions, and select the partici-
pants wisely to either avoid or retain those n-class outliers
(where n =1 — 2 in our experiment). Hence, the accuracy
improvement is significant with more users, especially on
more complex dataset as CIFAR10.

8.4 Convergence Time

The Mincost algorithm trades the computational time per
epoch over the long-term convergence time. We evaluate
the effectiveness of such trade-off by comparing to the time-
optimal Fed-LBAP and the vanilla FedAvg. The goal is to
compare the total time in order to achieve 95 percent accu-
racy among the weakest of FedAvg, Fed-LBAP and Mincost,
which is either FedAvg or Fed-LBAP according to the previ-
ous accuracy evaluation. We select a case in each dataset-
network combination and plot accuracy and computational
time in two y-axis with the training epoches on the z-axis of
Fig. 14. The results are averaged over 10 different random
class distributions among the users. Network communica-
tion time to upload/download model is added to the com-
putation time, so it represents the entire duration of each
global update. The convergence time is obtained by con-
necting the accuracy goal on the left y-axis to the accumu-
lated computation time on the right y-axis.

Mincost offers much faster convergence - about half num-
ber of epoches to achieve the same level of accuracy. How-
ever, for the entire duration, only if the time savings from faster
convergence surpasses the extra time spent in each epoch, Mincost
could outperform Fed-LBAP in Non-1ID data. Before we see the
results, let us derive this relation analytically. The conver-
gence curve of the ith neural network can be modeled by an
exponential function p;(z) = . x is the number of
epoches. p;(x) is the prediction accuracy after = epoches. A;
is the best accuracy the network could achieve empirically.
B; reflects the convergence rate. Once the computational time
is known per epoch, the total time can be represented by a
linear function k; - corresponding to the y-axis on the R.H.

Ai — €7ﬁix

06 Non-1ID Accuracy (CIFAR-LeNet) Non-1ID Accuracy (CIFAR- VGG)

i IIII I " o

N II

4

|I||| ||||' I

o
Prop

Random 0-75 I f
FedAvg t

LBAP 07+
MinCost 8

Accuracy
o
®
&

oS
@

Prop.
Random | |
FedAvg
LBAP [
MinCost

0.6 fe000 LI

| m' mll a‘-a 13 !
| n

: ® Prop.
© Random
055 o'.u © FedAvg
° 1BAP
° MmCos(

— o ooO=co
o
@

oo 1 ooy

Accuracy
o
o

Accuracy
o
Y
> &
e -
e
0.com0s Eom=G©
—
© G omay

Prop.
Random
FedAvg
LBAP
MinCost

o
0 0000 ©
000000 &
o
S

T T2 T3 T4 T5 T T2 T3 T4 5

(a) (b)

T T2 T3 T4 5 ’ T T2 T3 T4 5

(© (d)

Fig. 13. Comparison of accuracy (Non-1ID) (a) MNIST-LeNet, (b) MNIST-VGGS, (c) CIFAR10-LeNet, and (d) CIFAR10-VGG6.

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TOWARDS EFFICIENT SCHEDULING OF FEDERATED MOBILE DEVICES UNDER COMPUTATIONAL AND STATISTICAL...

; Convergence time (MNIST-LeNet-T3)

(MNIST-VGG-T4)

Convergence time
1r T 3 10000

Accuracy g000

6000

FedAvg
- - =Fed-LBAP | 4000
< Mincost

Comp. Time

Accuracy
Computation Time (s)
Accuracy
Computation Time(s)

»|2000

! = =
_3___“,.“,;-,-::::; _____ e |
0 10 20 30 40
Epoches

(@)

0
50

10

20
Epoches

(b)

Accuracy

407
Convergence time (CIFAR10-LeNet-T2) Convergence time (CIFAR10-VGG-T5)
04— " 700 0.8 A : 1200
——FedAvg s ——FedAvg
U= mFedilBAP) | sl L e et SR 600 0.7 ||~ = ~Fed-LBAP
0% B B Mincost . 1000 -
500 £ 06 - - - —mf R, E
03 ° 800 o
E x| & 7 e g
E g05 =
0257 ! 5 3 Accuracy 600 g
1 3 2 0.4 N g
02 i 3] ™ comp. Time 400 3
g o3 | / g
' 3 Ko E
0.15 , © o2 | - wemndmrzITT5200 ©
s K e 2 oo - >
20 10

30

30
Epoches

(©

20
Epoches

(d)

Fig. 14. Comparison of total convergence time (a) MNIST-LeNet-T3 (10 users). (b) MNIST-VGG6-T4 (14 users). (c) CIFAR10-LeNet-T2 (6 users).

(d) CIFAR10-VGG6-T5 (20 users).

S.in Fig. 14. The condition for the compuational time of Min-
cost (k;x1) to be less than Fed-LBAP (kyx») is,

kil.’lil < kQ.Tz

ﬂillog (A1 —p)k < ﬂ%log (Ay — p)ko (18)
ePrk2 A, — ePok1 4,

P < — % hh
eﬂ]kQ — eBle

The relation indicates that Mincost outperforms Fed-LBAP
when the goal of accuracy is upper-bounded by Eq. (18). It
echoes with our observations in Fig. 14 that training pro-
gresses much faster with Mincost at the beginning. It pro-
vides 1.5 —1.8x and a tremendous 7 —200x speed-up
compared to Fed-LBAP and FedAvg respectively. The
experiment ultimately justifies our design of accuracy cost
on carefully selecting the participants and assigning work-
loads based the class distributions. Compared to our previ-
ous work [44], which strives to preserve accuracy without
loss, we not only improve the testing accuracy, but also the
overall computational time.

8.5 Selection of Parameter

There is still an important hyperparameter left to explain in
Mincost - the scaling parameter « that balances the accuracy
cost and computation time. We seek answers to the funda-
mental question: whether there exists an optimal « that can
minimize the total computation time and how its value
drives the process of decision making? Fig. 15 partially
answers the optimality question by enumerating its value
from 0.6 —3.4 for MNIST-LeNet and 1.25—3.45 for
CIFAR10-VGGS. For clarity, we present 6 random non-IID
distributions (represented by the dots in different colors)

4 Computation time vs. accuracy (MNIST-LeNet)
o~ © Avg. accuracy
£ e
I ¢ |- - -Trendiine

AN optimal « selecting range
o
N

Computation time vs. accuracy (CIFAR10-VGG)

0.66 AT,
’0 . ,/

\ e
0.64 -

o
©
a

8 F"i\r‘r o
e T
‘e g LR

oy

o
©

06

ccuracy

oo

Accuracy

< 0.58 |

o
@
a

0.56 - optimal « selecting range ®

© Avg. accuracy
- - ~Trendline
0.52

500

08 0.54
ol

100 150 200 250 300
Computation Time (@=0.6-3.4) Computation Time (a=1.25-3.45)

() (b)

Fig. 15. Relations between computation time and accuracy with different
parameter «. a) MNIST-LeNet b) CIFAR10-VGG6. (Colored dots repre-
sent different non-IID distributions generated from different random
seeds).

50 350 1000 1500 2000

and their average accuracy versus computation time. The
computation time is monotonically increasing as « grows,
because Mincost deviates from Fed-LBAP to favor those
users with less accuracy cost (more num. of classes). They
are most likely less time-optimal. An extreme case is when
Nexus 6P device has all the classes, whereas the rest users
only have a few classes. A large o assigns more data to the
straggler and makes the time cost higher.

Despite its monotonicity with computation time, the impli-
cation on accuracy is not straightforward as the relationship is
highly nonconvex. As seen in Fig. 15, the average accuracy
trends up initially and drops promptly. We utilize a quadratic
least square fitting to characterize both trendlines. However,
the individual accuracy-vs-computation may not always hold
such parabolic shape. The general downtrend is still intact as
we increase « (and in turn computation time). This is because
as o goes up, Mincost merely assigns workloads to those users
with more classes and leaves the rest vacant. Of course, it
undermines parallelism of federated learning and elongates
computation time. There does exist a “sweet spot” for choos-
ing « as the highlighted region, in which a mild increase of
computation time can be compensated by the faster conver-
gence as demonstrated previously.

8.6 Performance Gap Due to Profiling Error

Finally, we evaluate possible performance gaps due to two
types of imperfections in profiling. Type I: if the run-time
trace is available from Step 1 in Fig. 9, the second step with
least square estimation incurs some minor gaps shown in
Fig. 10a; Type II: for untested architectures (run-time trace
unavailable from Step 1), using the number of parameters
for prediction brings more uncertainties. For Type I error, we
measure the performance gaps between the real measure-
ment, “Real”, and the least square estimate, “Estimate” in
Fig. 16. The result shows the time difference induced by the

Imperfection due to Type | error (MNIST-LeNet) Imperfection due to Type | error (CIFAR10-VGG)

200

2000

[Real-IID [Real-IID
> [Estimate-11D - [Estimate-1ID
° [E Real-NonlID - [Real-NonlID
gmo B estimateNonin | | & 1500 [Estimate-NonlID
2 B
2 =
8100t 8 1000
S °
d o
g g
E 50 E 500 -
= F
0 0
T T2 T3 T4 TS T T2 T3 T4 T5
Testbed Testbed
(a) (b)
Fig. 16. Performance gaps due to Type | error a) MNIST-LeNet

b) CIFAR10-VGG.

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

408 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Imperfection due to Type Il error (MNIST)

Profile training time of ResNet (Nexus6) Profile training time of ResNet (Nexus6P)

I t of Type Il MNIST
3000 g0 \mpact of Type error on convergence ()

[Real-IID

[Estimate-1ID
[Real-NonlID
[E Estimate-NonlID

S,

N
o
S
3

N
=1
S
3

max. 40-50% delay

@

g

8
Accuracy

Time per global update (s)
=)
8

o
=1
S

= = =Real-NonlID
— Estimate-NonlID

300

200
. © Measurements
e %4 .-° 180 |-~ = Linear Regression °

A .o <

§250 e e o o .
o3 ° 2 160" i
° ° .. ® = ° -%0 e
=200 .. 2140 . e ®

o ° 120+ °

£ 150 o ° . - .

g 100 L

© Measurement 4 °
- -~ Linear i

73 86 90 177 181 309 351 442 0 10 20 30 40 50
Testset (~K parameters) Epoches

(a) (b)

Fig. 17. Performance gaps due to Type Il error a) MNIST-LeNet.
b) CIFAR10-VGG.

inaccurate profile while running Fed-LBAP and Mincost.
The estimation error is within 5 percent for most cases and at
most 25 percent for some cases in MNIST. We scrutinize the
data assignments and find that they are almost the same.
Thus, there is no visible accuracy loss due to Type I error.

There are often cases that a new network architecture is
implemented and the profiling data has not been collected
yet. Our best shot is to use the known profiles to predict the
computation time on a target mobile device given the num-
ber of model parameters (from convolutional and dense
layers separately) and the amount of training data. Fig. 10b
indicates that the prediction RMSE is nonzero and the esti-
mation error is accumulated in the later epoches. We con-
struct a new testbed with 6 devices (one from each
smartphone model) and utilize the 8 testing architectures.
As seen in Fig. 17a, the error is much larger than Type I. A
common error we found is caused by overestimating the
running time of some devices, which causes the algorithm
to miscalculate (reduce the data assignment but increase for
others. For example, we found that sometimes the Nexus6P
training time is mistakenly doubled by the estimation and
the algorithm assigns more data to the rest devices, which
could have been run on Nexus6P without severe throttling.
A partial reason is due to the limitations of the linear models
when some devices actually exhibit nonlinear behaviors
under different computational intensity.

We conduct more experiments to see the impact on con-
vergence in Fig. 17b. The curve is the averaged accuracy
over all 8 datasets by enumerating 10 different non-IID class
distributions. Fortunately, unlike the timing gap, both
curves converge to almost the same accuracy. However, the
estimation has about 1-2 epoches latency, which amounts to
10-20 mins using only 6 devices. With more devices, such
slowdown can be amortized effectively. As a result, the
major instability mainly comes from modeling an untested
architecture, when any under/overestimations would lead
to sub-optimal assignment.

9 DiscussioN

The proposed framework utilizes linear regression to profile
the training time on different devices. For federated tasks, the
models are usually known beforehand, with necessary archi-
tectural adaptations to add/remove filters and adjust layers
commensurate to the input dimension and memory limit. In
this paper, we estimate the training time of specific model
architectures related to the size of training data. Although our
evaluations are based on the networks in the VGG family, the

=)
=3
=3
S

o

100 200 300 400 500 0 100 200 300 400 500
of Model Parameters (K) # of Model Parameters (K)

(a) (b)
Fig. 18. Profile ResNet architectures on the Nexus 6/6P.

method is applicable to the more complex Convolutional
Neural Networks (CNN) and Recurrent Neural Networks
(RNN) such as the ResNet [46], Inception-ResNet [47] and
Long Short Term Memory (LSTM) networks [48].

Modern neural architectures are designed with complex
layer dependencies and irregular dataflow, that lead to more
time in memory access [49]. For example, the ResNet utilizes
bypass links to facilitate gradient flow and the Inception mod-
ules [47] merge multiple branches. In principle, computation
in neural networks is dominated by the number of multiply-
add, e.g., from the convolutional and fully connected layers. It can
be efficiently estimated using the number of Floating Point
Operations (FLOPs)/model parameters. For the same type of
networks, the linear relation generally holds because the num-
ber of FLOPs is proportional to the amount of training time
when the computing resources are fully utilized on mobile.
The time spent during memory access also remains propor-
tionally similar. We have conducted more experiments to exe-
cute training of ResNet and LSTM in our testbed as discussed
below. For LSTM, we use the dataset from the Physionet Chal-
lenge [51], which consists of 4,000 patients ICU visits of 86 fea-
ture vectors and a binary mortality label. We take 4 percent of
the data to train: i) a one-layer LSTM network with 300 units;
ii) a two-layer LSTM network with 300 units in each layer.

Fig. 18 plots the training time versus the number of
model parameters of ResNet architectures by adding/
removing convolutional layers, adjusting kernel size and
number of filters (on the two representative low-grade devi-
ces). We can see that the linear relation generally holds.
Note that adding/removing convolutional layers may have
resulted similar number of parameters with adjusting the
number of filters, but their training time may have noticeable
difference, i.e., adding a convolutional layer typically leads
to more training time due to increased cross-layer memory
access. We have also tested Inception-ResNet and LSTM and
their results reveal similar linearity relations. Next, we con-
firm that the linear relation also holds between the training
time versus the number of data batches in LSTM network as
shown in Fig. 19. Some interesting phenomenons also worth
discussion: 1) the execution time is much longer than the
CNN with similar number of parameters. This is consistent
with training LSTM on cloud GPU as it has very different
dataflow/computation patterns from the CNN. 2) The mem-
ory demand is much higher per data batch. It triggers the
background Garbage Collection activities quite often, which
pause the training threads multiple times per epoch to free
memory. Thus, in addition to the increased time, there are
noticeable fluctuations on both curves.

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TOWARDS EFFICIENT SCHEDULING OF FEDERATED MOBILE DEVICES UNDER COMPUTATIONAL AND STATISTICAL... 409

00 Profiling training time of LSTM (1 layer,300 units) 000F‘roiiling training time of LSTM (2 layers,600 units)

Nexus6

Nexus6
= = =Nexus6P e
400 SamsungJ8 L 800

= = ~Nexus6P
SamsungJs

Training Time (s)
Training Time (s)

Data Batch (Size=8)

(a) (b)

Data Batch (Size=8)

Fig. 19. Profiling LSTM training time. (a) 1 Layer-LSTM, 300 units,
(b) 2 Layer-LSTM, 600 units.

Nexus6: CPU Frequency (LSTM) Nexus6P: GPU Frequency (LSTM)
’ ’ ’ ’ ‘Small Cluster
Big Cluster

265

T 26
I

3 2551 1
&
g
o 25F 1 05 '—I—,_|
245 0
Data batch (8 samples/batch)
Nexusé: Temperature (LSTM)

- o on

Freq. (GHz)

Data bach (8 samples/batch)
Nexus6P: Temperature (LSTM)

‘Small Cluster
Big Cluster

Temp. (Celsius)

1 2 3 8 9 10 1 2 7 8 9 10

4 6
Data batch (8 samples/batch)
(@) (b)

Fig. 20. Profiing CPU frequency versus temperature. (a) Nexus 6.
(b) Nexus 6P,

4 5 6 7
Data batch (8 samples/batch)

On the positive side, the CPU can take a breath during
memory free and the time spent in memory access. This is
validated in Fig. 20 that we show the trace of two devices
that are prone to thermal throttling. For Nexus 6, if we com-
pare the increase of temperature in Figs. 3a and 3b with
Fig. 20, the temperature curve of LSTM on Nexus6 obvi-
ously climbs much slower than training the CNN, thus cre-
ating more opportunities to run at high clockspeed; in
contrast, the Nexus 6P still keeps shutting down the big
cores to maintain their temperature below 55 degrees,
which is more conservative compared to its predecessor.

For the non-IID properties discovered in this paper, they
stem from the basic principles of deep learning which should
also hold for both CNN and RNN networks. That is, high
class imbalance, missing categorical information lead to
accuracy loss and unseen samples help generalize the model.
Due to space limit, we do not include a thorough evaluation,
but the proposed mechanism is model-agnostic and applica-
ble to a wide range of mobile devices on the market.

10 CONCLUSION

In this paper, we study efficient scheduling of federated
mobile devices under both device and data-level heterogene-
ity. We motivate this work by showing drastically different
processing time under the same workload and opportunities
to employ user selection to improve non-IID learning accu-
racy. We develop two efficient near-optimal algorithms to
schedule workload assignments for both IID and non-IID
data, and visualize the solution space analytically. Our
extensive experiments on real mobile testbed and datasets
demonstrate up to 2 orders of magnitude speedups and a
moderate accuracy boost when data is non-IID. We also dem-
onstrate cases when our algorithm deviates from the optimal
region due to estimation gaps in the profiling process.

ACKNOWLEDGMENTS

This work was supported in part by the US NSF Grant CCF-
1850045 and I1S-2007386, and in part by the State of Virginia
Commonwealth Cyber Initiative (cyberinitiative.org).

REFERENCES

[1]1]. Dean et al., “Large scale distributed deep networks,” in Proc.
25th Int. Conf. Neural Inf. Process. Syst., 2012, pp. 1223-1231.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Arcas,
“Communication-efficient learning of deep networks from decen-
tralized data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., 2017,
pp. 1273-1282.

[3] X.Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the conver-
gence of FedAvg on Non-IID data,” in Proc. Int. Conf. Learn. Repre-
sentations, 2020.

[4] Y.Zhao,M.Li,L.Lai, N.Suda, D. Civin, and V. Chandra, “Federated
learning with Non-IID data,” CoRR, vol. abs-1806-00582, 2018.

[5] E. Jeong, S. Oh, H. Kim, S. Kim, J. Park, and M. Bennis,
“Communication-efficient on-device machine learning: Federated
distillation and augmentation under non-IID private data,” in
Proc. 32nd Conf. Neural Inf. Process. Syst., 2nd Workshop Mach. Learn.
Phone Consum. Devices, 2018.

[6] K. Bonawitz ef al., “Towards federated learning at scale: System
design,” in Proc. 2nd SysML Conf., 2019.

[71 Y. Chen, S. Biookaghazadeh, and M. Zhao, “Exploring the capabil-
ities of mobile devices in supporting deep learning,” in Proc. 4th
ACM/IEEE Symp. Edge Comput., 2019, pp. 127-138.

[8] B. McMahan F. Yu, P. Richtarik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication
efficiency,” in Proc. Int. Conf. Neural Inf. Process. Syst., Workshop
Private Multi-Party Mach. Learn., 2016.

[91 L.Wang, W. Wang, and B. Li, “CMFL: Mitigating communication

overhead for federated learning,” in Proc. IEEE 39th Int. Conf. Dis-

trib. Comput. Syst., 2019, pp. 954-964.

X. Lian et al., “Can decentralized algorithms outperform central-

ized algorithms? A case study for decentralized parallel stochastic

gradient descent,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst.,

2017, pp. 5336-5346.

H. Zhu and Y. Jin,“Multi-objective evolutionary federated learning,”

in IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 4, pp. 1310-1322,

Apr. 2020.

V. Smith, C. Chiang, M. Sanjabi, and A. Talwalkar, “Federated

multi-task learning,” in Proc. 31st Int. Conf. Neural Inf. Process.

Syst., 2017, pp. 4427-4437.

L. Liu, J. Zhang, S. H. Song, and K. Letaief, “Client-edge-cloud

hierarchical federated learning,” in Proc. IEEE Int. Conf. Commun.,

2020, pp. 1-6.

S. Zheng et al., “Asynchronous stochastic gradient descent with

delay compensation,” in Proc. 34th Int. Conf. Mach. Learn., 2017,

pp- 4120-4129.

Q. Ho et al., “More effective distributed ML via a stale synchro-

nous parallel parameter server,” in Proc. 26th Int. Conf. Neural Inf.

Process. Syst., 2013, pp. 1223-1231.

J. Vicarte, B. Schriber, R. Paccagnella, and C. Fletcher, “Game of threads:

Enabling asynchronous poisoning attacks,” in Proc. 25th Int. Conf. Archi-

tectural Support Program. Lang. Operating Syst., 2020, pp. 35-52.

R. Tandon, Q. Lei, A. Dimakis, and N. Karampatziakis, “Gradient

coding: Avoiding stragglers in distributed learning,” in Proc. Mach.

Learn. Res., vol. 70,2017, pp. 3368-3376.

B. McMahan and D. Ramage, “Federated learning: Collaborative

machine learning without centralized training data,” Accessed:

Sept. 18, 2020. [Online]. Available: https://ai.googleblog.com/

2017 /04 /federated-learning-collaborative.html

K. Bonawitz et al., “Practical secure aggregation for privacy-pre-

serving machine learning,” in Proc. ACM SIGSAC Conf. Comput.

Commun. Secur., 2017, pp. 1175-1191.

P. Blanchard, E. Mhamdi, R. Guerraoui, and J. Stainer,

“Machine learning with adversaries: Byzantine tolerant gradi-

ent descent,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst.,

2017, pp- 118-128.

Apple A13 Bionic chip, Accessed: Sept. 18, 2020. [Online]. Available:

https:/ /www.macworld.com/article/3442716/inside-apples-al3-

bionic-system-on-chip.html

Huawei kirin 980 Al chip, Accessed: Sept. 18, 2020. [Online]. Avail-

able: https:/ /consumer.huawei.com/en/campaign/kirin980

”

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

410

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

X. Zeng, K. Cao, and M. Zhang,”MobileDeepPill: A small-foot-
print mobile deep learning system for recognizing unconstrained
pill images,” in Proc. 15th Annu. Int. Conf. Mobile Syst. Appl. Serv.,
2017, pp. 56-67.

A. Mathur, N. Lane, D. Bhattacharya, S. Boran, A. Forlivesi, and
C. Kawsar, “DeepEye: Resource efficient local execution of multi-
ple deep vision models using wearable commodity hardware,” in
Proc. 15th Annu. Int. Conf. Mobile Syst. Appl. Serv., 2017, pp. 68-81.
S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
huffman coding,” in Proc. Int. Conf. Learn. Representations, 2016.

J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in Proc. Int. Conf. Learn. Repre-
sentations, 2019.

C. Wang, Y. Xiao, X. Gao, L. Li, and]. Wang, “Close the gap
between deep learning and mobile intelligence by incorporating
training in the loop,” in Proc. 27th ACM Int. Conf. Multimedia,
2019, pp. 1419-1427.

ARM'’s big LITTLE, Accessed: Sept. 18, 2020. [Online]. Available:
https://www.arm.com/why-arm/technologies /big-little
Android large heap, Accessed: Sept. 18, 2020. [Online]. Available:
https:/ /developer.android.com/guide/topics /manifest/application-
element

D. Haussler, “Quantifying inductive bias: Al learning algorithms
and Valiant’s learning framework,” J. Artif. Intell., vol. 36, no. 2,
pp- 177-221, 1988.

L. Epstein and]. Sgall, “Approximation schemes for scheduling
on uniformly related and identical parallel machines,” in Proc. 7th
Annu. Eur. Symp. Algorithms, 1999, pp. 151-162.

Y. Peng, Y. Bao, Y. Chen, C. Wy, and C. Guo, “Optimus: An effi-
cient dynamic resource scheduler for deep learning clusters,” in
Proc. 13th EuroSys Conf., 2018, pp. 1-14.

Y. Bao, Y. Peng, C. Wu, and Z. Li,“Online job scheduling in dis-
tributed machine learning clusters,” in Proc. IEEE Conf. Comput.
Commun., 2018, pp. 495-503.

D. Yin, A. Pananjady, M. Lam, D. Papailiopoulos, K. Ramchandran,
and P. Bartlett, “Gradient diversity: A key ingredient for scalable
distributed learning,” in Proc. 21st Int. Conf. Artif. Intell. Statist., 2018,
pp- 1998-2007.

In-depth with the Snapdragon 810’s heat problems, Accessed: Sept.
18, 2020. [Online]. Available: https://arstechnica.com/gadgets/
2015/04/in-depth-with-the-snapdragon-810s-heat-problems

R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Philadelphia, PA, USA: SIAM, 2012.

J. B. Mazzola and A. W. Neebe, “Bottleneck generalized assignment
problems,” Eng. Costs Prod. Econ., vol. 14, no. 1, pp. 61-65, 1988.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998.

K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. Int. Conf. Learn.
Representations, 2015.

B. LeCun, T. Mautor, F. Quessette, and M. Weisser, “Bin packing
with fragmentable items: Presentation and approximations,”
Theor. Comput. Sci., vol. 602, pp. 50-59, 2015.

MNIST dataset, Accessed: Sept. 18, 2020. [Online]. Available: http://
yann.Jecun.com/exdb/mnist/

CIFAR10 dataset, Accessed: Sept. 18, 2020. [Online]. Available:
https:/ /www.cs.toronto.edu/ ~kriz/cifar.html

Deep learning for Java, Accessed: Sept. 18, 2020. [Online]. Avail-
able: https:/ /deeplearning4;j.org

C. Wang, X. Wei, and P. Zhou, “Optimize scheduling of federated
learning on battery-powered mobile devices,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp., 2020, pp. 212-221.

F.Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. Dally, and K.
Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and < 0.5MB model size,” in Proc. Int. Conf. Learn.
Representations, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770-778.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-ResNet and the impact of residual connections on
learning,” in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278-4284.

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

W. Jung, D. Jung, B. Kim, S. Lee, W. Rhee, and]J. H. Ahn,
“Restructuring batch normalization to accelerate CNN training,”
in Proc. 2nd SysML Conf., 2019.

C. Wu et al., “Machine learning at Facebook: Understanding infer-
ence at the edge,” in Proc. IEEE Int. Symp. High Perform. Comput.
Architecture, 2019, pp. 331-344.

Physionet challenge, [Online]. Available: https://physionet.org/
content/challenge-2012/1.0.0

[49]

[50]

[51]

Cong Wang (Member, IEEE) received the BEng
degree in information engineering from the Chi-
nese University of Hong Kong, Hong Kong, in
2008, the MS degree in electrical engineering
from Columbia University, New York, in 2009, and
the PhD degree in computer and electrical engi-
neering from Stony Brook University, New York, in
2016. He is currently an assistant professor at the
Computer Science Department, Old Dominion
University, Norfolk, Virginia. His research focuses
on exploring algorithmic solutions to address
security and privacy challenges in mobile, cloud computing, loT, machine
learning and system. He is the recipient of the Commonwealth Cyber Ini-
tiative Research and Innovation Award, ODU Richard Cheng Innovative
Research Award, and IEEE PERCOM Mark Weiser Best Paper Award, in
2018.

Yuanyuan Yang (Fellow, IEEE) received the BEng
and MS degrees in computer science and engi-
neering from Tsinghua University, Beijing, China,
and the MSE, and PhD degrees in computer sci-
ence from Johns Hopkins University, Baltimore,
Maryland. She is a SUNY distinguished professor
of computer engineering and computer science at
Stony Brook University, New York, and is currently
on leave at the National Science Foundation as a
program director. Her research interests include
edge computing, data center networks, cloud com-
puting and wireless networks. She has published more than 400 papers in
major journals and refereed conference proceedings and holds seven US
patents in these areas. She is currently an associate editor-in-chief for the
IEEE Transactions on Cloud Computing and an associate editor for the
ACM Computing Surveys. She has served as an associate editor-in-chief
and associated editor for the IEEE Transactions on Computers and associ-
ate editor for the IEEE Transactions on Parallel and Distributed Systems.
She has also served as a general chair, program chair, or vice chair for sev-
eral major conferences and a program committee member for numerous
conferences.

Pengzhan Zhou received the BS degree in both
applied physics and applied mathematics from
Shanghai Jiaotong University, Shanghai, China, in
2014, and the PhD degree in electrical engineering
from the Department of Electrical and Computer
Engineering, Stony Brook University, New York, in
2020. His research interests include wireless sen-
sor networks, performance evaluation of network
protocols, algorithms, and artificial intelligence.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Canberra. Downloaded on October 04,2020 at 13:48:18 UTC from IEEE Xplore. Restrictions apply.

