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Abstract—Federated learning learns a collaborative model by
aggregating locally-computed updates from mobile devices for
privacy preservation. While current research typically prioritizing
the minimization of communication overhead, we demonstrate
from an empirical study, that computation heterogeneity is a
more pronounced bottleneck on battery-powered mobile devices.
Moreover, if class is unbalanced among the mobile devices, inap-
propriate selection of participants may adversely cause gradient
divergence and accuracy loss. In this paper, we utilize data as
a tunable knob to schedule training and achieve near-optimal
solutions of computation time and accuracy loss. Based on the
offline profiling, we formulate optimization problems and pro-
pose polynomial-time algorithms when data is class-balanced or
unbalanced. We evaluate the optimization framework extensively
on a mobile testbed with two datasets. Compared with common
benchmarks of federated learning, our algorithms achieve 2-
10× speedups with negligible accuracy loss. They also mitigate
the impact from mobile stragglers and improve parallelism for
federated learning.

Keywords-Federated learning; on-device deep learning;
scheduling optimization; non-IID data.

I. INTRODUCTION

The past few years have witnessed an increasing migra-

tion of data-driven applications from the centralized cloud to

mobile devices due to the rising privacy concerns. Originated

from distributed learning [1], Federated Learning (FL) learns

a centralized model where the training data is held privately

by end users [2]–[10]. They compute local models in parallel

and aggregate their updates towards a centralized parameter
server. The server takes the average from the users, pushes

the averaged model back to all the users as the initial point for

the next iteration.

Though promising to ease the tension between data utility

and privacy, existing research mainly focuses on addressing

prominent problems left from distributed learning such as

improving the communication efficiency [6]–[9] and security

robustness [13], [14]. Their proof-of-concept implementations

are largely based on cloud/edge servers with stable, external

power and proprietary GPUs. This still leaves a gap to what

FL was initially proposed as a learner of abstraction at the

mobile data source for privacy preservation.

Fortunately, the dramatic increase of mobile processing

power has enabled not only inference, but also moderate

training (backpropagation) [5], [16], thus providing a basis to

launch FL on mobile devices. However, the vast heterogeneity

of mobile processing power has yet to be addressed in [2]–

[10]. From an empirical study, we first validate that the

bottleneck has actually shifted from communication back to

computation on mobile devices. The runtime behavior depends

on a complex combination of CPU architectures, memory
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speed, power management policies and computation intensity.

Further, the high variance among user data adds another layer

of statistical heterogeneity [10]. E.g., in activity recognition,

some users may perform only a few actions (e.g., sitting for

a long time), thus leading to highly skewed local distributions

in a small subset of categories, which breaks the independent

and identically distributed (IID) assumptions held as a basis for

machine learning. When averaged into the global model, these

skewed gradients may have a damaging impact on the collabo-

rative model. Thus, the selection of participants should rely on

both computation and data distribution, whereas the previous

works typically discuss non-IIDness independently [2]–[4].

To tackle these challenges, we propose an optimization

framework to schedule training using the workloads (amount

of training data) as a tunable knob and achieve near-optimal

staleness in synchronous gradient aggregation. We first build

a performance profiler offline to characterize the relations

between training time and data size/model parameters using

a multiple linear regressor for the mobile devices. Then we

start with the base case when data is IID (class-balanced), and

formulate the problem into a min-max optimization problem

to seek optimal partitioning of data that achieves minimum

makespan. We propose an efficient O(n2 log n) algorithm (n
is the number of users) [24]. For non-IID data, we introduce

a new cost of accuracy and re-formulate the problem to

minimize the average sum of computation time and accuracy

cost, balanced by a weight parameter. We develop an O(mn)
algorithm to assign workloads with the minimum average cost

in each step based on a variant of the bin packing problem [27]

(m is the number of data shards). The algorithm can also

actively include unseen class samples during assignment to

improve gradient diversity and model generalization [21]. The

proposed algorithms are evaluated on MNIST and CIFAR10

datasets with a mobile testbed of various smartphone models.

The main contributions are summarized below.

• We perform an empirical study by launching backpropa-

gation on Android and discover that the processing time

is dominated by computation with the stragglers having

twice time delay than the mean time of completion.

• We formulate the optimization problems for both IID and

non-IID data, and propose polynomial-time algorithms.

• We conduct extensive evaluations on MNIST and CI-

FAR10 datasets under a mobile testbed with three device

combinations. Compared to the benchmarks, the results

show an average of 5-10× speedups for IID data without

accuracy loss and 2-5× speedups for non-IID data with no

accuracy loss on MNIST and 0.01-0.02 accuracy loss on

CIFAR10. The algorithms also demonstrate advantages of

avoiding worse-case stragglers and improve parallelism.
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The rest of the paper is organized as follows. Section

II describes the background and related works. Section III

motivates this work with an empirical study. Section V and

VI formulate the problems and propose algorithms for IID

and non-IID data. Section VII evaluates the framework on real

testbed, dataset and Section VIII concludes this work.

II. BACKGROUND AND RELATED WORKS

A. Deep Learning on Mobile Devices

The rapid increase of processing power, battery capacity

and improvement of power management these years make

mobile devices capable of handling complex learning tasks

not only limited to logistical regression or supported vector

machine, but also the resource-intensive deep neural networks.

The previous efforts mainly focus on optimizing the one-shot

inference computation via compression [15]. Recently, there

are new efforts to incorporate the entire training process on

mobile devices for better privacy preservation and adaptation

to the shifts in data distribution [16]. Their implementation

demonstrates the feasibility of conducting backpropagation

for deep neural networks on battery-powered mobile devices,

which has laid the foundations of this paper.

The collaboration of mobile devices exhibits more hetero-

geneity to their counterparts in distributed cloud and edge

computing. Like any other applications in the userspace,

the learning process is also handled by the Linux kernel

of Android, which controls cpufreq by the CPU gover-

nor in response to the workload. For example, the default

interactive governor in Android 8.0 scales the clockspeed

over the course of a timer regarding the workload. For better

energy-efficiency and performance, smartphones on the market

are embedded with asymmetric multiprocessing architectures,

i.e., ARM’s big.LITTLE [17]. For instance, Nexus 6P is

powered by octa-core CPUs with four big cores running at

2.0 GHz and four little ones at 1.53 GHz. The design intuition

is to handle the bursty nature of user interactions with the

device by placing low-intensity tasks on the small cores, and

vice versa. However, the behavior of such subsystem facing

intensive, constant workload such as backpropagation remains

underexplored. Further, since vendors usually extend over the

vanilla task scheduler through proprietary designs of task

migration/packing, load tracking and frequency scaling, the

same learning task would have heterogenous processing time

depending on the hardware and system-level implementation.

Our goal is to mitigate such impact on FL while still using

the default governor and scheduler for applications in the

userspace.

B. Federated Learning

A promising way of addressing staleness in distributed learn-

ing is using asynchronous updates [11], [12], which resumes

computation on those faster nodes without waiting for the

stragglers. However, inconsistent gradients could easily lead

to divergence and amortize the savings in computation time.

Therefore, most of the FL frameworks nowadays advocate the

synchronous approach [2]–[8]. McMahan et al. introduce the

algorithm of FedAvg that averages on aggregated parameters

and demonstrate its effectiveness to learn from unbalanced,

TABLE I: Hardware configurations of benchmarking testbed.

model SoC CPU big.LITTLE
Nexus 6 Snapdragon 805 4×2.7GHz �

Nexus 6P Snapdragon 810
4×1.55 GHz
4×2.0 GHz

�

Mate10 Kirin 970
4×2.36GHz
4×1.8GHz

�

Pixel2 Snapdragon 835
4×2.35 GHz
4×1.9 GHz

�

non-IID data [2]. Non-IIDness is further discussed in [3], [4],

which propose remedies to either pre-share a subset of global

data or utilize generative models to restore class balance, but at

non-negligible computation, communication and coordination

efforts. Scalable FL is approached in [5] from a system design

perspective; however, it simply adopts a hard dropout of the

stragglers if they fail to catch up with the schedule, while not

attempting to make best use from their data.

Another thread of works address the communication effi-

ciency in FL [6]–[10]. The full model is compressed and cast

into a low-dimensional space for bandwidth saving in [6].

Local updates that diverge from the global model are iden-

tified and excluded to avoid unnecessary communication [7].

Decentralized approaches and convergence are discussed in [8]

when users only exchange gradients with their neighbors. Evo-

lutionary algorithm is explored to minimize communication

cost and test error in a multi-objective optimization [9]. The

challenges from system, statistics and fault tolerance are jointly

formulated into a unified multi-task learning framework [10].

Our work complements these efforts from the computation

and system optimization side to reduce major heterogeneity

on mobile devices.

Our study has fundamental difference from a large body

of works in scheduling paralleled machines [18]–[20]. First,

rather than targeting at jobs submitted by cloud users, we delve

into a more microcosmic level and jointly consider partitioning

a learning task and makespan minimization, where the cost

function is characterized from real experimental traces. Sec-

ond, FL calls for the scheduling algorithm to be aware of non-

IIDness and model accuracy when workloads are partitioned.

Hence, our work is among the first to address computational

and statistical heterogeneity on mobile devices.

III. MOTIVATION AND MEASUREMENT

A. Processing Time

Most of the existing mechanisms equally partition data

among the workers for load balance [2]. We motivate by

an empirical study using the testbed shown in Table I and

see how large the gap is between the stragglers and mean

execution time. We develop a training App with DL4J [30]

(see Section VII for more development details) and implement

both LeNet [25] with 205K parameters and VGG6 [26] with

5.45M parameters.

Computation Time. We trace the per-batch training time on

different devices as shown in Figs. 1(a-b), as well as the CPU

clock speed every 5s vs. the temperature in Fig. 1(c). Though

the CPU can switch frequencies much faster, this experiment
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Fig. 1: Benchmark training performance on the mobile testbed using the MNIST dataset (a) LeNet (b) VGG6 (c) average CPU

frequency vs. temperature.

3K samples 6K samples

WiFi LTE WiFi LTE

L
eN

et

Nexus6 31(1.5%) 32(6.7%) 62(0.8%) 63(3.4%)
Nexus6P 69(0.7%) 71(3%) 220(0.2%) 222(1.0%)
Mate10 45(1.0%) 47(4.6%) 89(0.5%) 91(2.4%)
Pixel2 25(1.8%) 27(7.9%) 51(0.9%) 53(4.0%)

V
G

G
6 Nexus6 495(2.5%) 539(10.4%) 1021(1.2%) 1065(5.3%)

Nexus6P 540(2.3%) 584(9.6%) 1134(1.1%) 1178(4.8%)
Mate10 359(0.1%) 403(0.5%) 712(7.9%) 756(7.4%)
Pixel2 339(3.6%) 383(14.7%) 661(1.9%) 705(8.0%)

TABLE II: Training time of MNIST samples per epoch (s) with

percentage representing the network communication overhead.

shows how the frequency and temperature interact over time

to reach stability under the power management policy.

Communication Time. The server pushes (pulls) the model

to (from) the devices in each epoch. We measure the trans-

mission time of the LeNet (2.5MB) and VGG6 (65.4MB)

model under 1 Gbps wireless link and T-mobile 4G LTE

(-94 dBm), to simulate different networking environments.

The WiFi uplink/downlink speed achieves around 80-90 Mbps

on our campus network and LTE reaches about 60 Mbps

and 11 Mbps for the uplink and downlink respectively. We

upload/download the model from an AWS server between

Washington D.C. and Norfolk, VA. By adding up the time

of communication and computation, the makespan for each

device is summarized in Table II. Based on the measurements,

we have the following observations.

Observation 1. The computation time is generally governed by

the processing power of the CPU and the mobile architecture,

but with a few exceptions.

The actual speed is also affected by the system-level im-

plementation from different vendors. For example, one may

expect the newer smartphone generations to be more powerful.

This is not always true: Nexus 6 back in 2014 were not

designed for intensive workload like neural computations;

surprisingly, Huawei Mate10 with octa cores still lags behind

Nexus 6 running LeNet as observed in Fig. 1(a), though their

average CPU frequency stabilizes around the same region

in Fig. 1(c). Nexus 6 offers over 3× speed than Mate10.

This observation suggests that old generations may still have

opportunities to outperform the new ones depending on the

computation intensity.

Observation 2. The continuous neural computation leads

to heating and the governor quickly reacts to reduce the

cpufreq, or even shuts down some cores, thereby causing a

performance hit with large variance in the subsequent batch it-

erations (especially running heavy-weight networks like VGG6

on Nexus6/6P).

An extreme case is Nexus 6P with the controversial Snap-

dragon 810 chipset [22]. We find that the little cores are

running at 70-80% and the big cores are below 50% utilization

to their maximum frequency. The big cores quickly go offline

and switch to the little cores after a moderate temperature

surge, that occurs fairly often during the testing. The big cores

never stay around their maximum frequency at 2.0 GHz, thus

making Nexus 6P even much slower than Nexus 6.

Observation 3. In contrast to the conjectures in [2], communi-

cation only takes a small portion of the training time about 5%

on average (maximum at 15% with VGG6 using LTE). This

confirms that with today’s networking speed and the upcoming

5G, the bottleneck of FL remains to be computation on mobile

devices. Part of the reason is also because the mobile cannot

host heavy-weight model architectures that may overwhelm the

memory capacity. This implicitly alleviates the communication

overhead of transmitting these models.

Observation 4. To process the same amount of data, the

mobile devices exhibit substantial diversity in their completion

time. For example, the straggler requires an additional 62%

and 109% time running LeNet and VGG6 compared to the

mean completion time (maximum time minus the mean time

in Table II), and this deviation is expected to get larger with

more complex models or data iterations.

As observed in Table II, for only processing 5% and 10%

of MNIST, 10 epoches lead to 30 mins and 1 hour delay due

to stragglers. Therefore, an appropriate scheduling mechanism

is needed. In cloud environment, stragglers may be caused

by resource contention, unbalanced workload or displacement

of workers on different parameter servers [19], which are

typically handled by load balancing. In mobile environment,

they are caused by the fundamental disparity in device’s

processing power, so can we do the opposite and leverage

load unbalancing to offset the speed of those stragglers? Since

each epoch requires a full pass of the local data, among a

variety of tunable knobs, workload is directly proportional

to the amount of training data. However, distributed learning

often assumes a balanced data partition among the workers [2],
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Fig. 2: Impact of data imbalance (still IID) on FL accuracy (a)

MNIST (b) CIFAR10

would data imbalance lead to accuracy loss? To validate, we

conduct further experiments.

B. Impact of Data Imbalance to IID Data

We partition the datasets of MNIST and CIFAR10 among

20 users. For MNIST, the training set of 60K images results

an average of 3K images per user. Then we utilize a Gaussian

distribution to sample around the mean and adjust the standard

deviation to generate data imbalance among users. The ratio

between different classes is maintained to be uniform so no

class dominates the local set. We utilize an index of imbalance
ratio as the ratio between the standard deviation and the mean

as the x-axis (larger ratio means more extreme), and benchmark

the accuracy against the centralized and distributed learning

with balanced data in Fig.2. The results indicate that as long

as the data remains to be IID, data imbalance does not lead

to accuracy loss (the accuracy even trends up a little for

CIFAR10). This provides the basis to launch new performance

optimization discussed in the following sections.

C. Impact of non-IID Data

Nevertheless, non-IIDness can be detrimental to the collab-

orative convergence [2], [3]. We identify the dominant factors

that have an influence on accuracy based on the experiments

in Fig. 3. First, we show the relation between class-wise non-

IIDness and accuracy in Fig. 3(a). The severity is measured by

the number of classes that each user has, or simply referred

as n-class non-IIDness [3]. We iterate n from 2-8 (out of

10 classes) plus a standard deviation of samples among the

existing classes as the x-axis. The result matches with our

intuition that more missing classes cause higher accuracy

degradation with a substantial loss of 10-15% on CIFAR10.

When users with different distributions are mixed, a straight-

forward approach is to exclude users with higher gradient

divergence (individual outliers) to avoid accuracy loss [7].

To gain more insights of how individual outlier may affect

global convergence, we construct the following scenario. We

set 3 users and each user randomly picks 3 classes (out of

the total 10 classes). This leaves one remaining class for a

potential fourth user (one-class outlier). Then we designate the

remaining one-class outlier in three ways: a) Missing, only 3

users with a total 9 classes are trained. The outlier is missing

from the training set; b) Separate, involve the outlier as a

separate user (4 users); c) Merge, merge the missing class back

into the 3rd user so the last user has 4 classes.

The result in Fig. 3(b) displays a 3% accuracy gap with the

case of missing class ranked the lowest. The result suggests
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Fig. 3: Impact of non-IID data on model accuracy in CIFAR10

(a) relation between the degree of non-IID class distribution

and accuracy (b) influence from individual outliers.

that although individual outliers may lead to local bias and

undermine global convergence (gap between Merge and Sep-

arate), simple exclusion of the outliers need to exercise with

more precaution. It should be further conditioning on whether

those outliers contain samples that are not yet included in the

training set. If not, they still contribute to the diversity for

unseen classes and would be beneficial to the generalization

of the global model. Therefore, inclusion or exclusion not

only depends on computation speed, but also the actual non-

IID distributions. We follow these guidelines in the algorithm

designs.

IV. SYSTEM MODEL AND PERFORMANCE PROFILING

A. System Model

We use shards to represent the minimum granularity of

samples (e.g. 100 samples/shard). The parameter server has

sufficient bandwidth so simultaneous transmissions do not

cause network congestion or performance saturation [5]. Our

framework mainly tackles heterogeneity from computation and

data distribution, and is amenable to decentralized topologies

without a parameter server [8]. We delegate the role of

management to the server to gather users’ meta data such as

smartphone model and information of non-IID class distribu-

tion. For simplicity, we assume the server is honest and does

not attempt to infer user privacy from the collaborative model

as we can always resort to security protocols to protect the

intermediate gradients, model and differentially-private class

information [13].

B. Performance Profiling

For effective scheduling, the server builds performance pro-

files for the participants. This can be done either online through

a bootstrapping phase or offline measured by a collection of

devices. The objective is to estimate the training time given

the model architecture and data size, which holds a linear rela-

tionship in general. For better characterization, we take a two-

step approach to first profile the computation time regarding

model parameters given the data size. Since the convolutional

layers have higher computation intensity, we separate them

from the densely connected layers. We test a number of k
different model architectures and their training time of d data,

denoted by, y(d) = [y1, y2, · · · , yk](d). x
(d)
i = [xi,1, xi,2]

(d)

are the number of parameters for convolution and dense layers
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Fig. 4: Example: profile training time on Mate10 using linear

regression (a) Step 1, characterize training time vs. model

parameters (b) Step 2, predict training time vs. data size.

of different models. We employ a multiple linear regression

model (for each data size d),

yi = β0 +
2∑

j=1

βjxi,j + ei, (1)

where ei is a noise vector to compensate measurement error.

The parameters are found by solving the least square problem,

β̂ = y ·X−1, which is computed by β̂ = argmin
β

‖y − βX‖22.

The output of the first step is {β0, β1, β2}(d) for different

d. Shown in Fig.4(a), we find the hyperplane that predicts

training time given the model parameters. The linear relation is

emphasized by convolutions, which coincides with the initial

step of separation.

With an unknown model architecture, the first step provides

d estimates [y1, y2, · · · , yd] of compute time. The second step

generalizes this for unknown data sizes by applying linear

regression again to fit the predictions from the first step in

the least-square sense. Fig.4(b) shows the final curve versus

its actual measurement from experiment and a small gap is

observed. Such profiles can be constructed offline for the

scheduling algorithms discussed next.

V. ASSIGNMENT WITH IID DATA DISTRIBUTION

We first consider the case that the local dataset contains

data from all classes (i.e., IID) and optimize the training time

per epoch. IID is the basic assumption for machine learning

and exemplifies the case when users have compiled a class-

balanced dataset in sufficiently long time.

A. Problem Formulation

In each epoch, a set of n = |N | users are chosen to run

m = |M| distributed training tasks. Each participant conducts

one training task (m = n). As experimented in Section III-B,

unbalanced local data leads to negligible accuracy loss when

the data is IID so this gives enough latitude for the task

assignments. To be clear, we use subscripts i for tasks and j for

users. When user j conducts training task i, the computation
time is a function of data size Di and model M , T c

j (Di).
Depending on the networking environments, the uplink and

downlink network latency for user j depends on the model

size M , Tu
j (M) + T d

j (M). The goal is to find an optimal

assignment of training data so that the maximum processing

time is minimized per epoch. The problem is formalized below.

P1 : min
X∈φ

max
j∈N

(
T c
j (Di) + Tu

j (M) + T d
j (M)

)
xij (2)

s.t. ∑

i∈M
Di = D, i ∈ M (3)

∑

j∈N
xij = 1, i ∈ M (4)

∑

i∈M
xij = 1, j ∈ N (5)

The objective is to minimize the makespan given all possible

data partitions and the assignment of training task i with Di

data to j. Eq. (3) states that the sum of local data should be

equal to D. Eqs. (4) and (5) impose that each task is assigned

to only one user, and vice versa. Decision variable xij is 0-1

valued. X is an assignment matrix with elements xij and φ is

the set of all permutations of the assignment matrix X .

P1 can be viewed as a combination of a partitioning
problem and a variant of the linear bottleneck assignment
problem (LBAP) [23]. The classic assignment problem finds an

optimal assignment of workers to tasks with minimum sum of

cost. LBAP is its min-max version. It assigns tasks to parallel

workers and ensures the latest worker uses minimum time.

We adopt the same analogy here to ensure each training epoch

is finished in minimum time. The problem is different from

both the classic assignment problem and LBAP. The number

of potential tasks is not equal to the number of workers (mobile

devices), but rather, a much wider potential range to choose

from due to the combinatorial partitions of the dataset. The

final choice would be determined by the set of constraints that

optimizes Eq. (2). A naive solution is to list all the partitions

of D in brute force, construct cost values per user for all the

potential permutations, solve an LBAP and find the assignment

with the minimum makespan. For a total number of s shards,

the possible permutations are in the order of sn, which makes

it intractable even for small n.

B. Joint Partitioning and Assignment

Though the naive method turns out to be intractable in

polynomial time, the following property of mobile devices

helps simplify the problem.

Property 1. For data Di, T c
j (Di) + Tu

j (M) + T d
j (M) is a

non-decreasing function.

Then it is not necessary to test a large number of potential

partitions, if a partition of smaller size has already satisfied Eq.

(3) with less computation time. For example, consider possible

permutations of
∑3

i=1 Di = 13 among three users. If the first

or the second user is the straggler in partition (4, 4, 5), then

partitions such as (5, 5, 3), (6, 6, 1) definitely leads to more

running time. This allows us to potentially skip a large number

of sub-optimal solutions.

The classic LBAP has a polynomial-time thresholding algo-

rithm in O(n
5
2 log n) [23]. This algorithm checks whether a

perfect matching exists in each iteration using the Hopcroft-

Karp algorithm, that takes O(n
5
2 ). Here, when D is divided

into s shards, perfect matching between user and data shard is

no longer needed as introduced in the following property.

Property 2. A bipartite graph G = (U ,V; E) is constructed

with |U| = n, |V| = s and edges (j, k) ∈ E . Each vertex in U
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Algorithm 1: Fed-LBAP (for IID data)

1 Input: Total data size D, cost matrix C = {Cjk}, number of
users n.

2 Output: The assignments of tasks {Aj} for each user j.

3 C ← C sorted in the ascending order.

4 min ← 0, max ← |C|, median ← �min+max
2

�; D′ ← 0
5 while min < max do
6 C∗ ← C(median)
7 for j = 1 to m do
8 Aj ← argmaxj{Cjk|Cjk ≤ C∗}
9 D′ ← D′ +Aj

10 if ∀j, Aj = 0 or D′ < D then
11 min ← median

12 else
13 max ← median

should have degree of 1 and vertices in V can have degree of

0 (as long as the sum of vertices having degree 1 equals D).

Fed-LBAP Algorithm. Based on Properties 1 and 2, we can

further reduce the time complexity by extending [23]. We

propose a joint partitioning and assignment algorithm to solve

the problem in polynomial time. For the n users, we define a

cost matrix C = {cjk} of dimension n × s (i.e., the matrix

represents the cost to assign a task of k shards to user j). A

thresholding matrix C with the same setting is also initiated.

We sort all the elements from the cost matrix in ascending

order and perform binary search by utilizing a threshold c∗: if

cjk > c∗, cjk = 0; otherwise, cjk = 1. The sum of all cost

values found in each iteration is compared to D. If larger, find

a new median for the left half; otherwise, find a new median

for the right half until the optimal median value is reached.

In short, our algorithm first performs a sorting of all the cost

values and conducts a binary search for the minimal threshold

c∗ such that Property 2 and Eq. (3) hold. The procedures are

summarized in Algorithm 1.

The time complexity is analyzed below. In the worse case,

binary search takes O(log ns) iterations. We need to check

whether cjk = 0 during the iterations. This takes O(s) time

for one user and is repeated for n times. The time complexity

is O(ns log ns) with s ≥ n. To be consistent with [23], when

s = n, our algorithm is O(n2 log n).

VI. ASSIGNMENT WITH NON-IID DATA DISTRIBUTION

Due to the inherent difference among users in their behaviors

and interests, non-IIDness is quite common in mobile appli-

cations. This section investigates the scheduling strategy when

local data is non-IID.

A. Non-IID Formulation

Given the disparity of class distributions among users, which

users are selected is vital to the computation time and accuracy.

One may follow the previous algorithm to weigh more on

those with higher processing power. But non-IIDness brings

new challenges: if some users only have a single class, the

gradient may adversely prolong global convergence. On the

other hand, as indicated by Section III-C, if the class is not

yet included in the training set, inviting the user into training

would be beneficial to model generalization. To this end, we

introduce an accuracy cost Fj to choose user j. Denote the set

of existing classes as U for the current training set. The testset

has K classes (|U| ≤ K). The cost of accuracy selecting user

j with |Uj | classes is,

Fj =

⎧⎪⎪⎨
⎪⎪⎩

K

|Uj | , U ∩ Uj �= ∅
K

|Uj | −
β

α
·Du, otherwise.

(6)

where α, β are two input parameters (α > β). Du is the

number of data shards in the current training set. For user

j, the accuracy cost is inversely proportional to the number

of classes he has, if the intersection between his class and the

current set is not empty; otherwise, we deduct the cost by the

size of training set times β to make the user more appealing

during selection. In practice, the users could truthfully report

their accuracy cost instead of detailed Uj to reduce privacy

leakage of class-level information. We balance the time and

accuracy cost using the weight parameter α and our objective

is to derive a schedule with the minimum average cost.

P2 : min
∑
j∈N

T c
j

( ∑
i∈M

xij

)
+
(
Tu
j (M)+T d

j (M)+αFj

)
yj (7)

s.t. ∑

i∈M

∑

j∈N
xij = D (8)

∑

i∈M
xij ≤ Cj , j ∈ N (9)

0 ≤ xij ≤ D, xij ∈ N (10)

yj = �
( ∑

i∈M
xij > 0

)
(11)

We adopt most of the notations from P1 and assume an

initial set of tasks M (e.g., an equal partition, but divisible

afterwards). The new objective is to determine the data shards

xij to be assigned from task i to user j such that the sum of

computation/communication and cost of accuracy (scaled by

α) is minimized. We can consider the accuracy cost as a fixed

cost when a user is involved, which gradually changes defined

by Eq. (6). Constraint (8) ensures the tasks are fully packed

and all the partitions sum up to D data in total. Constraint (9)

states that the size of data does not exceed user j’s capacity

Cj , which can be quantified by the storage or battery energy.

Constraint (10) bounds the proportion of xij from zero to D
in integers. Constraint (11) makes yj equal to 1 if user j is

selected; otherwise, yj is 0.
The problem can be abstracted into a close analogy of the

bin packing problem with item fragmentation [27], which finds

an assignment of items to a fixed number of bins by splitting

them into fragments. For each fragmentation, there is an asso-

ciated unit cost. In our scenario, the items correspond to the

learning tasks splittable into data shards and the users represent

the bins. Unlike the original bin packing, the objective no

longer minimizes the number of users (with unit cost); instead,

it is characterized by a function of computation time and model

accuracy. The fragmentation cost is also different from the unit

cost in [27]. It actually depends on which destined user the

fragments are assigned to. If the user has been already involved

in training (bin/user is open), the cost mainly depends on the

computation time of the new fragments; otherwise, the cost of

accuracy in Eq. (6) is also considered. We propose an algorithm

as described next.
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Algorithm 2: Fed-MinAvg Algorithm (for Non-IID

Data)

1 Input: Number of data shards D and size d per shard,
n = |N | users, cost profiles T (·), set of class coverage U
and user coverage O, parameters α, β, number of data
shards lj for user j, number of classes K in the testset.

2 Output: Data for each user lj .
3 U ,O ← ∅, Du ← 0.
4 while Du < D do
5 if N \ O �= ∅ then
6 j ←

argmin
j∈O,k∈N\O

{
Tj

(
(lj +1) · d)+αFj , Tk(d) +αFk

}
.

7 else
8 j ← argmin

j,k∈O

{
Tj

(
(lj + 1) · d)+ αFj , Tk

(
(lk + 1) ·

d
)
+ αFk

}
.

9 lj ← lj + 1.
10 if U ∩ Uj �= ∅ then
11 αFj ← α · K

|Uj |

12 else
13 αFj ← α · K

|Uj | − β ·Du

14 if lj ≥ Cj then
15 Fj ← ∞
16 U ← U ∪ Uj , O ← O+ j, N ← N − j, Du ← Du + 1.

B. Min Average Cost Algorithm

The main idea of the Min Average Cost Algorithm is to

iteratively assign the data shards to the user with the minimum

average cost in a greedy fashion. Consider the dataset of D
data shards and n users. The initial cost is Tj(d) + αFj , if a

user j is open for training with d data1. Starting from j with

the lowest initial cost, we assign d1 = d to j, and update the

set of current class coverage as U ∪ Uj and the accuracy cost

in Eq. (6). Denote the set of users that are already involved

in training as O ⊆ N . For d2 = d, we compare the cost by

either assigning it to j with cost Tj(2d) + αFj , or to k with

cost Tk(d) + αFk (k ∈ N \ O), and select the one with less

cost. For all the users j ∈ O and a potential user k ∈ N \ O,

we assign d according to,

j∗ = argmin
j∈O,k∈N\O

{
Tj

(
(lj + 1) · d)+ αFj , Tk(d) + αFk

}
, (12)

where lj is the current number of data shards of user j. If all the

users are involved (j, k ∈ O), we compare Tj

(
(lj+1)·d)+αFj

with Tk

(
(lk + 1) · d)+ αFk and select the one with less cost.

If j reaches the capacity that lj · d ≥ Cj , it is excluded from

further selections (bin is closed); otherwise, it remains to be

open. The algorithm repeats until D is exhausted and runs in

O(mn) time, where m is much larger than n. The procedure

is summarized in Algorithm 2.

VII. EVALUATION

In this section, we evaluate the proposed algorithms on a mo-

bile testbed using two datasets and compare with various base-

lines. The main goal is to evaluate the performance speedups of

the proposed algorithms and the consequent impact on model

accuracy when user data is either IID or non-IID.

1We omit the communication cost here for clarity.

Mobile Development. The mobile framework is developed

in DL4J [30], a java-based deep learning framework that can

be seamlessly integrated with Android. Training is conducted

using multi-core CPUs enabled by OpenBLAS in Android

8.0.1. We use AsyncTask to launch the training process

by the foreground thread with the default interactive
governor and scheduler. To avoid memory error, we enlarge

the heap size to 512 MB by setting largeHeap and use a

batch size of 20 samples. This allows us to train VGG-like

deep structures.

Experiment Setting. We use the collection of devices

to construct three combinations of mobile testbeds: (I) 1×
Nexus6, 1× Mate10 and 1× Pixel2 of 3 devices; (II) 2×
Nexus6, 2× Nexus6P, 1× Mate10 and 1× Pixel2 of 6 devices;

(III) 4× Nexus6, 2× Nexus6P, 2× Mate10 and 2× Pixel2 of

10 devices. The experiment is conducted on two commonly

used datasets: MNIST [28] and CIFAR10 [29] with 60K

and 50K training samples. We fully charge all the devices,

pre-load both datasets into the flash storage of the mobile

devices and read them in mini-batches. Users perform one

epoch of local training in each round and the global gradient

averaging iterates 20 and 50 epoches for MNIST and CIFAR10

respectively.

To emulate the dynamics of mobile data, we generate

random distributions among the users: 1) For IID data, each

user retains all the classes and the ratio between samples from

different classes is equivalent; 2) For non-IID data, each user

has a random subset of classes and each class may also have

different number of samples. Two fundamental networks of

LeNet [25] and VGG6 [26] are evaluated and their efficiency

has been proved to handle learning problems at sufficient

scales. To meet the input dimensions, we tailor the original

16 layers of VGG16 by stacking five 3 × 3 convolutional

layers with one densely connected layer. While scheduling

with non-IID data, we search for the optimal cost parameter

α in [100, 5000] and set β = 2 unless stated otherwise. The

uplink and downlink latencies are added to computation time

according to the measurement in Table II.

Benchmarks. The proposed algorithms are compared with

several benchmarks: 1) Proportional: a heuristic that assigns

training data proportional to the processing power measured

by the mean CPU frequencies per core; 2) Random: uniformly

random data partitions among the users; 3) Equal: assign

equal shares of data to users as adopted by FedAvg [2].

Since the model architecture is fixed, we mainly compare

the computational time and treat the communication time as

a constant. The results are averaged over 10 experimental

runs. To facilitate the evaluation, we also adopt pytorch with

GTX1080/K40 GPUs to evaluate different benchmarks.

A. Scheduling with IID Data

Computation Time. We first evaluate the Fed-LBAP algo-

rithm developed for IID data. Fig. 5 shows the training time

per global update for all the combinations between the testbed,

datasets and models (y-axis in log-scale). We can see that the

mobile processing power (both individual and collective) and

the workloads play key roles in the computational time, which

sums up to nontrivial relations. First, unlike cloud settings
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Fig. 5: Comparison of computation time when data is IID (time in log-scale) (a) training MNIST with LeNet; (b) training

MNIST with VGG6; (c) training CIFAR10 with LeNet; (d) training CIFAR10 with VGG6.

in which computation time scales well with the number of

workers, mobile stragglers would easily degrade the overall

performance even if more users are involved. For example,

the time surge from Testbed 1 (3 users) to Testbed 2 (6 users)

is due to the problematic Nexus6P, that the poor design of heat

dissipation, frequency scaling and power management are the

main cause of the overall slowdown. This drag is magnified

with complex network architectures of higher computation

intensity (VGG6 with more convolutional layers) and more

training data (60K of MNIST vs. 50K CIFAR10). The 10K

data addition exacerbates the compute time parabolically by 20

times (Testbed 2 between Figs. 5(b) and (d) running VGG6 on

MNIST and CIFAR10), if the scheduling is done inappropri-

ately. By bringing 2 additional devices with higher processing

power, we observe a slight performance improvement.

With the ordinary schedules (Prop., Random and Equal),

we hardly see any consistent parallelism when more users

are involved. However, Fed-LBAP is capable of utilizing the

additive computational resources by appropriately assigning

workloads to the more efficient users, so the training time

accomplishes a downtrend with more users, even worse-case

stragglers are present. Among the benchmarks, Fed-LBAP

achieves an overall 5-10× speedups, with the best speedup

of almost 2 orders of magnitude for Testbed 2 in Fig. 5(b).

Although naive schemes may look for an optimal scheduling

that is proportional to device CPU frequency or equally assign

workloads as [2], the runtime behavior may be drastically

different due to complex system dynamics, and our experiment

shows that such schemes perform no better than a purely

randomized schedule.

Accuracy Loss. Table III summarizes the test accuracy

under different scheduling. We can see the accuracy trends

down slightly with LeNet while more users are involved. Since

the data is IID, Fed-LBAP can be considered as one special

permutation from the random partitions. Our results indicate

that as long as the data remains to be IID, we can leverage

load unbalancing without accuracy loss. We also notice that

the random assignments tend to yield the highest accuracy.

The reason could be attributed to the diversity of gradients

from the random permutations, where high similarity between

the gradients may not facilitate the learning process [21].

B. Scheduling with Non-IID Data

Effectiveness of Parameters α and β. The evaluation of

non-IIDness calls for generating specific data distributions and

matches them with the mobile devices. To enable analysis

and gain more insights, we generate 3 representative data

Prop. Random Equal Fed-LBAP

M
N

IS
T LeNet

(I) 0.9908 0.9911 0.9907 0.9908
(II) 0.9898 0.9896 0.9896 0.9899
(III) 0.9882 0.9882 0.9883 0.9886

VGG6
(I) 0.9939 0.9939 0.9936 0.9936
(II) 0.9932 0.9933 0.9934 0.9932
(III) 0.9928 0.9906 0.9928 0.9929

C
IF

A
R

1
0

LeNet
(I) 0.5966 0.5951 0.5921 0.5926
(II) 0.5853 0.5851 0.5831 0.5846
(III) 0.5622 0.5632 0.5625 0.5689

VGG6
(I) 0.7295 0.7330 0.7286 0.7285
(II) 0.7317 0.7328 0.7286 0.7308
(III) 0.7269 0.7353 0.7287 0.7321

TABLE III: Comparison of model accuracy with different

benchmarks (IID data)

distributions shown in col.2-4 in Table IV. E.g., S(I) has

Nexus6(a) with classes from 0 to 6, 9 and class 7 only comes

from Pixel2(a). Then we adjust the parameters of α and β
to see how Fed-MinAvg reacts to these distributions. Recall

that α increases the initial cost of the users with more missing

classes and β makes the process aware of the class coverage.

We illustrate the potential trade-offs in Fig. 6 by referencing

to the workload assignments generated from the algorithms in

Table IV(col.5-16). The top figure depicts the trace of training

time when α increases from 100 to 5000. When β = 0, the

training time generally trends up when α increases. This is

because a large accuracy cost re-distributes the workloads to

the devices with more classes and reduces parallelism. E.g.,

in S(I), the best performing device Pixel2(a) is unfortunate to

have only two classes (higher initial accuracy cost). Large α
makes it less likely to assign data to Pixel2(a), so the workloads

are transferred to Nexus6(a) as observed in Table IV(col.5-

6). Similar observations are made in S(II) and S(III) and the

underperforming devices with higher skewness of non-IIDness

would be excluded from scheduling. From the assignments in

Table IV, when α increases, the algorithm favors the user with

fewer missing classes (perceived from the gap between p1, p2
and p3, p4). When α = 5000, slower devices with higher non-

IIDness are assigned with zero data.

If we take a closer look into the class distributions in Table

IV, some classes only belong to the outliers such as class 7

in S(I) and class 4 in S(II). Thus, the exclusion of these users

in training has an adverse impact to accuracy as perceived

in the bottom left Figs. 6(a-b) - as α increases, the accuracy

trends down. In contrast, the corresponding plot in Fig. 6(c)

indicates the opposite. This is because the outlier classes

are also included by other users so their participation would

interfere with the training process, i.e., their exclusion could

lead to an accuracy gain. The assignment decision would have
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Fig. 6: Effectiveness of α and β and their relations with training time and accuracy (best view in color) (a) S(I); (b) S(II); (c)

S(III).

class dist. S(I) S(II) S(III)

S(I) S(II) S(III) p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4

Nexus6(a) (0-6,9) (1,2,5,7) (2,6,8,9) 23.8 35.4 13.5 28.7 16.1 2.3 8.7 5.8 9.7 0 3.7 0
Nexus6(b) – (2,6,8) (0,1,3,7-9) – – – – 18.0 40.1 9.1 19.3 11.1 33.4 4 12.1
Nexus6(c) – – (9) – – – – – – – – 0.4 0 1.5 0
Nexus6(d) – – (0,5) – – – – – – – – 8.1 0 2.9 0
Nexus6P(a) – (0,3,8,9) (2) – – – – 0.3 0 1.2 0 0 0 0 0
Nexus6P(b) – (0) (0-2,4,5) – – – – 2.6 0 3.2 0 1.2 0.37 8 2.4
Mate10(a) (2-6,8) (4,9) (1,3,4,8) 19.4 14.6 12.3 20.5 7.6 0 5.6 0 7.5 0 3.1 0
Mate10(b) – – (9) – – – – – – – – 0.5 0 0.2 0
Pixel2(a) (7,8) (0,1,2) (1) 6.8 0 24.2 0.8 5.4 7.6 22.2 24.9 1.3 0 0.9 0
Pixel2(b) – – (0-3,7,8) – – – – – – – – 6.6 12.9 32.9 35.5

TABLE IV: Class distribution and schedules computed by MinAvg algorithm with (α, β) combinations, p1 = (100, 0), p2 =
(5000, 0), p3 = (100, 2), p4 = (5000, 2). The numbers are in 103 data samples and evaluated using CIFAR10-LeNet.

a subtle impact on the accuracy and we leave more exploration

to the future works.

When β = 2, the algorithm would continuously compensate

a small benefit for outliers if their classes are not included in

the overall class coverage. It might allocate some data to those

outliers, but end up being far from time-optimal shown in the

top Figs. 6(a-b). With the increase of α, the cost of accuracy

from outliers re-gains their leverage against benefit, and data is

re-allocated back to other devices so we mainly see a decline

of the training time thereafter. The advantage of incorporating

β on accuracy is measured by the bottom right of Figs. 6 as

it further lifts the accuracy by 0.02 to 0.03.

Computation Time. Next, we perform large-scale exper-

iments using random permutations of the class distributions

among the devices and demonstrate the comparison in Fig. 7.

We found the best α value over the interval of [100, 5000]
and set β = 0 to weigh more on the computation time. The

average speedups of the Fed-MinAvg on the three testbeds

are 1.3×, 8×, 6× for MNIST and 1.92×, 2.05×, 1.67× for

CIFAR10. Though the numbers are less than the case of

IID due to new considerations of non-IIDness, the algorithm

manages to achieve an overall speedup, especially when worse-

case stragglers are present in Testbed 2.

Accuracy Loss. Table V shows the potential accuracy loss

due to scheduling and compares with the benchmarks. For

MNIST, Fed-MinAvg results almost no accuracy loss and for

CIFAR10, the accuracy loss is within 0.02. It is interesting to

see two phenomenons. First, by contrast to the IID case, in the

vertical direction, the accuracy climbs up considerably when

more users are involved. We conjecture that the reasons are due

to dynamics learned from users with the entire class coverage

but more dispersed distribution, that has actually improved

the generalization of the global model. In other words, the

contribution from such gradient diversity has surpassed the

potential damage from the bias of local gradient. Second,

horizontally, the advantage of random assignment is more

visible than IID. However, most of these permutations would

yield high computation time, thus not time-optimal respect to

performance.

Prop. Random Equal Fed-MinAvg

M
N

IS
T LeNet

(I) 0.9116 0.9177 0.8983 0.9059
(II) 0.9611 0.9581 0.9565 0.9541
(III) 0.9814 0.9778 0.9599 0.9817

VGG6
(I) 0.9147 0.9250 0.8991 0.9211
(II) 0.9601 0.9759 0.9538 0.9739
(III) 0.9805 0.9860 0.9562 0.9880

C
IF

A
R

1
0

LeNet
(I) 0.4348 0.4558 0.4486 0.4285
(II) 0.4640 0.4793 0.4689 0.4745
(III) 0.5064 0.5070 0.5036 0.4892

VGG6
(I) 0.5913 0.6232 0.6183 0.5923
(II) 0.6553 0.6614 0.6545 0.6406
(III) 0.6833 0.6773 0.6852 0.6663

TABLE V: Comparison of model accuracy with different

mechanisms (non-IID data)

VIII. CONCLUSION

In this paper, we optimize the computation time of launching

federated learning on battery-powered mobile devices. We

first motivate this work by showing heterogenous processing

time and non-IID challenges. Then we develop two efficient

near-optimal algorithms to schedule workload assignments for
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Fig. 7: Comparison of computation time when data is Non-IID (time in log-scale) (a) training MNIST with LeNet; (b) training

MNIST with VGG6; (c) training CIFAR10 with LeNet; (d) training CIFAR10 with VGG6.

both IID and non-IID data. Our extensive experiments on real

mobile testbed and datasets demonstrate up to 2 orders of

magnitude speedups and minimum accuracy loss when data

is non-IID.
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