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Abstract—Federated learning learns a collaborative model by
aggregating locally-computed updates from mobile devices for
privacy preservation. While current research typically prioritizing
the minimization of communication overhead, we demonstrate
from an empirical study, that computation heterogeneity is a
more pronounced bottleneck on battery-powered mobile devices.
Moreover, if class is unbalanced among the mobile devices, inap-
propriate selection of participants may adversely cause gradient
divergence and accuracy loss. In this paper, we utilize data as
a tunable knob to schedule training and achieve near-optimal
solutions of computation time and accuracy loss. Based on the
offline profiling, we formulate optimization problems and pro-
pose polynomial-time algorithms when data is class-balanced or
unbalanced. We evaluate the optimization framework extensively
on a mobile testbed with two datasets. Compared with common
benchmarks of federated learning, our algorithms achieve 2-
10x speedups with negligible accuracy loss. They also mitigate
the impact from mobile stragglers and improve parallelism for
federated learning.
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I. INTRODUCTION

The past few years have witnessed an increasing migra-
tion of data-driven applications from the centralized cloud to
mobile devices due to the rising privacy concerns. Originated
from distributed learning [1], Federated Learning (FL) learns
a centralized model where the training data is held privately
by end users [2]-[10]. They compute local models in parallel
and aggregate their updates towards a centralized parameter
server. The server takes the average from the users, pushes
the averaged model back to all the users as the initial point for
the next iteration.

Though promising to ease the tension between data utility
and privacy, existing research mainly focuses on addressing
prominent problems left from distributed learning such as
improving the communication efficiency [6]-[9] and security
robustness [13], [14]. Their proof-of-concept implementations
are largely based on cloud/edge servers with stable, external
power and proprietary GPUs. This still leaves a gap to what
FL was initially proposed as a learner of abstraction at the
mobile data source for privacy preservation.

Fortunately, the dramatic increase of mobile processing
power has enabled not only inference, but also moderate
training (backpropagation) [5], [16], thus providing a basis to
launch FL on mobile devices. However, the vast heterogeneity
of mobile processing power has yet to be addressed in [2]—
[10]. From an empirical study, we first validate that the
bottleneck has actually shifted from communication back to
computation on mobile devices. The runtime behavior depends
on a complex combination of CPU architectures, memory
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speed, power management policies and computation intensity.
Further, the high variance among user data adds another layer
of statistical heterogeneity [10]. E.g., in activity recognition,
some users may perform only a few actions (e.g., sitting for
a long time), thus leading to highly skewed local distributions
in a small subset of categories, which breaks the independent
and identically distributed (IID) assumptions held as a basis for
machine learning. When averaged into the global model, these
skewed gradients may have a damaging impact on the collabo-
rative model. Thus, the selection of participants should rely on
both computation and data distribution, whereas the previous
works typically discuss non-IIDness independently [2]-[4].

To tackle these challenges, we propose an optimization
framework to schedule training using the workloads (amount
of training data) as a tunable knob and achieve near-optimal
staleness in synchronous gradient aggregation. We first build
a performance profiler offline to characterize the relations
between training time and data size/model parameters using
a multiple linear regressor for the mobile devices. Then we
start with the base case when data is IID (class-balanced), and
formulate the problem into a min-max optimization problem
to seek optimal partitioning of data that achieves minimum
makespan. We propose an efficient O(n?logn) algorithm (n
is the number of users) [24]. For non-IID data, we introduce
a new cost of accuracy and re-formulate the problem to
minimize the average sum of computation time and accuracy
cost, balanced by a weight parameter. We develop an O(mn)
algorithm to assign workloads with the minimum average cost
in each step based on a variant of the bin packing problem [27]
(m is the number of data shards). The algorithm can also
actively include unseen class samples during assignment to
improve gradient diversity and model generalization [21]. The
proposed algorithms are evaluated on MNIST and CIFAR10
datasets with a mobile testbed of various smartphone models.
The main contributions are summarized below.

o We perform an empirical study by launching backpropa-
gation on Android and discover that the processing time
is dominated by computation with the stragglers having
twice time delay than the mean time of completion.

We formulate the optimization problems for both IID and
non-IID data, and propose polynomial-time algorithms.
We conduct extensive evaluations on MNIST and CI-
FARI10 datasets under a mobile testbed with three device
combinations. Compared to the benchmarks, the results
show an average of 5-10x speedups for IID data without
accuracy loss and 2-5x speedups for non-IID data with no
accuracy loss on MNIST and 0.01-0.02 accuracy loss on
CIFARI10. The algorithms also demonstrate advantages of
avoiding worse-case stragglers and improve parallelism.
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The rest of the paper is organized as follows. Section
II describes the background and related works. Section III
motivates this work with an empirical study. Section V and
VI formulate the problems and propose algorithms for IID
and non-IID data. Section VII evaluates the framework on real
testbed, dataset and Section VIII concludes this work.

II. BACKGROUND AND RELATED WORKS
A. Deep Learning on Mobile Devices

The rapid increase of processing power, battery capacity
and improvement of power management these years make
mobile devices capable of handling complex learning tasks
not only limited to logistical regression or supported vector
machine, but also the resource-intensive deep neural networks.
The previous efforts mainly focus on optimizing the one-shot
inference computation via compression [15]. Recently, there
are new efforts to incorporate the entire training process on
mobile devices for better privacy preservation and adaptation
to the shifts in data distribution [16]. Their implementation
demonstrates the feasibility of conducting backpropagation
for deep neural networks on battery-powered mobile devices,
which has laid the foundations of this paper.

The collaboration of mobile devices exhibits more hetero-
geneity to their counterparts in distributed cloud and edge
computing. Like any other applications in the userspace,
the learning process is also handled by the Linux kernel
of Android, which controls cpufreq by the CPU gover-
nor in response to the workload. For example, the default
interactive governor in Android 8.0 scales the clockspeed
over the course of a timer regarding the workload. For better
energy-efficiency and performance, smartphones on the market
are embedded with asymmetric multiprocessing architectures,
i.e., ARM’s big.LITTLE [17]. For instance, Nexus 6P is
powered by octa-core CPUs with four big cores running at
2.0 GHz and four little ones at 1.53 GHz. The design intuition
is to handle the bursty nature of user interactions with the
device by placing low-intensity tasks on the small cores, and
vice versa. However, the behavior of such subsystem facing
intensive, constant workload such as backpropagation remains
underexplored. Further, since vendors usually extend over the
vanilla task scheduler through proprietary designs of task
migration/packing, load tracking and frequency scaling, the
same learning task would have heterogenous processing time
depending on the hardware and system-level implementation.
Our goal is to mitigate such impact on FL while still using
the default governor and scheduler for applications in the
userspace.

B. Federated Learning

A promising way of addressing staleness in distributed learn-
ing is using asynchronous updates [11], [12], which resumes
computation on those faster nodes without waiting for the
stragglers. However, inconsistent gradients could easily lead
to divergence and amortize the savings in computation time.
Therefore, most of the FL frameworks nowadays advocate the
synchronous approach [2]-[8]. McMahan et al. introduce the
algorithm of FedAvg that averages on aggregated parameters
and demonstrate its effectiveness to learn from unbalanced,
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TABLE I: Hardware configurations of benchmarking testbed.

model SoC CPU big.LITTLE
Nexus 6 Snapdragon 805 4x%2.7GHz X
Nexus 6P  Snapdragon 810 ?;12505 C(}}I—I;Iz z v
Mate10 Kirin 970 44XX21'.386C?§ZZ v

Pixel2  Snapdragon 835 ét‘xx21.l395 C?I_’I{ZZ v

non-IID data [2]. Non-IIDness is further discussed in [3], [4],
which propose remedies to either pre-share a subset of global
data or utilize generative models to restore class balance, but at
non-negligible computation, communication and coordination
efforts. Scalable FL is approached in [5] from a system design
perspective; however, it simply adopts a hard dropout of the
stragglers if they fail to catch up with the schedule, while not
attempting to make best use from their data.

Another thread of works address the communication effi-
ciency in FL [6]-[10]. The full model is compressed and cast
into a low-dimensional space for bandwidth saving in [6].
Local updates that diverge from the global model are iden-
tified and excluded to avoid unnecessary communication [7].
Decentralized approaches and convergence are discussed in [8]
when users only exchange gradients with their neighbors. Evo-
lutionary algorithm is explored to minimize communication
cost and test error in a multi-objective optimization [9]. The
challenges from system, statistics and fault tolerance are jointly
formulated into a unified multi-task learning framework [10].
Our work complements these efforts from the computation
and system optimization side to reduce major heterogeneity
on mobile devices.

Our study has fundamental difference from a large body
of works in scheduling paralleled machines [18]-[20]. First,
rather than targeting at jobs submitted by cloud users, we delve
into a more microcosmic level and jointly consider partitioning
a learning task and makespan minimization, where the cost
function is characterized from real experimental traces. Sec-
ond, FL calls for the scheduling algorithm to be aware of non-
IIDness and model accuracy when workloads are partitioned.
Hence, our work is among the first to address computational
and statistical heterogeneity on mobile devices.

III. MOTIVATION AND MEASUREMENT

A. Processing Time

Most of the existing mechanisms equally partition data
among the workers for load balance [2]. We motivate by
an empirical study using the testbed shown in Table I and
see how large the gap is between the stragglers and mean
execution time. We develop a training App with DL4J [30]
(see Section VII for more development details) and implement
both LeNet [25] with 205K parameters and VGG6 [26] with
5.45M parameters.

Computation Time. We trace the per-batch training time on
different devices as shown in Figs. 1(a-b), as well as the CPU
clock speed every 5s vs. the temperature in Fig. 1(c). Though
the CPU can switch frequencies much faster, this experiment
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Fig. 1: Benchmark training performance on the mobile testbed using the MNIST dataset (a) LeNet (b) VGG6 (c) average CPU

frequency vs. temperature.

- ?K samples A6.K samples to heating and the governor quickly reacts to reduce the

WiFi LTE WiFi LTE cpufregq, or even shuts down some cores, thereby causing a

- Nexus6 31(1.5%) 32(6.7%) 62(0.8%) 63(3.4%) performance hit with large variance in the subsequent batch it-

Z, Nexus6P  69(0.7%) 71(3%) 220(0.2%)  222(1.0%) erations (especially running heavy-weight networks like VGG6

S Matel0  45(1.0%)  47(4.6%) 89(0.5%)  91(2.4%) on Nexus6/6P).

Pixel2 25(1.8%)  27(7.9%)  51(0.9%)  53(4.0%) . ) .

o Nexus6  495(2.5%) 539(104%) 1021(1.2%)  1065(5.3%) An extreme case is Nexus 6P with the controversial Snap-

8 Nexus6P  540(2.3%)  584(9.6%) 1134(1.1%) 1178(4.8%) dragon 810 chipset [22]. We find that the little cores are

> Matel0  359(0.1%)  403(0.5%)  712(7.9%)  756(7.4%) running at 70-80% and the big cores are below 50% utilization

Pixel2 339(3.6%) 383(14.7%)  661(1.9%)  705(8.0%) to their maximum frequency. The big cores quickly go offline

TABLE II: Training time of MNIST samples per epoch (s) with
percentage representing the network communication overhead.

shows how the frequency and temperature interact over time
to reach stability under the power management policy.

Communication Time. The server pushes (pulls) the model
to (from) the devices in each epoch. We measure the trans-
mission time of the LeNet (2.5MB) and VGG6 (65.4MB)
model under 1 Gbps wireless link and T-mobile 4G LTE
(-94 dBm), to simulate different networking environments.
The WiFi uplink/downlink speed achieves around 80-90 Mbps
on our campus network and LTE reaches about 60 Mbps
and 11 Mbps for the uplink and downlink respectively. We
upload/download the model from an AWS server between
Washington D.C. and Norfolk, VA. By adding up the time
of communication and computation, the makespan for each
device is summarized in Table II. Based on the measurements,
we have the following observations.

Observation 1. The computation time is generally governed by
the processing power of the CPU and the mobile architecture,
but with a few exceptions.

The actual speed is also affected by the system-level im-
plementation from different vendors. For example, one may
expect the newer smartphone generations to be more powerful.
This is not always true: Nexus 6 back in 2014 were not
designed for intensive workload like neural computations;
surprisingly, Huawei Mate10 with octa cores still lags behind
Nexus 6 running LeNet as observed in Fig. 1(a), though their
average CPU frequency stabilizes around the same region
in Fig. 1(c). Nexus 6 offers over 3x speed than Matel0.
This observation suggests that old generations may still have
opportunities to outperform the new ones depending on the
computation intensity.

Observation 2. The continuous neural computation leads

and switch to the little cores after a moderate temperature
surge, that occurs fairly often during the testing. The big cores
never stay around their maximum frequency at 2.0 GHz, thus
making Nexus 6P even much slower than Nexus 6.
Observation 3. In contrast to the conjectures in [2], communi-
cation only takes a small portion of the training time about 5%
on average (maximum at 15% with VGG6 using LTE). This
confirms that with today’s networking speed and the upcoming
5@, the bottleneck of FL remains to be computation on mobile
devices. Part of the reason is also because the mobile cannot
host heavy-weight model architectures that may overwhelm the
memory capacity. This implicitly alleviates the communication
overhead of transmitting these models.

Observation 4. To process the same amount of data, the
mobile devices exhibit substantial diversity in their completion
time. For example, the straggler requires an additional 62%
and 109% time running LeNet and VGG6 compared to the
mean completion time (maximum time minus the mean time
in Table II), and this deviation is expected to get larger with
more complex models or data iterations.

As observed in Table II, for only processing 5% and 10%
of MNIST, 10 epoches lead to 30 mins and 1 hour delay due
to stragglers. Therefore, an appropriate scheduling mechanism
is needed. In cloud environment, stragglers may be caused
by resource contention, unbalanced workload or displacement
of workers on different parameter servers [19], which are
typically handled by load balancing. In mobile environment,
they are caused by the fundamental disparity in device’s
processing power, so can we do the opposite and leverage
load unbalancing to offset the speed of those stragglers? Since
each epoch requires a full pass of the local data, among a
variety of tunable knobs, workload is directly proportional
to the amount of training data. However, distributed learning
often assumes a balanced data partition among the workers [2],
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would data imbalance lead to accuracy loss? To validate, we
conduct further experiments.

B. Impact of Data Imbalance to IID Data

We partition the datasets of MNIST and CIFAR10 among
20 users. For MNIST, the training set of 60K images results
an average of 3K images per user. Then we utilize a Gaussian
distribution to sample around the mean and adjust the standard
deviation to generate data imbalance among users. The ratio
between different classes is maintained to be uniform so no
class dominates the local set. We utilize an index of imbalance
ratio as the ratio between the standard deviation and the mean
as the x-axis (larger ratio means more extreme), and benchmark
the accuracy against the centralized and distributed learning
with balanced data in Fig.2. The results indicate that as long
as the data remains to be IID, data imbalance does not lead
to accuracy loss (the accuracy even trends up a little for
CIFAR10). This provides the basis to launch new performance
optimization discussed in the following sections.

C. Impact of non-1ID Data

Nevertheless, non-IIDness can be detrimental to the collab-
orative convergence [2], [3]. We identify the dominant factors
that have an influence on accuracy based on the experiments
in Fig. 3. First, we show the relation between class-wise non-
IIDness and accuracy in Fig. 3(a). The severity is measured by
the number of classes that each user has, or simply referred
as n-class non-IIDness [3]. We iterate n from 2-8 (out of
10 classes) plus a standard deviation of samples among the
existing classes as the x-axis. The result matches with our
intuition that more missing classes cause higher accuracy
degradation with a substantial loss of 10-15% on CIFAR10.

When users with different distributions are mixed, a straight-
forward approach is to exclude users with higher gradient
divergence (individual outliers) to avoid accuracy loss [7].
To gain more insights of how individual outlier may affect
global convergence, we construct the following scenario. We
set 3 users and each user randomly picks 3 classes (out of
the total 10 classes). This leaves one remaining class for a
potential fourth user (one-class outlier). Then we designate the
remaining one-class outlier in three ways: a) Missing, only 3
users with a total 9 classes are trained. The outlier is missing
from the training set; b) Separate, involve the outlier as a
separate user (4 users); c) Merge, merge the missing class back
into the 3rd user so the last user has 4 classes.

The result in Fig. 3(b) displays a 3% accuracy gap with the
case of missing class ranked the lowest. The result suggests

Test Accuracy (%)

60 Impact of non-1ID data on accuracy (one class)

® Testaccuracy (g L]
T 50

3% accuracy gap 35 40

Accuracy

Separate (4 users/10 classes)
— Missing (3 users/9 classes)
— Merge (3 users/10 classes)
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Fig. 3: Impact of non-IID data on model accuracy in CIFAR10
(a) relation between the degree of non-IID class distribution
and accuracy (b) influence from individual outliers.

40 50

Avg # of classes per user (total 10 classes)

(2)

that although individual outliers may lead to local bias and
undermine global convergence (gap between Merge and Sep-
arate), simple exclusion of the outliers need to exercise with
more precaution. It should be further conditioning on whether
those outliers contain samples that are not yet included in the
training set. If not, they still contribute to the diversity for
unseen classes and would be beneficial to the generalization
of the global model. Therefore, inclusion or exclusion not
only depends on computation speed, but also the actual non-
IID distributions. We follow these guidelines in the algorithm
designs.

IV. SYSTEM MODEL AND PERFORMANCE PROFILING
A. System Model

We use shards to represent the minimum granularity of
samples (e.g. 100 samples/shard). The parameter server has
sufficient bandwidth so simultaneous transmissions do not
cause network congestion or performance saturation [5]. Our
framework mainly tackles heterogeneity from computation and
data distribution, and is amenable to decentralized topologies
without a parameter server [8]. We delegate the role of
management to the server to gather users’ meta data such as
smartphone model and information of non-IID class distribu-
tion. For simplicity, we assume the server is honest and does
not attempt to infer user privacy from the collaborative model
as we can always resort to security protocols to protect the
intermediate gradients, model and differentially-private class
information [13].

B. Performance Profiling

For effective scheduling, the server builds performance pro-
files for the participants. This can be done either online through
a bootstrapping phase or offline measured by a collection of
devices. The objective is to estimate the training time given
the model architecture and data size, which holds a linear rela-
tionship in general. For better characterization, we take a two-
step approach to first profile the computation time regarding
model parameters given the data size. Since the convolutional
layers have higher computation intensity, we separate them
from the densely connected layers. We test a number of k
different model architectures and their training time of d data,
denoted by, y = [y1,y2,-- , yx]P. Xz('d) = [2i,1,22) D
are the number of parameters for convolution and dense layers
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of different models. We employ a multiple linear regression
model (for each data size d),

2
yi =Bo+ D Biwi + e,

j=1

(€]

where e; is a noise vector to compensate measurement error.
The parameters are found by solving the least square problem,
B =y-X"1, which is computed by 3 = argmin ||y — ﬁXHg.

B

The output of the first step is {fo, 51, F2} (¥ for different
d. Shown in Fig.4(a), we find the hyperplane that predicts
training time given the model parameters. The linear relation is
emphasized by convolutions, which coincides with the initial
step of separation.

With an unknown model architecture, the first step provides
d estimates [y1,ya, - ,y4] of compute time. The second step
generalizes this for unknown data sizes by applying linear
regression again to fit the predictions from the first step in
the least-square sense. Fig.4(b) shows the final curve versus
its actual measurement from experiment and a small gap is
observed. Such profiles can be constructed offline for the
scheduling algorithms discussed next.

V. ASSIGNMENT WITH IID DATA DISTRIBUTION

We first consider the case that the local dataset contains
data from all classes (i.e., IID) and optimize the training time
per epoch. IID is the basic assumption for machine learning
and exemplifies the case when users have compiled a class-
balanced dataset in sufficiently long time.

A. Problem Formulation

In each epoch, a set of n = |N| users are chosen to run
m = | M| distributed training tasks. Each participant conducts
one training task (m = n). As experimented in Section III-B,
unbalanced local data leads to negligible accuracy loss when
the data is IID so this gives enough latitude for the task
assignments. To be clear, we use subscripts ¢ for tasks and j for
users. When user j conducts training task ¢, the computation
time is a function of data size D; and model M, TJC(Dl)
Depending on the networking environments, the uplink and
downlink network latency for user j depends on the model
size M, T}'(M) + Tf(M ). The goal is to find an optimal
assignment of training data so that the maximum processing
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time is minimized per epoch. The problem is formalized below.

P1:  min max (T5(Di) + 7} (M) + T} (M))wi; (@)
s.t.

S Di=D,ie M 3)

ieM
Zi()ijZLiGM 4)

JEN
Swy=1LjeN ®)

ieM

The objective is to minimize the makespan given all possible
data partitions and the assignment of training task ¢ with D;
data to j. Eq. (3) states that the sum of local data should be
equal to D. Egs. (4) and (5) impose that each task is assigned
to only one user, and vice versa. Decision variable z;; is 0-1
valued. X is an assignment matrix with elements x;; and ¢ is
the set of all permutations of the assignment matrix X.

P1 can be viewed as a combination of a partitioning
problem and a variant of the linear bottleneck assignment
problem (LBAP) [23]. The classic assignment problem finds an
optimal assignment of workers to tasks with minimum sum of
cost. LBAP is its min-max version. It assigns tasks to parallel
workers and ensures the latest worker uses minimum time.
We adopt the same analogy here to ensure each training epoch
is finished in minimum time. The problem is different from
both the classic assignment problem and LBAP. The number
of potential tasks is not equal to the number of workers (mobile
devices), but rather, a much wider potential range to choose
from due to the combinatorial partitions of the dataset. The
final choice would be determined by the set of constraints that
optimizes Eq. (2). A naive solution is to list all the partitions
of D in brute force, construct cost values per user for all the
potential permutations, solve an LBAP and find the assignment
with the minimum makespan. For a total number of s shards,
the possible permutations are in the order of s”, which makes
it intractable even for small n.

B. Joint Partitioning and Assignment

Though the naive method turns out to be intractable in
polynomial time, the following property of mobile devices
helps simplify the problem.

Property 1. For data D;, TF(D;) 4+ T} (M) + T{4(M) is a
non-decreasing function.

Then it is not necessary to test a large number of potential
partitions, if a partition of smaller size has already satisfied Eq.
(3) with less computation time. For example, consider possible
permutations of Zle D; = 13 among three users. If the first
or the second user is the straggler in partition (4,4,5), then
partitions such as (5,5,3), (6,6,1) definitely leads to more
running time. This allows us to potentially skip a large number
of sub-optimal solutions.

The classic LBAP has a polynomial-time thresholding algo-
rithm in O(n? logn) [23]. This algorithm checks whether a
perfect matching exists in each iteration using the Hopcroft-
Karp algorithm, that takes O(ng) Here, when D is divided
into s shards, perfect matching between user and data shard is
no longer needed as introduced in the following property.
Property 2. A bipartite graph G = (U, V;€) is constructed
with |U| = n, |V| = s and edges (j,k) € £. Each vertex in U
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Algorithm 1: Fed-LBAP (for IID data)

1t Input: Total data size D, cost matrix C' = {C}x }, number of
users n.

2 Output: The assignments of tasks {A;} for each user j.

3 C « C sorted in the ascending order.

4 min < 0, max < |C|, median « | 2dtmax |, p’e @

5 while min < max do

6 C”" < C(median)

for j =11 m do
Aj < argmax;{Cji|Cjr < C"}

D« D’ + AJ‘

if Vj,A; =0 or D' < D then

| min < median

e ® 2

10
11

else
L max <— median

12
13

should have degree of 1 and vertices in V' can have degree of
0 (as long as the sum of vertices having degree 1 equals D).
Fed-LBAP Algorithm. Based on Properties 1 and 2, we can
further reduce the time complexity by extending [23]. We
propose a joint partitioning and assignment algorithm to solve
the problem in polynomial time. For the n users, we define a
cost matrix C' = {¢;;} of dimension n x s (i.e., the matrix
represents the cost to assign a task of & shards to user j). A
thresholding matrix C with the same setting is also initiated.
We sort all the elements from the cost matrix in ascending
order and perform binary search by utilizing a threshold c*: if
cjr > ¢, ¢j; = 0; otherwise, ¢j; = 1. The sum of all cost
values found in each iteration is compared to D. If larger, find
a new median for the left half; otherwise, find a new median
for the right half until the optimal median value is reached.
In short, our algorithm first performs a sorting of all the cost
values and conducts a binary search for the minimal threshold
c* such that Property 2 and Eq. (3) hold. The procedures are
summarized in Algorithm 1.

The time complexity is analyzed below. In the worse case,
binary search takes O(logns) iterations. We need to check
whether ¢ = 0 during the iterations. This takes O(s) time
for one user and is repeated for n times. The time complexity
is O(nslogns) with s > n. To be consistent with [23], when
s = n, our algorithm is O(n?logn).

VI. ASSIGNMENT WITH NON-IID DATA DISTRIBUTION

Due to the inherent difference among users in their behaviors
and interests, non-IIDness is quite common in mobile appli-
cations. This section investigates the scheduling strategy when
local data is non-IID.

A. Non-IID Formulation

Given the disparity of class distributions among users, which
users are selected is vital to the computation time and accuracy.
One may follow the previous algorithm to weigh more on
those with higher processing power. But non-IIDness brings
new challenges: if some users only have a single class, the
gradient may adversely prolong global convergence. On the
other hand, as indicated by Section III-C, if the class is not
yet included in the training set, inviting the user into training
would be beneficial to model generalization. To this end, we
introduce an accuracy cost I to choose user j. Denote the set
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of existing classes as U for the current training set. The testset
has K classes (|| < K). The cost of accuracy selecting user
J with || classes is,

%, UNU; # 0

F=9K 3 ©
—— — = - D,, otherwise.
il o

where «, 3 are two input parameters (o > (). D, is the
number of data shards in the current training set. For user
J, the accuracy cost is inversely proportional to the number
of classes he has, if the intersection between his class and the
current set is not empty; otherwise, we deduct the cost by the
size of training set times  to make the user more appealing
during selection. In practice, the users could truthfully report
their accuracy cost instead of detailed {; to reduce privacy
leakage of class-level information. We balance the time and
accuracy cost using the weight parameter o and our objective
is to derive a schedule with the minimum average cost.

P2: min Y T5( Y i)+ (I (M) + T (M) +aF;)y; (7)

JEN ieEM

s.t.
> Y wi=D ®)
iEMGjEN

Z {EijSC]',jGN (9)

ieM
0<z;; <D, z;j€N (10)
yi=1(3 =i >0) a1

ieM

We adopt most of the notations from P1 and assume an
initial set of tasks M (e.g., an equal partition, but divisible
afterwards). The new objective is to determine the data shards
x;; to be assigned from task 4 to user j such that the sum of
computation/communication and cost of accuracy (scaled by
«) is minimized. We can consider the accuracy cost as a fixed
cost when a user is involved, which gradually changes defined
by Eq. (6). Constraint (8) ensures the tasks are fully packed
and all the partitions sum up to D data in total. Constraint (9)
states that the size of data does not exceed user j’s capacity
C, which can be quantified by the storage or battery energy.
Constraint (10) bounds the proportion of x;; from zero to D
in integers. Constraint (11) makes y; equal to 1 if user j is
selected; otherwise, y; is 0.

The problem can be abstracted into a close analogy of the
bin packing problem with item fragmentation [27], which finds
an assignment of items to a fixed number of bins by splitting
them into fragments. For each fragmentation, there is an asso-
ciated unit cost. In our scenario, the items correspond to the
learning tasks splittable into data shards and the users represent
the bins. Unlike the original bin packing, the objective no
longer minimizes the number of users (with unit cost); instead,
it is characterized by a function of computation time and model
accuracy. The fragmentation cost is also different from the unit
cost in [27]. It actually depends on which destined user the
fragments are assigned to. If the user has been already involved
in training (bin/user is open), the cost mainly depends on the
computation time of the new fragments; otherwise, the cost of
accuracy in Eq. (6) is also considered. We propose an algorithm
as described next.
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Algorithm 2: Fed-MinAvg Algorithm (for Non-IID
Data)

1 Input: Number of data shards D and size d per shard,
n = |\ users, cost profiles T'(-), set of class coverage U
and user coverage O, parameters «, 3, number of data
shards [; for user j, number of classes K in the testset.

2 Output: Data for each user [;.

3U,0 <« 0, D, + 0.

4 while D, < D do

5 if N\ O # 0 then

6 Lj(—

argmin {7;((; +1) - d) + oy, Tr(d) + aF }.
else
j <+ argmin{T;((l; +1) -d) + aF;, Ti ((le +1) -
J,k€O

JEO,KEN\O
lj+—1; +1.

if U NU; # () then
tO(F]'(*O(' K

10
11

[ty

else

LaF}‘(—a-‘u—Iil—,B‘Du

if [; > C; then

L Fj(-OO

U+—UUU;,, O+~ O+j, N+ N —3, Dy Dy,+1.

12
13

14
15

16

B. Min Average Cost Algorithm

The main idea of the Min Average Cost Algorithm is to
iteratively assign the data shards to the user with the minimum
average cost in a greedy fashion. Consider the dataset of D
data shards and n users. The initial cost is Tj(d) + o}, if a
user j is open for training with d data'. Starting from j with
the lowest initial cost, we assign d; = d to j, and update the
set of current class coverage as I/ Ul; and the accuracy cost
in Eq. (6). Denote the set of users that are already involved
in training as O C N. For dy = d, we compare the cost by
either assigning it to j with cost Tj(2d) + aF};, or to k with
cost Ty (d) + aFy, (k € N\ O), and select the one with less
cost. For all the users j € O and a potential user k € N\ O,
we assign d according to,

argmin {75 ((l; +1) - d) + aFy, Ti(d) + aF% },
JEOKEN\O

= (12)
where [; is the current number of data shards of user j. If all the
users are involved (j, k € O), we compare T} ((1;+1)-d) +aF}
with Tk((lk +1) -d) + aF}, and select the one with less cost.
If j reaches the capacity that [; - d > C}, it is excluded from
further selections (bin is closed); otherwise, it remains to be
open. The algorithm repeats until D is exhausted and runs in
O(mn) time, where m is much larger than n. The procedure
is summarized in Algorithm 2.

VII. EVALUATION

In this section, we evaluate the proposed algorithms on a mo-
bile testbed using two datasets and compare with various base-
lines. The main goal is to evaluate the performance speedups of
the proposed algorithms and the consequent impact on model
accuracy when user data is either IID or non-IID.

'We omit the communication cost here for clarity.
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Mobile Development. The mobile framework is developed
in DL4J [30], a java-based deep learning framework that can
be seamlessly integrated with Android. Training is conducted
using multi-core CPUs enabled by OpenBLAS in Android
8.0.1. We use AsyncTask to launch the training process
by the foreground thread with the default interactive
governor and scheduler. To avoid memory error, we enlarge
the heap size to 512 MB by setting largeHeap and use a
batch size of 20 samples. This allows us to train VGG-like
deep structures.

Experiment Setting. We use the collection of devices
to construct three combinations of mobile testbeds: (I) 1x
Nexus6, 1x Matel0 and 1x Pixel2 of 3 devices; (II) 2x
Nexus6, 2x Nexus6P, 1x Matel0 and 1x Pixel2 of 6 devices;
(IITI) 4x Nexus6, 2x Nexus6P, 2x Matel0 and 2x Pixel2 of
10 devices. The experiment is conducted on two commonly
used datasets: MNIST [28] and CIFARIO [29] with 60K
and 50K training samples. We fully charge all the devices,
pre-load both datasets into the flash storage of the mobile
devices and read them in mini-batches. Users perform one
epoch of local training in each round and the global gradient
averaging iterates 20 and 50 epoches for MNIST and CIFAR10
respectively.

To emulate the dynamics of mobile data, we generate
random distributions among the users: 1) For IID data, each
user retains all the classes and the ratio between samples from
different classes is equivalent; 2) For non-IID data, each user
has a random subset of classes and each class may also have
different number of samples. Two fundamental networks of
LeNet [25] and VGG6 [26] are evaluated and their efficiency
has been proved to handle learning problems at sufficient
scales. To meet the input dimensions, we tailor the original
16 layers of VGGI16 by stacking five 3 x 3 convolutional
layers with one densely connected layer. While scheduling
with non-IID data, we search for the optimal cost parameter
a in [100,5000] and set 5 = 2 unless stated otherwise. The
uplink and downlink latencies are added to computation time
according to the measurement in Table II.

Benchmarks. The proposed algorithms are compared with
several benchmarks: 1) Proportional: a heuristic that assigns
training data proportional to the processing power measured
by the mean CPU frequencies per core; 2) Random: uniformly
random data partitions among the users; 3) Equal: assign
equal shares of data to users as adopted by FedAvg [2].
Since the model architecture is fixed, we mainly compare
the computational time and treat the communication time as
a constant. The results are averaged over 10 experimental
runs. To facilitate the evaluation, we also adopt pytorch with
GTX1080/K40 GPUs to evaluate different benchmarks.

A. Scheduling with 1ID Data

Computation Time. We first evaluate the Fed-LBAP algo-
rithm developed for IID data. Fig. 5 shows the training time
per global update for all the combinations between the testbed,
datasets and models (y-axis in log-scale). We can see that the
mobile processing power (both individual and collective) and
the workloads play key roles in the computational time, which
sums up to nontrivial relations. First, unlike cloud settings
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in which computation time scales well with the number of
workers, mobile stragglers would easily degrade the overall
performance even if more users are involved. For example,
the time surge from Testbed 1 (3 users) to Testbed 2 (6 users)
is due to the problematic Nexus6P, that the poor design of heat
dissipation, frequency scaling and power management are the
main cause of the overall slowdown. This drag is magnified
with complex network architectures of higher computation
intensity (VGG6 with more convolutional layers) and more
training data (60K of MNIST vs. 50K CIFAR10). The 10K
data addition exacerbates the compute time parabolically by 20
times (Testbed 2 between Figs. 5(b) and (d) running VGG6 on
MNIST and CIFARI10), if the scheduling is done inappropri-
ately. By bringing 2 additional devices with higher processing
power, we observe a slight performance improvement.

With the ordinary schedules (Prop., Random and Equal),
we hardly see any consistent parallelism when more users
are involved. However, Fed-LBAP is capable of utilizing the
additive computational resources by appropriately assigning
workloads to the more efficient users, so the training time
accomplishes a downtrend with more users, even worse-case
stragglers are present. Among the benchmarks, Fed-LBAP
achieves an overall 5-10x speedups, with the best speedup
of almost 2 orders of magnitude for Testbed 2 in Fig. 5(b).
Although naive schemes may look for an optimal scheduling
that is proportional to device CPU frequency or equally assign
workloads as [2], the runtime behavior may be drastically
different due to complex system dynamics, and our experiment
shows that such schemes perform no better than a purely
randomized schedule.

Accuracy Loss. Table III summarizes the test accuracy
under different scheduling. We can see the accuracy trends
down slightly with LeNet while more users are involved. Since
the data is IID, Fed-LBAP can be considered as one special
permutation from the random partitions. Our results indicate
that as long as the data remains to be IID, we can leverage
load unbalancing without accuracy loss. We also notice that
the random assignments tend to yield the highest accuracy.
The reason could be attributed to the diversity of gradients
from the random permutations, where high similarity between
the gradients may not facilitate the learning process [21].

B. Scheduling with Non-IID Data

Effectiveness of Parameters « and (. The evaluation of
non-IIDness calls for generating specific data distributions and
matches them with the mobile devices. To enable analysis
and gain more insights, we generate 3 representative data
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[ Prop. Random Equal Fed-LBAP

I 09908  0.9911  0.9907 0.9908

~ LeNet | (I) 09898  0.9896  0.9896 0.9899
2 I 09882  0.9882  0.9883 0.9886
é €9 0.9939 09939  0.9936 0.9936
VGG6 | (II) 09932  0.9933  0.9934 0.9932

(1) 09928  0.9906  0.9928 0.9929

- @D 05966  0.5951 0.5921 0.5926
= LeNet | (II) 0.5853  0.5851  0.5831 0.5846
E Im 0.5622  0.5632  0.5625 0.5689
) I 07295 0.7330 0.7286 0.7285
VGG6 | (II) 0.7317  0.7328  0.7286 0.7308

Iy  0.7269  0.7353  0.7287 0.7321

TABLE III: Comparison of model accuracy with different
benchmarks (IID data)

distributions shown in col.2-4 in Table IV. E.g., S(I) has
Nexus6(a) with classes from 0 to 6, 9 and class 7 only comes
from Pixel2(a). Then we adjust the parameters of a and [
to see how Fed-MinAvg reacts to these distributions. Recall
that « increases the initial cost of the users with more missing
classes and 8 makes the process aware of the class coverage.

We illustrate the potential trade-offs in Fig. 6 by referencing
to the workload assignments generated from the algorithms in
Table IV(col.5-16). The top figure depicts the trace of training
time when « increases from 100 to 5000. When 5 = 0, the
training time generally trends up when « increases. This is
because a large accuracy cost re-distributes the workloads to
the devices with more classes and reduces parallelism. E.g.,
in S(I), the best performing device Pixel2(a) is unfortunate to
have only two classes (higher initial accuracy cost). Large «
makes it less likely to assign data to Pixel2(a), so the workloads
are transferred to Nexus6(a) as observed in Table IV(col.5-
6). Similar observations are made in S(II) and S(III) and the
underperforming devices with higher skewness of non-IIDness
would be excluded from scheduling. From the assignments in
Table IV, when « increases, the algorithm favors the user with
fewer missing classes (perceived from the gap between p1, po
and ps, pg). When a = 5000, slower devices with higher non-
IIDness are assigned with zero data.

If we take a closer look into the class distributions in Table
IV, some classes only belong to the outliers such as class 7
in S(I) and class 4 in S(II). Thus, the exclusion of these users
in training has an adverse impact to accuracy as perceived
in the bottom left Figs. 6(a-b) - as « increases, the accuracy
trends down. In contrast, the corresponding plot in Fig. 6(c)
indicates the opposite. This is because the outlier classes
are also included by other users so their participation would
interfere with the training process, i.e., their exclusion could
lead to an accuracy gain. The assignment decision would have
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S(III).
class dist. S SI) S(IIT)

S S(1) SII) p1 P2 3 D4 D1 D2 3 D4 p1 D2 b3 P4
Nexus6(a) 0-6,9) (1,2,5,7) (2,6,89) 238 354 135 287 161 23 8.7 5.8 9.7 0 3.7 0
Nexus6(b) - (2,6,8)  (0,1,3,7-9) - - - - 18.0 40.1 9.1 19.3 11.1 334 4 12.1
Nexus6(c) - - ©) - - - - - - - - 0.4 0 1.5 0
Nexus6(d) - - 0,5) - - - - - - - - 8.1 0 2.9 0
Nexus6P(a) - (0,3,8,9) 2) - - - 0.3 0 1.2 0 0 0 0 0
Nexus6P(b) - 0) (0-2,4,5) - - - - 2.6 0 32 0 1.2 037 8 2.4
Mate10(a) (2-6,8) 4,9) (1,3,4,8) 194 146 123 205 7.6 0 5.6 0 7.5 0 3.1 0
Mate10(b) - - “ - - - - - - - - 0.5 0 0.2 0
Pixel2(a) (7,8) 0,1,2) (€)) 6.8 0 242 0.8 5.4 76 222 249 13 0 0.9 0
Pixel2(b) - - (0-3,7,8) - - - - - - - - 6.6 129 329 355

TABLE IV: Class distribution and schedules computed by MinAvg algorithm with («, ) combinations, p; = (100,0),ps =
(5000,0), p3 = (100,2), ps = (5000, 2). The numbers are in 10? data samples and evaluated using CIFAR10-LeNet.

a subtle impact on the accuracy and we leave more exploration
to the future works.

When /3 = 2, the algorithm would continuously compensate
a small benefit for outliers if their classes are not included in
the overall class coverage. It might allocate some data to those
outliers, but end up being far from time-optimal shown in the
top Figs. 6(a-b). With the increase of «, the cost of accuracy
from outliers re-gains their leverage against benefit, and data is
re-allocated back to other devices so we mainly see a decline
of the training time thereafter. The advantage of incorporating
[ on accuracy is measured by the bottom right of Figs. 6 as
it further lifts the accuracy by 0.02 to 0.03.

Computation Time. Next, we perform large-scale exper-
iments using random permutations of the class distributions
among the devices and demonstrate the comparison in Fig. 7.
We found the best o value over the interval of [100,5000]
and set 5 = 0 to weigh more on the computation time. The
average speedups of the Fed-MinAvg on the three testbeds
are 1.3x,8x,6x for MNIST and 1.92x,2.05x,1.67x for
CIFAR10. Though the numbers are less than the case of
IID due to new considerations of non-IIDness, the algorithm
manages to achieve an overall speedup, especially when worse-
case stragglers are present in Testbed 2.

Accuracy Loss. Table V shows the potential accuracy loss
due to scheduling and compares with the benchmarks. For
MNIST, Fed-MinAvg results almost no accuracy loss and for
CIFARI10, the accuracy loss is within 0.02. It is interesting to
see two phenomenons. First, by contrast to the IID case, in the
vertical direction, the accuracy climbs up considerably when
more users are involved. We conjecture that the reasons are due
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to dynamics learned from users with the entire class coverage
but more dispersed distribution, that has actually improved
the generalization of the global model. In other words, the
contribution from such gradient diversity has surpassed the
potential damage from the bias of local gradient. Second,
horizontally, the advantage of random assignment is more
visible than IID. However, most of these permutations would
yield high computation time, thus not time-optimal respect to
performance.

\ Prop. Random  Equal Fed-MinAvg

IO 09116 09177  0.8983 0.9059

= LeNet | (II) 09611 0.9581  0.9565 0.9541
2 ) 09814 09778  0.9599 0.9817
E @O 09147 0.9250  0.8991 0.9211
VGG6 | () 09601 09759  0.9538 0.9739

(1) 09805  0.9860  0.9562 0.9880

- I 04348 04558 0.4486 0.4285
> LeNet | (II) 0.4640 0.4793  0.4689 0.4745
= I  0.5064  0.5070  0.5036 0.4892
3 O 05913  0.6232  0.6183 0.5923
VGG6 | (II) 0.6553  0.6614  0.6545 0.6406

Iy 0.6833  0.6773  0.6852 0.6663

TABLE V: Comparison of model accuracy with different
mechanisms (non-IID data)

VIII. CONCLUSION

In this paper, we optimize the computation time of launching
federated learning on battery-powered mobile devices. We
first motivate this work by showing heterogenous processing
time and non-1ID challenges. Then we develop two efficient
near-optimal algorithms to schedule workload assignments for
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Fig. 7: Comparison of computation time when data is Non-IID (time in log-scale) (a) training MNIST with LeNet; (b) training
MNIST with VGG6; (c) training CIFAR10 with LeNet; (d) training CIFAR10 with VGG6.

both IID and non-IID data. Our extensive experiments on real
mobile testbed and datasets demonstrate up to 2 orders of
magnitude speedups and minimum accuracy loss when data
is non-IID.
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