
PHYSICAL REVIEW A 102, 012419 (2020)

Fault-tolerant weighted union-find decoding on the toric code

Shilin Huang,* Michael Newman ,† and Kenneth R. Brown ‡

Departments of Electrical and Computer Engineering, Chemistry, and Physics, Duke University, Durham, North Carolina 27708, USA

(Received 20 April 2020; accepted 26 June 2020; published 16 July 2020)

Quantum error correction requires decoders that are both accurate and efficient. To this end, union-find

decoding has emerged as a promising candidate for error correction on the surface code. In this work, we

benchmark a weighted variant of the union-find decoder on the toric code under circuit-level depolarizing

noise. This variant preserves the almost-linear time complexity of the original while significantly increasing

the performance in the fault-tolerance setting. In this noise model, weighting the union-find decoder increases

the threshold from 0.38% to 0.62%, compared to an increase from 0.65% to 0.72% when weighting a matching

decoder. Further assuming quantum nondemolition measurements, weighted union-find decoding achieves a

threshold of 0.76% compared to the 0.90% threshold when matching. We additionally provide comparisons of

timing as well as low error rate behavior.
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I. INTRODUCTION

In order to realize scalable quantum computing, quantum

information must be protected in quantum error correcting

codes. Information about the errors occurring are rapidly

extracted through measurements, and this information is pro-

cessed through a decoder in order to determine which errors

have occurred. These decoders must be accurate in providing

good estimates for the error, but they should also be highly

efficient in order to keep up with the quantum computation as

it progresses.

One of the leading candidates for quantum error correc-

tion is the surface code [1–3], owing to its two-dimensional

(2D) nearest-neighbor implementation [4], robust mem-

ory [5], optimized logical gates [6–8], and wealth of decod-

ing schemes [9–36]. Among these schemes, decoding based

on minimum-weight perfect matching (MWPM) is particu-

larly promising due to its high performance, adaptability to

circuit-level errors, and relative O(n3) efficiency on general

graphs [37]. In particular, there has been significant effort

aimed at accelerating and parallelizing MWPM [11,12,19].

However, performing decoding at the clock speed of a

quantum computer remains a daunting task. A new type of

decoder based on the union-find (UF) primitive has been

proposed as an alternative to MWPM [35]. This decoder

relies on generating an erasure consistent with the syndrome

information, and then applying a highly efficient erasure

decoder [38]. Moreover, the UF decoder remains competitive

with the high performance of MWPM in a phenomenological

error model [35,39,40].

In this work, we benchmark the UF decoder in the fault-

tolerance setting under standard circuit-level depolarizing

noise. We show that by adapting the decoder to weighted
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graphs, the performance increases substantially. This variant

was first proposed in Ref. [36], however, it can be modified

to preserve the almost-linear run time of the original UF

decoder.

Weighting the decoder graph is a natural step that yields

significant gains in the context of MWPM [29]. In particu-

lar, for a properly weighted graph, MWPM decides on the

most likely error given a particular syndrome [1,4,29,41,42].

While UF decoding does not have a simple interpretation on

weighted graphs, it is reasonable to expect that preferencing

cluster growth in the direction of the most likely nearby error

would be beneficial. What is remarkable is the degree to

which it helps, with a significantly greater relative gain than

weighted matching over unweighted matching.

II. WEIGHTED UNION-FIND

We follow the prescription of the original UF decoder

described in Ref. [35], but with weighted edges on the de-

coder graph. The complexity of the original algorithm is

dominated by the union-find primitive, which has complexity

O(nα(n)) [43], where α is the inverse Ackermann’s function

and n is the number of syndrome bits. For all practical sizes,

this is essentially linear in n with a small constant. For

fault-tolerant decoding in a distance d toric code, n = 2d2

when averaged over ∝ d rounds of syndrome extraction. This

approach straightforwardly generalizes to the open boundaries

of the surface code, but we benchmark using periodic bound-

aries to minimize finite-size effects.

The UF decoder proceeds in two steps: syndrome vali-

dation, which is used to identify a candidate erasure given

the syndromes, and peeling, which is used to decode the

candidate erasures. The addition of edge weights changes only

the growth step for each cluster during syndrome validation.

In the original algorithm, we would iterate over all boundary

vertices of the smallest boundary cluster and grow the incident

boundary edges by one-half. In the weighted algorithm, we

first iterate over the boundary edges to identify the smallest
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FIG. 1. Two growth steps for weighted UF on a toric code

decoder graph with p = 0.8% and weights truncated to the nearest

integer (for performance estimates, we truncate to the nearest tenth).

Some edges are omitted for clarity. In this case, we have two

types of edges: weight four edges (thick) in the cardinal directions,

and weight five diagonal edges (thin). The orange (light) highlight

indicates the growing cluster. In the top figure, a single excitation

occurs in the corner of the decoder graph. In the middle, the cluster

radius grows by four and it merges with clusters to the north, west,

and up directions. At the bottom, the cluster radius grows by one and

it merges with clusters diagonal to the original excitation.

boundary edge weight wmin, and then again iterate over the

boundary edges to grow the radius of the cluster by wmin.

Specifically, each edge weight is updated to w �→ w − wmin.
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FIG. 2. Six-step syndrome extraction on the toric code for X

(left) and Z (right) stabilizers. Each ancilla qubit interacts with the

data qubit to its north, west, east, and south, in that order.

Figure 1 illustrates this growth step on a weighted graph [44].

We additionally find a minimum-weight spanning tree during

peeling, which remains O(nα(n)) time when presorting the

edges by weight. However, this only discernibly improves the

unweighted UF implementation [32].

Unfortunately, the inclusion of weighted edges has the

potential to increase the runtime of the decoder. In the un-

weighted UF algorithm, each edge can participate in a growth

step at most twice. Consequently, for a bounded degree de-

coder graph, the total complexity of growing the clusters is

O(n). More generally, given edges with real weights {wi} that

have a common measure m, we can be assured that each

edge with weight w participates in a growth step at most

w/m times. However, as {wi} will almost surely have no

common measure, we are left with a worst-case upper bound

of O(n2): during each growth step, we iterate through a list of

boundary edges of size O(n), and in each iteration we remove

at least one edge. Fortunately, this can be remedied by trun-

cating the wi to some finite precision ε, ensuring a common

measure while incurring a negligible loss in accuracy. The

corresponding weighted UF decoder then has time complexity

O(nα(n) + n/ε), and in the parameter regimes we tested, runs

nearly as quickly as the original.

III. NUMERICAL SIMULATIONS

In this work, we use a standard depolarizing error model

parametrized by a single error parameter p (used, e.g., in

Refs. [45,46]). Our circuits consist of four fundamental noisy

gate operations.

(i) With probability p, each idling step (identity gate) is

followed by a Pauli error drawn uniformly at random from the

set {X,Y, Z}.

(ii) With probability p, each two-qubit CNOT gate is

followed by a Pauli error drawn uniformly at random from

the set {I, X,Y, Z}⊗2\(I ⊗ I ).

(iii) With probability 2p/3, intended preparation of |0〉 or

|+〉 wrongly prepares |1〉 or |−〉, respectively.

(iv) With probability 2p/3, a measurement outcome in

either the Z or X basis is flipped.

Syndrome extraction for the toric code proceeds in six

steps: one preparation step, four two-qubit gates, and a mea-

surement step as shown in Fig. 2. The decoder graph is formed

by connecting all space-time sites that can be jointly excited

by a single circuit fault. Each of these edges is then weighted

by ln ((1 − p)/p), where p is the sum of the probabilities of

those single faults occurring [1,29].
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FIG. 3. Threshold behavior for unweighted (empty) and

weighted (filled) decoders using both UF and MWPM. Weighting

the UF decoder increases the threshold from ≈0.38% to ≈0.62%,

compared with an increase from ≈0.65% to ≈0.72% for MWPM.

Each point was obtained from 106 trials. Error bars lie within points,

and are omitted throughout.

We analyze five different decoding strategies. We consider

MWPM and UF on both weighted and unweighted decoder

graphs, as well as UF on a decoder graph with weights

truncated to the nearest tenth. MWPM accuracy has been

characterized in a number of works [4,11,12,29,47]; however,

as performance depends closely on the microscopic details of

the gate and error model, we include it for the sake of direct

comparison. Note that the unweighted decoder graph is not
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FIG. 4. Low error rate behavior for unweighted (empty, dotted)

and weighted (filled, solid) decoders. Each point was obtained from

at least 106 trials and 103 failures.

equivalent to a phenomenological decoder graph due to the

inclusion of diagonal single circuit-fault edges.

For MWPM, there have been a number of runtime opti-

mizations [11,12,19]. Here, we use a simple localized strategy

inspired by Ref. [19] that forms a box around each excitation

with dimensions determined by the nearest excitations in the

six cardinal directions. Then, we only check for matchings

in which each excitation is matched with another inside its

corresponding box. This simple heuristic speeds up sequen-

tial matching, and has performance consistent with previ-

ous benchmarks [48]. We use Blossom V to perform the
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TABLE I. A summary of the accuracy performance of each

decoder. We approximate the logical performance scaling with d at

fixed error rate p as ∝ �(d+1)/2
p . Here, �p is estimated by averaging

over the three intervals from d = 5 to d = 11.

pthr �.10% �.15% �.20% �.25%

Unweighted UF 0.38% 0.184 0.247 0.380 0.528

Truncated UF 0.61% 0.096 0.156 0.231 0.292

Weighted UF 0.62% 0.094 0.151 0.219 0.292

Unweighted MWPM 0.65% 0.075 0.122 0.178 0.251

Weighted MWPM 0.72% 0.057 0.101 0.151 0.204

matching itself, although additional customization to match-

ing can considerably improve performance [3,49,50].

We analyze these decoders in three areas: threshold be-

havior, low error rate behavior, and (serial) efficiency. The

accuracy of the truncated decoder is omitted, as it is indis-

tinguishable from the weighted decoder in the tested regime.

Each trial was decided by performing d rounds of faulty

syndrome extraction followed by a terminal perfect round of

syndrome extraction. If any nontrivial logical operator was

applied to the two encoded qubits, the trial was declared a

failure; otherwise, it was declared a success.

Figure 3 shows the relative gain in the threshold behavior

of weighted versus unweighted decoding. Weighting the de-

coder graph significantly improves UF decoding with respect

to a less dramatic increase in MWPM. The threshold for the
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FIG. 5. Timing for weighted MWPM and UF decoders. Times

are reported per extraction cycle, obtained from timing the off-line

decoders on a ∝ d × d × d decoding instance and dividing over the

d cycles. Weighted UF (dotted) scales as ∝ d2.2, which is nearly

linear in n ∝ d2. In comparison, our variant of localized matching

(solid) empirically runs in time ∝ d4.5, although much faster cus-

tomized implementations are known [12]. Each point is the average

of at least 103 trials on a single 2.9 GHz Intel Core i9 CPU.
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FIG. 6. Timing on a decoder graph with edge weights ln ((1 −

w)/w), for w drawn uniformly at random from the range

0.1%–0.5%. At high physical error rates p = 0.5% (red, top three

lines), weighted UF suffers a significant slowdown, but truncating the

weights recoups most of the unweighted efficiency. At sufficiently

low error rates p = 0.2% (blue, bottom three lines), the weighted UF

slowdown does not occur.

truncated UF decoder (not shown) approximately matches that

of the weighted UF decoder, with a value of ≈0.61%. Note

that truncation can cause small discontinuities in the logical

error rate where the weights jump in value.

We reiterate that these threshold values depend heavily on

the specifics of the noise model and operations. For example,

if one assumes quantum nondemolition measurements, the

threshold can increase to as high as ≈0.90% in the case of

MWPM [11]. In such a model, the weighted UF threshold

increases to ≈0.76%. However, this model favorably assumes

that measurements both report the wrong outcome and project

into the wrong eigenstate upon failure, whereas stand-alone

declaration errors can be more damaging. Thus, it is important

to consider the details of the noise model when comparing

different absolute threshold estimates.

The low error rate behavior in Fig. 4 mirrors that of the

threshold behavior (see also Table I). We observe that weight-

ing UF significantly increases its fault-tolerance performance,

remaining competitive with matching despite its comparative

simplicity and efficiency.

Unsurprisingly, sequential UF runs significantly faster than

sequential MWPM even when using localizing heuristics.

Figures 5 and 6 show timings in the case of translation-

invariant and non-translation-invariant edge weights. The

slowdown to weighted UF is exacerbated by larger clusters

at higher error rates when in the presence of more edge

weights. Practically, one would expect to use a variety of

weights tuned according to benchmarks on individual gates,

and so this slowdown (from ∝ d2.2 to ∝ d3.4) is significant.
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Fortunately, simply truncating the edge weights approxi-

mately preserves the scaling and performance of weighted UF.

Note also that if the error rate is sufficiently low across the

entire lattice, then the slowdown does not occur. This is likely

due to a smaller number of boundary edge weights in any one

cluster.

Of course, one should take these off-line sequential timings

with a grain of salt. MWPM has enjoyed several refinements

that have been empirically shown to reduce the runtime to

average linear time at sufficiently low error rates, and in

principle to parallelized average O(1) time [11,12,19]. In ad-

dition, recent work has demonstrated microarchitectures and

accelerations that allow for UF decoding in the μs regime per

extraction cycle [51,52], and extending to a weighted graph

could likely be accommodated. While absolutely comparing

runtimes is difficult, we expect that the speed of the UF

decoder should ultimately outstrip matching due its local

flavor and simplicity.

IV. CONCLUSIONS

In this paper, we benchmarked a weighted variant of the UF

decoder in the full fault-tolerance setting, and demonstrated

that it performs comparably to matching while preserving the

almost-linear runtime of the original. Although there can be

some slowdown, this can be remedied by truncating the edge

weights without a significant loss in accuracy.

Compared to the difficult task of building reliable quantum

components, one would ideally use decoders that optimize

performance, shifting the burden from a quantum problem to

a classical one. However, depending on the size and details of

the decoding problem, and given the simplicity, efficiency, and

relatively high performance of weighted UF, it might prove a

promising avenue towards practical decoding of the surface

code.
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