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Fault-tolerant weighted union-find decoding on the toric code
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Quantum error correction requires decoders that are both accurate and efficient. To this end, union-find
decoding has emerged as a promising candidate for error correction on the surface code. In this work, we
benchmark a weighted variant of the union-find decoder on the toric code under circuit-level depolarizing
noise. This variant preserves the almost-linear time complexity of the original while significantly increasing
the performance in the fault-tolerance setting. In this noise model, weighting the union-find decoder increases
the threshold from 0.38% to 0.62%, compared to an increase from 0.65% to 0.72% when weighting a matching
decoder. Further assuming quantum nondemolition measurements, weighted union-find decoding achieves a
threshold of 0.76% compared to the 0.90% threshold when matching. We additionally provide comparisons of

timing as well as low error rate behavior.
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I. INTRODUCTION

In order to realize scalable quantum computing, quantum
information must be protected in quantum error correcting
codes. Information about the errors occurring are rapidly
extracted through measurements, and this information is pro-
cessed through a decoder in order to determine which errors
have occurred. These decoders must be accurate in providing
good estimates for the error, but they should also be highly
efficient in order to keep up with the quantum computation as
it progresses.

One of the leading candidates for quantum error correc-
tion is the surface code [1-3], owing to its two-dimensional
(2D) nearest-neighbor implementation [4], robust mem-
ory [5], optimized logical gates [6—8], and wealth of decod-
ing schemes [9-36]. Among these schemes, decoding based
on minimum-weight perfect matching (MWPM) is particu-
larly promising due to its high performance, adaptability to
circuit-level errors, and relative O(n*) efficiency on general
graphs [37]. In particular, there has been significant effort
aimed at accelerating and parallelizing MWPM [11,12,19].

However, performing decoding at the clock speed of a
quantum computer remains a daunting task. A new type of
decoder based on the union-find (UF) primitive has been
proposed as an alternative to MWPM [35]. This decoder
relies on generating an erasure consistent with the syndrome
information, and then applying a highly efficient erasure
decoder [38]. Moreover, the UF decoder remains competitive
with the high performance of MWPM in a phenomenological
error model [35,39,40].

In this work, we benchmark the UF decoder in the fault-
tolerance setting under standard circuit-level depolarizing
noise. We show that by adapting the decoder to weighted
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graphs, the performance increases substantially. This variant
was first proposed in Ref. [36], however, it can be modified
to preserve the almost-linear run time of the original UF
decoder.

Weighting the decoder graph is a natural step that yields
significant gains in the context of MWPM [29]. In particu-
lar, for a properly weighted graph, MWPM decides on the
most likely error given a particular syndrome [1,4,29,41,42].
While UF decoding does not have a simple interpretation on
weighted graphs, it is reasonable to expect that preferencing
cluster growth in the direction of the most likely nearby error
would be beneficial. What is remarkable is the degree to
which it helps, with a significantly greater relative gain than
weighted matching over unweighted matching.

II. WEIGHTED UNION-FIND

We follow the prescription of the original UF decoder
described in Ref. [35], but with weighted edges on the de-
coder graph. The complexity of the original algorithm is
dominated by the union-find primitive, which has complexity
O(na(n)) [43], where « is the inverse Ackermann’s function
and n is the number of syndrome bits. For all practical sizes,
this is essentially linear in n with a small constant. For
fault-tolerant decoding in a distance d toric code, n = 2d°
when averaged over « d rounds of syndrome extraction. This
approach straightforwardly generalizes to the open boundaries
of the surface code, but we benchmark using periodic bound-
aries to minimize finite-size effects.

The UF decoder proceeds in two steps: syndrome vali-
dation, which is used to identify a candidate erasure given
the syndromes, and peeling, which is used to decode the
candidate erasures. The addition of edge weights changes only
the growth step for each cluster during syndrome validation.
In the original algorithm, we would iterate over all boundary
vertices of the smallest boundary cluster and grow the incident
boundary edges by one-half. In the weighted algorithm, we
first iterate over the boundary edges to identify the smallest
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FIG. 1. Two growth steps for weighted UF on a toric code
decoder graph with p = 0.8% and weights truncated to the nearest
integer (for performance estimates, we truncate to the nearest tenth).
Some edges are omitted for clarity. In this case, we have two
types of edges: weight four edges (thick) in the cardinal directions,
and weight five diagonal edges (thin). The orange (light) highlight
indicates the growing cluster. In the top figure, a single excitation
occurs in the corner of the decoder graph. In the middle, the cluster
radius grows by four and it merges with clusters to the north, west,
and up directions. At the bottom, the cluster radius grows by one and
it merges with clusters diagonal to the original excitation.

boundary edge weight wy,,, and then again iterate over the
boundary edges to grow the radius of the cluster by wmy;n-
Specifically, each edge weight is updated to w > W — Wpip.

FIG. 2. Six-step syndrome extraction on the toric code for X
(left) and Z (right) stabilizers. Each ancilla qubit interacts with the
data qubit to its north, west, east, and south, in that order.

Figure 1 illustrates this growth step on a weighted graph [44].
We additionally find a minimum-weight spanning tree during
peeling, which remains O(na(n)) time when presorting the
edges by weight. However, this only discernibly improves the
unweighted UF implementation [32].

Unfortunately, the inclusion of weighted edges has the
potential to increase the runtime of the decoder. In the un-
weighted UF algorithm, each edge can participate in a growth
step at most twice. Consequently, for a bounded degree de-
coder graph, the total complexity of growing the clusters is
O(n). More generally, given edges with real weights {w;} that
have a common measure m, we can be assured that each
edge with weight w participates in a growth step at most
w/m times. However, as {w;} will almost surely have no
common measure, we are left with a worst-case upper bound
of O(n?): during each growth step, we iterate through a list of
boundary edges of size O(n), and in each iteration we remove
at least one edge. Fortunately, this can be remedied by trun-
cating the w; to some finite precision &, ensuring a common
measure while incurring a negligible loss in accuracy. The
corresponding weighted UF decoder then has time complexity
O(na(n) 4+ n/e), and in the parameter regimes we tested, runs
nearly as quickly as the original.

III. NUMERICAL SIMULATIONS

In this work, we use a standard depolarizing error model
parametrized by a single error parameter p (used, e.g., in
Refs. [45,46]). Our circuits consist of four fundamental noisy
gate operations.

(i) With probability p, each idling step (identity gate) is
followed by a Pauli error drawn uniformly at random from the
set {X,Y,Z}.

(i) With probability p, each two-qubit CNOT gate is
followed by a Pauli error drawn uniformly at random from
the set {1, X,Y, Z}®\(U ® I).

(iii) With probability 2p/3, intended preparation of |0) or
|+) wrongly prepares |1) or |—), respectively.

(iv) With probability 2p/3, a measurement outcome in
either the Z or X basis is flipped.

Syndrome extraction for the toric code proceeds in six
steps: one preparation step, four two-qubit gates, and a mea-
surement step as shown in Fig. 2. The decoder graph is formed
by connecting all space-time sites that can be jointly excited
by a single circuit fault. Each of these edges is then weighted
by In ((1 — p)/p), where p is the sum of the probabilities of
those single faults occurring [1,29].
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FIG. 3. Threshold behavior for unweighted (empty) and
weighted (filled) decoders using both UF and MWPM. Weighting
the UF decoder increases the threshold from ~0.38% to ~0.62%,
compared with an increase from ~0.65% to ~0.72% for MWPM.
Each point was obtained from 10° trials. Error bars lie within points,
and are omitted throughout.

We analyze five different decoding strategies. We consider
MWPM and UF on both weighted and unweighted decoder
graphs, as well as UF on a decoder graph with weights
truncated to the nearest tenth. MWPM accuracy has been
characterized in a number of works [4,11,12,29,47]; however,
as performance depends closely on the microscopic details of
the gate and error model, we include it for the sake of direct
comparison. Note that the unweighted decoder graph is not

Physical Error Rate

FIG. 4. Low error rate behavior for unweighted (empty, dotted)
and weighted (filled, solid) decoders. Each point was obtained from
at least 10° trials and 10° failures.

equivalent to a phenomenological decoder graph due to the
inclusion of diagonal single circuit-fault edges.

For MWPM, there have been a number of runtime opti-
mizations [11,12,19]. Here, we use a simple localized strategy
inspired by Ref. [19] that forms a box around each excitation
with dimensions determined by the nearest excitations in the
six cardinal directions. Then, we only check for matchings
in which each excitation is matched with another inside its
corresponding box. This simple heuristic speeds up sequen-
tial matching, and has performance consistent with previ-
ous benchmarks [48]. We use Blossom V to perform the
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TABLE 1. A summary of the accuracy performance of each
decoder. We approximate the logical performance scaling with d at
fixed error rate p as oc A""1/2. Here, A, is estimated by averaging
over the three intervals fromd = 5tod = 11.

Pthr A 1% A 159 A 209 A osq
Unweighted UF 0.38% 0.184 0.247 0.380 0.528
Truncated UF 0.61% 0.096 0.156 0.231 0.292
Weighted UF 0.62% 0.094 0.151 0.219 0.292
Unweighted MWPM  0.65% 0.075 0.122 0.178 0.251
Weighted MWPM 0.72%  0.057 0.101 0.151 0.204

matching itself, although additional customization to match-
ing can considerably improve performance [3,49,50].

We analyze these decoders in three areas: threshold be-
havior, low error rate behavior, and (serial) efficiency. The
accuracy of the truncated decoder is omitted, as it is indis-
tinguishable from the weighted decoder in the tested regime.
Each trial was decided by performing d rounds of faulty
syndrome extraction followed by a terminal perfect round of
syndrome extraction. If any nontrivial logical operator was
applied to the two encoded qubits, the trial was declared a
failure; otherwise, it was declared a success.

Figure 3 shows the relative gain in the threshold behavior
of weighted versus unweighted decoding. Weighting the de-
coder graph significantly improves UF decoding with respect
to a less dramatic increase in MWPM. The threshold for the
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FIG. 5. Timing for weighted MWPM and UF decoders. Times
are reported per extraction cycle, obtained from timing the off-line
decoders on a «x d x d x d decoding instance and dividing over the
d cycles. Weighted UF (dotted) scales as o d>2, which is nearly
linear in n o d?. In comparison, our variant of localized matching
(solid) empirically runs in time o d*°, although much faster cus-
tomized implementations are known [12]. Each point is the average
of at least 10° trials on a single 2.9 GHz Intel Core i9 CPU.
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FIG. 6. Timing on a decoder graph with edge weights In ((1 —
w)/w), for w drawn uniformly at random from the range
0.1%—-0.5%. At high physical error rates p = 0.5% (red, top three
lines), weighted UF suffers a significant slowdown, but truncating the
weights recoups most of the unweighted efficiency. At sufficiently
low error rates p = 0.2% (blue, bottom three lines), the weighted UF
slowdown does not occur.

truncated UF decoder (not shown) approximately matches that
of the weighted UF decoder, with a value of ~0.61%. Note
that truncation can cause small discontinuities in the logical
error rate where the weights jump in value.

We reiterate that these threshold values depend heavily on
the specifics of the noise model and operations. For example,
if one assumes quantum nondemolition measurements, the
threshold can increase to as high as ~0.90% in the case of
MWPM [11]. In such a model, the weighted UF threshold
increases to ~0.76%. However, this model favorably assumes
that measurements both report the wrong outcome and project
into the wrong eigenstate upon failure, whereas stand-alone
declaration errors can be more damaging. Thus, it is important
to consider the details of the noise model when comparing
different absolute threshold estimates.

The low error rate behavior in Fig. 4 mirrors that of the
threshold behavior (see also Table I). We observe that weight-
ing UF significantly increases its fault-tolerance performance,
remaining competitive with matching despite its comparative
simplicity and efficiency.

Unsurprisingly, sequential UF runs significantly faster than
sequential MWPM even when using localizing heuristics.
Figures 5 and 6 show timings in the case of translation-
invariant and non-translation-invariant edge weights. The
slowdown to weighted UF is exacerbated by larger clusters
at higher error rates when in the presence of more edge
weights. Practically, one would expect to use a variety of
weights tuned according to benchmarks on individual gates,
and so this slowdown (from o d?? to o d>*) is significant.
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Fortunately, simply truncating the edge weights approxi-
mately preserves the scaling and performance of weighted UF.
Note also that if the error rate is sufficiently low across the
entire lattice, then the slowdown does not occur. This is likely
due to a smaller number of boundary edge weights in any one
cluster.

Of course, one should take these off-line sequential timings
with a grain of salt. MWPM has enjoyed several refinements
that have been empirically shown to reduce the runtime to
average linear time at sufficiently low error rates, and in
principle to parallelized average O(1) time [11,12,19]. In ad-
dition, recent work has demonstrated microarchitectures and
accelerations that allow for UF decoding in the us regime per
extraction cycle [51,52], and extending to a weighted graph
could likely be accommodated. While absolutely comparing
runtimes is difficult, we expect that the speed of the UF
decoder should ultimately outstrip matching due its local
flavor and simplicity.

IV. CONCLUSIONS

In this paper, we benchmarked a weighted variant of the UF
decoder in the full fault-tolerance setting, and demonstrated
that it performs comparably to matching while preserving the

almost-linear runtime of the original. Although there can be
some slowdown, this can be remedied by truncating the edge
weights without a significant loss in accuracy.

Compared to the difficult task of building reliable quantum
components, one would ideally use decoders that optimize
performance, shifting the burden from a quantum problem to
a classical one. However, depending on the size and details of
the decoding problem, and given the simplicity, efficiency, and
relatively high performance of weighted UF, it might prove a
promising avenue towards practical decoding of the surface
code.
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