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Abstract

To understand how the microvasculature grows and remodels, researchers require reproducible systems that emulate the func-
tion of living tissue. Innovative contributions toward fulfilling this important need have been made by engineered microvessels
assembled in vitro with microfabrication techniques. Microfabricated vessels, commonly referred to as “vessels-on-a-chip,” are
from a class of cell culture technologies that uniquely integrate microscale flow phenomena, tissue-level biomolecular transport,
cell–cell interactions, and proper three-dimensional (3-D) extracellular matrix environments under well-defined culture conditions.
Here, we discuss the enabling attributes of microfabricated vessels that make these models more physiological compared with
established cell culture techniques and the potential of these models for advancing microvascular research. This review high-
lights the key features of microvascular transport and physiology, critically discusses the strengths and limitations of different
microfabrication strategies for studying the microvasculature, and provides a perspective on current challenges and future
opportunities for vessel-on-a-chip models.
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INTRODUCTION

Our bodies require efficient and simultaneous transport of
fluids, nutrients, signaling molecules, waste products, and
circulating cells between tissues and organs (1). The blood
vasculature, or the tubular network composed of blood ves-
sels, is tasked with coordinating this vital mass transport
throughout the body (2–4). Improper formation of a func-
tional vascular network during embryonic and fetal develop-
ment is associated with a myriad of congenital disorders that
cause severe morbidity or even mortality (5, 6). Dysfunction
of the endothelial cells (ECs) that line the inside of all blood
vessels contributes to many diseases such as atherosclerosis,
cancer, stroke, and thrombosis (7–9). Consequently, consid-
erable resources have been devoted to research into the mo-
lecular, cellular, and physicochemical determinants of blood
vessel formation and function (10).

Traditionally, in vivo studies in both mammalian (e.g.,
transgenic mouse and rat) and nonmammalian (e.g., zebra-
fish) animal model systems have been at the forefront of
many aspects of vascular research, such as genetic regulation
(11, 12), vessel patterning during development (13, 14), and

disease modeling (15). On the other hand, in vitro cell culture
has been instrumental in advancing our understanding of EC
biology and signaling mechanisms (16–18), morphogenesis
coordinated by endogenous cell-generated forces (19, 20), and
hemodynamic regulation of atherosclerosis (21–23). However,
bridging in vivo and in vitro research has not always been suc-
cessful and represents a major challenge in the field (24).
Most conventional in vitro models lack the three-dimensional
(3-D) complexity, blood flow, cell–cell interactions, or proper
extracellular matrix (ECM) environment that are typical of liv-
ing tissues (25, 26). Conversely, animal studies inherently pro-
vide physiological context but are limited in their ability to
independently resolve aspects of the tissue environments that
contribute to vascular diseases. In addition, several key ana-
tomical differences in human versus animal models can lead
to species-dependent discrepancies. One such example occurs
during pregnancy, where the cellular events that coordinate
the remodeling of the spiral arteries necessary to deliver
nutrients to the placenta and fetus differ substantially in
humans versusmice (27).

Microfabricated vessels, which we interchangeably refer
to as “vessels-on-a-chip,” are engineered mimics or analogs
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of physiological blood vessels that offer promise to overcome
some of the aforementioned limitations of conventional in
vitro and in vivo models. The development of vessel-on-a-
chip models has rapidly ascended in the past decade, which
we believe has been bolstered by the convergence of princi-
ples from blood vessel physiology, transport phenomena,
cell and matrix biology, and tissue microfabrication (Fig. 1).
Tissue microfabrication itself may be viewed as an interdis-
ciplinary field within bioengineering that integrates tissue
engineering of 3-D scaffolds with design and fabrication of
microfluidic ducts or channels (28). Therefore, this review
does not cover detailed considerations of cell type, matrix
type, and hydrogels used for engineered vessels, which have
recently been featured elsewhere (29, 30), but instead
presents an overview of microfabricated vessels that are
inspired by the form and function of the microcirculation.
To help understand the design considerations for microfab-
ricated vessels, we first summarize important principles of
microvascular transport and physiology and highlight the
contributions made by in silico models toward this under-
standing. Next, we provide an overview of different state-of-
the-art microfabrication strategies for engineering perfus-
able microvessels. Then we highlight the implementation of
these models for advancing our understanding of microvas-
cular physiology and pathophysiology. Finally, we discuss
current challenges and future perspectives on the role of
microfabricated vessels in helping bridge the technological
gap between in vitro and in vivo vascular research.

PHYSIOLOGICAL AND STRUCTURAL
CHARACTERISTICS OF THE
MICROCIRCULATION

The majority of oxygen (O2) transport occurs in the micro-
circulation (31–33), and a hierarchal branching vessel

architecture is needed to fulfill cellular consumption
demands while maintaining low resistance to flow (34).
Altered spatial heterogeneity and temporal stability of net-
work perfusion is associated with the reduced microvascu-
lar blood flow and tissue oxygenation that signal the onset
and progression of microvascular diseases (35, 36).
Consequently, the constituent blood vessels of the vascu-
lature must be capable of rapid and dynamic remodeling
in response to O2 deprivation (or hypoxia) and injury to tis-
sue (37).

Arterioles and capillaries are small-diameter vessels of the
microcirculation that facilitate the majority of O2 delivery to
tissue cells (31–33). Arterioles range in diameter from 100 to
200mm (Fig. 2A) (39), and their vessel walls are composed of
an endothelial layer, inner and outer elastic lamina layers,
and circumferentially arranged smooth muscle cells (SMCs).
Arterioles are also known as “resistance vessels” because
changes in their diameter due to contraction and relaxation
of SMCs control the distribution of blood flow to specific
organ capillary beds (40–42). In some organs and tissues,
precapillary sphincters, located at the transition point from
the arteriole to the capillary branch, direct flow to areas of
higher metabolic demand. Previously believed to reside
solely in the mesenteric system, these precapillary sphinc-
ters have recently been shown by Grubb et al. (42) to also
exist in the brain. Inflammation in disease and injury dis-
rupts normal arteriolar function, impacting capillary bed
perfusion (41). Capillary vessel walls are made up of an endo-
thelial layer and stabilized by pericytes embedded within
the surrounding basement membrane (43). Capillaries are
extremely narrow compared with other branches of the vas-
cular network, some with diameters as narrow as 5mm, such
that red blood cells must pass single file (4). This progressive
narrowing of vessels allows arterioles to serve as centrally
located distributive channels for the far-reaching network of
capillaries supplying nutrients to tissues (44). Nutrients and
O2 exit the capillary through this thin wall to reach tissues,
whereas waste products and carbon dioxide (CO2) diffuse
into capillaries from tissues to eventually exit the body
(Fig. 2B).

Vascular remodeling occurs through several primary
mechanisms. Angiogenesis is the generation of new vessel
segments from existing branches and occurs primarily in
capillaries and postcapillary venules (45). The two basic
modes of angiogenesis are vessel splitting (or intussuscep-
tion) and vessel sprouting (Fig. 2C). Both of these angiogenic
processes are tightly regulated under normal conditions and
allow for the continued expansion of the vascular system to
provide blood flow to avascular, ischemic, or growing tissue
(46, 47). Angioadaptation describes the structural remodel-
ing of existing vessels to optimize blood transport to
surrounding tissues. This process is modulated by a combi-
nation of fluid dynamics through local shear forces on vessel
walls and metabolic signal propagation (33, 48). Local
changes in shear stress and metabolic signals also cause
alterations to vessel diameter and permeability. Changes in
vessel diameter alter the resistance to blood flow. Vessel dila-
tion causes decreased flow resistance, allowing nutrients to
be routed to areas of higher consumption (49). Vascular per-
meability describes vessel “leakiness” to fluid and micro-
and macromolecules. Increased permeability is coincident

Figure 1. Integrative vessel-on-a-chip models. These engineered models
are due to the convergence of principles from 1) blood vessel physiology,
2) transport phenomena, 3) cell and matrix biology, and 4) tissue
microfabrication.
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with sprouting angiogenesis that is especially prevalent dur-
ing wound healing, tumor growth, and chronic inflamma-
tion (50).

PRINCIPLES OF MASS TRANSPORT AND
FLUID FLOW THROUGH VASCULATURE

Although some passive diffusion occurs as blood is
pumped throughout the body, the diffusion limit of O2 in tis-
sue is �100mm because of low solubility. Consequently, the
structural architecture of the microcirculation ensures that
cells are always within 200mm from the nearest capillary,
and usually O2 must diffuse 30mm or less to reach its desti-
nation (32). Here we outline the basic principles of mass
transport through blood (diffusion and convection), as well
as the fluid flow properties that must be considered in order
to replicate physiological conditions in microfabricated ves-
sel models. We note that this section does not describe the
rheological basis of microvascular blood flow (49) because
the perfusate used in microfabricated vessels is typically cell
culture medium as opposed to whole blood.

Diffusion

Blood transports O2 and other small molecules through
the body via the vascular system. The blood picks up O2 in

the lungs, where O2 is transferred via diffusion as described
by Fick’s law:

j ¼ �Doc
ox

or J ¼ � Drc ð1Þ

where D is the diffusion coefficient of the gas, and the differ-
ential describes the change in the gas concentration (c) over
the change in position (x). In other words, the gas flux is
directly proportional to the concentration gradient of the gas
(4, 51).

The gaseous O2 travels in the blood primarily through bind-
ing to hemoglobin, the O2-carrying protein present in red
blood cells. Hemoglobin consists of four protein subunits (glo-
bins), each of which can cooperatively bind O2. Hemoglobin’s
affinity for O2 enables the O2-carrying capacity of blood to
increase 70-fold compared to plasma (52). Hemoglobin has
higher affinity for binding O2 in areas where the partial pres-
sure of O2 (PO2) is higher, and lower affinity in areas where
the PO2 is low. This enables hemoglobin to be an ideal carrier
protein for O2, picking up O2 in the O2-rich lungs and deliver-
ing it to O2-consuming tissues.

As discussed above, most gas exchange occurs in micro-
vessels, where O2 is delivered via diffusion (53). Since O2 is a
small lipophilic solute, it is highly soluble in cell membranes
and can easily diffuse across microvessels and into the sur-
rounding tissue space (54). August Krogh developed the first

Figure 2.Mass transport in the arterial microcirculation. A: the largest vessels in the arterial microcirculation are arterioles or “resistance vessels,” which
supply blood to capillaries via convection (Pe> 1). A circumferential layer of smooth muscle cells enables precise mechanical control over blood flow
and subsequent regional perfusion. In normal physiological environments, surrounding tissue and ECM is normoxic [partial pressure of oxygen (PO2) �
5%] (38). B: capillaries are the smallest vessels in the microcirculation and the main site for gas and nutrient exchange. A thin endothelial vessel wall ena-
bles passive diffusion (Pe< 1). The surrounding ECM is normoxic, with a higher PO2 nearest the capillary as O2 is radially dispersed. C: tissue hypoxia
(PO2 < 5%) drives vessel angiogenesis in postcapillary venules. Increased vessel permeability causes leakage of plasma proteins (green) into surrounding in-
terstitial fluid. Coupled with infiltration of endothelial cells (pink), these components assemble to form new vascular sprouts. (Drawing is not to scale.)
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mathematical tissue model of O2 delivery in the microcircu-
lation. This cylinder model, in which O2 tension is a function
of spatial position in a cylinder representing a single micro-
vessel, is still widely referenced today and served as the basis
for future development in the field of O2 transport (4, 55).

In addition to O2 and other gaseous molecules, transvas-
cular transport of hydrophilic and/or large solutes, such as
signaling proteins and other macromolecules, is required
for tissue homeostasis (50, 56). In the capillaries of most
tissue, narrow clefts between ECs are the main transport
pathway for small hydrophilic solutes (57). Brain capilla-
ries, on the other hand, are especially impermeable to
small hydrophilic solutes (58). Conversely, microvessels in
tumors and inflamed tissue typically exhibit large and fre-
quent gaps between ECs (50). Consequently, the perme-
ability of vessels in tumors and during inflammation is
increased with reduced size selectivity to solutes com-
pared with normal vessels (54, 59).

Convection

Convection enables the pressure-driven flow responsi-
ble for moving blood through the central bloodstream to
the microcirculation, where most nutrient delivery
occurs via diffusion across tissue barriers. Because of the
limited tissue solubility of O2, convection is necessary to
place O2 within reach of all tissues in the body. In addi-
tion to luminal transport, transvascular transport occurs
by convection (or transendothelial filtration). The rate of
transendothelial filtration is determined by the hydro-
static and osmotic pressure differences between blood
vessels and the surrounding tissue (also known as
Starling forces) and the hydraulic conductivity of blood
vessels, which is a function of vessel permeability (56).
Thus, transendothelial filtration is highly dependent on
the state of the tissue (e.g., inflamed vs. normal) (60). The
application of microscale culture technologies for study-
ing transendothelial filtration has been reviewed more
comprehensively elsewhere (61). However, we note here
that when applying the Starling equation to in vitro
microfabricated vessels, the oncotic effects are typically
negligible because of the homogeneous cell culture me-
dium composition (62).

P�eclet Number

The P�eclet number (Pe) is defined as the ratio of convec-
tive to diffusive transport and can be represented as follows:

Pe ¼ ðrate of convectionÞ
ðrate of diffusionÞ ¼ UL

D
ð2Þ

where U represents the linear flow velocity in the control
volume, L represents the length scale of flow, and D is
the diffusion constant. The Pe is> 1 in convection-domi-
nated transport and< 1 for diffusion-dominated trans-
port (54, 63). The Pe is governed by changes in the
physiological microenvironment and influences vessel
formation. For instance, heightened interstitial flow
(where Pe> 1) and regional hypoxia (where Pe< 1) can
arise during inflammation, cancer, or exercise. Both of
these physiological conditions independently promote
angiogenesis (64–67).

Reynolds Number

The Reynolds number (Re) is a nondimensional quantity
that describes a fluid’s flow behavior by providing the ratio
between inertial and viscous forces. The equation for the Re
can be written as follows (68):

Re ¼ qvL
l

¼ inertial force
viscous force

ð3Þ

where v is the average fluid velocity, r is the fluid density, L
is the characteristic length, and m is the fluid viscosity.

Fluid flow is described as laminar at low fluid velocities
and as turbulent at high fluid velocities. The transition from
laminar to turbulent flow occurs at Re � 2,000 (69). Unlike
in large arteries, blood flow in themicrocirculation is primar-
ily laminar, although laminar flow can be disturbed because
of pathological changes in vessel geometry such as aortic ste-
nosis in the coronarymicrocirculation (69–71). In such cases,
blood flow may become turbulent downstream from the ab-
erration. Another consequence of stenotic or occlusive dis-
ease in a major artery is the formation of tortuous or
prominently twisted and curved collateral arteries (72).
These so-called “corkscrew collaterals,”which can be< 1mm
in diameter (73), hinder collateral development that is neces-
sary for restoring blood flow for tissue regeneration (74).
Curved or tortuous microvessels have been frequently
reported in retina, skeletal muscle, myocardium, and brain
tissues (75–78). In addition, during pregnancy, coil-shaped
maternal spiral arteries (�200mm in diameter at the onset of
pregnancy) temporarily supply blood to the endometrium of
the uterus (79). Tortuous capillaries are also associated with
diseases such as hypertension, diabetes, and cancer (80–82).
Curvature of microvessels can modify blood flow by intro-
ducing secondary flows known as Dean flows or vortices,
even at low Re (Re� 1) (83, 84).

THEORETICAL AND COMPUTATIONAL
MODELS OF VASCULATURE

Similar to microfabricated vessels, theoretical and compu-
tational (i.e., in silico) models are an engineering-based
approach for studying microvascular physiology (4) and
pathophysiology (85). These in silico models predate the
advent and widespread use of microfabricated vessels and
have formed an important basis for our current understand-
ing of the structural adaptation of vessel networks (33).
Through this dynamic process, the vascular network is con-
stantly redirected and pruned to fulfill the needs at the tissue
and cellular levels to maintain function. Theoretical models
can predict these effects (33). Simulations utilize in vivo data
of microvascular networks with 300–1,000 vessel segments
to investigate the response of the vascular network to spe-
cific stimuli. The results are then compared to experimental
data (86). These models can be highly useful in determining
the relationship between variables or identifying variables
that have considerable effects on vessel structure and
function.

A computational investigation of the relationship between
vessel diameter and wall thickness as a response
to circumferential wall stress or shear stress based on rat
mesentery experimental measurements found that these
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variables are not separately controlled (87). Further investi-
gations by Pries and Secomb have revealed the complemen-
tary roles of angioadaptive responses, such as pruning of
existing vessel branches, and angiogenic sprouting in
restructuring vasculature without disrupting blood flow (34).
Reglin et al. (88) examined O2 sensing in tissues, vessel walls,
and red blood cells to predict which had a greater effect on
microvessel diameter adaptation and angiogenesis. In this
work, only one metabolic signaling pathway was assumed
active at a time, allowing them to be tested as independent
variables. The study indicated that microvascular vessel wall
signaling in response to O2 changes is centrally involved in
the long-term, steady-state adjustment of vessel diameters
in response to metabolic signals. Additionally, red blood cell
signaling could play a minor role in adjustment of vessel
tone to adapt total blood flow. Tissue signaling, meanwhile,
did not appear to greatly impact microvessel diameter,
although it may be vital in angiogenesis to supply hypoxic
regions (88). Popel et al. have been involved in numerous
studies of angiogenesis and blood flow dynamics through
computational approaches that provide important insights
into red blood cell aggregation and O2 transport in micro-
scale blood flow, particularly in tortuous geometries such as
tumor vasculature (89–94).

Computational simulations have been applied extensively
for disease modeling, prolifically cancer, enabling elucida-
tion into tumor architecture and targeted drug delivery (95–
103). Such models are valuable for exploring how structural
characteristics contribute to pathophysiological behavior
and therapeutic response. For example, Welter et al. (101)
found that in simulated breast cancer tumors, tissue hypoxia
was induced by vascular compression that reduces or
impairs blood flow. They concluded that perfusion-induced
hypoxia in vivo is indicative of poorer prognosis as com-
pressed vessels will impede chemotherapy (101).

Although computational models have greatly benefited
our overall understanding of the vascular system, we must
acknowledge that they cannot fully convey all of the under-
lying parameters. Moreover, experimental findings from
thesemodels can be difficult to validate in vivo, as it is nearly
impossible to differentiate the effects of independent varia-
bles in the regulation of these intricate transport mecha-
nisms. However, findings from computational studies can be
applied to the design of robust in vitro microfluidic plat-
forms. These on-chipmodels can allow for precisemanipula-
tion of multiple variables, enabling vigorous investigations
of microcirculatory remodeling andmass transport.

DESIGN AND ASSEMBLY OF VESSEL-ON-A-
CHIP MODELS

Microfabricated vessels-on-a-chip have emerged as versa-
tile experimental platforms where different groups of vascu-
lar cells (e.g., ECs and SMCs) can be assembled, grown, and
perfused under very defined conditions in vitro. In turn,
long-standing questions regarding cell–cell (104–108) and
cell–ECM (109–111) interactions can be interrogated in
microfabricated vessels with high-resolution microscopy
(112) and high-throughput analysis (113). Furthermore,
microfluidic models have allowed researchers to obtain

further insights into vessel dysfunction that underlies cer-
tain disease conditions (114–117). Such examples include but
are not limited to sprouting angiogenesis (118, 119), vessel
permeability (120, 121), and tumor cell–vessel interactions
(122, 123). Aside from this, microfabricated vessels may pro-
vide a much more economical option for studying microvas-
cular function because of reduced reagent consumption
compared with established in vivo and in vitro assays (124).
Below, we provide an overview of the microfabrication tech-
niques that are commonly employed for engineering
microvessels.

Microchannel-Based Vessels-on-a-Chip

Many of the approaches for constructing microfabricated
vessels involve prepatterning ECs on a microchannel sur-
face. Various techniques have been developed for rapid pro-
totyping microchannels (125), yet easily the most widely
adopted method is soft lithography of poly(dimethylsilox-
ane) (PDMS) (126), which is an optically clear and gas-permea-
ble silicone elastomer. Soft lithography produces rectangular
microchannels with cross-sectional scales on the order of tens
to hundreds of micrometers, or comparable in dimensions to
microvessels. These length scales are amenable to soluble fac-
tor signaling via paracrine and autocrine processes (124).
Moreover, because of the small dimensions of microchannels,
the predominant flow regime is laminar (127), as specified by
Re (Eq. 3). Apart from manipulation of microchannel dimen-
sions, certain microfabrication techniques enable in vitro
recapitulation of in vivo geometric alterations to vascular
structures caused by branching (or bifurcations), aneurysms,
and stenosis (62, 128, 129).

The material properties of PDMS are conducive for rapid
prototyping of microchannels with high fidelity and effi-
ciency. In addition, PDMS possesses sufficient mechanical
integrity to facilitate connections to an external pumping
mechanism (e.g., programmable syringe pump) such that
cellular responses due to controlled levels of perfusion inside
microchannels can be assessed (130). However, one impor-
tant limitation of PDMS is that it is prone to nonspecific
absorption of proteins and hydrophobic drug molecules
(131), especially compared with other synthetic polymers
that are less commonly used for fabricating microchannels,
such as polystyrene and cyclo-olefin polymers (132). These
findings highlight the importance of material selection in
microfluidic device design, particularly for drug and toxicity
studies involving hydrophobic molecules (133). Moreover,
since PDMS is rigid and impermeable to water, the physical
and chemical properties of PDMS do not match those of
native tissue (26). Therefore, two approaches are typically
employed to improve the utility of PDMS-based microchan-
nels for studying microvascular transport. One approach is
to incorporate membrane filter inserts to create a semipo-
rous planar surface in multilayer PDMS microchannel sys-
tems (134, 135). This configuration recapitulates distinct
compartments for assessing functional tissue/vascular bar-
riers. Another approach for making PDMS-based microchan-
nels more tissuelike is to introduce a localized region of 3-D
tissue scaffold that is laterally adjacent to EC-lined micro-
channels. Themost commonly used tissue scaffold materials
for this PDMS-hydrogel hybrid configuration are natural
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hydrogels such as fibrin or type I collagen (136), which are
semiporous and can be readily remodeled by cells.
Therefore, the material and biologic characteristics of the
localized 3-D tissue scaffold enable mass transport of sig-
naling molecules by diffusion and convection and obser-
vation of multicellular sprouting angiogenesis (137, 138).

Another method for creating prepatterned microfabri-
cated vessels is to create a hydrogel-embedded lumen struc-
ture that is housed within a PDMS microchannel (139). This
approach produces a more physiological circular lumen
compared with the rectangular lumen of the PDMS-hydrogel
hybrid design described above. The most commonly used
method for creating hydrogel-embedded lumen structures is
to cast around a stainless steel cylindrical needle (140). This
method has been used to create vessels ranging in diameter
from 150 to 300mm (139). However, since the needle must be
removed after scaffold polymerization, this method can only
make a straight vessel geometry. Two techniques developed
by Beebe’s group have demonstrated branched hydrogel-em-
bedded lumen. One technique is viscous finger patterning
inside branched PDMS microchannels (141). The second
technique is casting hydrogel around a removable branched
PDMS mandrel or rod (142). In addition, more complex ves-
sel patterns can be fabricated in hydrogels with micropat-
terned PDMS stencils (119, 143) or a silicon master mold
(144).

A recent study by Mandrycky et al. (145) developed a spi-
ral microvessel model that evaluated the role of curvature
and torsion in EC response to flow . This model was fabri-
cated by casting either PDMS or collagen around a stain-
less steel spring (diameter of wire = 400 mm; diameter of
spring = 3mm), which was retracted with a custom two-
axis microcontroller to yield a continuous and spiral
microvessel. Although comparisons of EC responses to
laminar versus disturbed flow have been widely reported
(22), the effects of complex nondisturbed flows in curved
vessels has not been well studied. Here it was shown con-
vincingly that the secondary flows or Dean vortices that
were introduced because of the curvature of the spiral
microvessels (83, 84) altered EC phenotype and transcrip-
tional profiles compared with ECs in straight microvessels
of the same diameter. By employing advanced and crea-
tive microfabrication techniques, this study provided a
previously unavailable tool for in vitro studies that identi-
fied unique changes in ECs due to complex and heteroge-
neous vascular structures found in vivo (72).

3-D Bioprinted Vasculature

In the past decade or so, 3-D bioprinting, or the applica-
tion of additive manufacturing techniques for the biofab-
rication of living tissue, has rapidly ascended within
bioengineering research (146). 3-D printing has been
demonstrated to be a versatile and capable process for
constructing in vitro complex tissues and organs, includ-
ing vascular structures (147–151), with tailored biological
components and mechanical properties. As such, many
well-annotated review articles cover extensively the promis-
ing applications of bioprinting, as well as the various meth-
ods to bioprint (152–154). These methods include extrusion-
based bioprinting (EBB), droplet-based bioprinting (DBB),

laser-based bioprinting (LBB), and stereolithography. We
direct readers to the aforementioned review papers for more
detailed analysis of the different 3-D bioprintingmethods.

One approach for bioprinting perfusable thick (>1 cm)
vascularized tissue-on-chip was reported by Kolesky et al.
(155). This study employed a multimaterial 3-D bioprinting
method. To construct the vascular network, the authors
used a sacrificial ink that was first printed and then
removed inside a separately printed cell-laden ECM com-
prised of gelatin, fibrin, human mesenchymal stem cells
(hMSCs), human neonatal dermal fibroblasts (hNDFs), and a
matrix cross-linking agent. In this study, Pluronic F-127, a
thermally responsive hydrogel, was the sacrificial ink. The
Pluronic was dispensed through a tapered printing nozzle
(410mm in diameter) at room temperature and then cooled to
4�C, where it liquified and was washed away. Subsequently,
the interconnected channels were lined with human umbili-
cal vein ECs to form a perfusable vessel network that was
symmetrically branched to ensure uniform perfusion
throughout the tissue to provide the transport of nutrients,
O2, andwastematerials. The authors used this perfusable con-
struct to deliver specific differentiation factors to the tissue in
a more uniform manner than bulk delivery methods and
demonstrated precise control and differentiation of the
printed hMSCs toward an osteogenic lineage in situ.

Perfusable Vascular Beds Formed by Vasculogenic Self-
Assembly

Another widely used approach for microengineering
blood vessels in vitro is to apply principles of vasculogenic
self-assembly. In these de novo vasculogenesis models, ECs
are cocultured with either fibroblasts (104, 106) or mesen-
chymal stem cells (MSCs) (122) within a perfusable microtis-
sue chamber composed of 3-D ECM (most commonly fibrin
or type I collagen). Fibroblast-derived matrix proteins have
been shown to be essential for stable EC lumen formation in
vitro (156), and the resulting 3-D multicellular structures
formed in EC-fibroblast cocultures in microtissues emulate
the primitive vascular plexus generated by de novo vasculo-
genesis in vivo (1). Microvascular networks formed by self-as-
sembly have been shown to remain viable through 40days
when perfused with interstitial flow (157). Self-assembledmi-
crovascular networks have been used to study anastomosis
between vessel networks (104, 157) and cancer cell extravasa-
tion (122) and to screen for the efficacy of intravascular deliv-
ery of a chemotherapeutic agent (106), to name a few
applications.

APPLICATION OF VESSEL-ON-A-CHIP
MODELS FOR TRANSPORT STUDIES

O2 and Nutrient Transport

As demonstrated by the bioprinted example by Kolesky et
al. (155) above, O2 and nutrient transport are crucial factors
to consider when designing culture models that mimic phys-
iological microenvironments that affect cell behavior. The
approaches that have been used for generating either uni-
form hypoxia or oxygen gradients inmicrofluidic bioreactors
(158) include supplying O2/N2/CO2 gases at desired ratios
(159) and utilizing a chemical reaction of an O2 scavenger,
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such as sodium sulfite (Na2SO3) (160) or pyrogallol (161), that
is spatially confined from the cell culture region. A benefit of
the chemical scavenger is that O2 gradients can be generated
without additional instrumentation (e.g., hypoxia chamber
and gas controllers). These approaches have enabled studies
on the effects of O2 conditions on 3-Dmicrovascular network
formation (162), endothelial sprouting (38), and vessel per-
meability (163) inmicrofabricatedmodels.

Recently, Jomezadeh Kheibary et al. (164) developed a
mathematical model that determined the O2 tension condi-
tions needed within microfluidic bioreactors for normoxic
environments. The conditions for their study involved one
bioreactor, which comprised a microfluidic channel that
contained an O2-permeable membrane and one with an
impermeable membrane. The study examined how velocity,
cell density, and microchannel length affected the O2 ten-
sion within the system. The group also analyzed O2

conditions within a single bioreactor and between two
interconnected bioreactors. Results from the study dem-
onstrated that all of the aforementioned parameters
affected O2 tension. However, the group highlighted that
by utilizing an oxygenator in bioreactors with fixed flow
rates and varying the oxygenator’s length, the O2 concen-
tration can be manipulated. Moreover, it was emphasized
that future research should look into how O2 concentration
varies in multicellular systems because of the different
uptake rates between cells. This last point is especially im-
portant to consider because as researchers strive to make
engineered models more complex and physiologically rel-
evant, the use of multiple cell types should be imple-
mented. Nonetheless, this study provided the research
field with mathematical models to predict the variations
in O2 conditions within microfluidic bioreactors.

A report by Hsu et al. (165) provided a well-structured,
foundational study on physiological mass transport distribu-
tion within 3-D microtissue systems . Using the capacity of
microfluidic systems to precisely control the mass transport
parameters of Pe (Eq. 2), this study defined the ratio of con-
vection versus diffusion within the cellular microenviron-
ment that was conducive for vasculogenesis. The group’s
model was a microfluidic device with a microtissue chamber
containing 3-D fibrin gel seeded with normal human fibro-
blasts (NHLFs) and endothelial colony-forming cell-derived
ECs (ECFC-ECs) as the vascular cell type. The results from
this study showed that both interstitial flow (Pe> 10) and hy-
poxia (Pe<0.1) independently stimulated vasculogenesis.
However, intermediate flow conditions (0.1<Pe< 10), which
were representative of normal living tissue, resulted in no
initiation of vasculogenesis. Collectively, this study demon-
strated that vasculogenic response is a function of Pe and
elaborated on how flow conditions as well as O2 transport
conditions affect vessel network formation.

Much of the work on in silico approaches for studying mi-
crovascular remodeling and in vitro studies in microfabri-
cated vessels have been conducted in parallel to each other.
However, Kuzmic et al. (166) recently conducted a study in
which they developed combined mathematical and compu-
tational models for studying EC migration and angiogenesis
in microfluidic culture systems. Their models, which were
based on two preexisting mathematical models (167, 168),
were applied to predict the angiogenic responses due to a

vascular endothelial growth factor (VEGF) chemical gradient
in the defined microfluidic geometries. An important out-
come from this study was that the data generated will help
establish general design and operational guidelines for using
microfluidic systems. Typically, microfluidic-based experi-
ments rely heavily on trial-and-error methods with limited
systematic optimization. Moreover, this study provided a
theoretical basis for ECmigration and angiogenesis observed
inmicrofluidic experiments. The authors conclude that their
approach can be applied to different microfluidic geometries
and may provide a framework for designing more complex
microfabricated tissues. Furthermore, this study is a demon-
stration of the benefit of integrating mathematical and com-
putational modeling with microfluidic-based experiments
toward providing insights into fundamental angiogenesis
processes.

Modeling Functional Tissue/Vascular Barriers

As described above, the physiological and structural char-
acteristics of the microcirculation make it a selective barrier
for the exchange of nutrients and waste products between
blood and surrounding tissue or organ. In addition, micro-
vessel walls serve as an important barrier for drug transport
to tissue-resident cells (54). Parenchymal, stromal, and mu-
ral cells confer tissue-specific properties of blood vessels
through paracrine and juxtacrine interactions (46, 169). As
such, microfabricated systems have been widely applied to
model in vitro functional vascular/tissue barriers for evaluat-
ing tissue/organ-specific transport properties (170–172).
These engineered systems are widely referred to as organs-
on-a-chip and hold great promise for drug screening applica-
tions and creating patient-specific models for precisionmed-
icine (173). Here we highlight the application of organ-on-a-
chip technology for studying tissue/vascular barrier function
in the context of different human organ physiologies (Fig. 3).

A physiological barrier of great interest is the blood-brain
barrier (BBB) because it is highly selective to both efficacious
drug-loaded nanoparticles (NPs) and potential toxins (58).
Over the past several years, numerous microfabricated BBB
model systems have been developed (178–183). These models
typically consist of specialized vascular and perivascular
compartments composed of ECs and brain specific cells (e.g.,
astrocytes, brain pericytes), respectively, and aim to evaluate
signalingmechanisms that underlie BBB function. One strat-
egy for overcoming the transport obstacles posed by the BBB
is to use the physiological process of receptor-mediated
transcytosis (RMT) through brain ECs and toward the brain
parenchyma (184). A recently developed microfabricated
BBB model evaluated RMT mechanisms of functionalized
NPs (178). This study also 3-D mapped NP distributions in
the vascular and perivascular compartments. In addition,
Moya et al. (175) recently developed a novel reconfigurable
BBB model that allows for optimization of cellular orienta-
tion and physiologically relevant flow conditions. Most
microfabricated BBBmodels are composed of multilayer rec-
tangular channels that are separated by a filter insert.
However, one advantage of the BBB model developed by
Moya et al. is that it consists of a circular vessel lumen lined
with human brain ECs that is surrounded circumferentially
by an astrocyte-laden 3-Dhydrogel (Fig. 3A). This configuration
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enables uniform intravascular wall shear stress levels where
the ECs and astrocytes were cocultured for 28days.

Another widely studied tissue/vascular barrier is the
alveolar-capillary interface, which is the primary loca-
tion for gas exchange in lungs (185). Numerous microfab-
ricated models have been developed for evaluating
changes in barrier integrity at this important interface
due to toxic nanoparticles (186) and during pulmonary
edema (187). It is noted that these studies pioneered the
application of microfabricated systems as human cell
culture models for reconstituting the tissue-tissue inter-
faces that are critical to organ function. More recently,
Jain et al. (174) designed a lung alveolus-on-a-chip that
investigated inflammation-induced thrombosis (Fig. 3B).
These studies were enabled by perfusing through the vas-
cular channels whole blood, which contains the neces-
sary platelets and coagulation factors to form thrombi.
This model enabled the study of platelet-endothelial
interactions that underlie hemostasis regulation in a con-
text that is highly relevant to pulmonary pathophysio-
logy.

Other tissue/vascular barriers of great interest include the
glomerular filtration unit of the kidney nephron and the pla-
centa. Microfabricated models have successfully recreated
these physiological interfaces in vitro. Recently, Rayner et al.
(176) developed a kidney-on-a-chip model that allowed them
to look into the physiology of the renal vascular-tubule unit,
which is involved in blood filtration and nutrient exchange/
waste removal (Fig. 3C) (188). The human renal vascular-
tubule unit consists of a highly fenestrated endothelium (57)
and a tubular lumen separated by a basement membrane
layer. In the model developed by Rayner et al., microfabri-
cated vascular and renal tubular compartments, composed
of endothelial and kidney epithelial cells, respectively, were
seeded against a solute permeable collagen membrane that
can be remodeled by cells. This model was capable of

performing kidney-specific functions, including reabsorp-
tion of albumin and glucose from the epithelial channel.

During pregnancy, nutrient exchange between a mother
and a fetus is enabled by the placenta (189). Although the
junctional adhesion molecules are known to regulate the
paracellular permeability of placental microvessels (190), a
poor understanding of the etiology ofmany pregnancy disor-
ders has helped spur the development of microfabrica-
ted models for studying placental barrier function (191).
Recently, Yin et al. (177) developed a 3-D placenta-on-a-chip
model (Fig. 3D) to examine the consequences of environ-
mental exposure to titanium dioxide nanoparticles (TiO2-
NPs), which are manufactured in large quantities worldwide
for a variety of applications (192). Specifically, this study
evaluated the consequences of TiO2-NP exposure on the
structural integrity of the placenta immune cell responses.
This model featured both a maternal and a fetal side. TiO2-
NPs were introduced through a centered Matrigel inlet,
where they were allowed to flow toward the maternal side
(containing placental trophoblasts) or toward the fetal side
(containing human umbilical vein ECs). The configuration
of thismodel allowed evaluation of how TiO2-NPs can bypass
the placental barrier and enter toward the fetal bloodstream.
Therefore, this model holds promise for studying pregnancy
disorders that are characterized by impaired placental
function.

CONCLUSIONS AND FUTURE OUTLOOKS

As an advanced cell culture technology, microfabricated
vessels-on-a-chip have successfully recapitulated the mul-
ticellular, 3-D ECM, and structural components of blood
vessels of the microcirculation under well-controlled con-
ditions. Thus, as a collective, vessels-on-a-chip have pro-
ven to be a reliable and highly useful complement to in
vivo studies of microvascular physiology and function.

Figure 3. On-chip devices used to mimic various tissue/vascular functional barriers. A: blood brain barrier microfluidic model used to study nutrient
exchange/waste removal in order to develop new drug delivery therapies. B: alveolar-capillary interface microfluidic model used to study pulmonary
physiology in patients with thrombotic diseases. C: kidney-on-a-chip model utilized to study blood filtration and waste removal. D: human placenta-on-a-
chip model designed to examine the effects of nanoparticles transferred from the mother to the fetus via the placenta. In this model, human placental
trophoblast BeWo cells are cocultured with human umbilical vein endothelial cells (HUVECs). [Fig. 3A reproduced from Moya et al. (175), Fig. 3B from
Jain et al. (174), Fig. 3C from Rayner et al. (176), and Fig. 3D from Yin et al. (177), with permission.]
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This standing has been propelled by tremendous advances
in microfabrication and microfluidic techniques com-
bined with a deep understanding of vascular biology
and physiology. Further strengthening the integration
between microscale engineering technology and methods
from cell and molecular biology is imperative for the con-
tinued advancement of vessel-on-a-chip models.

The achievements of vessel-on-a-chip technology, particu-
larly in elucidating the physicochemical determinants of
sprouting angiogenesis and modeling tissue/vascular barriers,
for example, are certainly worthy of commendation by the sci-
entists in this research field. Yet despite this enthusiasm,
numerous challenges—and opportunities—remain. With
regard to angiogenesis, themajority of vessel-on-a-chipmodels
have focused on EC autonomous responses underlying vessel
sprouting and permeability. We still know less about the heter-
otypic cell–cell interactions between ECs and non-ECs (e.g.,
mural cells) that orchestrate angiogenesis and changes in ves-
sel permeability. Yet, we believe strongly that our understand-
ing of these processes is poised to advance rapidly with the
continued improvements in fabricatingmore biologically com-
plex and sophisticated vessel-on-a-chip models. Moreover,
although sprouting angiogenesis is now readily studied in
microfabricated vessels, cells and tissue in physiology can ac-
quire vasculature by other means such as intussusceptive
angiogenesis or vessel splitting (2). To our knowledge, intussus-
ceptive angiogenesis has not yet been replicated in microfabri-
cated vessels. Compared with vessel sprouting, much fewer
experimentalmodels are available for studying intussusception
(10). Consequently, much less is known about the underpin-
nings of intussusception versus sprouting. Future vessel-on-a-
chip models may help address this need to help improve the
quality and availability of models for studying intussusception
under well-controlledmicroenvironments.

Despite the very impressive advancements of vessel-on-a-
chipmodels, wemust surmise that at present the full pattern
of vascular remodeling is still beyond reach. For example,
current microfabricated vessels do not emulate the dynamic
complexity of the structural remodeling processes of angioa-
daptation (i.e., vessel pruning, constriction/dilation) along
different locations in the vascular plexus due to the local
metabolic and hemodynamic states (33, 48). However, since
the tissue oxygenation status is crucial for angioadaptation,
incorporating the underlying fundamental transport proper-
ties of O2 would benefit studies in microfabricated vessels.
One prospective approach for modulating the O2 environ-
ment is through intravascular delivery of O2-carrying nano-
particles that are capable of traversing inside engineered
microvessels (193, 194). Yet wemust also caution against rac-
ing to make vessel-on-a-chip models too complex, which
may diminish experimental robustness and reproducibility.
Furthermore, most vessel-on-a-chip models require micro-
fluidic and microfabrication expertise that is not accessible
to most biologists and physiologists. To address this need,
important advancements have been made in reconfigurable
“open microfluidic” systems that require only simple pipet-
ting for operation. Such models have been used to study
paracrine signaling mechanisms that facilitate angiogenesis
in 3-D ECMwith high throughput (195).

Computational models such as those described here have
informed the design of microfluidic in vitro systems. For

example, the work of Pries and Secomb has been widely
applied to inspire the structure and function of fabricated
microvessels. Their insights into the rheology and dynamics
of blood flow, and of red blood cell behavior at vessel bifurca-
tions, provide a basis of anticipated behavior in models that
consider these effects (113, 196–200). However, it is notable
that the hemodynamic stimuli included in these models are
wall shear stress and intravascular pressure but exclude trans-
vascular flow, which has been experimentally replicated with
microfabricated vessels and other in vitro models, and is a
potent morphogenetic mediator of the vasculature (67, 137,
139, 201–203). Computational models have also highlighted
areas in which new methods of investigating the underlying
mechanics are needed to deepen our understanding.
Goldman and Popel’s simulations investigating the role of tor-
tuous microvessel structure and vasomotion on O2 transport
garnered interest in fabricating in vitro models capable of
determining the role of blood rheology on blood flow oscilla-
tion independent from biological regulation in capillaries (90,
91, 204). Overall, these models have been important in
enhancing our knowledge of vascular physiology, and they
have potential to be applied to inform microfluidic design
and fabrication. Increasing the communication and collabora-
tion between these two areas may be a valuable way to aug-
ment both computational and microfluidic advances. This
highlights just one of many avenues for growth in the near
future as we seek to enhance the capabilities of in vitromicro-
systems in capturing physiological behavior.
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