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Before they even speak, infants become attuned to the sounds of the
language(s) they hear, processing native phonetic contrasts more
easily than non-native ones (1–3). For example, between 6-8 months
and 10-12 months, infants learning American English get better at
distinguishing English [ô] and [l], as in ‘rock’ vs ‘lock’, relative to
infants learning Japanese (4). Influential accounts of this early
phonetic learning phenomenon initially proposed that infants group
sounds into native vowel- and consonant-like phonetic categories—
like [ô] and [l] in English—through a statistical clustering mechanism
dubbed ‘distributional learning’ (5–8). The feasibility of this mech-
anism for learning phonetic categories has been challenged, how-
ever (9–16). Here we demonstrate that a distributional learning al-
gorithm operating on naturalistic speech can predict early phonetic
learning as observed in Japanese and American English infants, sug-
gesting that infants might learn through distributional learning after
all. We further show, however, that contrary to the original distri-
butional learning proposal, our model learns units too brief and too
fine-grained acoustically to correspond to phonetic categories. This
challenges the influential idea that what infants learn are phonetic
categories. More broadly, our work introduces a novel mechanism-
driven approach to the study of early phonetic learning, together with
a quantitative modeling framework that can handle realistic input.
This allows, for the first time, accounts of early phonetic learning
to be linked to concrete, systematic predictions regarding infants’
attunement.
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Adults have difficulties perceiving consonants and vowels1

of foreign languages accurately (17). For example, native2

Japanese listeners often confuse American English [ô] and [l]3

(as in ‘rock’ vs ‘lock’) (18, 19) and native American English4

listeners often confuse French [u] and [y] (as in ‘roue’, wheel,5

versus ‘rue’, street) (20). This phenomenon is pervasive (21)6

and persistent: even extensive, dedicated training can fail to7

eradicate these difficulties (22–24). The main proposed expla-8

nations for this effect revolve around the idea that adult speech9

perception involves a ‘native filter’: an automatic, involuntary10

and not very plastic mapping of each incoming sound, foreign11

or not, onto native phonetic categories, i.e. the vowels and con-12

sonants of the native language (25–29). American English [ô]13

and [l], for example, would be confused by Japanese listeners14

because their productions can be seen as possible realizations15

of the same Japanese consonant, giving rise to similar percepts16

after passing through the ‘native Japanese filter’.17

Surprisingly, these patterns of perceptual confusion arise18

very early during language acquisition. Infants learning Amer-19

ican English distinguish [ô] and [l] more easily than infants20

learning Japanese before they even utter their first word (4). 21

Dozens of other instances of such early phonetic learning have 22

been documented, whereby cross-linguistic confusion patterns 23

matching those of adults emerge during the first year of life 24

(2, 3, 30). These observations naturally led to the assump- 25

tion that the same mechanism thought to be responsible for 26

adults’ perception might be at work in infants, i.e. foreign 27

sounds are being mapped onto native phonetic categories. This 28

assumption—which we will refer to as the phonetic category 29

hypothesis—is at the core of the most influential theoretical 30

accounts of early phonetic learning (5–7, 25, 31). 31

The notion of phonetic category plays an important role 32

throughout the paper, so requires further definition. It has 33

been used in the literature exclusively to refer to vowel- or 34

consonant-like units. What that means varies to some extent 35

between authors, but there are at least two constant, defin- 36

ing characteristics (32). First, phonetic categories have the 37

characteristic size/duration of a vowel or consonant, i.e. the 38

size of a phoneme, the ‘smallest distinctive unit within the 39

structure of a given language’ (17, 33). This can be contrasted 40

with larger units like syllables or words and smaller units like 41

speech segments corresponding to a single period of vocal fold 42

vibration in a vowel. Second, phonetic categories—although 43
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they may be less abstract than phonemes∗—retain a degree of44

abstractness and never refer to a single acoustic exemplar. For45

example, we would expect a given vowel or consonant in the46

middle of a word repeated multiple times by the same speaker47

to be consistently realized as the same phonetic category, de-48

spite some acoustic variation across repetitions. Finally, an49

added characteristic in the context of early phonetic learning50

is that phonetic categories are defined relative to a language.51

What might count as exemplars from separate phonetic cate-52

gories for one language, might belong to the same category in53

another.54

The phonetic category hypothesis—that infants learn to55

process speech in terms of the phonetic categories of their56

native language—raises a question. How can infants learn57

about these phonetic categories so early? The most influential58

proposal in the literature has been that infants form phonetic59

categories by grouping the sounds they hear on the basis60

of how they are distributed in a universal (i.e. language-61

independent) perceptual space, a statistical clustering process62

dubbed ‘distributional learning’ (8, 10, 34, 35).63

Serious concerns have been raised regarding the feasibility64

of this proposal, however (12, 36). Existing phonetic category65

accounts of early phonetic learning assume that speech is being66

represented phonetic segment by phonetic segment—i.e. for67

each vowel and consonant separately—along a set of language-68

independent phonetic dimensions (6, 7, 25).† Whether it is69

possible for infants to form such a representation in a way that70

would enable distributional learning of phonetic categories71

is questionable, for at least two reasons. First, there is a72

lack of acoustic-phonetic invariance (37–39): there is not a73

simple mapping from speech in an arbitrary language to an74

underlying set of universal phonetic dimensions that could75

act as reliable cues to phonetic categories. Second, phonetic76

category segmentation—finding reliable language-independent77

cues to boundaries between phonetic segments (i.e. individual78

vowels and consonants)—is a hard problem (37). It is clear79

that finding a solution to these problems for a given language80

is ultimately feasible, as literate adults readily solve them for81

their native language. Assuming that infants are able to solve82

them from birth in a language-universal fashion is a much83

stronger hypothesis, however, with little empirical support.84

Evidence from modeling studies reinforces these concerns.85

Initial modeling work investigating the feasibility of learning86

phonetic categories through distributional learning sidestepped87

the lack of invariance and phonetic category segmentation prob-88

lems by focusing on drastically simplified learning conditions89

(40–45), but subsequent studies considering more realistic90

variability have failed to learn phonetic categories accurately91

(9, 12, 14, 15, 46, 47) (see Supplementary Discussion 1).92

These results have largely been interpreted as a challenge93

to the idea that distributional learning is how infants learn94

phonetic categories. Additional learning mechanisms tapping95

into other sources of information plausibly available to infants96

have been proposed (9–12, 14, 15, 36, 46, 47), but existing97

feasibility results for such complementary mechanisms still98

assume that the phonetic category segmentation problem has99

somehow been solved and do not consider the full variability of100

∗For example, the same phoneme might be realized as different phonetic categories depending on
the preceding and following sounds or on characteristics of the speaker.

† In some accounts, the phonetic dimensions are assumed to be ‘acoustic’ (25)—e.g. formant
frequencies—in other they are ‘articulatory’ (6)—e.g. the degree of vocal tract opening at a
constriction—and some accounts remain noncommittal (7).

natural speech (9, 12, 14, 15, 43, 46–48). Attempts to extend 101

them to more realistic learning conditions have failed (13, 16) 102

(see Supplementary Discussion 1). 103

Here, we propose a different interpretation for the observed 104

difficulty in forming phonetic categories through distributional 105

learning: it might indicate that what infants learn are not 106

phonetic categories. We are not aware of empirical results 107

establishing that infants learn phonetic categories, and indeed, 108

the phonetic category hypothesis is not universally accepted. 109

Some of the earliest accounts of early phonetic learning were 110

based on syllable-level categories and/or on continuous rep- 111

resentations without any explicit category representations‡
112

(49–52). Although they appear to have largely fallen out of 113

favor, we know of no empirical findings refuting them. 114

We present evidence in favor of this alternative interpreta- 115

tion, first by showing that a distributional learning mechanism 116

applied to raw, unsegmented, unlabeled continuous speech 117

signal predicts early phonetic learning as observed in Ameri- 118

can English- and Japanese-learning infants—thereby providing 119

the first realistic proof of feasibility for any account of early 120

phonetic learning. We then show that the speech units learned 121

through this mechanism are too brief and too acoustically 122

variable to correspond to phonetic categories. 123

We rely on two key innovations. First, whereas previous 124

studies followed an outcome-driven approach to the study 125

of early phonetic learning—starting from assumptions about 126

what was learned, before seeking plausible mechanisms to 127

learn it—we adopt a mechanism-driven approach—focusing 128

first on the question of how infants might plausibly learn 129

from realistic input, and seeking to characterize what was 130

learned only a posteriori. Second, we introduce a quantitative 131

modeling framework suitable to implement this approach at 132

scale using realistic input. This involves explicitly simulating 133

both the ecological learning process taking place at home and 134

the assessment of infants’ discrimination abilities in the lab. 135

Beyond the immediate results, the framework we introduce 136

is the first to provide a feasible way of linking accounts of 137

early phonetic learning to systematic predictions regarding the 138

empirical phenomenon they seek to explain, i.e. the observed 139

cross-linguistic differences in infants’ phonetic discrimination. 140

Approach 141

We start from a possible learning mechanism. We simulate 142

the learning process in infants by implementing this mecha- 143

nism computationally and training it on naturalistic speech 144

recordings in a target language—either Japanese or American 145

English. This yields a candidate model for the early phonetic 146

knowledge of, say, a Japanese infant. Next, we assess the 147

model’s ability to discriminate phonetic contrasts of Amer- 148

ican English and Japanese—for example American English 149

[ô] vs [l]—by simulating a discrimination task using speech 150

stimuli corresponding to this contrast. We test whether the 151

predicted discrimination patterns agree with the available em- 152

pirical record on cross-linguistic differences between American 153

‡Note that the claims in all the relevant theoretical accounts are for the formation of explicit represen-
tations, in the sense that they are assumed to be available for manipulation by downstream cogni-
tive processes at later developmental stages (see e.g. (7)). Thus, even if one might be tempted to
say that phonetic categories are implicitly present in some sense in a representation—for example
in a continuous representation exhibiting sharp increases in discriminability across phonetic cate-
gory boundaries (49)—unless a plausible mechanism by which downstream cognitive processes
could explicitly read out phonetic categories from that representation is provided, together with ev-
idence that infants actually use this mechanism, this would not be sufficient to support the early
phonetic category acquisition hypothesis.
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Fig. 1. Gaussian mixture model training and representation extraction, illustrated for a model with three Gaussian components. In practice the number of Gaussian components
is learned from the data and much higher. (a) Model training: the learning algorithm extracts moderate-dimensional (d=39) descriptors of the local shape of the signal
spectrum at time points regularly sampled every 10ms (speech frames). These descriptors are then considered as having been generated by a mixture of Gaussian probability
distributions, and parameters for this mixture that assign high probability to the observed descriptors are learned. (b) Model test: the sequence of spectral-shape descriptors for
a test stimulus (possibly in a language different from the training language) are extracted and the model representation for that stimulus is obtained as the sequence of posterior
probability vectors resulting from mapping each descriptor to its probability of having been generated by each of the Gaussian components in the learned mixture.

English- and Japanese-learning infants. Finally, we investigate154

whether what has been learned by the model corresponds to155

the phonetic categories of the model’s ‘native’ language (i.e.156

its training language).157

To identify a promising learning mechanism, we build on158

recent advances in the field of machine learning, and more159

specifically in unsupervised representation learning for speech160

technology, which have established that, given only raw, un-161

transcribed, unsegmented speech recordings, it is possible to162

learn representations that accurately discriminate the phonetic163

categories of a language (53–70). The learning algorithms con-164

sidered have been argued to be particularly relevant for model-165

ing how infants learn in general, and learn language in partic-166

ular (71). Among available learning algorithms, we select the167

one at the core of the winning entries in the Zerospeech 2015168

and 2017 international competitions in unsupervised speech169

representation learning (58, 59, 69). Remarkably, it is based170

on a Gaussian mixture clustering mechanism—illustrated in171

Figure 1 (a)—that can straightforwardly be interpreted as a172

form of distributional learning (8, 10). A different input repre-173

sentation to the Gaussian mixture is used than in previously174

proposed implementations of distributional learning, however175

(9, 12, 14, 40, 42, 44, 45). Simple descriptors of the shape176

of the speech signal’s short-term auditory spectrum sampled177

at regular points in time (every 10ms) (72) are used instead178

of traditional phonetic measurements obtained separately for179

each vowel and consonant, such as formant frequencies or180

harmonic amplitudes.§ This type of input representation only181

assumes basic auditory abilities from infants, which are known182

to be fully operational shortly after birth (75), and has been183

proposed previously as a potential way to get around both184

the lack of invariance and the phonetic category segmentation185

problems in the context of adult word recognition (37). A186

second difference from previous implementations of distribu-187

tional learning is in the output representation. Test stimuli188

are represented as sequences of posterior probability vectors189

(posteriorgrams) over K Gaussian components in the mixture190

(Figure 1 (b)), rather than simply being assigned to the most191

§There was a previous attempt to model infant phonetic learning from such spectrogram-like audi-
tory representations of continuous speech (73, 74), but we are the first to combine this modeling
approach with a suitable evaluation methodology.

Table 1. Language, speech register, duration and number of speak-
ers of training and test sets for our four corpora of speech recordings

Corpus Language Reg. Duration No. speakers

Train Test Train Test
R-Eng (84) Am. English Read 19h30 9h39 96 47
R-Jap (85) Japanese Read 19h33 9h40 96 47
Sp-Eng (86) Am. English Spont. 9h13 9h01 20 20
Sp-Jap (87) Japanese Spont. 9h11 8h57 20 20

likely Gaussian component. These continuous representations 192

have been shown to support accurate discrimination of native 193

phonetic categories in the Zerospeech challenges. 194

To simulate the infants’ learning process, we expose the 195

selected learning algorithm to a realistic model of the linguistic 196

input to the child, in the form of raw, unsegmented, untran- 197

scribed, multi-speaker continuous speech signal in a target 198

language (either Japanese or American English). We select 199

recordings of adult speech made with near field, high quality 200

microphones in two speech registers which cover the range of 201

articulatory clarity that infants may encounter. On one end of 202

the range, we use spontaneous adult directed speech, and on 203

the other, we use read speech; these two speaking registers are 204

crossed with the language factor (English, Japanese), resulting 205

in four corpora, each split into a training set and a test set 206

(Table 1). We would have liked to use recordings made in 207

infant’s naturalistic environments, but no such dataset of suf- 208

ficient audio quality was available for this study. It is unclear 209

whether or how using infant-directed speech would impact re- 210

sults: the issue of whether infant directed speech is beneficial 211

for phonetic learning has been debated, with arguments in 212

both directions (76–83). We train a separate model for each 213

of the four training sets, allowing us to check that our results 214

hold across different speech registers and recording conditions. 215

We also train separate models on 10 subsets of each training 216

set for several choices of subset sizes, allowing us to assess the 217

effects of varying the amount of input data and the variability 218

due to the choice of training data for a given input size. 219

We next evaluate whether the trained ‘Japanese native’ and 220

‘American-English native’ models correctly predict early pho- 221

netic learning as observed in Japanese-learning and American 222

Schatz et al. PNAS | January 28, 2021 | vol. XXX | no. XX | 3
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English-learning infants, respectively, and whether they make223

novel predictions regarding the differences in speech discrimi-224

nation abilities between these two populations. Because we do225

not assume that the outcome of infants’ learning is adult-like226

knowledge, we can only rely on infant data for evaluation. The227

absence of specific assumptions a priori about what is going228

to be learned, and the sparsity of empirical data on infant229

discrimination, makes this challenging. The algorithm we230

consider outputs complex, high-dimensional representations231

(Figure 1 (b)) that are not easy to link to concrete predic-232

tions regarding infant discrimination abilities. Traditional233

signal detection theory models of discrimination tasks (88)234

cannot handle high-dimensional perceptual representations,235

while more elaborate (Bayesian) probabilistic models (89) have236

too many free parameters given the scarcity of available data237

from infant experiments. We rely instead on the machine ABX238

approach that we previously developed (90, 91). It consists239

of a simple model of a discrimination task, which can handle240

any representation format provided the user can provide a241

reasonable measure of (dis)similarity between representations242

(90, 91). This is not a detailed model of infant’s performance243

in a specific experiment, but rather a simple and effectively244

parameterless way to systematically link the complex speech245

representations produced by our models to predicted discrim-246

ination patterns. For each trained model and each phonetic247

contrast of interest, we obtain an ‘ABX error rate’ such that 0%248

and 50% error indicate perfect and chance-level discrimination,249

respectively. This allows us to evaluate the qualitative match250

between the model’s discrimination abilities and the available251

empirical record in infants (see Supplementary Discussion 3252

for an extended discussion of our approach to interpreting the253

simulated discrimination errors and relating them to empirical254

observations, including why it would not be meaningful to255

seek a quantitative match at this point).256

Finally, we investigate whether the learned Gaussian com-257

ponents correspond to phonetic categories. We first compare258

the number of Gaussians in a learned mixture to the num-259

ber of phonemes in the training language (category number260

test): although a phonetic category can be more concrete than261

a phoneme, the number of phonetic categories documented262

in typical linguistic analyses remains on the same order of263

magnitude as the number of phonemes. We then administer264

two diagnostic tests based on the two defining characteris-265

tics identified above that any representation corresponding to266

phonetic categories should pass.¶ The first characteristic is267

size/duration: a phonetic category is a phoneme-sized unit268

(i.e. the size of a vowel or a consonant). Our duration test269

probes this by measuring the average duration of activation of270

the learned Gaussian components (a component is taken to be271

‘active’ when its posterior probability is higher than all other272

components), and comparing this to the average duration of273

activation of units in a baseline system trained to recognize274

phonemes with explicit supervision. The second characteris-275

tic is abstractness: although phonetic categories can depend276

on phonetic context‖ and on non-linguistic properties of the277

speech signal—e.g. the speaker’s gender—at a minimum, the278

¶This provides necessary but not sufficient conditions for ‘phonetic categoriness’, but since we will
see that the representations learned in our simulations already fail these tests, more fine-grained
assessments will not be required.

‖For example, in the American English word ‘top’ the phoneme /t/ is realized as an aspirated con-
sonant [th ] (i.e. there is a slight delay before the vocal folds start to vibrate after the consonant),
whereas in the word ‘stop’ it is realized as a regular voiceless consonant [t], which might be con-
sidered to correspond to a different phonetic category than [th ].

central phone in the same word repeated several times by the 279

same speaker is expected to be consistently realized as the 280

same phonetic category. Our acoustic (in)variance test probes 281

this by counting the number of distinct representations needed 282

by our model to represent ten occurrences of the central frame 283

of the central phone of the same word either repeated by the 284

same speaker (within speaker condition) or by different speak- 285

ers (across speaker condition). We use a generous correction 286

to handle possible misalignment (see Materials and Methods). 287

The last two tests can be related to the phonetic category 288

segmentation and lack of invariance problems: solving the 289

phonetic category segmentation problem involves finding units 290

that would pass the duration test, while solving the lack of 291

invariance problem involves finding units that would pass the 292

acoustic (in)variance test. Given the laxity in the use of the 293

concept of phonetic category in the literature, some might be 294

tempted to challenge that even these diagnostic tests can be 295

relied on. If they cannot, however, it is not clear to us how 296

phonetic category accounts of early phonetic learning should 297

be understood as scientifically refutable claims. 298

Results 299

Overall discrimination. After having trained a separate model 300

for each of the four possible combinations of language and 301

register, we test whether the models’ overall discrimination 302

abilities, like those of infants (2, 3, 30), are specific to their 303

‘native’ (i.e. training) language. Specifically, for each corpus, 304

we look at overall discrimination errors averaged over all conso- 305

nant and vowel contrasts available in a held-out test set from 306

that corpus (See Table 1). We tested each of the two American 307

English-trained and each of the two Japanese-trained models 308

on each of four test sets, yielding a total of 4×4 discrimination 309

errors. We tabulated the average errors in terms of 4 conditions 310

depending on the relation between the test set and the training 311

background of the model: native versus non-native contrasts 312

and same versus different register. The results are reported in 313

Figure 2 (see also Figures S1, S4 for non-tabulated results). 314

Panel (a) shows that discrimination performance is higher 315

on average in matched-language conditions (in blue) than in 316

mismatched-language conditions (in red). In contrast, register 317

mismatch has no discernible impact on discrimination perfor- 318

mance. A comparison with a supervised phoneme recognizer 319

baseline (Figure S3) shows a similar pattern of results, but 320

with a larger absolute cross-linguistic difference. If we interpret 321

this supervised baseline as a proxy to the adult state, then our 322

model suggests that infant’s phonetic representations, while al- 323

ready language-specific, remain ‘immature’.∗∗ Panel (b) shows 324

the robustness of these results, with 81.7% of the 1295 distinct 325

phonetic contrasts tested proving easier to discriminate on the 326

basis of representations from a model trained on the matching 327

language. Taken together, these results suggest that, similar to 328

infants, our models acquire language-specific representations, 329

and that these representations generalize across register. 330

American English [ô]-[l] discrimination. Next, we focus on the 331

specific case of American English [ô]-[l] discrimination, for 332

which Japanese adults show a well-documented deficit (18, 19) 333

and which has been studied empirically in American English 334

and Japanese infants (4). While 6- to 8-month-old infants 335

∗∗This is compatible with empirical evidence that phonetic learning continues into childhood well
beyond the first year (see 92–94, for example).
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Fig. 2. (a) Average ABX error rates over all consonant and vowel contrasts obtained
with our models as a function of the match between the training set and test set
language and register. Error bars correspond to plus and minus one standard deviation
of the errors across resampling of the test stimuli speakers. The ‘Native’ (blue)
conditions, with training and test in the same language, show fewer discrimination
errors than the ‘Non-native’ (red) conditions, whereas there is little difference in
error rate within the ‘Native’ and within the ‘Non-native’ conditions. This shows
that the models learned native-language specific representations that generalize
across register. (b) Letter-value representation (95) of the distribution of ‘native’
advantages across all tested phonetic contrasts (pooled over both languages). The
native language advantage is the increase in discrimination error for a contrast of
language L1 between a ‘L1-native’ model and a model trained on the other language,
for the same training register. The ‘native register’ advantage is the increase in error
for a contrast of register R1 between a ‘R1-native’ model and a model trained on
the other register, for the same training language. A native language advantage is
observed across contrasts (positive advantage for 81.7% of all contrasts) and there
is a weaker native register advantage (positive advantage for 60.1% of all contrasts).

from American English and Japanese language backgrounds336

performed similarly in discriminating this contrast, 10- to337

12-month-old American English infants outperformed their338

Japanese peers. We compare the discrimination errors ob-339

tained with each of our four models for American English340

[ô]-[l] and for two controls: the American English [w]-[j] con-341

trast (as in ‘wet’ versus ‘yet’), for which we do not expect a342

gap in performance between American English and Japanese343

natives (96), and the average error over all the other conso-344

nant contrasts of American English. For each contrast and345

for each of the four models, we average discrimination errors346

obtained on each of the two American English held-out test347

sets, yielding 3×4 discrimination errors. We further average348

over models with the same ‘native’ language to obtain 3×2349

discrimination errors. The results are shown in Figure 3 (see350

also Figures S2 and S6 for untabulated results and a test351

confirming our results with the synthetic stimuli used in the352

original infant experiment, respectively). In panel (a), we353

see that, similar to 10- to 12-month old infants, American354

English ‘native’ models (in blue) greatly outperform Japanese355

‘native’ models (in red) in discriminating American English [ô]-356

[l]. Here again a supervised phoneme recognizer baseline yields357

a similar pattern of results, but with larger cross-linguistic358

differences (panel (c), see also Figure S5), again suggesting359

that the representations learned by the unsupervised models—360

like those of infants—remain somewhat ‘immature’. In panel361

(b), we see results obtained by training ten different models362

on ten different subsets of the training set of each corpus,363

varying the sizes of the subsets (see Materials and Methods364

for more details). It reveals that one hour of input is sufficient365

for the divergence between the Japanese and English models366

to emerge robustly, and that this divergence increases with ex-367

posure to the native language. While it is difficult to interpret 368

this trajectory relative to absolute quantities of data or dis- 369

crimination scores, the fact that the cross-linguistic difference 370

increases with more data mirrors the empirical findings from 371

infants (see also an extended discussion of our approach to 372

interpreting the simulated discrimination errors and relating 373

them to empirical data in Supplementary Discussion 3). 374

Nature of the learned representations. Finally, we consider the 375

nature of the learned representations and test whether what 376

has been learned can be understood in terms of phonetic cat- 377

egories. Results are reported in Figure 4 (see also Figure S7 378

for comparisons with a different supervised baseline). First, 379

looking at the category number criterion in Figure 4 (a), we 380

see that our models learned more than ten times as many 381

categories as the number of phonemes in the corresponding 382

languages. Even allowing for notions of phonetic categories 383

more granular than phonemes, we are not aware of any pho- 384

netic analysis ever reporting that many allophones in these 385

languages. Second, looking at the duration criterion in Fig- 386

ure 4 (b), the learned Gaussian units appear to be activated 387

on average for about a quarter the duration of a phoneme. 388

This is shorter than any linguistically identified unit. It shows 389

that the phonetic category segmentation problem has not been 390

solved. Next, looking at the acoustic (in)variance criterion in 391

Figure 4 (c) and (d)—for the within and across speakers condi- 392

tions, respectively—we see that our models require on average 393

around two distinct representations to represent ten tokens of 394

the same phonetic category without speaker variability, and 395

three distinct representations across different speakers. The 396

supervised phoneme recognizer baseline establishes that our 397

results cannot be explained by defective test stimuli. Instead, 398

this result shows that the learned units are finer-grained than 399

phonetic categories along the spectral axis, and that the lack of 400

invariance problem has not been solved. Based on these tests, 401

we can conclude that the learned units do not correspond to 402

phonetic categories in any meaningful sense of the term. 403

Discussion 404

Through explicit simulation of the learning process under re- 405

alistic learning conditions, we showed that several aspects of 406

early phonetic learning as observed in American English and 407

Japanese infants can be correctly predicted through a distribu- 408

tional learning (i.e. clustering) mechanism applied to simple 409

spectrogram-like auditory features sampled at regular time 410

intervals. This is the first time that a potential mechanism for 411

early phonetic learning is shown to be feasible under realistic 412

learning conditions. We further showed that the learned speech 413

units are too brief and too acoustically variable to correspond 414

to the vowel- and consonant-like ‘phonetic categories’ posited 415

in earlier accounts of early phonetic learning. 416

Distributional learning has been an influential hypothesis 417

in language acquisition for over a decade (8, 10, 35). Previous 418

modeling results questioning the feasibility of learning phonetic 419

categories through distributional learning have traditionally 420

been interpreted as challenging the learning mechanism (9– 421

12, 14, 15, 36, 46, 47), but we have instead suggested that 422

such results may be better interpreted as challenging the 423

idea that phonetic categories are the outcome of early pho- 424

netic learning. Supporting this view, we showed that when 425

the requirement to learn phonetic categories is abandoned, 426
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Fig. 3. (a) ABX error rates for the American English [ô]-[l] contrast and two controls: American English [w]-[j] and average over all American English consonant contrasts (C-C).
Error rates are reported for two conditions: average over models trained on American English and average over models trained on Japanese. Error bars correspond to plus and
minus one standard deviation of the errors across resampling of the test stimuli speakers. Similar to infants, the Japanese ‘native’ models exhibit a specific deficit for American
English [ô]-[l] discrimination compared to the ‘American English’ models. (b) The robustness of the effect observed in panel (a) to changes in the training stimuli and their
dependence on the amount of input are assessed by training separate models on independent subsets of the training data of each corpus of varying duration (see Materials
and Methods). For each selected duration (except when using the full training set), ten independent subsets are selected and ten independent models are trained. We report
mean discrimination errors for American English [ô]-[l] and [w]-[j] as a function the amount of input data, with error bands indicating plus or minus one standard deviation. The
results show that a deficit in American English [ô]-[l] discrimination for ‘Japanese-native’ models robustly emerges with as little as 1h of training data. (c) To give a sense of scale
we compare the cross-linguistic difference obtained with the unsupervised Gaussian mixture models on American English [ô]-[l] (GMM, left) to the one obtained with supervised
phoneme recognizer baselines (HMM, right). The larger cross-linguistic difference obtained with the supervised baselines suggests that the representations learned by our
unsupervised models, similar to those observed in infants, remain somewhat immature.

distributional learning on its own can be very effective, lead-427

ing to the first realistic demonstration of feasibility—using428

unsegmented, untranscribed speech signal as input—for any429

mechanism for early phonetic learning. Our results are still430

compatible with the idea that mechanisms tapping into other431

relevant sources of information might complement distribu-432

tional learning—an idea supported by evidence that infants433

learn from some of these sources in the lab (97–103)—but434

they suggest that those other sources of information may not435

play a role as crucial as previously thought (10). Our findings436

also join recent accounts of ‘word segmentation’ (104) and437

the ‘language familiarity effect’ (105) in questioning whether438

we might have been over-attributing linguistic knowledge to439

pre-verbal infants across the board.440

A new account of early phonetic learning. Our results suggest441

an account of phonetic learning that substantially differs from442

existing ones. Whereas previous proposals have been primarily443

motivated through an outcome-driven perspective—starting444

from assumptions about what it is about language that is445

learned—the motivation for the proposed account comes from446

a mechanism-driven perspective—starting from assumptions447

about how learning might proceed from the infant’s input.448

This contrast is readily apparent in the choice of the initial449

speech representation upon which the early phonetic learning450

process operates (the input representation). Previous accounts451

assumed speech to be represented innately through a set of 452

universal (i.e. language-independent) phonetic feature detec- 453

tors (5–7, 25, 31, 49–52). The influential phonetic category 454

accounts furthermore assumed these features to be available 455

phonetic segment by phonetic segment (i.e. for each vowel and 456

consonant separately) (5–7, 25, 31). While these assumptions 457

are attractive from an outcome-driven perspective—they con- 458

nect transparently to phonological theories in linguistics and 459

theories of adult speech perception that assume a decomposi- 460

tion of speech into phoneme-sized segments defined in terms 461

of abstract phonological features—from a mechanism-driven 462

perspective, both assumptions are difficult to reconcile with 463

the continuous speech signal that infants hear. The lack of 464

acoustic-phonetic invariance problem challenges the idea of 465

phonetic feature detectors, and the phonetic category segmen- 466

tation problem challenges the idea that the relevant features 467

are segment-based (37–39). The proposed account does not 468

assume either problem to be solved by infants at birth. In- 469

stead, it relies on basic auditory abilities that are available to 470

neonates (75), using simple auditory descriptors of the speech 471

spectrum obtained regularly along the time axis. This type 472

of spectrogram-like representation is effective in speech tech- 473

nology applications (72) and can be seen as the output of 474

a simple model of the peripheral auditory system (91, chap. 475

3), which is fully operational shortly after birth (75). Such 476

representations have also been proposed before as an effective 477
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Fig. 4. Diagnostic test results for our four unsupervised Gaussian mixture models (in beige) and phoneme recogniser baselines trained with explicit supervision (in pink). Top
row: American English ‘native’ models. Bottom row: Japanese ‘native’ models. Models are tested on read speech in their ‘native’ language. (a) Number of units learned by the
models. Gaussian mixtures discover ten to twenty times more categories than there are phonemes in the training language, exceeding any reasonable count for phonetic
categories. (b) Average duration of activation of the learned units. The average duration of activation of each unit is computed and the average and standard deviation of the
resulting distribution over units are shown. Learned Gaussian units get activated on average for about the quarter of the duration of a phoneme. They are thus much too ‘short’
to correspond to phonetic categories. (c) Average number of distinct representations for the central frame of the central phone for ten repetitions of a same word by the same
speaker, corrected for possible misalignment. The number of distinct representations is computed for each word type with sufficient repetitions in the test set and the average
and standard deviation of the resulting distribution over word types are shown. The phoneme recogniser baseline reliably identifies the ten tokens as exemplars from a common
phonetic category, whereas our Gaussian mixture models typically maintain on the order of two distinct representations, indicating representations too fine-grained to be
phonetic categories. (d) As in (c) but with repetitions of a same word by ten speakers, showing that the learned Gaussian units are not speaker-independent.

way to get around both the lack of invariance and the phonetic478

category segmentation problems in the context of adult word479

recognition (37) and can outperform representations based on480

traditional phonetic measurements (like formant frequencies)481

as predictors of adult speech perception (106–110).482

While the input representation is different, the learning483

mechanism in the proposed account—distributional learning—484

is similar to what had originally been proposed in phonetic485

category accounts. Infants’ abilities, both in the lab (8, 35)486

and in ecological conditions (34), are consistent with such a487

learning mechanism. Moreover, when applied to the input488

representation considered in this paper, distributional learning489

is adaptive in that it yields speech representations that can490

support remarkably accurate discrimination of the phonetic491

categories of the training language, outperforming a number of492

alternatives that have been proposed for unsupervised speech493

representation learning (58, 59, 69).494

As a consequence of our mechanism-driven approach, what495

has been learned needs to be determined a posteriori based496

on the outcomes of learning simulations. The speech units497

learned under the proposed account accurately model infants’498

discrimination, but are too brief and acoustically variable499

to correspond to phonetic categories, failing in particular to500

provide a solution to the lack of invariance and phonetic501

category segmentation problems (37). Such brief units do502

not correspond to any previously identified linguistic unit (32)503

(see Supplementary Discussion 4 for a discussion of possible504

reasons why the language acquisition process might involve505

the learning by infants of a representation with no established506

linguistic interpretation, and a discussion of the biological507

and psychological plausibility of the learned representation),508

and it will be interesting to try to further understand their509

nature. However, since there is no guarantee that a simple510

characterization exists, we leave this issue for future work.511

Phonetic categories are often assumed as precursors in ac- 512

counts of phenomena occurring later in the course of language 513

acquisition. Our account does not necessarily conflict with 514

this view, as phonetic categories may be learned later in de- 515

velopment, before phonological acquisition. Alternatively, the 516

influential PRIMIR account of early language acquisition (7) 517

proposes that infants learn in parallel about the phonetics, 518

word-forms, and phonology of their native language, but do 519

not develop abstract phonemic representations until well into 520

their second year of life. Although PRIMIR explicitly assumes 521

phonetic learning to be phonetic category learning, other as- 522

pects of their proposed framework do not depend on that 523

assumption, and our framework may be able to stand in for 524

the phonetic learning process they assume. 525

To sum up, we introduced and motivated a new account of 526

early phonetic learning and showed that it is feasible under 527

realistic learning conditions, which cannot be said of any other 528

account at this time. Importantly, this does not constitute 529

decisive evidence for our account over alternatives. Our pri- 530

mary focus has been on modeling cross-linguistic differences 531

in the perception of one contrast, [ô]-[l]; further work is neces- 532

sary to determine to what extent our results extend to other 533

contrasts and languages (111). Furthermore, an absence of 534

feasibility proof does not amount to a proof of infeasibility. 535

While we have preliminary evidence that simply forcing the 536

model to learn fewer categories is unlikely to be sufficient (Fig- 537

ures S9 and S10), recently proposed partial solutions to the 538

phonetic category segmentation problem (e.g. (112–114)) and 539

to the lack of invariance problem (115) (see also Supplemen- 540

tary Discussion 2 regarding the choice of model initialization) 541

might yet lead to a feasible phonetic category-based account, 542

for example. In addition, a number of other representation 543

learning algorithms proposed in the context of unsupervised 544

speech technologies and building on recent developments in the 545
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field of machine learning have yet to be investigated (53–70).546

They might provide concrete implementations of previously547

proposed accounts of early phonetic learning or suggest new548

ones altogether. This leaves us with a large space of appeal-549

ing theoretical possibilities, making it premature to commit550

to a particular account. Candidate accounts should instead551

be evaluated on their ability to predict empirical data on552

early phonetic learning, which brings us to the second main553

contribution of this article.554

Toward predictive theories of early phonetic learning. Almost555

since the original empirical observation of early phonetic556

learning (1), a number of theoretical accounts of the phe-557

nomenon have co-existed (6, 25, 49, 50). This theoretical558

under-determination has typically been thought to result from559

the scarcity of empirical data from infant experiments. We ar-560

gue instead that the main limiting factor on our understanding561

of early phonetic learning might have been the lack—on the562

theory side—of a practical method to link proposed accounts563

of phonetic learning with concrete, systematic predictions re-564

garding the empirical discrimination data they seek to explain.565

Establishing such a systematic link has been challenging due566

to the necessity of dealing with the actual speech signal, with567

all its associated complexity. The modeling framework we568

introduce provides, for the first time, a practical and scalable569

way to overcome these challenges and obtain the desired link570

for phonetic learning theories—a major methodological ad-571

vance, given the fundamental epistemological importance of572

linking explanandum and explanans in scientific theories (116).573

Our mechanism-driven approach to obtaining predictions—574

which can be applied to any phonetic learning model imple-575

mented in our framework—consists first of explicitly simulating576

the early phonetic learning process as it happens outside of577

the lab, which results in a trained model capable of mapping578

any speech input to a model representation for that input.579

The measurement of infants’ perceptual abilities in labora-580

tory settings—including their discrimination of any phonetic581

contrast—can then be simulated on the basis of the model’s582

representations of the relevant experimental stimuli. Finally,583

phonetic contrasts for which a significant cross-linguistic differ-584

ence is robustly predicted can be identified through a careful585

statistical analysis of the simulated discrimination judgments586

(see Supplementary Materials and Methods 4). As an illus-587

tration of how such predictions can be generated, we report588

specific predictions made by our distributional learning model589

in Table S1 (see also Supplementary Discussion 5).590

Although explicit simulations of the phonetic learning pro-591

cess have been carried out before (9, 12, 14, 15, 40–49, 73, 74),592

those have typically been evaluated based on whether they593

learned phonetic categories, and have not been directly used594

to make predictions regarding infants’ discrimination abilities.595

An outcome-driven approach to making predictions regarding596

discrimination has typically been adopted instead, starting597

from the assumption that phonetic categories are the outcome598

of learning. To the best of our knowledge this has never re-599

sulted in the kind of systematic predictions we report here,600

however (see Supplementary Discussion 6 for a discussion of601

the limits of previous approaches and of the key innovations602

underlying the success of our framework).603

Our framework readily generates novel, empirically testable,604

predictions regarding infants’ discrimination, yet further com-605

putational modeling is called for before we return to experi-606

ments. Indeed, existing data—collected over more than three 607

decades of research (2, 3, 21, 30)—might already suffice to dis- 608

tinguish between different learning mechanisms. To make that 609

determination, and to decide which contrasts would be most 610

useful to test next in case more data are needed, many more 611

learning mechanisms and training/test language pairs will 612

need to be studied. Even for a specified learning mechanism 613

and training/test datasets, multiple implementations should 614

ideally be compared (e.g. testing different parameter settings 615

for the input representations or the clustering algorithm), as 616

implementational choices that weren’t initially considered to 617

be important might nevertheless have an effect on the result- 618

ing predictions and thus need to be included in our theories. 619

Conversely, features of the model that may seem important a 620

priori (e.g. the type of clustering algorithm used) might turn 621

out to have little effect on the learning outcomes in practice. 622

Cognitive science has not traditionally made use of such 623

large-scale modeling, but recent advances in computing power, 624

large datasets, and machine learning algorithms make this 625

approach more feasible than ever before (71). Together with 626

ongoing efforts in the field to collect empirical data on a 627

large scale—such as large-scale recordings of infants’ learning 628

environment at home (117) and large-scale assessment of in- 629

fants’ learning outcomes (118, 119)—our modeling approach 630

opens the path towards a much deeper understanding of early 631

language acquisition. 632

Materials and Methods 633

634

Datasets. We used speech recordings from four corpora: two corpora 635

of read news articles—a subset of the Wall Street Journal corpus 636

of American English (84) (WSJ) and the Globalphone corpus of 637

Japanese (85) (GPJ)—and two corpora of spontaneous speech—the 638

Buckeye corpus of American English (86) (BUC) and a subset of 639

the corpus of spontaneous Japanese (87) (CSJ). As we are primarily 640

interested in the effect of training language on discrimination abili- 641

ties, we sought to remove possibly confounding differences between 642

the two read corpora and between the two spontaneous corpora. 643

Specifically, we randomly sampled sub-corpora while matching total 644

duration, number and gender of speakers and amount of speech per 645

speaker. We made no effort to match corpora within a language, 646

as the differences (for example in the total duration and number 647

of speakers) only serve to reinforce the generality of any result 648

holding true for both registers. Each of the sampled subsets was 649

further randomly divided into a training and a test set (see Table 650

1), satisfying three conditions: the test set lasts approximately ten 651

hours; no speaker is present in both the training and test set; the 652

training and test sets for the two read corpora, and separately for 653

the two spontaneous corpora, remain matched on overall duration, 654

number of speakers of each gender and distribution of duration per 655

speaker of each gender. To carry out analyses taking into account 656

the effect of input size and of the choice of input data, we further 657

divided each training set in ten with each 1/10th subset containing 658

an equal proportion of the speech samples from each speaker in the 659

original training set. We then divided each of the 1/10th subset in 660

ten again following the same procedure and select the first subset 661

to obtain ten 1/100th subsets. Finally, we iterated the procedure 662

one more time to obtain ten 1/1000th subsets. See Supplementary 663

Materials and Methods 1 for additional information. 664

Signal processing, models and inference. The raw speech signal is 665

decomposed into a sequence of overlapping 25ms-long frames sam- 666

pled every 10ms and moderate-dimensional (d=39) descriptors of 667

the spectral shape of each frame are then extracted, describing how 668

energy in the signal spreads across different frequency channels. 669

The descriptors are comprised of 13 mel-frequency cepstral coeffi- 670

cients (MFCC) with their first and second time derivatives. These 671
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Fig. 5. Generative Gaussian mixture model with Dirichlet process prior with normal-
inverse-Wishart base measure, represented as a graphical model in plate notation
based on the stick-breaking construction of Dirichlet processes.

coefficients correspond approximately to the principal components672

of spectral slices in a log-spectrogram of the signal, where the spec-673

trogram frequency channels are selected on a mel frequency scale674

(linear for lower frequency and logarithmic for higher frequencies,675

matching the frequency selectivity of the human ear).676

For each corpus, the set of all spectral-shape descriptors for677

the corpus’ training set is modeled as a large i.i.d. sample from a678

probabilistic generative model. The generative model is a Gaussian679

mixture model with no restrictions on the form of covariance ma-680

trices and with a Dirichlet process prior over its parameters with681

Normal-inverse-Wishart base measure. The generative model is682

depicted as a graphical model in plate notation in Figure 5, where n683

is the number of input descriptors, (X1, X2, ..., Xn) are the random684

variables from which the observed descriptors are assumed to be685

sampled and the other elements are latent variables and hyper-686

parameters. The depicted variables have the following conditional687

distributions:688

Xi | zi, (µ1, µ2, ...), (Λ1,Λ2, ...) ∼ N (µzi ,Λ
−1
zi )

µk | Λk, µ0, λ ∼ N (µ0, (λΛk)−1)
Λk | Λ0, ν ∼ W(Λ0, ν)
zi | π ∼ Multi(π)
π | α ∼ SB(α)

689

for any 1 ≤ i ≤ n, for any k ∈ {1, 2, ...}, with N the multivari-690

ate Gaussian distribution, W the Wishart distribution, Multi the691

generalisation of the usual multinomial probability distribution to692

an infinite discrete support and SB, the mixing weights generating693

distribution from the stick-breaking representation of Dirichlet pro-694

cesses (120). Mixture parameters with high posterior probability695

given the observed input features vectors and the prior are found696

using an efficient parallel Markov chain Monte Carlo sampler (121).697

Following previous work (61, 66), model initialization is performed698

by partitioning training points uniformly at random into ten clus-699

ters and the hyperparameters are set as follows: α to 1, µ0 to the700

average of all input features vectors, λ to 1, λ0 to the inverse of the701

covariance of all input feature vectors and ν to 42 (i.e. the spectral702

shape descriptors dimension plus three). We additionally train a703

model on each of the ten 1/10th, 1/100th and 1/1000th training704

subsets of each of the four corpora, following the same procedure.705

Given a trained Gaussian mixture with K components, mix-706

ing weights (π1, π2, ..., πK), means (µ1, µ2, ..., µK) and covariance707

matrices (Σ1,Σ2, ...,ΣK), we extract a test stimulus representa-708

tion from the sequence (x1, x2, ..., xm) of spectral-shape descrip-709

tors for that stimulus, as the sequence of posterior probabil-710

ity vectors (p1, p2, ..., pm) where for any frame i, 1 ≤ i ≤ m,711

pi = (pi1, pi2, ..., piK), with, for any 1 ≤ k ≤ K:712

pik =
πkN (xi|µk,Σk)∑K

j=1 πjN (xi|µj ,Σj)
.713

As a baseline, we also train a phoneme recognizer on the train-714

ing set of each corpus, with explicit supervision (i.e. phonemic715

transcriptions of the training stimuli). We extract frame-level pos-716

terior probabilities at two granularity levels: actual phonemes—the717

phoneme recognizer baseline—and individual states of the contex-718

tual hidden Markov models—the ASR phone state baseline. See719

Supplementary Materials and Methods 2 for additional information.720

Discrimination tests. Discriminability between model representa-721

tions for phonetic contrasts of interest is assessed using machine722

ABX discrimination errors (90, 91). Discrimination is assessed in723

context, defined as the preceding and following sound and the iden- 724

tity of the speaker. For example, discrimination of American English 725

[u] versus [i] is assessed in each available context independently, 726

yielding—for instance—a separate discrimination error rate for test 727

stimuli in [b]_[t] phonetic context, as in ‘boot’ versus ‘beet’, as 728

spoken by a specified speaker. Other possible factors of variability, 729

such as word boundaries or syllable position are not controlled. For 730

each model, each test corpus and each phonemic contrast in that 731

test corpus (as specified by the corpus’ phonemic transcriptions), 732

we obtain a discrimination error for each context in which the con- 733

trasted phonemes occur at least twice in the test corpus’ test set. 734

To avoid combinatorial explosion in the number of ABX triplets 735

to be considered, a randomly selected subset of five occurrences is 736

used to compute discrimination errors when a phoneme occurs more 737

than five times in a given context. An aggregated ABX error rate is 738

obtained for each combination of model, test corpus and phonemic 739

contrast, by averaging the context-specific error rates over speakers 740

and phonetic contexts, in that order. 741

Model representations are extracted for the whole test sets,
and the part corresponding to a specific occurrence of a phonetic
category is then obtained by selecting representation frames centered
on time points located between the start and end times for that
occurrence, as specified by the test set’s forced aligned phonemic
transcriptions. Given model representations ∆ = (δ1, δ2, ..., δnδ )
and Ξ = (ξ1, ξ2, ..., ξnξ ) for nδ tokens of phonetic category δ and
nξ tokens of phonetic category ξ, the non-symmetrized Machine
ABX discrimination error between δ and ξ is then estimated as
the proportion of representation triplets a, b, x, with a and x taken
from ∆ and b taken from Ξ, such that x is closer to b than to a, i.e.:

ê(∆,Ξ) :=
1

nδ(nδ − 1)nξ

nδ∑
a=1

nξ∑
b=1

nδ∑
x=1
x6=a

[
1d(ξb,δx)<d(δa,δx)

+
1
2
1d(ξb,δx)=d(δa,δx)

]
,

where 1 is the indicator function returning 1 when its predicate 742

is true and 0 otherwise and d is a dissimilarity function taking a 743

pair of model representations as input and returning a real number 744

(with higher values indicating more dissimilar representations). The 745

(symmetric) Machine ABX discrimination error between δ and ξ 746

is then obtained as: 747

ε̂(∆,Ξ) = ε̂(Ξ,∆) :=
1
2

[ê(∆,Ξ) + ê(Ξ,∆)]. 748

As realizations of phonetic categories vary in duration, we need 749

a dissimilarity function d that can handle model representations 750

with variable length. This is done, following established practice 751

(28, 29, 56, 58, 69), by measuring the average dissimilarity along a 752

time-alignment of the two representations obtained through dynamic 753

time warping (122), where the dissimilarity between model repre- 754

sentations for individual frames is measured with the symmetrized 755

Kullback-Leibler divergence for posterior probability vectors and 756

with the angular distance for spectral shape descriptors. 757

Analysis of learned representations. Learned units are taken to be 758

the Gaussian components for the Gaussian mixture models, the 759

phoneme models for the phoneme recognizer baseline, and the phone 760

state models for the ASR phone state baseline. Since experimental 761

studies of phonetic categories are typically performed with citation 762

form stimuli, we study how each model represents stimuli from the 763

matched-language read speech corpus’ test set. 764

To study average durations of activation we exclude any 765

utterance-initial or utterance-final silence from the analysis, as well 766

as any utterance for which utterance-medial silence was detected 767

during the forced alignment. The average duration of activation for 768

a given unit is computed by averaging over all episodes in the test 769

utterances during which that unit becomes dominant, i.e. has the 770

highest posterior probability among all units. Each of these episodes 771

is defined as a continuous sequence of speech frames during which 772

the unit remains dominant without interruptions, with duration 773

equal to that number of speech frames times 10ms. 774

The acoustic (in)variance of the learned units is probed by 775

looking at multiple repetitions of a single word and testing whether 776
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the dominant unit at the central frame of the central phone of the777

word remains the same for all repetitions. Specifically, we count778

the number of distinct dominant units occurring at the central779

frame of the central phone for ten repetitions of the same word. To780

compensate for possible misalignment of the central phones’ central781

frames (e.g. due to slightly different time courses in the acoustic782

realization of the phonetic segment and/or small errors in the forced783

alignment), we allow the dominant unit at the central frame to784

be replaced by any unit that was dominant at some point within785

the previous or following 46ms (thus covering a 92ms slice of time786

corresponding to the average duration of a phoneme in our read787

speech test sets), provided it can bring down the overall count of788

distinct dominant units for the ten occurrences (see Supplementary789

Materials and Methods 3 for more information). We consider790

two conditions: in the within-speaker condition, the test stimuli791

are uttered by the same speaker ten times; in the across-speaker792

condition, they are uttered by ten different speakers one time. See793

Supplementary Materials and Methods 3 for more information on794

the stimulus selection procedure.795

Data and code availability. The datasets analysed in this study are796

publicly available from the commercial vendors and research insti-797

tutions holding their copyrights (84–87). Datasets generated during798

the course of the study are available from the corresponding author799

upon reasonable request. Code to reproduce the results will be made800

available at https://github.com/Thomas-Schatz/perceptual-tuning-pnas801

upon publication.802
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