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Before they even speak, infants become attuned to the sounds of the
language(s) they hear, processing native phonetic contrasts more
easily than non-native ones (1-3). For example, between 6-8 months
and 10-12 months, infants learning American English get better at
distinguishing English [4] and [lI], as in ‘rock’ vs ‘lock’, relative to
infants learning Japanese (4). Influential accounts of this early
phonetic learning phenomenon initially proposed that infants group
sounds into native vowel- and consonant-like phonetic categories—
like [1] and [I] in English—through a statistical clustering mechanism
dubbed ‘distributional learning’ (5-8). The feasibility of this mech-
anism for learning phonetic categories has been challenged, how-
ever (9-16). Here we demonstrate that a distributional learning al-
gorithm operating on naturalistic speech can predict early phonetic
learning as observed in Japanese and American English infants, sug-
gesting that infants might learn through distributional learning after
all. We further show, however, that contrary to the original distri-
butional learning proposal, our model learns units too brief and too
fine-grained acoustically to correspond to phonetic categories. This
challenges the influential idea that what infants learn are phonetic
categories. More broadly, our work introduces a novel mechanism-
driven approach to the study of early phonetic learning, together with
a quantitative modeling framework that can handle realistic input.
This allows, for the first time, accounts of early phonetic learning
to be linked to concrete, systematic predictions regarding infants’
attunement.

Phonetic learning | Language acquisition | Computational modeling

dults have difficulties perceiving consonants and vowels
of foreign languages accurately (17). For example, native
Japanese listeners often confuse American English [1] and [l]
(as in ‘rock’ vs ‘lock’) (18, 19) and native American English
listeners often confuse French [u] and [y] (as in ‘roue’, wheel,
versus ‘rue’, street) (20). This phenomenon is pervasive (21)
and persistent: even extensive, dedicated training can fail to
eradicate these difficulties (22-24). The main proposed expla-
nations for this effect revolve around the idea that adult speech
perception involves a ‘native filter’: an automatic, involuntary
and not very plastic mapping of each incoming sound, foreign
or not, onto native phonetic categories, i.e. the vowels and con-
sonants of the native language (25-29). American English [1]
and [l], for example, would be confused by Japanese listeners
because their productions can be seen as possible realizations
of the same Japanese consonant, giving rise to similar percepts
after passing through the ‘native Japanese filter’.
Surprisingly, these patterns of perceptual confusion arise
very early during language acquisition. Infants learning Amer-
ican English distinguish [1] and [l] more easily than infants

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

learning Japanese before they even utter their first word (4).
Dozens of other instances of such early phonetic learning have
been documented, whereby cross-linguistic confusion patterns
matching those of adults emerge during the first year of life
(2, 3, 30). These observations naturally led to the assump-
tion that the same mechanism thought to be responsible for
adults’ perception might be at work in infants, i.e. foreign
sounds are being mapped onto native phonetic categories. This
assumption—which we will refer to as the phonetic category
hypothesis—is at the core of the most influential theoretical
accounts of early phonetic learning (5-7, 25, 31).

The notion of phonetic category plays an important role
throughout the paper, so requires further definition. It has
been used in the literature exclusively to refer to vowel- or
consonant-like units. What that means varies to some extent
between authors, but there are at least two constant, defin-
ing characteristics (32). First, phonetic categories have the
characteristic size/duration of a vowel or consonant, i.e. the
size of a phoneme, the ‘smallest distinctive unit within the
structure of a given language’ (17, 33). This can be contrasted
with larger units like syllables or words and smaller units like
speech segments corresponding to a single period of vocal fold
vibration in a vowel. Second, phonetic categories—although
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they may be less abstract than phonemes*—retain a degree of
abstractness and never refer to a single acoustic exemplar. For
example, we would expect a given vowel or consonant in the
middle of a word repeated multiple times by the same speaker
to be consistently realized as the same phonetic category, de-
spite some acoustic variation across repetitions. Finally, an
added characteristic in the context of early phonetic learning
is that phonetic categories are defined relative to a language.
What might count as exemplars from separate phonetic cate-
gories for one language, might belong to the same category in
another.

The phonetic category hypothesis—that infants learn to
process speech in terms of the phonetic categories of their
native language—raises a question. How can infants learn
about these phonetic categories so early? The most influential
proposal in the literature has been that infants form phonetic
categories by grouping the sounds they hear on the basis
of how they are distributed in a universal (i.e. language-
independent) perceptual space, a statistical clustering process
dubbed ‘distributional learning’ (8, 10, 34, 35).

Serious concerns have been raised regarding the feasibility
of this proposal, however (12, 36). Existing phonetic category
accounts of early phonetic learning assume that speech is being
represented phonetic segment by phonetic segment—i.e. for
each vowel and consonant separately—along a set of language-
independent phonetic dimensions (6, 7, 25).F Whether it is
possible for infants to form such a representation in a way that
would enable distributional learning of phonetic categories
is questionable, for at least two reasons. First, there is a
lack of acoustic-phonetic invariance (37-39): there is not a
simple mapping from speech in an arbitrary language to an
underlying set of universal phonetic dimensions that could
act as reliable cues to phonetic categories. Second, phonetic
category segmentation—finding reliable language-independent
cues to boundaries between phonetic segments (i.e. individual
vowels and consonants)—is a hard problem (37). It is clear
that finding a solution to these problems for a given language
is ultimately feasible, as literate adults readily solve them for
their native language. Assuming that infants are able to solve
them from birth in a language-universal fashion is a much
stronger hypothesis, however, with little empirical support.

Evidence from modeling studies reinforces these concerns.
Initial modeling work investigating the feasibility of learning
phonetic categories through distributional learning sidestepped
the lack of invariance and phonetic category segmentation prob-
lems by focusing on drastically simplified learning conditions
(40-45), but subsequent studies considering more realistic
variability have failed to learn phonetic categories accurately
(9, 12, 14, 15, 46, 47) (see Supplementary Discussion 1).

These results have largely been interpreted as a challenge
to the idea that distributional learning is how infants learn
phonetic categories. Additional learning mechanisms tapping
into other sources of information plausibly available to infants
have been proposed (9-12, 14, 15, 36, 46, 47), but existing
feasibility results for such complementary mechanisms still
assume that the phonetic category segmentation problem has
somehow been solved and do not consider the full variability of

*For example, the same phoneme might be realized as different phonetic categories depending on
the preceding and following sounds or on characteristics of the speaker.

Tin some accounts, the phonetic dimensions are assumed to be ‘acoustic’ (25)—e.g. formant
frequencies—in other they are ‘articulatory’ (6)—e.g. the degree of vocal tract opening at a
constriction—and some accounts remain noncommittal (7).
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natural speech (9, 12, 14, 15, 43, 46-48). Attempts to extend
them to more realistic learning conditions have failed (13, 16)
(see Supplementary Discussion 1).

Here, we propose a different interpretation for the observed
difficulty in forming phonetic categories through distributional
learning: it might indicate that what infants learn are not
phonetic categories. We are not aware of empirical results
establishing that infants learn phonetic categories, and indeed,
the phonetic category hypothesis is not universally accepted.
Some of the earliest accounts of early phonetic learning were
based on syllable-level categories and/or on continuous rep-
resentations without any explicit category representations?
(49-52). Although they appear to have largely fallen out of
favor, we know of no empirical findings refuting them.

We present evidence in favor of this alternative interpreta-
tion, first by showing that a distributional learning mechanism
applied to raw, unsegmented, unlabeled continuous speech
signal predicts early phonetic learning as observed in Ameri-
can English- and Japanese-learning infants—thereby providing
the first realistic proof of feasibility for any account of early
phonetic learning. We then show that the speech units learned
through this mechanism are too brief and too acoustically
variable to correspond to phonetic categories.

We rely on two key innovations. First, whereas previous
studies followed an outcome-driven approach to the study
of early phonetic learning—starting from assumptions about
what was learned, before seeking plausible mechanisms to
learn it—we adopt a mechanism-driven approach—focusing
first on the question of how infants might plausibly learn
from realistic input, and seeking to characterize what was
learned only a posteriori. Second, we introduce a quantitative
modeling framework suitable to implement this approach at
scale using realistic input. This involves explicitly simulating
both the ecological learning process taking place at home and
the assessment of infants’ discrimination abilities in the lab.

Beyond the immediate results, the framework we introduce
is the first to provide a feasible way of linking accounts of
early phonetic learning to systematic predictions regarding the
empirical phenomenon they seek to explain, i.e. the observed
cross-linguistic differences in infants’ phonetic discrimination.

Approach

We start from a possible learning mechanism. We simulate
the learning process in infants by implementing this mecha-
nism computationally and training it on naturalistic speech
recordings in a target language—either Japanese or American
English. This yields a candidate model for the early phonetic
knowledge of, say, a Japanese infant. Next, we assess the
model’s ability to discriminate phonetic contrasts of Amer-
ican English and Japanese—for example American English
[1] vs [I]—by simulating a discrimination task using speech
stimuli corresponding to this contrast. We test whether the
predicted discrimination patterns agree with the available em-
pirical record on cross-linguistic differences between American

'tNote that the claims in all the relevant theoretical accounts are for the formation of explicit represen-
tations, in the sense that they are assumed to be available for manipulation by downstream cogni-
tive processes at later developmental stages (see e.g. (7)). Thus, even if one might be tempted to
say that phonetic categories are implicitly present in some sense in a representation—for example
in a continuous representation exhibiting sharp increases in discriminability across phonetic cate-
gory boundaries (49)—unless a plausible mechanism by which downstream cognitive processes
could explicitly read out phonetic categories from that representation is provided, together with ev-
idence that infants actually use this mechanism, this would not be sufficient to support the early
phonetic category acquisition hypothesis.
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Fig. 1. Gaussian mixture model training and representation extraction, illustrated for a model with three Gaussian components. In practice the number of Gaussian components
is learned from the data and much higher. (a) Model training: the learning algorithm extracts moderate-dimensional (d=39) descriptors of the local shape of the signal
spectrum at time points regularly sampled every 10ms (speech frames). These descriptors are then considered as having been generated by a mixture of Gaussian probability
distributions, and parameters for this mixture that assign high probability to the observed descriptors are learned. (b) Model test: the sequence of spectral-shape descriptors for
a test stimulus (possibly in a language different from the training language) are extracted and the model representation for that stimulus is obtained as the sequence of posterior
probability vectors resulting from mapping each descriptor to its probability of having been generated by each of the Gaussian components in the learned mixture.

English- and Japanese-learning infants. Finally, we investigate
whether what has been learned by the model corresponds to
the phonetic categories of the model’s ‘native’ language (i.e.
its training language).

To identify a promising learning mechanism, we build on
recent advances in the field of machine learning, and more
specifically in unsupervised representation learning for speech
technology, which have established that, given only raw, un-
transcribed, unsegmented speech recordings, it is possible to
learn representations that accurately discriminate the phonetic
categories of a language (53-70). The learning algorithms con-
sidered have been argued to be particularly relevant for model-
ing how infants learn in general, and learn language in partic-
ular (71). Among available learning algorithms, we select the
one at the core of the winning entries in the Zerospeech 2015
and 2017 international competitions in unsupervised speech
representation learning (58, 59, 69). Remarkably, it is based
on a Gaussian mixture clustering mechanism—illustrated in
Figure 1 (a)—that can straightforwardly be interpreted as a
form of distributional learning (8, 10). A different input repre-
sentation to the Gaussian mixture is used than in previously
proposed implementations of distributional learning, however
(9, 12, 14, 40, 42, 44, 45). Simple descriptors of the shape
of the speech signal’s short-term auditory spectrum sampled
at regular points in time (every 10ms) (72) are used instead
of traditional phonetic measurements obtained separately for
each vowel and consonant, such as formant frequencies or
harmonic amplitudes.$ This type of input representation only
assumes basic auditory abilities from infants, which are known
to be fully operational shortly after birth (75), and has been
proposed previously as a potential way to get around both
the lack of invariance and the phonetic category segmentation
problems in the context of adult word recognition (37). A
second difference from previous implementations of distribu-
tional learning is in the output representation. Test stimuli
are represented as sequences of posterior probability vectors
(posteriorgrams) over K Gaussian components in the mixture
(Figure 1 (b)), rather than simply being assigned to the most

§There was a previous attempt to model infant phonetic learning from such spectrogram-like audi-
tory representations of continuous speech (73, 74), but we are the first to combine this modeling
approach with a suitable evaluation methodology.
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Table 1. Language, speech register, duration and number of speak-
ers of training and test sets for our four corpora of speech recordings

Corpus Language Reg. Duration No. speakers

Train Test Train Test
R-Eng (84) Am. English  Read 19h30  9h39 96 47
R-Jap (85) Japanese Read 19h33  9h40 96 47
Sp-Eng (86)  Am. English  Spont. 9h13  9h01 20 20
Sp-Jap (87)  Japanese Spont. 9h11  8h57 20 20

likely Gaussian component. These continuous representations
have been shown to support accurate discrimination of native
phonetic categories in the Zerospeech challenges.

To simulate the infants’ learning process, we expose the
selected learning algorithm to a realistic model of the linguistic
input to the child, in the form of raw, unsegmented, untran-
scribed, multi-speaker continuous speech signal in a target
language (either Japanese or American English). We select
recordings of adult speech made with near field, high quality
microphones in two speech registers which cover the range of
articulatory clarity that infants may encounter. On one end of
the range, we use spontaneous adult directed speech, and on
the other, we use read speech; these two speaking registers are
crossed with the language factor (English, Japanese), resulting
in four corpora, each split into a training set and a test set
(Table 1). We would have liked to use recordings made in
infant’s naturalistic environments, but no such dataset of suf-
ficient audio quality was available for this study. It is unclear
whether or how using infant-directed speech would impact re-
sults: the issue of whether infant directed speech is beneficial
for phonetic learning has been debated, with arguments in
both directions (76-83). We train a separate model for each
of the four training sets, allowing us to check that our results
hold across different speech registers and recording conditions.
We also train separate models on 10 subsets of each training
set for several choices of subset sizes, allowing us to assess the
effects of varying the amount of input data and the variability
due to the choice of training data for a given input size.

We next evaluate whether the trained ‘Japanese native’ and
‘American-English native’ models correctly predict early pho-
netic learning as observed in Japanese-learning and American
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English-learning infants, respectively, and whether they make
novel predictions regarding the differences in speech discrimi-
nation abilities between these two populations. Because we do
not assume that the outcome of infants’ learning is adult-like
knowledge, we can only rely on infant data for evaluation. The
absence of specific assumptions a priori about what is going
to be learned, and the sparsity of empirical data on infant
discrimination, makes this challenging. The algorithm we
consider outputs complex, high-dimensional representations
(Figure 1 (b)) that are not easy to link to concrete predic-
tions regarding infant discrimination abilities. Traditional
signal detection theory models of discrimination tasks (88)
cannot handle high-dimensional perceptual representations,
while more elaborate (Bayesian) probabilistic models (89) have
too many free parameters given the scarcity of available data
from infant experiments. We rely instead on the machine ABX
approach that we previously developed (90, 91). It consists
of a simple model of a discrimination task, which can handle
any representation format provided the user can provide a
reasonable measure of (dis)similarity between representations
(90, 91). This is not a detailed model of infant’s performance
in a specific experiment, but rather a simple and effectively
parameterless way to systematically link the complex speech
representations produced by our models to predicted discrim-
ination patterns. For each trained model and each phonetic
contrast of interest, we obtain an ‘ABX error rate’ such that 0%
and 50% error indicate perfect and chance-level discrimination,
respectively. This allows us to evaluate the qualitative match
between the model’s discrimination abilities and the available
empirical record in infants (see Supplementary Discussion 3
for an extended discussion of our approach to interpreting the
simulated discrimination errors and relating them to empirical
observations, including why it would not be meaningful to
seek a quantitative match at this point).

Finally, we investigate whether the learned Gaussian com-
ponents correspond to phonetic categories. We first compare
the number of Gaussians in a learned mixture to the num-
ber of phonemes in the training language (category number
test): although a phonetic category can be more concrete than
a phoneme, the number of phonetic categories documented
in typical linguistic analyses remains on the same order of
magnitude as the number of phonemes. We then administer
two diagnostic tests based on the two defining characteris-
tics identified above that any representation corresponding to
phonetic categories should pass.Y The first characteristic is
size/duration: a phonetic category is a phoneme-sized unit
(i.e. the size of a vowel or a consonant). Our duration test
probes this by measuring the average duration of activation of
the learned Gaussian components (a component is taken to be
‘active’ when its posterior probability is higher than all other
components), and comparing this to the average duration of
activation of units in a baseline system trained to recognize
phonemes with explicit supervision. The second characteris-
tic is abstractness: although phonetic categories can depend
on phonetic context! and on non-linguistic properties of the
speech signal—e.g. the speaker’s gender—at a minimum, the

I This provides necessary but not sufficient conditions for ‘phonetic categoriness’, but since we will
see that the representations learned in our simulations already fail these tests, more fine-grained
assessments will not be required.

IFor example, in the American English word ‘top’ the phoneme /t/ is realized as an aspirated con-
sonant [th] (i.e. there is a slight delay before the vocal folds start to vibrate after the consonant),

whereas in the word ‘stop’ it is realized as a regular voiceless consonant [t], which might be con-
sidered to correspond to a different phonetic category than [th].
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central phone in the same word repeated several times by the
same speaker is expected to be consistently realized as the
same phonetic category. Our acoustic (in)variance test probes
this by counting the number of distinct representations needed
by our model to represent ten occurrences of the central frame
of the central phone of the same word either repeated by the
same speaker (within speaker condition) or by different speak-
ers (across speaker condition). We use a generous correction
to handle possible misalignment (see Materials and Methods).
The last two tests can be related to the phonetic category
segmentation and lack of invariance problems: solving the
phonetic category segmentation problem involves finding units
that would pass the duration test, while solving the lack of
invariance problem involves finding units that would pass the
acoustic (in)variance test. Given the laxity in the use of the
concept of phonetic category in the literature, some might be
tempted to challenge that even these diagnostic tests can be
relied on. If they cannot, however, it is not clear to us how
phonetic category accounts of early phonetic learning should
be understood as scientifically refutable claims.

Results

Overall discrimination. After having trained a separate model
for each of the four possible combinations of language and
register, we test whether the models’ overall discrimination
abilities, like those of infants (2, 3, 30), are specific to their
‘native’ (i.e. training) language. Specifically, for each corpus,
we look at overall discrimination errors averaged over all conso-
nant and vowel contrasts available in a held-out test set from
that corpus (See Table 1). We tested each of the two American
English-trained and each of the two Japanese-trained models
on each of four test sets, yielding a total of 4x4 discrimination
errors. We tabulated the average errors in terms of 4 conditions
depending on the relation between the test set and the training
background of the model: native versus non-native contrasts
and same versus different register. The results are reported in
Figure 2 (see also Figures S1, S4 for non-tabulated results).
Panel (a) shows that discrimination performance is higher
on average in matched-language conditions (in blue) than in
mismatched-language conditions (in red). In contrast, register
mismatch has no discernible impact on discrimination perfor-
mance. A comparison with a supervised phoneme recognizer
baseline (Figure S3) shows a similar pattern of results, but
with a larger absolute cross-linguistic difference. If we interpret
this supervised baseline as a proxy to the adult state, then our
model suggests that infant’s phonetic representations, while al-
ready language-specific, remain ‘immature’** Panel (b) shows
the robustness of these results, with 81.7% of the 1295 distinct
phonetic contrasts tested proving easier to discriminate on the
basis of representations from a model trained on the matching
language. Taken together, these results suggest that, similar to
infants, our models acquire language-specific representations,
and that these representations generalize across register.

American English [1]-[I] discrimination. Next, we focus on the
specific case of American English [1]-[]] discrimination, for
which Japanese adults show a well-documented deficit (18, 19)
and which has been studied empirically in American English
and Japanese infants (4). While 6- to 8-month-old infants

**This is compatible with empirical evidence that phonetic learning continues into childhood well
beyond the first year (see 92-94, for example).
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Fig. 2. (a) Average ABX error rates over all consonant and vowel contrasts obtained
with our models as a function of the match between the training set and test set
language and register. Error bars correspond to plus and minus one standard deviation
of the errors across resampling of the test stimuli speakers. The ‘Native’ (blue)
conditions, with training and test in the same language, show fewer discrimination
errors than the ‘Non-native’ (red) conditions, whereas there is little difference in
error rate within the ‘Native’ and within the ‘Non-native’ conditions. This shows
that the models learned native-language specific representations that generalize
across register. (b) Letter-value representation (95) of the distribution of ‘native’
advantages across all tested phonetic contrasts (pooled over both languages). The
native language advantage is the increase in discrimination error for a contrast of
language L1 between a ‘L1-native’ model and a model trained on the other language,
for the same training register. The ‘native register’ advantage is the increase in error
for a contrast of register R1 between a ‘R1-native’ model and a model trained on
the other register, for the same training language. A native language advantage is
observed across contrasts (positive advantage for 81.7% of all contrasts) and there
is a weaker native register advantage (positive advantage for 60.1% of all contrasts).

from American English and Japanese language backgrounds
performed similarly in discriminating this contrast, 10- to
12-month-old American English infants outperformed their
Japanese peers. We compare the discrimination errors ob-
tained with each of our four models for American English
[1]-]1]] and for two controls: the American English [w]-[j] con-
trast (as in ‘wet’ versus ‘yet’), for which we do not expect a
gap in performance between American English and Japanese
natives (96), and the average error over all the other conso-
nant contrasts of American English. For each contrast and
for each of the four models, we average discrimination errors
obtained on each of the two American English held-out test
sets, yielding 3x4 discrimination errors. We further average
over models with the same ‘native’ language to obtain 3x2
discrimination errors. The results are shown in Figure 3 (see
also Figures S2 and S6 for untabulated results and a test
confirming our results with the synthetic stimuli used in the
original infant experiment, respectively). In panel (a), we
see that, similar to 10- to 12-month old infants, American
English ‘native’ models (in blue) greatly outperform Japanese
‘native’ models (in red) in discriminating American English [1]-
[1]. Here again a supervised phoneme recognizer baseline yields
a similar pattern of results, but with larger cross-linguistic
differences (panel (c), see also Figure S5), again suggesting
that the representations learned by the unsupervised models—
like those of infants—remain somewhat ‘immature’. In panel
(b), we see results obtained by training ten different models
on ten different subsets of the training set of each corpus,
varying the sizes of the subsets (see Materials and Methods
for more details). It reveals that one hour of input is sufficient
for the divergence between the Japanese and English models
to emerge robustly, and that this divergence increases with ex-
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posure to the native language. While it is difficult to interpret
this trajectory relative to absolute quantities of data or dis-
crimination scores, the fact that the cross-linguistic difference
increases with more data mirrors the empirical findings from
infants (see also an extended discussion of our approach to
interpreting the simulated discrimination errors and relating
them to empirical data in Supplementary Discussion 3).

Nature of the learned representations. Finally, we consider the
nature of the learned representations and test whether what
has been learned can be understood in terms of phonetic cat-
egories. Results are reported in Figure 4 (see also Figure S7
for comparisons with a different supervised baseline). First,
looking at the category number criterion in Figure 4 (a), we
see that our models learned more than ten times as many
categories as the number of phonemes in the corresponding
languages. Even allowing for notions of phonetic categories
more granular than phonemes, we are not aware of any pho-
netic analysis ever reporting that many allophones in these
languages. Second, looking at the duration criterion in Fig-
ure 4 (b), the learned Gaussian units appear to be activated
on average for about a quarter the duration of a phoneme.
This is shorter than any linguistically identified unit. It shows
that the phonetic category segmentation problem has not been
solved. Next, looking at the acoustic (in)variance criterion in
Figure 4 (c¢) and (d)—for the within and across speakers condi-
tions, respectively—we see that our models require on average
around two distinct representations to represent ten tokens of
the same phonetic category without speaker variability, and
three distinct representations across different speakers. The
supervised phoneme recognizer baseline establishes that our
results cannot be explained by defective test stimuli. Instead,
this result shows that the learned units are finer-grained than
phonetic categories along the spectral axis, and that the lack of
invariance problem has not been solved. Based on these tests,
we can conclude that the learned units do not correspond to
phonetic categories in any meaningful sense of the term.

Discussion

Through explicit simulation of the learning process under re-
alistic learning conditions, we showed that several aspects of
early phonetic learning as observed in American English and
Japanese infants can be correctly predicted through a distribu-
tional learning (i.e. clustering) mechanism applied to simple
spectrogram-like auditory features sampled at regular time
intervals. This is the first time that a potential mechanism for
early phonetic learning is shown to be feasible under realistic
learning conditions. We further showed that the learned speech
units are too brief and too acoustically variable to correspond
to the vowel- and consonant-like ‘phonetic categories’ posited
in earlier accounts of early phonetic learning.

Distributional learning has been an influential hypothesis
in language acquisition for over a decade (8, 10, 35). Previous
modeling results questioning the feasibility of learning phonetic
categories through distributional learning have traditionally
been interpreted as challenging the learning mechanism (9-
12, 14, 15, 36, 46, 47), but we have instead suggested that
such results may be better interpreted as challenging the
idea that phonetic categories are the outcome of early pho-
netic learning. Supporting this view, we showed that when
the requirement to learn phonetic categories is abandoned,
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Fig. 3. (a) ABX error rates for the American English [4]-[I] contrast and two controls: American English [w]-[j] and average over all American English consonant contrasts (C-C).
Error rates are reported for two conditions: average over models trained on American English and average over models trained on Japanese. Error bars correspond to plus and
minus one standard deviation of the errors across resampling of the test stimuli speakers. Similar to infants, the Japanese ‘native’ models exhibit a specific deficit for American
English [4]-[l] discrimination compared to the ‘American English’ models. (b) The robustness of the effect observed in panel (a) to changes in the training stimuli and their
dependence on the amount of input are assessed by training separate models on independent subsets of the training data of each corpus of varying duration (see Materials
and Methods). For each selected duration (except when using the full training set), ten independent subsets are selected and ten independent models are trained. We report
mean discrimination errors for American English [4]-[I] and [w]-[j] as a function the amount of input data, with error bands indicating plus or minus one standard deviation. The
results show that a deficit in American English [4]-[I] discrimination for ‘Japanese-native’ models robustly emerges with as little as 1h of training data. (c) To give a sense of scale
we compare the cross-linguistic difference obtained with the unsupervised Gaussian mixture models on American English [1]-[I] (GMM, left) to the one obtained with supervised
phoneme recognizer baselines (HMM, right). The larger cross-linguistic difference obtained with the supervised baselines suggests that the representations learned by our

unsupervised models, similar to those observed in infants, remain somewhat immature.

distributional learning on its own can be very effective, lead-
ing to the first realistic demonstration of feasibility—using
unsegmented, untranscribed speech signal as input—for any
mechanism for early phonetic learning. Our results are still
compatible with the idea that mechanisms tapping into other
relevant sources of information might complement distribu-
tional learning—an idea supported by evidence that infants
learn from some of these sources in the lab (97-103)—but
they suggest that those other sources of information may not
play a role as crucial as previously thought (10). Our findings
also join recent accounts of ‘word segmentation’ (104) and
the ‘language familiarity effect’ (105) in questioning whether
we might have been over-attributing linguistic knowledge to
pre-verbal infants across the board.

A new account of early phonetic learning. Our results suggest
an account of phonetic learning that substantially differs from
existing ones. Whereas previous proposals have been primarily
motivated through an outcome-driven perspective—starting
from assumptions about what it is about language that is
learned—the motivation for the proposed account comes from
a mechanism-driven perspective—starting from assumptions
about how learning might proceed from the infant’s input.
This contrast is readily apparent in the choice of the initial
speech representation upon which the early phonetic learning
process operates (the input representation). Previous accounts

6 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

assumed speech to be represented innately through a set of
universal (i.e. language-independent) phonetic feature detec-
tors (5—7, 25, 31, 49-52). The influential phonetic category
accounts furthermore assumed these features to be available
phonetic segment by phonetic segment (i.e. for each vowel and
consonant separately) (57, 25, 31). While these assumptions
are attractive from an outcome-driven perspective—they con-
nect transparently to phonological theories in linguistics and
theories of adult speech perception that assume a decomposi-
tion of speech into phoneme-sized segments defined in terms
of abstract phonological features—from a mechanism-driven
perspective, both assumptions are difficult to reconcile with
the continuous speech signal that infants hear. The lack of
acoustic-phonetic invariance problem challenges the idea of
phonetic feature detectors, and the phonetic category segmen-
tation problem challenges the idea that the relevant features
are segment-based (37-39). The proposed account does not
assume either problem to be solved by infants at birth. In-
stead, it relies on basic auditory abilities that are available to
neonates (75), using simple auditory descriptors of the speech
spectrum obtained regularly along the time axis. This type
of spectrogram-like representation is effective in speech tech-
nology applications (72) and can be seen as the output of
a simple model of the peripheral auditory system (91, chap.
3), which is fully operational shortly after birth (75). Such
representations have also been proposed before as an effective
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Fig. 4. Diagnostic test results for our four unsupervised Gaussian mixture models (in beige) and phoneme recogniser baselines trained with explicit supervision (in pink). Top
row: American English ‘native’ models. Bottom row: Japanese ‘native’ models. Models are tested on read speech in their ‘native’ language. (a) Number of units learned by the
models. Gaussian mixtures discover ten to twenty times more categories than there are phonemes in the training language, exceeding any reasonable count for phonetic
categories. (b) Average duration of activation of the learned units. The average duration of activation of each unit is computed and the average and standard deviation of the
resulting distribution over units are shown. Learned Gaussian units get activated on average for about the quarter of the duration of a phoneme. They are thus much too ‘short’
to correspond to phonetic categories. (c) Average number of distinct representations for the central frame of the central phone for ten repetitions of a same word by the same
speaker, corrected for possible misalignment. The number of distinct representations is computed for each word type with sufficient repetitions in the test set and the average
and standard deviation of the resulting distribution over word types are shown. The phoneme recogniser baseline reliably identifies the ten tokens as exemplars from a common
phonetic category, whereas our Gaussian mixture models typically maintain on the order of two distinct representations, indicating representations too fine-grained to be
phonetic categories. (d) As in (c) but with repetitions of a same word by ten speakers, showing that the learned Gaussian units are not speaker-independent.

way to get around both the lack of invariance and the phonetic
category segmentation problems in the context of adult word
recognition (37) and can outperform representations based on
traditional phonetic measurements (like formant frequencies)
as predictors of adult speech perception (106-110).

While the input representation is different, the learning
mechanism in the proposed account—distributional learning—
is similar to what had originally been proposed in phonetic
category accounts. Infants’ abilities, both in the lab (8, 35)
and in ecological conditions (34), are consistent with such a
learning mechanism. Moreover, when applied to the input
representation considered in this paper, distributional learning
is adaptive in that it yields speech representations that can
support remarkably accurate discrimination of the phonetic
categories of the training language, outperforming a number of
alternatives that have been proposed for unsupervised speech
representation learning (58, 59, 69).

As a consequence of our mechanism-driven approach, what
has been learned needs to be determined a posteriori based
on the outcomes of learning simulations. The speech units
learned under the proposed account accurately model infants’
discrimination, but are too brief and acoustically variable
to correspond to phonetic categories, failing in particular to
provide a solution to the lack of invariance and phonetic
category segmentation problems (37). Such brief units do
not correspond to any previously identified linguistic unit (32)
(see Supplementary Discussion 4 for a discussion of possible
reasons why the language acquisition process might involve
the learning by infants of a representation with no established
linguistic interpretation, and a discussion of the biological
and psychological plausibility of the learned representation),
and it will be interesting to try to further understand their
nature. However, since there is no guarantee that a simple
characterization exists, we leave this issue for future work.

Schatz et al.

Phonetic categories are often assumed as precursors in ac-
counts of phenomena occurring later in the course of language
acquisition. Our account does not necessarily conflict with
this view, as phonetic categories may be learned later in de-
velopment, before phonological acquisition. Alternatively, the
influential PRIMIR account of early language acquisition (7)
proposes that infants learn in parallel about the phonetics,
word-forms, and phonology of their native language, but do
not develop abstract phonemic representations until well into
their second year of life. Although PRIMIR explicitly assumes
phonetic learning to be phonetic category learning, other as-
pects of their proposed framework do not depend on that
assumption, and our framework may be able to stand in for
the phonetic learning process they assume.

To sum up, we introduced and motivated a new account of
early phonetic learning and showed that it is feasible under
realistic learning conditions, which cannot be said of any other
account at this time. Importantly, this does not constitute
decisive evidence for our account over alternatives. Our pri-
mary focus has been on modeling cross-linguistic differences
in the perception of one contrast, [1]-[l]; further work is neces-
sary to determine to what extent our results extend to other
contrasts and languages (111). Furthermore, an absence of
feasibility proof does not amount to a proof of infeasibility.
While we have preliminary evidence that simply forcing the
model to learn fewer categories is unlikely to be sufficient (Fig-
ures S9 and S10), recently proposed partial solutions to the
phonetic category segmentation problem (e.g. (112-114)) and
to the lack of invariance problem (115) (see also Supplemen-
tary Discussion 2 regarding the choice of model initialization)
might yet lead to a feasible phonetic category-based account,
for example. In addition, a number of other representation
learning algorithms proposed in the context of unsupervised
speech technologies and building on recent developments in the
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field of machine learning have yet to be investigated (53-70).
They might provide concrete implementations of previously
proposed accounts of early phonetic learning or suggest new
ones altogether. This leaves us with a large space of appeal-
ing theoretical possibilities, making it premature to commit
to a particular account. Candidate accounts should instead
be evaluated on their ability to predict empirical data on
early phonetic learning, which brings us to the second main
contribution of this article.

Toward predictive theories of early phonetic learning. Almost
since the original empirical observation of early phonetic
learning (1), a number of theoretical accounts of the phe-
nomenon have co-existed (6, 25, 49, 50). This theoretical
under-determination has typically been thought to result from
the scarcity of empirical data from infant experiments. We ar-
gue instead that the main limiting factor on our understanding
of early phonetic learning might have been the lack—on the
theory side—of a practical method to link proposed accounts
of phonetic learning with concrete, systematic predictions re-
garding the empirical discrimination data they seek to explain.
Establishing such a systematic link has been challenging due
to the necessity of dealing with the actual speech signal, with
all its associated complexity. The modeling framework we
introduce provides, for the first time, a practical and scalable
way to overcome these challenges and obtain the desired link
for phonetic learning theories—a major methodological ad-
vance, given the fundamental epistemological importance of
linking ezplanandum and explanans in scientific theories (116).

Our mechanism-driven approach to obtaining predictions—
which can be applied to any phonetic learning model imple-
mented in our framework—consists first of explicitly simulating
the early phonetic learning process as it happens outside of
the lab, which results in a trained model capable of mapping
any speech input to a model representation for that input.
The measurement of infants’ perceptual abilities in labora-
tory settings—including their discrimination of any phonetic
contrast—can then be simulated on the basis of the model’s
representations of the relevant experimental stimuli. Finally,
phonetic contrasts for which a significant cross-linguistic differ-
ence is robustly predicted can be identified through a careful
statistical analysis of the simulated discrimination judgments
(see Supplementary Materials and Methods 4). As an illus-
tration of how such predictions can be generated, we report
specific predictions made by our distributional learning model
in Table S1 (see also Supplementary Discussion 5).

Although explicit simulations of the phonetic learning pro-
cess have been carried out before (9, 12, 14, 15, 40-49, 73, 74),
those have typically been evaluated based on whether they
learned phonetic categories, and have not been directly used
to make predictions regarding infants’ discrimination abilities.
An outcome-driven approach to making predictions regarding
discrimination has typically been adopted instead, starting
from the assumption that phonetic categories are the outcome
of learning. To the best of our knowledge this has never re-
sulted in the kind of systematic predictions we report here,
however (see Supplementary Discussion 6 for a discussion of
the limits of previous approaches and of the key innovations
underlying the success of our framework).

Our framework readily generates novel, empirically testable,
predictions regarding infants’ discrimination, yet further com-
putational modeling is called for before we return to experi-

8 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

ments. Indeed, existing data—collected over more than three
decades of research (2, 3, 21, 30)—might already suffice to dis-
tinguish between different learning mechanisms. To make that
determination, and to decide which contrasts would be most
useful to test next in case more data are needed, many more
learning mechanisms and training/test language pairs will
need to be studied. Even for a specified learning mechanism
and training/test datasets, multiple implementations should
ideally be compared (e.g. testing different parameter settings
for the input representations or the clustering algorithm), as
implementational choices that weren’t initially considered to
be important might nevertheless have an effect on the result-
ing predictions and thus need to be included in our theories.
Conversely, features of the model that may seem important a
priori (e.g. the type of clustering algorithm used) might turn
out to have little effect on the learning outcomes in practice.

Cognitive science has not traditionally made use of such
large-scale modeling, but recent advances in computing power,
large datasets, and machine learning algorithms make this
approach more feasible than ever before (71). Together with
ongoing efforts in the field to collect empirical data on a
large scale—such as large-scale recordings of infants’ learning
environment at home (117) and large-scale assessment of in-
fants’ learning outcomes (118, 119)—our modeling approach
opens the path towards a much deeper understanding of early
language acquisition.

Materials and Methods

Datasets. We used speech recordings from four corpora: two corpora
of read news articles—a subset of the Wall Street Journal corpus
of American English (84) (WSJ) and the Globalphone corpus of
Japanese (85) (GPJ)—and two corpora of spontaneous speech—the
Buckeye corpus of American English (86) (BUC) and a subset of
the corpus of spontaneous Japanese (87) (CSJ). As we are primarily
interested in the effect of training language on discrimination abili-
ties, we sought to remove possibly confounding differences between
the two read corpora and between the two spontaneous corpora.
Specifically, we randomly sampled sub-corpora while matching total
duration, number and gender of speakers and amount of speech per
speaker. We made no effort to match corpora within a language,
as the differences (for example in the total duration and number
of speakers) only serve to reinforce the generality of any result
holding true for both registers. Each of the sampled subsets was
further randomly divided into a training and a test set (see Table
1), satisfying three conditions: the test set lasts approximately ten
hours; no speaker is present in both the training and test set; the
training and test sets for the two read corpora, and separately for
the two spontaneous corpora, remain matched on overall duration,
number of speakers of each gender and distribution of duration per
speaker of each gender. To carry out analyses taking into account
the effect of input size and of the choice of input data, we further
divided each training set in ten with each 1/10*" subset containing
an equal proportion of the speech samples from each speaker in the
original training set. We then divided each of the 1/10*" subset in
ten again following the same procedure and select the first subset
to obtain ten 1/100“1 subsets. Finally, we iterated the procedure
one more time to obtain ten 1/1000*" subsets. See Supplementary
Materials and Methods 1 for additional information.

Signal processing, models and inference. The raw speech signal is
decomposed into a sequence of overlapping 25ms-long frames sam-
pled every 10ms and moderate-dimensional (d=39) descriptors of
the spectral shape of each frame are then extracted, describing how
energy in the signal spreads across different frequency channels.
The descriptors are comprised of 13 mel-frequency cepstral coeffi-
cients (MFCC) with their first and second time derivatives. These
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Fig. 5. Generative Gaussian mixture model with Dirichlet process prior with normal-
inverse-Wishart base measure, represented as a graphical model in plate notation
based on the stick-breaking construction of Dirichlet processes.

coefficients correspond approximately to the principal components
of spectral slices in a log-spectrogram of the signal, where the spec-
trogram frequency channels are selected on a mel frequency scale
(linear for lower frequency and logarithmic for higher frequencies,
matching the frequency selectivity of the human ear).

For each corpus, the set of all spectral-shape descriptors for
the corpus’ training set is modeled as a large i.i.d. sample from a
probabilistic generative model. The generative model is a Gaussian
mixture model with no restrictions on the form of covariance ma-
trices and with a Dirichlet process prior over its parameters with
Normal-inverse-Wishart base measure. The generative model is
depicted as a graphical model in plate notation in Figure 5, where n
is the number of input descriptors, (X1, X2, ..., X») are the random
variables from which the observed descriptors are assumed to be
sampled and the other elements are latent variables and hyper-
parameters. The depicted variables have the following conditional
distributions:

Xi | oz (papz, ), (A Azy) ~ 0 Nz, ALY
B | Ak, po, A ~  N(po, M)~
A | Aoyv ~  W(Ao,v)

z | 0w ~  Multi(m)

T | « ~ SB(a)

for any 1 < i < n, for any k € {1,2,...}, with A/ the multivari-
ate Gaussian distribution, W the Wishart distribution, Multi the
generalisation of the usual multinomial probability distribution to
an infinite discrete support and SB, the mixing weights generating
distribution from the stick-breaking representation of Dirichlet pro-
cesses (120). Mixture parameters with high posterior probability
given the observed input features vectors and the prior are found
using an efficient parallel Markov chain Monte Carlo sampler (121).
Following previous work (61, 66), model initialization is performed
by partitioning training points uniformly at random into ten clus-
ters and the hyperparameters are set as follows: « to 1, po to the
average of all input features vectors, A to 1, A\g to the inverse of the
covariance of all input feature vectors and v to 42 (i.e. the spectral
shape descriptors dimension plus three). We additionally train a
model on each of the ten 1/10%", 1/100*" and 1/1000*" training
subsets of each of the four corpora, following the same procedure.
Given a trained Gaussian mixture with K components, mix-

ing weights (71, w2, ..., 7k ), means (u1, 2, ..., k) and covariance
matrices (X1,X2,...,Xk), we extract a test stimulus representa-
tion from the sequence (z1,x2,...,&m) of spectral-shape descrip-

tors for that stimulus, as the sequence of posterior probabil-
ity vectors (pi1,p2,...,pm) where for any frame i, 1 < i < m,
pi = (i1, Pi2, - Pik ), With, for any 1 <k < K:

TN (4| g, X)
e .
Zj:l TI']N(IZ“L], Z])

As a baseline, we also train a phoneme recognizer on the train-
ing set of each corpus, with explicit supervision (i.e. phonemic
transcriptions of the training stimuli). We extract frame-level pos-
terior probabilities at two granularity levels: actual phonemes—the
phoneme recognizer baseline—and individual states of the contex-
tual hidden Markov models—the ASR phone state baseline. See
Supplementary Materials and Methods 2 for additional information.

Pik =

Discrimination tests. Discriminability between model representa-
tions for phonetic contrasts of interest is assessed using machine
ABX discrimination errors (90, 91). Discrimination is assessed in
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context, defined as the preceding and following sound and the iden-
tity of the speaker. For example, discrimination of American English
[u] versus [i] is assessed in each available context independently,
yielding—for instance—a separate discrimination error rate for test
stimuli in [b]_[t] phonetic context, as in ‘boot’ versus ‘beet’, as
spoken by a specified speaker. Other possible factors of variability,
such as word boundaries or syllable position are not controlled. For
each model, each test corpus and each phonemic contrast in that
test corpus (as specified by the corpus’ phonemic transcriptions),
we obtain a discrimination error for each context in which the con-
trasted phonemes occur at least twice in the test corpus’ test set.
To avoid combinatorial explosion in the number of ABX triplets
to be considered, a randomly selected subset of five occurrences is
used to compute discrimination errors when a phoneme occurs more
than five times in a given context. An aggregated ABX error rate is
obtained for each combination of model, test corpus and phonemic
contrast, by averaging the context-specific error rates over speakers
and phonetic contexts, in that order.

Model representations are extracted for the whole test sets,
and the part corresponding to a specific occurrence of a phonetic
category is then obtained by selecting representation frames centered
on time points located between the start and end times for that
occurrence, as specified by the test set’s forced aligned phonemic
transcriptions. Given model representations A = (01,92, ...,0n;)
and E = (£1,£2, ..., &n, ) for ns tokens of phonetic category ¢ and
ng tokens of phonetic category &, the non-symmetrized Machine
ABX discrimination error between ¢ and & is then estimated as
the proportion of representation triplets a, b, , with a and x taken
from A and b taken from =, such that x is closer to b than to a, i.e.:

ns "¢ ng

1
UAE) = i 200 D [ s <t

a=1 b=1 z=1
rH#a

1
+ 5 Lay 80)=d(5a:52) | -

where 1 is the indicator function returning 1 when its predicate
is true and 0 otherwise and d is a dissimilarity function taking a
pair of model representations as input and returning a real number
(with higher values indicating more dissimilar representations). The
(symmetric) Machine ABX discrimination error between § and &
is then obtained as:

¢A,E) = &5, A) = %[é(A,E) 1 &5, A)).

As realizations of phonetic categories vary in duration, we need
a dissimilarity function d that can handle model representations
with variable length. This is done, following established practice
(28, 29, 56, 58, 69), by measuring the average dissimilarity along a
time-alignment of the two representations obtained through dynamic
time warping (122), where the dissimilarity between model repre-
sentations for individual frames is measured with the symmetrized
Kullback-Leibler divergence for posterior probability vectors and
with the angular distance for spectral shape descriptors.

Analysis of learned representations. Learned units are taken to be
the Gaussian components for the Gaussian mixture models, the
phoneme models for the phoneme recognizer baseline, and the phone
state models for the ASR phone state baseline. Since experimental
studies of phonetic categories are typically performed with citation
form stimuli, we study how each model represents stimuli from the
matched-language read speech corpus’ test set.

To study average durations of activation we exclude any
utterance-initial or utterance-final silence from the analysis, as well
as any utterance for which utterance-medial silence was detected
during the forced alignment. The average duration of activation for
a given unit is computed by averaging over all episodes in the test
utterances during which that unit becomes dominant, i.e. has the
highest posterior probability among all units. Each of these episodes
is defined as a continuous sequence of speech frames during which
the unit remains dominant without interruptions, with duration
equal to that number of speech frames times 10ms.

The acoustic (in)variance of the learned units is probed by
looking at multiple repetitions of a single word and testing whether
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the dominant unit at the central frame of the central phone of the
word remains the same for all repetitions. Specifically, we count
the number of distinct dominant units occurring at the central
frame of the central phone for ten repetitions of the same word. To
compensate for possible misalignment of the central phones’ central
frames (e.g. due to slightly different time courses in the acoustic
realization of the phonetic segment and/or small errors in the forced
alignment), we allow the dominant unit at the central frame to
be replaced by any unit that was dominant at some point within
the previous or following 46ms (thus covering a 92ms slice of time
corresponding to the average duration of a phoneme in our read
speech test sets), provided it can bring down the overall count of
distinct dominant units for the ten occurrences (see Supplementary
Materials and Methods 3 for more information). We consider
two conditions: in the within-speaker condition, the test stimuli
are uttered by the same speaker ten times; in the across-speaker
condition, they are uttered by ten different speakers one time. See
Supplementary Materials and Methods 3 for more information on
the stimulus selection procedure.

Data and code availability. The datasets analysed in this study are
publicly available from the commercial vendors and research insti-
tutions holding their copyrights (84-87). Datasets generated during
the course of the study are available from the corresponding author
upon reasonable request. Code to reproduce the results will be made
available at https://github.com/Thomas-Schatz/perceptual-tuning-pnas
upon publication.
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