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Abstract

In studying visual perception, we seek to develop models of processing that
accurately predict perceptual judgments. Much of this work is focused on
judgments of discrimination, and there is a large literature concerning mod-
els of visual discrimination. There are, however, non-threshold visual judg-
ments, such as judgments of the magnitude of differences between visual
stimuli, that provide a means to bridge the gap between threshold and ap-
pearance. We describe two such models of suprathreshold judgments, max-
imum likelihood difference scaling and maximum likelihood conjoint mea-
surement, and review recent literature that has exploited them.
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light reflected from
the surface; its

subjective correlate
defined as lightness
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1. INTRODUCTION

Since Fechner’s (1860) initial development of psychophysics, researchers have used measures of
sensory discrimination in developing and testing models of visual perception. The trichromatic
theory of color vision is based on characterization of the lights that can and cannot be discrimi-
nated by the typical observer (Kaiser & Boynton 1996). Much research concerning spatial vision
(for example, Pelli & Bex 2013) and perception of motion (for example, Nishida et al. 2018) is
based on discrimination measures.

Discrimination measures are readily linked to maximum likelihood and Bayesian ideal observer
models (Geisler 1989, Green & Swets 1966, Maloney & Zhang 2010). Ernst & Banks (2002), for
example, showed that the discriminability of individual shape cues approximately controlled the
weight given to each cue in combination, as predicted by statistical models of optimal cue combina-
tion (Landy et al. 1995). There are well-developed experimental methods for assigning numerical
estimates of discriminability (Green & Swets 1966, Maloney & Zhang 2010), for analyzing the
resulting data (Green & Swets 1966, Wichmann & Hill 2001), and for setting confidence inter-
vals on the resulting parameter estimates (Efron & Tibshirani 1994, Knoblauch & Maloney 2012,
Wichmann & Hill 2001). The combination of a visual judgment (discrimination) and a model of
the judgment process [a linking hypothesis in Brindley’s (1970) terms] has proven to be immensely
fruitful in vision research.

In this review, we consider other judgments and models that plausibly capture the observer’s
perception of suprathreshold appearance: how red or glossy or viscous or rough stimuli appear
to be (Fleming et al. 2015). Researchers have studied suprathreshold differences with a variety of
methods (for example, McCourt & Blakeslee 1994, Takasaki 1966, Ward & Boynton 1974, Whittle
1992). The methods that we describe provide systematic approaches to measuring and modeling
suprathreshold appearance by means of simple, forced-choice, perceptual judgments.

The stimuli in Figure 1a differ in albedo, increasing in albedo from left to right. We denote
the albedo of the jth stimulus, left to right, by ¢;, and by design ¢ < ¢2,. .., <gny with N=7.The
stimuli increase in albedo left to right, and most of the pairs of stimuli are readily discriminable
to the typical observer. Thus, measurements of discrimination would be minimally informative.
However, given any pair of distinct stimuli [¢;, ¢;] with ¢; < ¢;, we can consider the apparent
difference between the two stimuli. We call such a pair an interval and sometimes abbreviate
notation to 7 for convenience. (We use the Greek letter ¢ to denote physical quantities such as
albedo and the Greek letter ¥ for the internal representations of these qualities in the models
considered below.)

0000 +

Figure 1

(@) The circles are identical except for albedo (the proportion of light reflected), denoted, from left to right,
@1,...,oN. (b) A quadruple judgment. Is the difference between the upper pair 7 greater than or less than the
difference between the lower pair £/? The plus sign is a fixation target. The letters do not appear in the
display.
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Intuitively, we are trying to capture a judgment of the relative magnitude of intervals, and a
typical such judgment is schematized in Figure 15. The two intervals 77 and 4/ correspond to pairs
of stimuli taken from the stimuli in Figure 14, and the judgment is straightforward: We ask the
observer to judge which interval is greater or, equivalently, which difference is greater. While 7 < j
and k < / by convention, the order of the four indices , /, k, and / is not otherwise constrained.
The intervals could be nonoverlapping (13 versus 56) or overlapping (14 versus 25). One interval
could even be contained in the other (15 versus 24). The intervals are typically large and readily
discriminable.

For the example in Figure 15, the typical observer will select the lower pair 4/ as larger. The
pair of intervals in Figure 15 form a quadruple, and judging which interval is greater is a quadruple
judgment. The experimental designs that we use, based on quadruple judgments, are referred to
as the method of quadruples.

If there are N stimuli, then there are Ny = N(N — 1)/2 possible intervals. We can ask observers
to order not the stimuli but rather the N, intervals (pairs of stimuli). As N increases, the number of
possible pairs of intervals Ny increases quadratically, far more rapidly than the number of stimuli
N.If Nis 10, then the number of pairs of pairs is 990. In theory, we could ask an observer to judge
all possible quadruples (pairs of intervals) for N stimuli. In practice, we can confine attention to
a remarkably smaller subset of interval comparisons (see below; for a discussion, see Maloney &
Yang 2003).

In Section 2, we introduce maximum likelihood difference scaling (MLDS) (Maloney & Yang
2003), a model of interval judgment. Section 2.1 concerns the model, Section 2.2 describes an
application in detail, and Section 2.3 briefly reviews experimental applications of the method.
In Section 3, we describe a different but closely related method, maximum likelihood conjoint
measurement (MLCM), based on a different judgment and model.

In previous work, Knoblauch & Maloney (2008, 2012) and Maloney & Yang (2003) described
the mathematical framework of both MLDS and MLCM in detail and advised on how to set up
experiments and analyze data. In this review, we emphasize the outcome of recent applications of
the methods by ourselves and others.

Our current implementations of the scaling methods are in the statistical language R
(Knoblauch & Maloney 2008, Knoblauch et al. 2019, R Core Team 2019). By embedding the
methods in a statistical framework, we inherit diagnostic tests and also model selection meth-
ods (Anderson & Burnham 2004, Knoblauch & Maloney 2012). A version has also been im-
plemented in MatLab (Kingdom & Prins 2016), and another in Python (https://github.com/
computational-psychology/mlds) provides a wrapper to our R package.

The roots of MLDS and MLCM can be traced to earlier work in mathematical psychology,
notably the multivolume Foundations of Measurement series (Krantz etal. 1971, 1989; Roberts 1985;
Suppes et al. 1990). A marriage between this rich and powerful literature and modern statistical
methods has led to new methods that provide powerful ways to model human perception.

2. MAXIMUM LIKELIHOOD DIFFERENCE SCALING
2.1. The Model

We begin with N stimuli indexed along a physical scale, such as the scale in Figure 14 and the
quadruple judgment illustrated in Figure 14. In most applications, N is typically chosen to be
10 or greater: The stability and accuracy of MLDS estimates for lower values have not been
systematically explored. We denote the physical scale values as ¢1 < ¢;---< ¢n. The goal of
MLDS is to find a difference scale ¢; < y¥» <--- < 1y that can predict the observer’s ordering
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Figure 2

A hypothetical difference scale with v; plotted versus ¢, fori=1,..., N.

of the N(N' — 1)/2 intervals #. Define the unsigned perceptual length of an interval 7 as §; =
[¥; — ¥;l, and let ij < &/ denote the case in which the observer judges interval i/ to be less than
interval k.. We wish to find a difference scale such that

ij < kil if and only if §;; < 8. 1.

If we succeed at assigning scale values that predict perceived ordering of intervals, then it seems
that we have captured N(N — 1)/2 ordering judgments in only N parameters. It is actually fewer,
since we can add a constant to the values ¥, < ¥, <---< ¥y without changing any of the
predicted orderings. We may equally multiply them by a positive constant without changing
the predicted orderings. We can, for example, choose the parameterization ¥; = 0 and Yy =1
without any loss of generality (Knoblauch & Maloney 2012, Maloney & Yang 2003).

2.1.1. The nonstochastic model. For simplicity, we first describe the model as if observers’
judgments were nonstochastic: Presented with the same stimuli, the observer would always make
the same judgment. We then modify it to take into account the noisiness of the observer’s judg-
ments. The nonstochastic model is just a didactic tool and plays no role in MLDS.

In Figure 2, we plot ¥, versus ¢;, a graphical representation of a difference scale that su-
perficially resembles a psychophysical function (for examples of relating the psychometric and
psychophysical functions, see Hillis & Brainard 2005, 2007a,b). The vertical axis in this case is
used to predict perceived differences, §;7, in appearance. In addition to the plotted points we add
a hypothetical continuous curve. The physical stimuli are often drawn from a continuum, and the
resulting difference scale is intended to generalize beyond the physical sample. The implemen-
tation of MLDS by Knoblauch & Maloney (2012) also allows fitting of functions drawn from
continuous families specified by the user. Such curves, specified by only a few parameters, can
be compared with the points using model comparison methods. We can compare a parametric
model fit to a less restrictive, nonparametric model fit. If the physical scale is continuous, then we
can interpolate and invert the curve to estimate a scale with uniform perceptual spacing (see, for
example, Rogers et al. 2016).

2.1.2. The stochastic model. The nonstochastic model fails if observers are not consistent in
their judgments, as is often the case in experiments. Suppose that the experimenter repeatedly
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presents two intervals 7 and &/ The observer judges i/ < k/ on some presentations but &/ < 7 on
others. Evidently, we cannot assign values ; consistent with the observer’s contradictory judg-
ments. Intuitively, we might expect such inconsistencies when the perceived length of 7 and the
perceived length of &/ are very close to each other.

The approach taken in MLDS is to include a stochastic component in the judgment process
(judgment noise) itself. If the experimenter uses the packages available (for example, the R package
available at https://cran.r-project.org/web/packages/MLDS/index.html), then he need not be
concerned with the details of the actual MLDS fitting procedure. Nevertheless, we briefly sketch
the model.

We can rewrite Equation 1, adding a random Gaussian variable € with mean 0 and variance o2,
as

ij < kl if and only if 84y — &;j + € > 0. 2.

Any choice of ¥, < 3 < -+ < ¥ _ 1 and variance o2 induces probabilities of each of the ordering
judgments i < k/ for all 4, , k, / (recall that ; and ¥y are not free parameters, but instead are set
to fixed values, for example, 0 and 1, respectively). We can compute the likelihood (probability) of
any pattern of an observer’s independent responses and then vary the parameters to maximize this
likelihood. The result is maximum likelihood estimates of the N — 1 parameters ¢, < ¢3 <--- <

¥~ _1 and 0. The judgment noise parameter o>

is a measure of the observer’s inconsistency in
judgment.

Other choices of parameterization are possible, however, and may be desirable in particular
circumstances. In Figure 2, we normalize the difference scale by setting ¥; = 0 and ¢y = 1.
Then o is a separate free parameter measuring inconsistency. Alternatively, we could normalize
the difference scale so that ¥, = 0 and ¥y = 1/0. A plot of the resulting difference scale then also
includes a visual indication of the observer’s inconsistency. The default method in our package
uses the second method described (for discussion, see Knoblauch & Maloney 2012).

We modeled the observer’s inconsistency by a Gaussian random variable; it is possible that
other choices of distribution would lead to different, inconsistent estimates of the parameters
Yy < ¥y <--- < Yn. Maloney & Yang (2003) investigated the robustness of MLDS to failures
of the distributional assumptions. If, for example, the maximum likelihood fit were based on the
Gaussian assumption, but the actual distribution were very different, would the estimates of ¥; <
¥, <.+ < ¥y be markedly in error? Surprisingly, Maloney & Yang (2003) found that, for a range
of distributions, they were not. Thus, while MLDS is apparently based on a parametric (Gaussian)
assumption, the assumption has little effect on the solutions obtained.

2.2. An Example

As an example, we present the experiment of Obein et al. (2004), in which they used MLDS to
estimate how observers perceive gloss. Gloss is a complex physical phenomenon, as it depends on
the interaction of both diffuse and specular reflections of the illumination from the surface. The
pattern of light radiating from the surface to the eye depends on many factors. Given any physical
measure of gloss, MLDS presents itself as a possible approach to measuring gloss appearance as
physical gloss is varied. We can repeat this measurement with different viewing conditions. Given
the physical changes in the stimulus with viewing conditions, does the appearance change? In
particular, does the appearance of glossy surfaces change with viewing angle and whether or not
the surface is viewed monocularly or binocularly?
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Gloss index level

Average maximum likelihood difference scaling scales for six observers (O) who judged the gloss differences between pairs of pairs of
stimuli differing in physical gloss for binocular (b/ze) and monocular (red) viewing. The error bars are &2 standard errors of the mean.
The abscissa indicates the ordinal index of the surface, not the gloss value. The ordinate values were normalized with respect to each
observer’s judgment noise and are thus specified as the signal detection measure d’. All of these judgments were obtained at a 60°
viewing angle. Figure adapted with permission from Obein et al. (2004).
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Obein et al. (2004) evaluated a set of 10 calibrated, black, coated surfaces that varied in gloss
over approximately two orders of magnitude in physical gloss units, varying in appearance from
matte to highly glossy. The appearance range varied with the angle of measurement (the angle
between line of sight and a surface normal), and Obein et al. report measurements at 20° and
60°. They tested observers using MLDS from both of these angles of view, using both monocular
and binocular vision. The study is an early application of MLDS and was unique at the time in
using actual physical samples rather than stimuli generated on a computer display. As the interest
in applying MLDS to more exotic and real-world varying physical continua increases, the use of
MLDS with actual physical samples is increasingly common (for example, Hansmann-Roth et al.
2018).

Using real physical stimuli imposes logistical problems in running an experiment in terms of
stimulus presentation, with the time needed to change the stimuli from trial to trial limiting the
rate of data collection. Thus, whereas computer-driven MLDS experiments can take from 5 to
15 min for a run of 210 trials, typically depending on the number of levels and the experience of
the observer, Obein et al. (2004) report that a session of 210 trials lasted 45 min.

Average MLDS scales over the four runs from the six observers tested by Obein et al. (2004)
are shown in Figure 3 for binocular and monocular viewing. As discussed above, the curves are
only unique up to the addition of a constant and multiplication by a positive coefficient. In this
case, we normalized each scale value by the estimated standard deviation of the judgment noise
o. We label this as & by analogy to the measure used in signal detection theory (Green & Swets
1966) for characterizing differences in discrimination.

Observers differ in their overall judgments of magnitude of gloss differences, as shown by the
different heights of the curves, although, with the exception of the first observer, the maximum
heights are quite similar across observers. Given the confidence limits in the estimates, the differ-
ences between monocular and binocular viewing are surprisingly slight and unsystematic, varying
between observers. The statistical reliability of monocular and binocular effects could be tested
with formal model comparison, something that would be easy to do, for example, with current soft-
ware (Knoblauch & Maloney 2012). What is most striking in the data is that the average shape
of the curves is relatively stable between monocular and binocular viewing and also between ob-
servers. The curves display an inverted S shape that seems to be composed of two regimes. At
low gloss levels, the estimates rise quickly and then begin to asymptote. The asymptotic region is
followed by a second region in which the slope increases, suggesting a rapid change in perceived
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glossiness. Obein et al. (2004) suggest that the low gloss levels are influenced by the lightness of
the predominantly matte surface properties of the samples, while the upper segment reflects the
increasingly clear specular reflectance of the illuminant. This upper segment was not previously
revealed on gloss estimates using different techniques to measure appearance and using simulated
samples on a computer screen.

Another interesting finding, not shown in Figure 3, is that, when the data from the two viewing
angles, 20° and 60°, were compared with the gloss scale estimates plotted as a function of the gloss
index, as in Figure 3, rather than the physically measured gloss units, the curves closely overlapped,
suggesting that the gloss appearance was independent of the viewing angle, at least over the range
explored, which would indicate some degree of gloss constancy in glossiness perception. This
example shows not only that MLDS can yield reliable estimates of the appearance changes along
a physical dimension, but also that the results can be used to answer pertinent questions concerning
perception.

MLDS can be applied to arbitrary stimuli that can be ordered along a physical continuum. For
example, Knoblauch & Maloney (2008, 2012) used the example of scatter plots that are ordered by
their Pearson product moment correlation. In this case, each stimulus is a realization of a stochastic
level along the continuum defined by the correlation coefficient. The reader is referred to these
publications for further examples of a didactic presentation of the use of MLDS.

2.3. Review of Recent Work

Since its introduction, MLDS has been applied to measure appearance along increasingly diverse
dimensions. Subsequent to its use by Obein et al. (2004) for measuring gloss, Charrier et al. (2007)
compared image distortion from compression in two color spaces, showing that a color space
aligned more closely with human color coding (Lab) could produce higher compression rates
with less perceived distortion than one based on RGB display primaries. Rhodes et al. (2007) used
MLDS to test whether observers are more sensitive to appearance changes around an average face
and reported no evidence that this is the case. Knoblauch & Maloney (2008) demonstrated that
perception of correlation in scatter plots follows more closely variance-accounted-for than cor-
relation. Lindsey et al. (2010) used MLDS to estimate perceptual intervals between color stimuli
to search for (and not find) evidence of categorical color boundaries. In a followup study, Brown
et al. (2011) found similar evidence by relating MLDS perceptual estimates and a standard color
opponent model to reaction time measurements in an effort to test the Sapir-Whorf hypothesis re-
lating language and perception. In a series of papers, Menkovski and colleagues (Liotta et al. 2013;
Menkovski & Liotta 2012; Menkovski et al. 2011a,b, 2012) tackled the application of MLDS to
evaluating the quality of video image sequences, work that entailed considering whether the num-
ber and choice of samples could be selected to optimize the data collection procedure. In a series
of studies, Devinck and colleagues (Devinck & Knoblauch 2012, Devinck et al. 2014, Gerardin
etal. 2018a) used MLDS to quantify the long-range color filling-in of the watercolor effect (Pinna
etal. 2001). An important feature of experimental design in these studies is that the stimulus feature
manipulated was not the feature judged,; i.e., the contour luminance was varied, but the perceived
fill-in color was judged. Thus, it was necessary to introduce a control condition with the same lu-
minance changes but with contours that did not generate a filling-in phenomenon to demonstrate
that the estimated scales reflected the filling-in phenomenon under study and not an artifact of
the stimulus manipulation.

Wiebel et al. (2017) compared MLDS measurements of lightness in different contexts with
traditional matching measures. MLDS proved to be an effective method for comparing models of
how context influences lightness perception because it is based on a statistical model that permitted
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detailed simulation of different observer models. Brainard and colleagues (Brainard et al. 2018;
Radonji¢ & Brainard 2016; Radonji¢ et al. 2015a,b) have adapted the MLDS paradigm to assess
color shifts in color constancy experiments. Their work is focused on scaling appearance changes
with respect to a focal color rather than measuring a full scale. In a more recent article, Radonji¢
et al. (2019) developed a variation that extends MLDS to two-dimensional physical scale values
rather than a unidimensional scale (see also Haghiri et al. 2019b). MLCM, discussed below, offers
a multidimensional approach to scaling when appearance depends on two or more physical scales
and has much in common with MLDS.

Kingdom (2016) used MLDS to evaluate hypotheses concerning noise in contrast perception
that had been suggested by previous discrimination experiments. Knoblauch et al. (2020) similarly
investigated luminance and chromatic contrast response using MLDS in normal and anomalous
trichromats. The estimated contrast response scales were well described by a Michaelis-Menten
function, thereby allowing both response and contrast gain to be evaluated in each group. It would
be of interest to extend such measurements in clinical situations to assess contrast appearance in
eye disease.

By far the most adventurous applications of MLDS involve measuring the appearance of ob-
ject characteristics, such as the appearance associated with simulated changes in refractive index
(Fleming et al. 2011), transparency perception (Faul 2017), object solidity (Bi et al. 2018, Paulun
etal. 2015), and surface texture properties (Sawayama et al. 2017). Mansour Pour et al. (2018) in-
vestigated a well-controlled class of broadband random-texture stimuli, which they called motion
clouds, using MLDS and found evidence for three regimes that correspond to motion coherency,
motion transparency, and motion incoherency.

A still-underdeveloped area wherein MLDS shows promise is relating these perceptual scales
to functional cerebral imaging data. As the MLDS decision process is based on a signal detec-
tion model, the estimated scales can be expressed in terms of a signal-to-noise ratio, making them
simple to relate to noisy neurally correlated signals. In an early study, Yang et al. (2007) evaluated
cortical sites involved in processing the same physical scale when observers performed different
perceptual judgments, for example, stimulus area versus stimulus color. Bellot et al. (2016) com-
pared contrast response in subcortical and cortical structures to MLDS-derived contrast scales
in different age groups. Age influenced both response and contrast gain of the MLDS-derived
response functions. Age effects on contrast response were also detected in the lateral geniculate
nucleus, superior colliculus, and cortical area V1. Finally, Gerardin et al. (2018a) used MLDS-
estimated appearance of watercolor filling-in to help identify the cortical areas that best decoded
the perceptual filling-in versus the presentation of a matching uniform chromaticity. Another in-
teresting direction is provided by Haghiri et al. (2019a), who used crowdsourcing via Amazon
Mechanical Turk to obtain a much larger number of observers performing MLDS in an efficient
manner than would typically be possible in a laboratory environment.

3. MAXIMUM LIKELIHOOD CONJOINT MEASUREMENT
3.1. The Model

Additive conjoint measurement permits one simultaneously to measure and model the contribu-
tions of multiple physical dimensions to measured appearance. The model in its simplest form is
additive, and we confine attention to additive conjoint measurement. Each stimulus is character-
ized by physical measures on each of several dimensions. The observer’s task is to rank the stimuli
by some dependent, perceptual measure. The experimenter wishes to determine how the physical
dimensions contribute to judged perceptual appearance.

Maloney o Knoblauch
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Bump level (i)

Gloss level (j)

Figure 4

A five-by-five array of rendered surfaces differing in physical glossiness and a measure of physical roughness.
Each column has constant glossiness and five different levels of roughness that decrease from the top to the
bottom of the column. Each row has constant roughness and five different levels of glossiness that increase
from left to right. Figure adapted with permission from Ho et al. (2008).

Figure 4, for example, contains a five-by-five array of rendered surfaces (stimuli) taken from
Ho et al. (2008). The 25 stimuli vary in two physical dimensions, roughness and glossiness. (Ho
et al. use the term bumpiness rather than roughness, but the latter is more common in the litera-
ture, and we adopt it in this review).

In one experiment, observers judged the roughness of surfaces; in a second experiment, a dif-
ferent set of observers viewed the same stimuli and judged which of each pair was glossier. We em-
phasize that the stimuli in the two experiments were identical but that observers were instructed
to extract a perceptual analog of each physical dimension in turn while squelching any effect of
the other.

As an application of additive conjoint measurement, the experiment of Ho et al. (2008) is un-
usual in two respects. First, they assessed how well observers could judge a single physical di-
mension (gloss or roughness) when both stimulus dimensions were varied jointly, a perceptual
constancy (more precisely, two perceptual constancies). They sought to model the interaction (in-
terference) between dimensions: to what degree did changes in physical roughness affect perceived
gloss and vice versa. Second, the judgments of appearance in the roughness experiment and in the
glossiness experiment were the perceptual correlates of one of the physical dimensions varied to
produce stimuli. This need not be the case in other applications of MLCM.

We do not present the study in detail, but instead use it to outline the issues that need to be
considered in using conjoint measurement. The firstis that the physical scales are simply arbitrary.
The glossiness parameter was taken from a standard rendering package. The roughness param-
eter was the variance of surface distance variation along the line of sight. A possible approach to
modeling such data would be applying MLDS twice to the isolated scales before attempting to
test (in some manner) how they interact.
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MLCM will determine separate scales for the physical dimensions as part of the process of
fitting its model. We denote the first physical scale as @', the second as ¢?, etc. The sampled values
on each scale are denoted by subscripts. For the dth dimension, these would be ¢¢ < --- < (pfl\yfl,
where the inequality refers to the ordering on the physical scale, and N is the number of sampled
values on the dth physical scale.

Second, in MLCM, the focus is not solely on the physical scales, but also on characterizing the
interaction between scales. To simplify notation, let us assume that there are only two physical
dimensions, d = 2.

Any stimulus in Figure 4 is specified by its roughness and glossiness levels, and we specify
stimuli by ordered pairs: [gojl- , 1] denotes the stimulus that had level j of dimension 1 and level &
on dimension 2. There are N1 N, stimuli (25 in Figure 4). We can simplify notation by replacing
each stimulus [¢}, ¢;] by an ordered pair [, £]. The psychophysical task is to order any two stimuli
(ordered pairs) in whatever measure of appearance the experimenter chooses.

The model is similar to that of MLDS but expanded to two or more dimensions. To each physi-
cal measure ¢! we associate a measure /1 that is interpreted as the contribution to the appearance
measure of that level of the first dimension. The physical measure ¢7 is mapped to ¥, and if
there are only two physical dimensions, then we define the appearance magnitude as ¥/} + ¥,
the sum of the contributions from each dimension. The model is readily extended to more than
two dimensions. As in MLDS, we formulate a model of the observer’s judgments based on these
appearance magnitudes for a nonstochastic observer and then for a fallible, stochastic observer.
First, given any two stimuli [4, /] and [, /], we require that

vl + wf <y} + ¢} ifand only if [4, j] < [k, 1], 3.

a simple additive model.

The number of possible stimuli is N;N; in the two-dimensional case. In the work of Ho et al.
(2008), N; = N, = 5, and the number of possible stimuli is 25, as shown in Figure 4. At first
glance, there are Nj + N; free parameters for the MLCM model: ¥/, ¥, .. ., ¢1\1q RV S 1//1512 .
However, as with MLDS, adding a constant to all the parameters or multiplying all the parameters
by a positive constant leads to no change in the predictions of the model. There are effectively
N + N, — 2 free parameters, and we can arbitrarily normalize the scales. For example, we could
set ¥# = 1 for convenience.

The model presented above assumes that the observer’s responses are not stochastic: Presented
with the same stimuli, the observer makes the same response. We remedy this defect by including
a stochastic component in the observer’s judgment:

vl + 1/,]? < ¥ + ¥} +eifand only if [4, j] < [&,1], 4.
where € is a Gaussian random variable with mean 0 and variance o%. The additional parameter o
brings the total of free parameters back to N; + N, — 1 (for details of the maximum likelihood
fitting procedure, see Knoblauch & Maloney 2012).

An experimental design could require the observers to compare all stimuli [7] to all distinct
stimuli [#/]. For the 25 stimuli in Figure 4, the observer could make 300 distinct forced-choice
comparisons. If the full set of comparisons is repeated one or more times, then the number of
trials increases accordingly. If the number of levels is larger, then fits based on a subset of the
samples would be acceptable (Abbatecola et al. 2020). If stimuli are chosen at random, then the
critical variable seems to be the total number of trials tested (Abbatecola et al. 2020, Knoblauch
& Maloney 2012).
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Figure 5

(#) Representation of set of stimuli varying in chroma and lightness for one of four hues tested by Rogers et al. (2016) in a maximum
likelihood conjoint measurement experiment in which observers compared either the chroma or the lightness of a stimulus pair
randomly chosen from the set. On each trial, a stimulus of chroma 7 and lightness j was compared with another of chroma k and
lightness /. The axis units indicate indices assigned to each stimulus. (b)) Estimated contributions of chroma (green circles) and lightness
(white triangles) to chroma judgments (lef) and lightness judgments (right) under an additive model fit, replotted from Rogers et al.
(2016). Points are averages of the results from 15 observers each fit by maximum likelihood. The error bars are 95% confidence
intervals. The lines are the fixed-effect or population estimates from a generalized linear mixed-effects model fit to the responses of all
observers with the random effect attributed to observer variation of the slope for each component. Figure adapted with permission
from Rogers et al. (2016).

3.2. An Example

As described in the previous section, the seminal article introducing MLCM was that of Ho et al.
(2008), in which the mutual influences of surface gloss and roughness were investigated in ren-
dered stereoscopically fused images. An extended tutorial using this work as an example was de-
tailed by Knoblauch & Maloney (2012), so we develop a different example in this review, the
experiment of Rogers et al. (2016) in which they used MLCM to measure how lightness influ-
ences chroma judgments and chroma influences lightness judgments. They tested four hues (red,
yellow, green, and blue) with stimuli selected from a matrix of four levels each of lightness and
chroma, yielding 16 stimuli and 128 unordered pairs, including self-comparisons between stimuli
whose levels were the same on each dimension. These self-comparisons were not included in the
analyses, as they do not contribute to the estimate of the scale values, but they can be evaluated
separately to test for possible response biases.

The stimuli were specified in Commission Internationale de I’Eclairage (CIE) LCh,, space,
a cylindrical version of CIELUV, where L is the lightness, C,, is the chroma, and h,, is the hue
(Poynton 2012). An example of the stimulus matrix for the green hue is shown in Figure 5a.
Thirty observers were tested in the experiment, with 15 participating in experiments judging red
and yellow stimuli and another 15 in experiments judging blue and green. Each chroma/lightness
matrix was tested in eight separate sessions, with sessions divided between conditions in which
observers judged either the chroma or lightness on a given trial. Specifically, in a lightness session,
observers chose which of the presented pair appeared lighter, and in a chroma session, observers
judged which stimulus had a stronger chroma. For example, for the green hue judgments, the
observers chose the stimulus patch that appeared greener. It is important to note that, for a given
hue, the stimulus set presented to the observer was exactly the same in the two conditions, and
only the instructions as to which stimulus feature to judge differed.
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The average results of the 15 observers for the green hue conditions fit under the additive
model are shown in Figure 56. When the observers judged chroma, the chroma component in-
creased with the chroma of the stimulus, but the lightness component decreased with the lightness
of the stimulus. This means that increasing the stimulus lightness was more likely to lead the ob-
server to report a stimulus as less green. The decrease in chroma with increase of lightness is
referred to as veiling (Krantz 1975). The same phenomenon was observed for blue and red hues,
but for yellow, the chroma component was nearly independent of the lightness component. In-
creasing lightness slightly increased the yellow appearance of the stimulus.

Figure 5b shows the chroma and lightness contributions to lightness judgments. In this case,
increasing stimulus lightness led to increasing lightness judgments but independent of the chroma
level of the stimulus. Again, similar results appeared for the other hues, except for red, for which
there was a small but significant positive contribution of chroma to lightness.

An interesting feature of this study is that, in a pilot experiment, each of the hues at fixed
lightness and an achromatic series with chroma set to 0 were evaluated with MLDS, each being
tested at 10 levels. The four levels presented in the MLCM experiment were selected to have equal
perceptual differences based on the MLDS results. This choice of stimulus levels tested is what led
to the linear variation of each component with its levels in Figure 5. The linearity resulting from
this choice of stimulus levels, in addition, permitted the data to be simply fit with a generalized
linear mixed-effects model (GLMM) in which, given the identifiability constraint that the curves
pass through 0 at the lowest values, the only parameters necessary to estimate were the slopes of
the two components, thereby reducing the complexity of the model (Bates et al. 2015, Knoblauch
& Maloney 2012). The solid lines in Figure 5 correspond to the population estimates from the
additive GLMM model (for details, see Rogers et al. 2016). The results support the claim that
chroma and lightness contribute in an additive fashion to chroma judgments but that lightness
judgments do not depend on the chroma of the stimulus patch. Lisi & Gorea (2016), Chammat
et al. (2011), and Nichiporuk et al. (2017, 2018) further exploited the linearity of the variation of
components in an MLCM experiment to fit their data using a GLMM.

3.3. Review of Recent Work

Since Ho et al. 2008) introduced MLCM as a method for investigating surface-related proper-
ties, several studies have used it to explore object-related perceptual dimensions. Hansmann-Roth
et al. (2018) manufactured real stimuli to test the influence of glossiness and shape on one an-
other. Hansmann-Roth & Mamassian (2017) also investigated contextual influences on gloss per-
ception using MLCM. For MLCM, an initial focus is typically directed to testing three nested
models, independence, additivity, and a full model, the latter evaluating the possibility of interac-
tion effects between the dimensions tested (also called the saturated model because the maximum
number of identifiable parameters is estimated). Emrith et al. (2010) explored the role of higher-
order statistics in surface texture perception. Interaction effects were significant, and Emrith et al.
demonstrated how to visualize these effects.

MLCM was further used to explore the perception of scattering and diffusion in translucence
perception. Chadwick et al. (2018) used mixtures of concentrations of tea and milk as the physical
dimensions with real and simulated images. Differences between the results for the two sets of im-
ages point to cues in the real images that the simulations did not capture. The interesting approach
of these authors was to explore whether decision models based on particular image heuristics were
sufficient to account for the observers’ behavior in these experiments, leading to propositions on
the computations that the visual system might employ in translucence perception.
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In their studies of the watercolor effect, Gerardin etal. (2014) used MLCM to investigate all the
pairings of three different dimensions that might influence the phenomenon. As in their previous
studies of this phenomenon using MLDS, judgments of control stimuli allowed them to conclude
that observers’ judgments were based on the hue appearance of filling-in, and not the variations
in stimulus dimensions. The additivity model best described the data. As expected, therefore, the
contribution of a given dimension did not depend on the other dimension with which it was paired.
In a further MLCM study, the influence of background luminance was paired with contour lu-
minance, and observers judged either the hue or the brightness of the filling-in (Gerardin et al.
2018b). In this case, interaction effects were significant, but the two judgments depended on back-
ground luminance in different fashions. Increasing background luminance generated assimilation
based on the hue judgments but contrast based on the brightness judgments.

MLCM is based on paired comparisons. This creates possibilities for applications in which
the choice is based on preference responses, which might more easily be recorded from nonver-
bal organisms. As an example, Rogers et al. (2018) followed up their initial work on chroma and
lightness perception in adults (Rogers et al. 2016; described in the previous section) with a study
in infants in which a forced-choice preferential-looking paradigm (Teller 1979) was used. Infants’
first looking response toward one of the stimuli comprising the pair was recorded as the choice
based on analyses of videos obtained during the session. The procedure was simplified for the
limited attentional resources of infants by reducing the stimuli to a 3 x 3 set, yielding only 36
unique unordered pairs. Each pair was intended to be presented twice, with the left to right order
reversed on the second presentation, but only one-quarter of the 21 infants tested completed all 72
trials. Nevertheless, using a GLMM, the data from all infants could be analyzed to test the three
nested hypotheses and to demonstrate the contributions of chroma and lightness to the infants’
choices. Unlike the adult experiments, the infants cannot be instructed to compare the chroma or
the lightness in a stimulus pair; the judgments are best interpreted as resulting from the salience
of the components in the stimuli. In control experiments, adults who were asked to make a sac-
cade to the most salient stimulus performed quite differently than did the infants, and the results
were more variable across observers, suggesting a range of strategies in the adults. Nevertheless,
the infant preferences generated contributions of chroma and lightness to salience that qualita-
tively were most similar to the case in the previous paper when adults were asked to make chroma
judgments.

In an original application, Lisi & Gorea (2016) used MLCM to demonstrate a time constancy
phenomenon analogous to size constancy. When, and only when, observers were provided infor-
mation about viewing distance, jointly modulated size and speed had no influence on duration
perception. Chammat et al. 2011) used MLCM to demonstrate that emotional intensity of nat-
ural images influences perceived contrast. MLCM has also been used to confirm a race bias on
lightness perception of faces (Nichiporuk et al. 2017, 2018). An interesting technical aspect of
these studies is the demonstration that the stimulus matrix need not be square. Nichiporuk et al.’s
(2017, 2018) stimulus design included two levels of race (Caucasian and African) and 13 levels of
face lightness.

4. FUTURE DIRECTIONS
4.1. Maximizing Likelihood

MLDS and MLCM link human perceptual judgments to parametric stochastic models of the
judgment process. In both methods, each trial is modeled as an independent Bernoulli random
variable, and the probability of the outcome of the trial is determined by the settings of the model
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parameters. [Knoblauch & Maloney (2012) describe the fitting procedure and the underlying sta-
tistical theory in detail.] In our approach, the key step in fitting is to select the settings of the
model parameters that maximize the overall probability (likelihood) of the observed responses,
maximum likelihood estimation (MLE). MLE has many useful properties. MLE estimates are
asymptotically unbiased and uniformly minimum variance and can be used with standard model
comparison methods (Knoblauch & Maloney 2012).

The fitting procedures for MLDS and MLCM are equivalent to fitting generalized linear mod-
els (GLMs), and we can use GLM fitting methods to compute MLDS and MLCM solutions.
These methods are also based on maximizing likelihood, and using GLM methods is a conve-
nience. The underlying MLDS or MLCM model is not changed.

There are alternative approaches to maximizing likelihood. Schneider and colleagues
(Schneider 1980a,b; Schneider et al. 1974), for example, used a model similar to what we refer to
above as the nonstochastic model and chose model parameter settings that minimized the count of
discrepancies between model predictions and the observer’s actual responses. As o2 (the variance
of the judgment uncertainty, €) approaches 0, their fitting method converges to MLDS. In most
applications, though, o2 is substantially greater than 0.

4.2. Numerical Optimization

The key step in MLDS is the maximization of likelihood using numerical maximization methods.
There exist many such methods, and one could create a variant of MLDS simply by changing from
one optimization method to another. Knoblauch & Maloney (2008, 2012) provide two standard
maximization methods (one based on GLM) in their MLDS package. While some optimization
methods may prove superior to others for particular kinds of problems, such changes do not alter
the basic theory underlying MLDS. At best, they decrease the probability of spurious solutions (lo-
cal minima), to which all optimization methods are prone. Still, the basic question remains: Which
optimization methods provide the best solutions for MLDS and MLCM in specific applications?
Some research has been done on this issue recently (Haghiri et al. 2019b).

Directions for future research would include development of more powerful and reliable op-
timization methods for MLDS and MLCM and investigation of the limits of existing measures.

4.3. Alternatives to Maximum Likelihood Difference Scaling and Maximum
Likelihood Conjoint Measurement

In this section, we describe some alternatives to MLDS and MLCM.

4.3.1. Direct scaling. A common alternative to MLDS is to use numerical estimates of appear-
ance, an approach referred to as direct scaling and favored by Stevens (1946). The observer is
shown stimuli ¢y, ..., ¢y one at a time and asked to assign a numerical estimate of magnitude
to each. There is no reason to anticipate that the resulting scale values can be used to predict
differences or anything else other than the estimates themselves. It is based on the assumption
that human use of numerical ratings is readily interpretable. In an elegant article, Augustin (2006)
discusses possible interpretations of ratings obtained by direct scaling and what each interpreta-
tion presupposes. Schneider and colleagues (Schneider 1980a,b; Schneider et al. 1974) compared
direct scaling to a difference scaling method that is similar to MLDS but with a different statis-
tical framework. They found that their difference scaling estimates were more stable and readily
interpretable. [The reader is also referred to Wiebel et al. (2017), who compared matching and
MLDS in lightness judgments.]
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4.3.2. Concatenated just noticeable differences. Another alternative is to develop scales
based on concatenation of just noticeable differences (JNDs). The experimenter uses threshold
measurements to create a list of physical stimuli ¢; < - - - < ¢, with adjacent stimuli being equidis-
criminable. That is, the probability of judging which of two adjacent stimuli ¢; < ¢; 1 is more
intense is a fixed value 7. The difference is referred to as a JND or, more precisely, a 7-JND.
The resulting scale resembles a Thurstone Scale, Case V (Thurstone 1927), and this method is
sometimes referred to as Thurstone scaling.

A celebrated claim is that stimuli that are a certain number of JNDs apart differ equally in
appearance. This claim originated with Fechner (1860) and is the basis for Fechner’s Law. The
central question is whether concatenated JNDs do, in fact, capture differences in appearance. This
claim is controversial (Stevens 1961), with mixed results in the literature (Laming & Laming 1996;
Schneider 1980a,b; Schneider et al. 1974). The method of concatenated JNDs is potentially time
consuming; the number of forced-choice trials needed to measure concatenated JNDs can be very
large compared to the number of forced-choice trials needed for MLDS. Moreover, it is clear what
the difference scale offers: prediction of perceived differences between stimuli on a continuum.
The interpretation of concatenated JNDs is less obvious.

A scale based on concatenated JNDs is based, in effect, on very local, near-threshold informa-
tion, the rate of confusion between nearby stimuli. If two stimuli on the scale are suprathreshold
in the sense that the rate of confusion is too small to estimate reliably, then judgments of these
stimuli will not appreciably constrain the concatenated JND scale. MLDS, in contrast, includes
comparison of large scale differences, the intervals whose differences are compared. One might
say that MLDS depends on more global properties of appearance.

Similar issues arise with MLCM: The key step in MLCM is to develop scales for each of the
physical dimensions and use sums of the ratings on these scales to predict observers’ judgments
in ordering stimuli. We emphasize that MLCM is not simply application of MLDS to multiple
dimensions. It includes an assessment of how the dimensions interact and, in effect, places the
dimensions on a common scale. Indeed, scaling the MLCM dimensions separately by repeated
applications of MLDS allows us to test the hypothesis that the scales arising from the two meth-
ods are the same. We view these and related questions as fundamentally empirical. MLDS and
MLCM provide well-defined methods with clear interpretations for measuring specified aspects
of experience based on specific linking hypotheses with experience. It is the developer’s burden
to demonstrate that a novel method measures anything at all and to demonstrate that it measures
what it is claimed to measure. Experimentally, we can and should test and verify these claims—or
reject them.

Similarly, there are other methods that provide partial information about appearance, some
specific to a single domain. In color, for example, we have color matching (Kaiser & Boynton 1996)
and opponent hue cancellation (Hurvich 1981). Both methods tell us something about appearance,
but neither allows us to estimate a scale of appearance comparable to those provided by MLDS
and MLCM, and we consider them no further.

4.4. Diagnostics

For the stimuli in Figure 1, it is plausible that observers can order intervals. Given other possible
sets of physical stimuli (e.g., roughness), it is not evident that an observer’s judgments will make any
sense at all. There are many ways for a surface to be rough. The observer may simply be guessing
or basing his judgments on a model other than the one that the experimenter is considering. If an
observer were to judge that i < &/ and k/ < mn but §j > mn, then we would hesitate to ascribe any
sort of scale to the set of judgments.
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In addition to specifying a psychophysical judgment and a model of that judgment, we need to
specify tests of the assumptions underlying the model and the linking hypothesis itself. We need to
be able to assess failures of models when the model is not appropriate for the data. In fitting statis-
tical models to data, it is common practice to test the assumptions of each fitted model, not just the
overall goodness of fit. We look for patterned failures of the model that call into question its appro-
priateness. In statistics, these tests are referred to as diagnostics, and diagnostics such as the runs
test (Wood 2017) are commonly employed in multiple regression (Belsley et al. 1980). Knoblauch
& Maloney (2008) discuss possible diagnostic statistics for MLDS; further work is needed.

4.5. New Models and Methods

The key step in MLDS and MLCM is to link a perceptual judgment with a model of the judg-
ment. There is a wealth of possible models to choose among, including those described in the
multivolume Foundations of Measurement (Krantz et al. 1971, 1989; Suppes et al. 1990). Whether
such models are useful is an empirical question that remains to be tested. We briefly mention
polynomial conjoint measurement, an extension of additive conjoint measurement that allows for
both multiplicative and additive interactions among physical dimensions. Logvinenko & Maloney
(2006) applied the model without labeling it as such to analyze rated similarity between surfaces
in scenes differing in illumination. The judgment that they employed was a form of asymmet-
ric lightness matching, with observers asked to rate the dissimilarity of surface lightness of two
surfaces embedded in simple scenes differing in illumination.

If MLDS or MLCM captures human data, then it is very clear what has been achieved. The
MLDS observer can order perceptual intervals in a way that is captured by a parsimonious model.
A similar claim can be made for MLCM. The assumptions underlying both methods are explicit
(Knoblauch & Maloney 2012) and testable. If MLDS or MLCM does not capture human data,
then we hope that diagnostic tests detect the inconsistencies between human data and the models.
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