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Abstract—Even as most of today’s computer systems have
turned to parallelism to improve performance, their documenta-
tion often remains informal, incomplete or even incorrect regard-
ing their memory consistency models. This leads to programmer
and designer confusion and to buggy concurrent systems. Existing
tools for empirical memory consistency testing rely on large
numbers of iterations of simple multi-threaded litmus tests to
perform conformance testing. The current approach typically
employs thread synchronization at every iteration, which imposes
a significant overhead and can reduce testing performance and
efficiency.

This paper proposes new litmus test variants called perpetual
litmus tests, which allow for consistency testing without per-
iteration synchronization. Perpetual litmus tests use arithmetic
sequences in store operations to reduce the required synchroniza-
tion points. We present PerpLE, a software suite that includes
tools for the generation, execution, and analysis of perpetual
litmus tests. We introduce an algorithm for determining the
outcomes of perpetual litmus tests as well as a scalable linear
heuristic algorithm. Evaluating the performance, scalability and
ability of our tool to find outcomes of interest on an x86 system,
we observe a wider variety of outcomes than litmus7 while
experiencing runtime speedups over all litmus7 synchronization
modes (8.89x over the default user mode). Compared to the
default litmus7 synchronization (user) mode, PerpLE offers over
four orders-of-magnitude improvement in the rate with which we
detect target outcomes.

I. INTRODUCTION

As traditional approaches to increasing system performance

have been constrained by the end of Moore’s Law/ Dennard

scaling, exploiting parallelism has become the primary way to

further improve performance across system types [3, 4, 23].

When working with these parallel systems, understanding their

memory consistency models is critically important for correct

design and programming. Otherwise, the resulting systems

and applications can contain correctness bugs that manifest as

subtle, non-deterministic errors [39].

As hardware complexity rises, it is becoming increasingly

challenging to ensure that a specific implementation conforms

to the memory model it claims to implement, generating

the need for thorough testing. Time spent in validation and

verification can be more than half of the hardware design

effort [19, 20], which highlights the need for approaches that

can accelerate these processes; faster methodologies can, in

turn, reduce cost and improve time-to-market. While some

comprehensive formal techniques exist for exploring litmus

test execution [30, 31], industry testing of real hardware relies

more on empirical and probabilistic testing [24], as it is likely

to provide results at a significantly shorter time scale. Most

current approaches to this type of testing leverage small parallel

programs called litmus tests, designed to expose different

orderings of memory operations. Orderings that manifest in the

empirical execution of litmus tests are called observable for

an implementation. Observing an ordering that the system’s

published memory model lists as forbidden indicates an

implementation bug; to maximize the probability of detecting

bugs, empirical testing tools aim to expose as large a variety

of outcomes as possible.

Currently, tools achieve outcome variety by executing litmus

tests iteratively, with different orderings arising probabilistically

during test execution due to factors like system load and

thread timing [24]. However, each litmus test might need

to be run thousands or even millions of times before the

desired testing outcomes are observed [39]. The frequency

with which a given test outcome, indicative of a particular

ordering, can be observed depends on (i) the extent to which

the implementation under test favors it (including whether it is

technically feasible) and (ii) the ability of the testing approach

to create the conditions that would reveal it. For less frequent

outcomes, some testing approaches may require executing

large numbers of iterations, taking significant amounts of

testing time, to observe a desired outcome. PerpLE is designed

to more efficiently expose and analyze a wide range of

orderings, improving the effectiveness of these empirical testing

approaches.

While tools like litmus7, provided by the diy suite [11,

24], are effective empirical testing frameworks, many rely

on synchronizing the participating threads before every test

iteration. Such synchronization is critical to ensure that different

threads execute their part of the test sufficiently close in time for

the testing tool to observe their interaction via shared memory,

but it can have negative implications. The synchronization

overhead dominates runtime, significantly slowing down testing

and reducing the total number of iterations executed. For

example, based on our experiments on litmus7 using the default

(user) synchronization mode and for different iteration counts

of the store buffering (sb) litmus test, synchronization overhead

never falls below 85% of total execution time. Furthermore,

the tight synchronization might reduce the number and type

of orderings that are ever experienced during the iterative test.

Lastly, iterative synchronization-based testing can be ineffective

for systems that incur long synchronization overheads compared

to CPUs, e.g. GPUs, as well as for systems not optimized





Fig. 2: Store buffering (sb), load buffering (lb) and podwr001

litmus tests. Note: podwr001 extends sb to 3 threads. (itn)
is the nth test instruction of thread t, [x] and [y] are shared

memory locations and regt r is register r of thread t. For sb

and lb, T = TL = 2. For podwr001, T = TL = 3.

Running a litmus test can produce one of a set of possible

outcomes, depending on the values loaded from shared memory

during test execution. Each outcome consists of a number of

conditions involving register values. For example, the sb test as

presented in Figure 2 has 4 possible outcomes, each consisting

of 2 conditions: reg0 0 = 0 && reg1 0 = 0; reg0 0 = 0 &&

reg1 0 = 1; reg0 0 = 1 && reg1 0 = 0; and reg0 0 = 1 &&

reg1 0 = 1. In each test run, we can select a subset of these

outcomes and measure how often each of them occurred; we

call this subset the outcomes of interest.

Note that the first of these outcomes requires the hardware to

implement store buffering in order to occur, i.e. it cannot occur

under SC by simply interleaving the instructions from each

thread. For this reason, it is the most informative outcome in

terms of hardware capabilities, letting us distinguish between

different possible consistency models. Each litmus test has at

least one such outcome, the target outcome.

The outcomes of many iterative executions of a litmus

test indicate which interleavings occurred. These observed

interleavings can then be checked against the model that the

system claims to implement to ensure they are allowed. Since

there is a non-deterministic element in individual runs of a

litmus test, such approaches typically cannot guarantee that all

possible interleavings have been exercised.

In practice, widely available tools for litmus testing use a

combination of two approaches to address this non-determinism

[9, 11]. First, they run large numbers of iterations of the

litmus test to give a statistically more accurate picture of how

frequently each outcome is expected to appear. For models not

yet formally specified, this can aid attempts at formulating a

formal description. Second, testing suites might apply further

stress on the system, like frequent memory operations to

addresses not used by the test, to check whether the distribution

of outcomes is affected. Especially in GPUs, recent work has

shown that such methods can be very effective [39].

2) Happens-Before Graphs: Each litmus test outcome offers

information on the memory operation ordering that gave rise

to it, which can be revealed using a happens-before graph.

Constructing a happens-before graph starts by considering

the different shared memory operations in a litmus test as

vertices in a graph. Edges are then added to represent temporal

relationships between individual operations, based on the

outcome of a specific execution of the test. Happens-before

edges are meant to represent temporal relationships and as

such are transitive. Alglave [8] provides formal descriptions

of four types of such edges between two memory operations

m1 and m2, summarized informally below:

• Program order (po) edges: a po edge from m1 to m2

means a sequential processor executes m1 before m2.

• Read-from (r f ) edges: an r f edge from a store m1 to a

load m2 means that m2 loads the value stored by m1.

• Write serialization (ws) edges: assuming m1 and m2 are

both stores to the same memory location x, a ws edge

from m1 to m2 means that m1 updates x before m2.

• From-read ( f r) edges: an f r edge from a load m1 to

a store m2 means that m1 loads a value stored by an

instruction earlier than m2 in ws order.

III. TEST CONVERSION TO REMOVE

SYNCHRONIZATION

As Figure 3 illustrates, our proposed approach consists of two

steps, each performed by a separate tool. First, the Converter

converts an input litmus test to a format capable of exposing

the same interleavings as the original test, but without requiring

per-iteration thread synchronization, which we call a perpetual

litmus test. This test is then executed by the Harness, which

keeps the test run results in memory.

Meanwhile, the Converter also produces the exhaustive

outcome counter for this particular litmus test and set of

outcomes of interest. The exhaustive outcome counter is a

function that the Harness can apply to the in-memory test

results, once all iterations of the test have been executed, to

determine how many times each outcome of interest occurred.

Alongside the exhaustive outcome counter, the Converter

produces the heuristic outcome counter, a function with the

same inputs and outputs, but which only searches part of the

results space and can be dramatically faster.

The rest of this Section presents the methodology for

test conversion, while Section IV deals with generating the

exhaustive and heuristic outcome counter functions.

A. Synchronization in litmus tests

Since litmus tests tend to only be a few instructions long,

the execution time of a single iteration is very short. Unless

we synchronize before each iteration, it is most likely that

the participating threads will execute their corresponding parts

of the test at different points in time, so interactions among

individual memory operations executed by different threads

will be unlikely. Perpetual litmus tests account for this effect.

Moreover, determining the outcome of a litmus test requires

comparing register values from different threads at the end

of each iteration. Each thread t that performs loads has a

designated array bu ft where it stores the values that were

loaded into its registers in each iteration for later analysis.
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Perpetual Litmus suite

Target outcome allowed by x86-TSO

amd3 [2,2] iwp23b [2,2] iwp24 [2,2]

n1 [3,2] podwr000 [2,2] podwr001 [3,3]

rfi009 [2,2] rfi013 [2,2] rfi015 [3,2]

rfi017 [2,2] rwc-unfenced [3,2] sb [2,2]

Target outcome forbidden by x86-TSO

amd10 [2,2] amd5 [2,2] amd5+staleld [2,2]

co-iriw [4,2] iriw [4,2] lb [2,2]

mp [2,1] mp+staleld [2,1] mp+fences [2,1]

n4 [2,2] n5 [2,2] rwc-fenced [3,2]

safe006 [2,2] safe007 [3,3] safe012 [3,2]

safe018 [3,2] safe022 [2,1] safe024 [3,2]

safe027 [4,2] safe028 [3,2] safe036 [2,2]

wrc [3,2]

TABLE II: Perpetual litmus test suite for x86-TSO. The litmus

tests are split into two groups based on whether their target

outcome is allowed or forbidden by the x86-TSO specification.

For each test we report the values of [T,TL]
.

perpetual outcomes and therefore their occurrences cannot be

counted using the exhaustive or the heuristic outcome counter.

We have therefore refrained from including tests with target

outcomes of this nature into the perpetual litmus suite.

Table II presents the perpetual litmus test suite. The suite

includes 34 litmus tests generated for the x86-TSO memory

model out of the 88 tests found in the original test suite. The

table splits the test suite into two groups of tests, based on

whether their target outcomes are allowed or forbidden by the

specification of the x86-TSO memory model.

VI. EVALUATION METHODOLOGY

A. Testing Environment & Tools

To evaluate PerpLE, we use an x86 computing cluster and

the suite of tests presented in Table II. Experiments are run on

a CentOS 7.6 Linux cluster with 32 Intel Xeon E5-2667 CPUs

with two threads per core. As explained in Section II-A2, the

memory consistency model of CPUs in this cluster is a TSO

variant [37], so we expect to only observe target outcomes

from the ”Allowed” group of tests in Table II.

We evaluate PerpLE against litmus7 on this system. For lit-

mus7, we experiment with all available thread synchronization

modes [11]: the default user, with polling synchronization;

userfence, which also uses memory fences to accelerate

write propagation; pthread, which uses a pthread-based

barrier; timebase, which relies on the architecture’s timebase

counter for synchronization; and none, where no thread

synchronization is used [24]. Timebase counters are not

available in some architectures (e.g. ARM).

The none mode is distinct from PerpLE’s approach since

the concept of frames is not utilized; iteration n of thread t0 is

only considered with respect to iteration n of thread t1, even

though they might be executed far in time from each other.

We expect this to make fine-grained thread interaction more

elusive in none compared to PerpLE.

B. Metrics of interest

1) Target Outcome Occurrences: Because perpetual out-

comes are determined per frame and the number of frames

is polynomial in the number of iterations (NTL ), we expect

to observe each particular perpetual outcome of interest in

PerpLE many more times than the corresponding outcome in

litmus7, simply by virtue of exploring a much larger space, as

shown in Figure 5. Moreover, since PerpLE allows different

types of thread interaction compared to litmus7, outcomes

which appear only rarely in litmus7 may be observed more

frequently. Since observing the target outcome of a test tends to

be both rarer than observing other outcomes and more helpful

in understanding the underlying hardware, we compare how

often the target outcome is observed in each system for a given

number of test iterations.

2) Testing Runtime: Since per-iteration thread synchro-

nization dominates runtime on litmus7 in user mode, its

removal should significantly reduce test runtime. However, the

exhaustive outcome counter must examine all NTL frames in

search of perpetual outcomes after a run of N iterations and

TL load-performing test threads, as opposed to the N frames

examined by litmus7. This more extensive search will likely

erode the speedup achieved by eliminating synchronization. In

contrast, using the heuristic outcome counter should preserve

a considerable speedup over litmus7, since it only examines N

frames.

3) Target Outcome Detection Rate: This composite metric

shows the number of times a target outcome is observed during

a test run over the time taken by the run. Since the number of

occurrences is expected to increase and runtime is projected to

decrease when using the heuristic outcome counter, we expect

a much higher target outcome detection rate for PerpLE.

4) Heuristic Outcome Counter Accuracy: To evaluate our

heuristic outcome counter, we determine its accuracy for the

target outcome of each of the tests in our suite. For the target

outcome of each test, we run the exhaustive and the heuristic

outcome counter on the in-memory test results from the same

run of perpetual tests. We then check whether, whenever the

target outcome was found by the exhaustive outcome counter, it

was also found by the heuristic outcome counter (not necessarily

the same number of times).

5) Thread Skew: Due to the lack of per-iteration thread

synchronization in PerpLE, threads can run ahead of each

other by a varying number of iterations. We call the difference

between the index of the iteration being executed by thread t

and the index of the iteration being executed by thread s the

thread skew between t and s. The width of the distribution of

thread skew values indicates the degree to which the perpetual

test run deviates from what is explored with per-iteration

synchronization. This deviation can enable the perpetual test

to observe system behavior that the original test misses.

To measure thread skew, we use the same insight that

guided the development of heuristic conditions in Section IV-B.

Namely, the value loaded by thread t through a load operation

in iteration n of the perpetual test run uniquely identifies a

store in some iteration m of some thread s. The difference
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Fig. 9: Target outcome occurrences for each test of the perpetual litmus suite for 10k iterations. Higher is better. PerpLE with

either outcome counter generally outperforms litmus7 in most synchronization modes. A red X symbol marks each test with a

target outcome that is forbidden under x86-TSO. Note that PerpLE does not generate “false positives” in these cases. Also note

that PerpLE exposes the target outcomes for all tests that are allowed under x86-TSO.

between n and m is exactly the skew between threads t and s

around the time of iteration n in thread t.

6) Outcome Variety: One goal of perpetual litmus tests is

to increase the effectiveness of memory consistency testing

by enabling more thread interaction and generating a greater

variety of test outcomes. To evaluate PerpLE with respect

to this goal, we compare how frequently each possible test

outcome occurs in PerpLE and in litmus7 for the same number

of iterations.

VII. EVALUATION

This section evaluates PerpLE using the metrics described

in Section VI. In particular, we find that PerpLE (i) detects

more occurrences of target outcomes, (ii) is generally superior

to litmus7 when using the heuristic outcome counter, in terms

of both test runtime and target outcome detection rate and (iii)

provides increased outcome variety.

A. Target Outcome Occurrences

Figure 9 compares the ability of PerpLE and litmus7 in

different synchronization modes to detect the target outcome

of tests in the perpetual litmus suite, across 10k iterations.

PerpLE with exhaustive counter performs strictly better than

litmus7 in all cases, observing many occurrences of each target

outcome. PerpLE with heuristic counter generally performs

better than litmus7 in most cases. For the iwp24 and rfi013 tests,

litmus7 in timebase and synchronization modes marginally

outperforms PerpLE heuristic. When we increase the number of

iterations beyond 10k, PerpLE is able to markedly outperform

litmus7 in all synchronization modes, even for these cases.

As shown in Table II, many of the tests in the perpetual test

suite have target outcomes that are forbidden under x86-TSO,

as determined using the herd memory model simulator [12];

this means that we expect neither tool to observe them. As

x86 CPUs have been extensively tested over the years, we can

be relatively confident that our system indeed follows x86-

TSO. Therefore, PerpLE’s failure to observe these forbidden

outcomes can be viewed as a reassurance that PerpLE does

not generate false positives. In addition, PerpLE exposes target

outcomes from all litmus tests that are allowed under x86-TSO,

whereas litmus7 for certain synchronization methods fails to

do so for most tests (see amd3, iwp24, n1, podwr001, rfi015,

rfi017, rwc-unfenced).

B. Testing Runtime

Figure 10 presents the runtime speedup over litmus7 in

user mode of PerpLE when using the exhaustive and

heuristic outcome counter, as well as of litmus7 in the other

synchronization modes. All tools execute every test in the

perpetual litmus suite for 10k iterations. All runtimes include

both test execution and outcome counting.

Figure 10 focuses on the comparison between PerpLE

exhaustive and heuristic Counters. As discussed previously,

the runtime of the PerpLE exhaustive outcome counter is

polynomial to the number of test threads that perform loads,

due to our examination of each frame. Most tests in our suite

have two threads that perform loads, so examining a quadratic

number of frames makes PerpLE with the exhaustive outcome

counter significantly slower than the heuristic counter in these

cases. The perpetual litmus tests that present the exhaustive

outcome counter’s performance comparable to the heuristic

counter, e.g. mp, only have a single test thread performing

loads, making the exhaustive outcome counter linear. Finally,

the podwr001 and safe007 tests have three threads performing

loads, so the exhaustive outcome counter needs to examine N3

frames for a run of N iterations, yielding a dramatic slowdown.

As a result the geometric average speedup of the heuristic

outcome counter over the exhaustive outcome counter is 305x.

Therefore, if only focusing on runtime, using the PerpLE

exhaustive outcome counter scales poorly as the number of

iterations increases. The heuristic outcome counter scales much

better, always taking time linear in the number of test iterations.

As such, PerpLE exhaustive outcome counter performance

constraints make it impractical and the remaining evaluation

will therefore focus on the heuristic outcome counter. In

subsequent text, the term PerpLE refers to PerpLE-heuristic.
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As Figure 10 shows, when using the heuristic outcome counter,

PerpLE provides a (geometric) average speedup of 8.89x over

litmus7 in the default user mode and 17.56x, 8.85x, 2.52x

and 161.35x over the timebase, userfence, none and

pthread modes respectively. Note that the runtime of PerpLE

with the heuristic outcome counter is comparable to none,

since both use no synchronization and examine a linear number

of frames. However, PerpLE offers significantly better outcome

variety, as presented in Figure 13.

C. Target Outcome Detection Rate

To determine PerpLE’s overall efficiency, we compare the

target outcome detection rate between PerpLE using the heuris-

tic outcome counter and litmus7 in different synchronization

modes. For the comparison between methods we evaluated

different options for averaging target outcome detection rates.

Averaging outcome detection rates across different tests would

implicitly skew the average towards the tests that intrinsically

observe higher numbers of target outcomes. Therefore, we

determine PerpLE’s relative detection rate improvement by

dividing PerpLE’s detection rate for a given litmus test by the

detection rate of litmus7 in default user mode for the same

test; by using these ratios when averaging across all litmus

tests, we avoid the aforementioned skewing problem. As we

are reasoning about ratios of detection rates, we conservatively

omit test cases where the baseline testing method is zero (i.e.

no outcomes were detected) and provide additional details

about the number of outcomes PerpLE detects in these cases.

Figure 11 presents the average relative target outcome

detection rate improvement. We run experiments for 100

iterations (not shown) to 100M iterations. Each bar corresponds

to the arithmetic mean of the relative improvement across all

tests of the perpetual litmus suite that have target outcomes

allowed in x86. PerpLE detection rate is nonzero for all allowed

target outcomes for all test iteration numbers except n1 litmus

test for 100 iterations. The litmus7 user mode is zero (i.e. does

not detect any outcomes) for all litmus tests for 100 iterations

and becomes nonzero for all tests only after 1M iterations.

The remaining litmus7 synchronization modes either require a

similarly high number of iterations to become nonzero for all

tests or never achieve that. PerpLE demonstrates the ability to

discover target outcomes at low iteration counts, which litmus7

generally fails to do. More specifically, for 100 iterations (not

shown), PerpLE heuristic counter and litmus7 pthread mode

are the only tools with a non-zero detection rate.

Additionally, PerpLE is able to provide a target outcome

detection rate that is strictly higher than any of litmus7’s

synchronization modes. For 10k iterations, PerpLE’s average

relative outcome detection rate improvement is between 24x

(over timebase) and 31000x (over user). PerpLE is able

to scale gracefully, maintaining a high relative target outcome

detection rate improvement for high iteration counts: between

1800x-140000x for 10M and 1200x-44000x for 100M iterations.

Overall, the target outcome detection rate of PerpLE is at least

four orders of magnitude higher than that of litmus7 in the

user (default) synchronization mode for all iteration counts.

D. Heuristic Accuracy

Figure 9 also indirectly showcases the perfect accuracy

of PerpLE’s heuristic outcome counter, since it tracks the

exhaustive outcome counter in terms of whether the target

outcome was found or not.

E. Thread Skew

Figure 12 presents a probability density function of the

skew between the two threads participating in the perpetual sb

litmus test, as defined in Section VI. Thread skew is a result of

numerous system factors, like operating system scheduling and

small differences in the time when each thread starts executing.

The distribution is very wide, indicating threads can run far

behind or ahead of each other. Still, it is denser around 0, since

system factors might delay either test thread during execution

and these effects then cancel out.

A wide range of skew values contributes to the success of

perpetual litmus tests, since it is indicative of the potential for

interesting cross-iteration interleavings. In contrast, traditional

litmus tests are limited by synchronization and the only

interleavings possible across different threads are between

operations of the same iteration (no skew).

F. Outcome Variety

Figure 13 plots the number of occurrences of each outcome

for the sb, lb and powdr001 litmus tests over 1k iterations.

The three tests are shown in Figure 2. Litmus7 across different

synchronization modes and PerpLE using the heuristic outcome

counter are evaluated in terms of (i) ability to observe a large

variety of outcomes and (ii) high number of observations of

each individual outcome. All outcomes presented are observable

under x86-TSO except for reg0 0 = 1 && reg1 0 = 1 in the lb

litmus test (lb outcome 11 on Figure 13), which is forbidden.

Litmus7 only observes outcomes sb 11 in the timebase

mode and powdr001 111 in the timebase and userfence

modes for 1k iterations. When running 1M iterations instead,

these two outcomes are observed in other litmus7 synchro-

nization modes as well, which shows that PerpLE heuristic is

capable of observing outcomes of interest using a much smaller

number of test iterations. Moreover, compared to litmus7,

the number of the occurrences of each outcome observed

when using PerpLE heuristic is typically higher than litmus7

synchronization methods.

As per Table II, TL = 2 for sb and lb, while TL = 3 for

podwr001. Therefore, for podwr001 we examine N3 frames,

compared to N2 for the other two tests presented, which

explains why PerpLE is able to determine an increased total

number of perpetual outcomes. The heuristic for each outcome

evaluates N samples out of the N2 or N3 available frames.

It is important to note that for litmus7 the total number of

occurrences for each test equals the number of test iterations,

spread across the observable outcomes.

With the exception of timebase mode, where the two

tools’ results are comparable, PerpLE provides a better outcome

variety than litmus7 for the same number of iterations with

higher numbers of outcome occurrences.
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testing instead, which can also be very effective for detecting

deviations from the published model, at the cost of having a

consistent test suite [18, 22, 40]. Using perpetual litmus tests

can accelerate such efforts on newly developed architectures

while also exposing a greater variety of outcomes, giving a

fuller picture of the capabilities of the underlying hardware.

Other work has focused on specifying and verifying mi-

croarchitectural implementations of consistency models using

happens-before graphs [30, 33, 34, 35, 41]. These tools focus

on design time verification whereas PerpLE performs runtime

evaluation of litmus tests against the hardware specification.

Based on formal memory consistency models, other efforts

have addressed litmus test generation, for the purposes of

comparing memory models or for the empirical conformance

testing of new implementations of an architecture in hardware

[18, 22, 32, 43]. The Converter tool in PerpLE extends such

tools by converting newly generated litmus tests to their

perpetual counterpart, providing automatic access to the benefits

of running tests without per-iteration synchronization.

Another existing line of research has been concerned

with developing tools for running non-deterministic tests,

including litmus tests [5, 9, 17]. Central among these is the

diy suite of tools, which includes the litmus7 tool used in

our evaluation [24]. PerpLE adds to such tool development

efforts, by providing a critical twist (removal of per-iteration

synchronization) on a familiar approach (litmus tests). A key

difference between PerpLE and litmus7 pertains to frames.

Namely, PerpLE not only allows longer-term cross-iteration

interleaving of events, which enriches the event orderings

considered, but it also implements the logging needed to

properly see these interactions from the results. Litmus7’s

different synchronization modes may allow for some of the

same orderings, but that tool does not have the logging to

see cross-iteration interleavings. Furthermore, litmus7 cannot

automatically generate perpetual litmus tests from original

tests, and its synchronization modes cannot enable analysis

methodologies that use frames similar to PerpLE. PerpLE

includes automatic test generation from original tests.

Finally, past work has been concerned with developing

techniques to increase the effectiveness of litmus tests by

creating different system environments for the test threads,

in the hopes of exposing otherwise rare outcomes. Such

approaches can have a dramatic impact: for example, Sorensen

et. al [39] shows that the use of stressing and fuzzing can

increase the occurrence rate of the target outcome in the lb,

sb and mp litmus tests in GPUs. PerpLE also creates unusual

(compared to traditional approaches) conditions for the test

threads by enabling longer stretches of synchronization-free

execution by each thread. The thread skew generated this way

can be valuable in exercising the system, as our results show.

IX. CONCLUSIONS

Given parallelism’s centrality in computing today, memory

consistency testing is critical to ensure that systems and

applications adhere to their formal specifications. However,

current empirical litmus testing approaches waste most of the

testing time waiting for threads to synchronize, a requirement

that also can hurt the variety and types of outcomes of the tests.

In response, we propose perpetual litmus tests, a litmus test

variant that allows for consistency testing without per-iteration

synchronization, by tracing happens-before edges between load

and store operations using unique arithmetic sequences. We

present PerpLE, a set of tools to generate, execute and analyze

perpetual litmus tests and their outcomes.

PerpLE is evaluated on an x86 system, showing both greater

outcome variety and more occurrences of the outcomes of

interest. PerpLE can use a polynomial algorithm or an efficient,

linear heuristic to identify outcomes of interest. The highly

accurate heuristic provides a significant speedup, leading to an

overall target outcome detection rate that is orders of magnitude

higher than prior state of the art. This paper focused on x86-

TSO, but our approach can also be applied to architectures

implementing weaker memory models. These improvements

can help expand the applicability and effectiveness of empirical

memory consistency testing.
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