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Ecohydrological phenomena are often multiscale in nature,
with behavior that emerges from the interaction of tightly
coupled systems having characteristic timescales that differ
by orders of magnitude. Models address these differences
using timescale separation methods, where each system is
held in psuedo-steady state while the other evolves. When
the computational demands of solving the ‘fast’ system are
large, this strategy can become numerically intractable. Here,
we use emulation modeling to accelerate the simulation of
a computationally intensive ‘fast’ system: overland flow. We
focus on dryland ecosystems in which storms generate over-
land flow, on timescales of 10'~2s. In these ecosystems
overland flow delivers crucial water inputs to vegetation,
which grows and disperses ‘slowly’, on timescales of 107~%s.
Emulation allows for a physically realistic treatment of flow,
advancing on phenomenological descriptions used in previ-
ous studies. Resolving the within-storm processes reveals
novel dynamics, including new transition pathways from
patchy vegetation to desertification, that are specifically con-

trolled by storm processes.

KEYWORDS
model emulation, pattern formation, arid ecosystems, multiscale,

overland flow




2 | Crompton and Thompson Sensitivity of dryland vegetation patterns to storm characteristics

1 | INTRODUCTION

Multiscale behavior, in which tightly-coupled processes have characteristic spatial and/or temporal scales that differ
by orders of magnitude, is ubiquitous in environmental systems (Bléschl and Sivapalan, 1995), including ecohydro-
logical systems (Thompson et al., 2011b). Multiscale behavior fundamentally challenges the measurement and char-
acterization of, and predictions about these systems. One approach to addressing multiscale behavior is to identify
scales that separate processes from each other - for example, the ‘spectral gap’ in atmospheric turbulence allows
mean wind speeds to be treated as pseudo-steady over hourly or shorter timescales, during which turbulent fluctua-
tions dominate variability (Katul et al., 2001; Fiedler and Panofsky, 1970). Such scale separations allow the dynamics
of ‘slow’ and ‘fast’ processes to be separately described and simulated at their appropriate timescale, while holding
the other process in pseudo-steady state (Murray, 2003). This approach is used to solve stiff problems in systems
such as enzyme kinetics (Michaelis and Menten, 1913; Briggs and Haldane, 1925; Murray, 2003). One limitation of
timescale separation approaches, however, is that many iterations of the fast process are needed while resolving the
dynamics of the slow process. If the fast process is computationally intensive, this can render timescale separation
computationally infeasible.

Multiple scales in ecohydrological systems are susceptible to this computational challenge. For example, in dryland
ecosystems, infrequent but intense storm events generate runoff on bare soil sites, which then infiltrates beneath
vegetation canopies (Schlesinger and Pilmanis, 1998; Thompson et al., 2010) on timescales of minutes to days. The
spatial distribution of vegetated and bare sites is thus a first-order control on the hydrology of these ecosystems.
However, this spatial pattern changes slowly over time in response to drivers that include soil water availability, leading
to a multiscale coupling of slow plant, and rapid hydrological, dynamics.

The tight but multiscale coupling of water and biological processes in drylands is necessary to sustain vegetation
in areas where rainfall alone would not provide sufficient water for plant growth (Tongway and Ludwig, 2001). Loss
of vegetation cover in drylands is known to risk irreversible desertification (Kéfi et al., 2007; Rietkerk et al., 2004). For
the globally distributed suite of dryland ecosystems where vegetation forms regular spatial patterns (Bromley et al.,
1997; Deblauwe et al., 2008; Penny et al., 2013), such ecological collapse may be preceded by changes in the spatial
pattern of vegetation (HilleRisLambers et al., 2001; Rietkerk et al., 2002; Guttal and Jayaprakash, 2007; Gandhi et al.,
2019).

Vegetation patterns occur when plants growing close together enhance each others growth (a facilitative interac-
tion), while plants growing further apart inhibit each others growth (a competitive or inhibiting interaction) (Borgogno
et al., 2009). Although numerous mechanisms are known to generate such facilitative and competitive interactions
(Meron, 2015; Barbier et al., 2008), redistribution of overland runoff driven by the contrast in infiltration rates beneath
plant canopies (Seghieri et al., 1997) and crusted or sealed bare soils (Belnap, 1990; Assouline, 2004) is a key process.

Modeling efforts to reproduce the morphology and sensitivities of banded vegetation (Rietkerk et al., 2004; Kéfi
et al., 2007; van de Koppel et al., 2002; Rietkerk and Van de Koppel, 2008; Meron, 2016) must therefore confront the
multiscale situation outlined above: fast hydrological processes that drive and are driven by slow plant growth and
dispersal.

The physics of overland flow on landscapes with spatially varying surface roughness and infiltration capacity
(i.e., patchily-vegetated landscapes), is best described by the Saint Venant equations (SVE) in two dimensions, also
known as the shallow water equations (Thompson et al., 2011a; Crompton et al., 2020). These equations combine
the continuity equation with conservation of momentum, and are illustrated here in their one dimensional form:
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where # is the water depth at location x and time ¢, U is the depth-averaged velocity, S, and Sf are the bed- and
friction- slopes, and g is the gravitational acceleration. Precipitation p and infiltration i are forcing terms that can vary
with x and ¢.

Numerical solution of the SVE is computationally intensive. Studies that resolve the details of runoff and infiltra-
tion using the SVE or comparable physically-based models have therefore concentrated on individual storm events
(Paschalis et al., 2016; Rossi et al., 2018; Chen et al., 2013). By contrast, models addressing the multiscale coupling
of vegetation and water in patterned ecosystems overwhelmingly rely on simplifications of the flow equations, for ex-
ample by approximating overland flow as a diffusive process, or approximating the intermittent occurrence of storms
with continuous rainfall (Klausmeier, 1999; HilleRisLambers et al., 2001; Rietkerk et al., 2002), in order to render the
long-term simulation of vegetation distributions computationally feasible.

Although the literature based on phenomenological flow models has had marked success in reproducing the phe-
nomenology and morphology of vegetation pattern formation, the extent to which these phenomena can be related to
climatic or land use ‘thresholds’ indicating degradation risk remains unclear. Quantitative predictions of the depth of
cumulative infiltration during a storm and any subsequent runoff [hereafter, infiltration] remain quite distinct between
the SVE and phenomenological models. This is illustrated in Figure 1, which compares infiltration predictions between
the SVE and a typical phenomenological representation used in many patterned vegetation models: advective over-
land flow and depth-dependent infiltration dynamics (e.g. Rietkerk et al., 2002; Guttal and Jayaprakash, 2007, and
related models). As shown in Figure 1, for a storm that produces nearly uniform infiltration through space in the phe-
nomenological model, the SVE predicts a nearly binary set of low- versus high-infiltration zones that closely follow the
vegetation distribution. These differences in predicted infiltration fields propagate into the predicted end-of-storm
soil moisture distribution and subsequent vegetation growth, spread and mortality.

Many phenomenological models of hydrology in dryland ecosystems further limit the investigation of relation-
ships between climate and pattern formation by simplifying the temporal properties of storms to continuous annual
(Rietkerk et al., 2002), seasonal (Guttal and Jayaprakash, 2007) or daily rainfall fields, although several specific studies
have relaxed these constraints (Kletter et al., 2009; D'Odorico et al., 2006; Siteur et al., 2014). Resolving the fast-
timescale properties of storms is also important for accurately predicting infiltration fields (Crompton et al., 2019);
the small runoff volumes generated in low-intensity storms infiltrate over short distances, leading to localized regions
of elevated infiltration. By contrast, high-intensity storms generate runoff across the whole hillslope, resulting in more
uniform infiltration fields within vegetated areas, as shown in supporting information Figure S1. Recently, Gandhi et al.
(2019) used a timescale separation approach to simulate rainfall and storm responses on their appropriate timescales;
however, this study retained a phenomenological representation of overland flow and infiltration.

This sensitivity of water distribution to storm properties creates a compelling need to improve the description of
overland flow processes within multi-year simulations of dryland ecosystems. Here, we show that model emulation
provides a way to reduce the numerical burden of simulating fast overland flow processes over many storm events,
and thus a novel approach to increasing the numerical tractability of simulating multiscale systems.

Model emulation refers to a suite of approaches that replace a computationally-intensive process model with an
accurate alternative model structure that is much faster to execute (Castelletti et al., 2012; Razavi et al., 2012; Rohmer
et al., 2018). Although widely used in global climate modeling (Castruccio et al., 2014; Dueben and Bauer, 2018;
Krasnopolsky and Fox-Rabinovitz, 2006; Raper and Cubasch, 1996) and finding new applications in groundwater and
other earth science domains (Bhattacharjya and Datta, 2005; Broad et al., 2005; Castelletti et al., 2010; Kumar et al.,
2010; Neelakantan and Pundarikanthan, 2000; Rogers and Dowla, 1994; Sreekanth and Datta, 2010; Yan and Minsker,
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FIGURE 1 |lllustration of the difference in storm-scale predictions between a phenomenological versus physical
model. For the vegetation distribution in panel A, panels B and C show the infiltration distribution predicted by the
R/G and SVE models for a single storm (with rain intensity p = 2.4 cm/hr and duration ¢, = 30 min). The model
parameters were ‘matched’ so that the infiltration capacity is a factor of 10 greater in vegetated areas than bare soil
areas (in the R/G model, via the minimum surface water infiltration coefficient in the absence of plants, W, = 0.1; in
the SVE model, via the hydraulic conductivity ratio between vegetated and bare soil areas, Ks g/Ks,y = 0.1). Other
model parameters are given in Table 1 (for the R/G model) and Table 2 (for the SVE model), with the exception of the
R/G effective slope parameter, v = 10 m/day and the rate of surface water infiltration, a = 30 day~'.

20083), emulation has not, to our knowledge, yet been applied to multiscale ecohydrological problems. Previously, we
showed that predictions of overland flow and infiltration in patchily vegetated dryland systems made with a physical
model (the Saint Venant Equations coupled to Richards Equation to describe infiltration) could be accurately emulated

using a machine-learning method called random forest regression (Crompton et al., 2019).

In the present study, we use a similar emulation model to replace phenomenological descriptions of hydrologi-
cal processes in a widely-used model of patterned dryland vegetation (Rietkerk et al., 2002; Guttal and Jayaprakash,
2007). By describing storm-scale runoff and infiltration processes, this replacement: (i) provides a proof-of-concept
for the usefulness of emulation methods in multiscale environmental simulation, and (i) enables an assessment of the
sensitivity of pattern formation and morphology to storm properties and within-storm hydrological processes without
recourse to phenomenological models. Using a physical model to represent the fast processes not only improves pro-
cess fidelity, but allows for physically meaningful parameterization of the hydrological models and direct comparison
of predictions to measured soil and climate properties.

2 | METHODS

The point of departure for the study is to integrate spatial infiltration fields predicted by a physical model of overland
flow and infiltration into an existing pattern-forming vegetation model. The overland flow and infiltration processes
are represented using the two-dimensional Saint Venant Equations coupled to Richards equation (the SVE model). The
use of the SVE model allows hydraulically relevant features to be explicitly simulated, including contrasts in surface
roughness and infiltration capacity between vegetated and bare areas (Istanbulluoglu and Bras, 2005; Smith et al.,
2007; Thompson et al., 2010), the mean land surface slope, and realistic boundary conditions (no-flow boundary
conditions at the hillslope divide and open boundary conditions at the valley floor, McGrath et al., 2011). Vegetation
water use, growth and dispersal are modeled following Rietkerk et al. (2002), using the modifications made by Guttal
and Jayaprakash (2007) (the R/G model). The models are coupled as the R/G-SVE model, as illustrated in Figure
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2. Briefly, SVE model predictions of the end-of-storm spatial distribution of infiltration are used to update the soil
moisture in the R/G framework; prior to each storm, the R/G model predictions of vegetation spatial pattern are then
fed to the SVE model as boundary conditions. Details about the models and their coupling are provided in Sections
2.2and 2.3.

Saint Venant Equation (SVE) model:
‘Fast’ overland flow and infiltration

Infiltration /' _gag f

Following each storm, update

soil moisture with infiltration a X
distribution predicted by the B Sert;t;izici: i:zrg\’/épriite‘
SVE model pE Plant biomass P
d
Rietkerk/Guttal (R/G) model:
‘Slow’ vegetation growth, .
9 g Soil water W

dispersal and mortality

FIGURE 2 |lllustration of the approach used to couple the R/G and SVE models. Following each storm, the
pre-storm soil water field W is updated with the infiltration field I predicted by the SVE model. Between storms,
plant biomass P and soil moisture W are described by the R/G model, with zero infiltration. Prior to each storm, the
R/G biomass distribution is fed to the SVE model. Blue colors on the simulated landscape represent the soil water
resource availability, and green colors the biomass density.

Next, the model framework is duplicated using a machine-learning based emulator to replace the SVE model
predictions (the R/G-emulator model), as described in Section 2.4. To test the suitability of the R/G-emulator to
replace the R/G-SVE, both models - R/G-SVE and R/G-emulator - are used to predict the same climate and vegetation
conditions for a constrained range of storm climatologies. The predictions from each model are compared in terms
of pattern morphology and sensitivity to different storm properties, as described in Section 2.5. Finally, the R/G-
emulator model is used to assess the sensitivity of pattern morphology to within-storm characteristics over a large
range of rainfall climatologies in Section 2.6. The project workflow is illustrated schematically in Figure 3.

2.1 | The Saint Venant - Richards Equation model

The Saint Venant-Richards Equation (SVE) model couples a finite volume solver for the two-dimensional Saint Venant
Equations (Bradford and Katopodes, 1999) to a one-dimensional (vertical) Richards equation model for infiltration
(Celia et al., 1990). The resulting model, including validation against analytical solutions, is described in more detail
in Crompton et al. (2019) and Crompton et al. (2020). Throughout this study, land surfaces were simulated as planar
hillslopes with a fixed slope gradient. No-flow boundary conditions were applied at the divide, and flow exiting the
bottom of the slope was assumed to leave the domain. To address spatial variations in infiltration and roughness in
the patchily vegetated landscape, the landscape was binarized into ‘bare’ or ‘vegetated’ patches based on the mod-
eled biomass field. This binarization assumes that it is the presence or absence of vegetation that most determines
spatial variations in these properties, a reasonable assumption in many dryland landscapes (Thompson et al., 2010).

A plant biomass P(x, y, t) threshold of P = 20 g/m? was used to separate bare and vegetated sites. Typical soil and
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FIGURE 3 Steps involved in constructing and testing the modified vegetation model. (A) The R/G model was
coupled to the SVE model as the ‘R/G-SVE model’. (B) The R/G model was coupled to the SVE emulator model as
the ‘R/G-emulator model’, which emulates the R/G-SVE model predictions. (C) To assess the R/G-emulator model
performance, the R/G-SVE and R/G-emulator models were run for identical initial conditions, storm climatologies
and vegetation parameters (the ‘test simulations’). (D) The R/G-emulator model was used to explore a range of
annual rainfall amounts R, on a larger hillslope domain.

roughness values observed in patterned vegetation sites (Tongway and Ludwig, 1990; Bromley et al., 1997; Dunker-
ley, 2002; Thompson et al., 2010) were used to parameterize the SVE model. Enhanced infiltration rates in vegetated
patches were represented by a 10:1 Kj,; ratio (Kss; = 1.5 and 0.15 cm/hr in vegetated and bare sites). Throughout,
infiltration capacity was treated as a constant rate, and approximated as K;,¢. Surface roughness was parameter-
ized with Manning'’s equation, with n = 0.1 and 0.03 in vegetated and bare sites, respectively. All simulations used a
200x100 m hillslope domain with a slope gradient of 2%. Complete SVE model parameters are further defined in the

following sections and listed in Table 2.

2.2 | The Rietkerk/Guttal pattern-forming model

The selected vegetation model was proposed by Rietkerk et al. (2002) and modified by Guttal and Jayaprakash (2007).
The Rietkerk-Guttal (R/G) model consists of three spatially-explicit, coupled partial differential equations that describe
dynamics of the plant biomass density (P; g m~2), the local depth of water stored within the soil (W; mm), and the

local depth of ponded water on the land surface (O; mm), as shown below:
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The Tpg—w) term was introduced by Guttal and Jayaprakash (2007) to account the persistence of dryland vegetation

throug long periods of limited soil water. The modification slows the rates of biomass growth and decay while soil
moisture is limited, reflecting drought-adaptations in desert vegetation. The model forms a broad suite of vegetation
patterns and is the basis for an extensive modeling literature exploring the dynamics of these patterns (Baartman et al.,
2018; Dagbovie and Sherratt, 2014; Gandhi et al., 2019; Pueyo et al., 2008; Saco et al., 2007).

The biological parameters in the R/G model simulations were selected following Guttal and Jayaprakash (2007)
and held constant for all simulations. The parameters (including their definitions, units and values used) are listed in
Table 1.

2.3 | Incorporating storm-scale infiltration in the R/G model

The R/G model simplifies hydrological processes by (i) representing overland flow velocities as advection, and (ii)
depicting infiltration capacity as a function of biomass and ponded water depth, rather than as a function of local
soil properties and the duration of soil inundation. As shown previously in Figure 1, these simplifications can lead
to large discrepancies between its predictions of the spatial field of water availability and those predicted with the
SVE. To avoid these discrepancies, the modeled biomass field P is used as input to the SVE model for a given storm,
where it determines the spatial pattern of soil hydraulic and roughness properties as outlined in Section 2.1. The SVE

predictions of infiltration depth for the storm (Is:orm (x, y, t)) are converted to a rate (istorm) based on the R/G model

timestep (istorm = Istorm/dt), and replaces the infiltration term in Equation 4 (aOP;KV,‘(’:Z ). With this modification,

Equation 4 becomes:

ow . w
TS :/storm—gmaxmp—wa'FDwVZW (7)
where istorm = 0 between storms by definition. Replacing the surface water equation with SVE predictions of infil-

tration introduces physically interpretable landscape parameters, such as the hillslope gradient S, and soil hydraulic
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TABLE 1 Model parameters, descriptions and values for the Rietkerk/Guttal component of the coupled
R/G-emulator and R/G-SVE models. Several variables from Guttal and Jayaprakash (2007) have been replaced by
our use of the SVE model. Parameter values that differ from those used in Guttal and Jayaprakash (2007) are noted
with an asterisk.

Parameter  Description Units Values
c Conversion factor for water uptake to plant biomass gm=2mm™’ 5
Bmax Maximum specific water uptake mm g 'm=2day~' 0.1
ki Half-saturation constant of specific plant growth and water uptake mm 5
m Specific rate of plant density loss due to mortality day~! 0.25
ry Soil water loss rate due to evaporation and drainage day~! 04
k3 Soil water scale at which plant growth resumes normal metabolic activity =~ mm 10
f Metabolic activity coefficient at zero water availability - 0.04
D, Plant dispersal diffusion constant m? day~! 0.02*
D, Soil water diffusion constant m? day~! 0.1

Other parameters
Pvo Initial fractional vegetation cover - 0.5
Pr Threshold biomass gm2 20.

R/G model parameters that are replaced by SVE predictions
a Rate of surface water infiltration day~! -
ko Plant density scale determining how surface water infiltration increases g m=2 -

with P
Wo Minimum surface water infiltration coefficient in the absence of plants - -
v Effective slope parameter m day ' -
r Daily rainfall rate mm day~! -

parameters (e.g., saturated hydraulic conductivity, K;,;), as well as temporally resolved storm parameters, such as
the intensity, duration and between-storm interval. Following the storm, the biomass and soil water fields evolve

according to the equations in the original R/G model.

The R/G-SVE model enables assessment of the impacts of different rainfall volumes and intensities on pattern
morphology. To simplify this assessment, we used idealized rainfall time-series consisting of identical discrete storms
occurring on equal intervals year round. This approach eliminates seasonality and stochasticity in the timing and
magnitude of storms, but provides a tractable starting point to assess the impacts of storm properties on vegetation
patterns. Sixteen unique storms were formed by combining four rainfall depths (4 = 0.4, 0.8, 1.2, 1.6 cm per storm)
and four durations (¢, = 10, 20, 30, 40 minutes), resulting in eleven unique rainfall intensities (p = d/t,). We fixed
the storm characteristics and specified the waiting interval r between storms to generate a range of annual rainfall
volumes R (R = 365d/t). This approach allowed us to treat d, t, and R as independent variables specifying different

storm climatologies. Together, d and R determine 7, and d and ¢, determine the rainfall intensity p.

For consistency with the domain represented by the SVE model, we did not impose periodic boundary conditions
in the R/G model (a departure from Rietkerk et al. (2002) and Guttal and Jayaprakash (2007)). Instead, the modified
R/G model implements a zero-flux boundary at the hillslope divide. Because of the well-known tendency for vegeta-
tion bands to migrate uphill with time (Thompson and Katul, 2009), the downslope boundary of the R/G model was

‘seeded’ at each storm event with a random biomass distribution (identical to that used to initialize the simulations).
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TABLE 2 Parameters for the SVE model, as used in (i) the SVE simulations required to train the emulator model,
and (ii) the coupled R/G-SVE model simulations. Simulations were run for all 16 combinations of storm parameters,
t, and d. Note that to represent the effects of vegetation on the flow hydraulics: Ks,; = 1.5 cm/hr in vegetated sites
and K, = 0.15 cm/hr in bare soil areas; flow resistance is parameterized with Manning’s equation, with n = 0.1 in
vegetated areas and n = 0.03 in bare soil areas.

Parameter

nr
np

Ly, Ly

So

Or
Zmax

Ho

Description

Storm parameters
Storm duration
Storm depth

Domain parameters
Manning’s n (impermeable)
Manning's n (permeable)
Domain size
Grid resolution
Hillslope gradient

Soil parameters

Hydraulic conductivity (vegetated areas)
Hydraulic conductivity (bare soil areas)
Pore size distribution
van Genuchten parameter
Saturated soil moisture content
Residual soil moisture content
Soil depth

Initial H

Units

min

cm

sm-1/3

s m—1/3

%

cm/hr

cm/hr

cm

cm

Values

10, 20, 30, 40
04,08,1.2,1.6

0.03

0.1

200 x 100
20

20

1.5
0.15
1.47
9.6e-3
0.472
0.0378
20.0
-342.0
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2.4 | Emulation of the SVE model with machine learning

Crompton et al. (2019) used machine learning (random forest regression of SVE output) to rapidly predict the spatial
distribution of storm-scale infiltration following runoff generation and infiltration on a patchily-vegetated domain. The
emulator predicts infiltration for every location on a hillslope with an arbitrary spatial pattern of vegetated and bare
sites but fixed soil, slope, and storm properties (see Figure 4). To apply random forest regression to spatial data, the
spatial vegetation fields are simplified as a collection of univariate metrics or ‘features’. Each point is mapped to a
feature array that describes the cell type (bare or vegetated), the spatial distribution of neighboring vegetated and
bare soil cells, and the distance to the divide. Examples of features include, for vegetated cells, the distance to the
nearest upslope bare soil area and the length of the upslope bare soil area. A complete list of features, and code to
compute these features for an input vegetation field, are available at CUAHSI Hydroshare (Crompton, 2020).

As the relationships between vegetation pattern and infiltration depth are not stationary across varying storm
characteristics, a separate random forest is trained for each unique storm (i.e., combinations of 4 and ¢, described
above). Thus, the present study involved 16 random forests, which together form the emulator. Each individual
random forest was trained on a collection of multiple SVE simulations consisting of multiple vegetation spatial patterns,
with storm characteristics held constant. To adapt the emulation approach to the present application, the random
forests were trained on a broader set of features than in Crompton et al. (2019) and on more training patterns, including
20 patterns typical of banded vegetation.

A comprehensive test of the original emulator is provided in Crompton et al. (2019), and was not repeated in the
present study. The emulation approach was implemented with minor modifications, and to check that the performance
was acceptable, we assessed the training and test errors using: (i) the SVE simulations used to train the emulator, and
(ii) SVE simulations extracted from the R/G-SVE model simulations. The fidelity with which the emulator reproduced
the within-hillslope spatial patterns was estimated the normalized root mean square error (NRMSE) between the SVE
and emulator predictions:

1 [
NRMSE = dJ 5 (- Ixr)? (8)

cell Noat/
where I is the SVE model prediction, Igr is the emulator prediction, d is the storm depth, and summation over N_,
is over all of the points in the hillslope domain. The median and standard deviation of the errors was 2.7 + 2.2 % for

the training set and 5.3 + 6.0 % for the test set, which is similar to the original analysis.

2.5 | Testing of the R/G-emulator model

Comparisons of the output from paired R/G-SVE and R/G-emulator model runs were used to test the R/G-emulator
model. The test cases had the same annual rainfall R = 438 mm, but were generated using sixteen different storm
climatologies, consisting of all combiantions of the four storm depths d and four storm durations ¢, described above,
with the wait intervals adjusted to hold annual rainfall constant. Each of the paired R/G-SVE and R/G-emulator model
simulations was run for 632 storms. Because wait intervals varied between the storms, the final length of the simu-
lations ranged between 2096 and 8398 days. The R/G-SVE model was expensive to run: 632 storm events required
approximately 2 months of supercomputer time. For this reason, we did not extend the length of the simulations or
the range of climatologies, but verified that the simulations were approaching steady state (see supporting informa-

tion Figure S2-54), allowing a reasonable comparison of the R/G-SVE and R/G-emulator models at this time. These
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FIGURE 4 The hillslope on the left shows a sample distribution of vegetation, and the hillslope on the right
shows an SVE model prediction of infiltration depth, representing the target variable. Each point in the SVE model
domain is transformed into a 1D vector of features that represent the surrounding neighborhood. The random
forest independently operates on each point to predict the outcome.

computational limitations also prevented us from a comprehensively characterizing uncertainty; for example, we did
not explore how deviations between R/G-emulator and R/G-SVE predictions varied with initial condition.

We used three metrics of pattern morphology to characterize the differences between the R/G-SVE and R/G-
emulator simulations: (i) the number of bands within the domain, (ii) within-patch mean biomass Pt (g/m?), and
(iii) vegetation fraction ¢y (the fraction of the domain occupied by vegetated sites). The number of bands within
the domain, determined by counting the number of repeated vegetation-bare soil units along the hillslope length, is
a proxy for pattern wavelength, and is a more robust metric than a true wavelength (identified, e.g. via peaks in a
power-spectrum) for simulations where the wavelength approached or exceeded the model domain length. To define
Ppatch and ¢y, a biomass threshold of Pr = 20 g/m? was used to delineate vegetated from bare sites. All metrics were
computed for each along-slope column on the modeled hillslope, and aggregated.

Figure 5A presents paired violin plots that compare the R/G-SVE and R/G-emulator model predictions of band
count, Pparch and ¢y for each storm climatology, with the storms sorted in order of increasing rainfall intensity. A
comparison of the blue (emulator) and grey (SVE) metrics shows that, in general, there is good agreement between
the model versions, although the SVE predictions often show more across-slope variation relative to the emulator.
Additionally, the sensitivity of the pattern properties to storm intensity is preserved between the models; the band
count decreases and within-patch biomass increases with increasing rainfall intensity for both model approaches. The
results suggest that the emulation approach reproduces vegetation pattern morphologies, and their sensitivities to
storm climatology, relative to the SVE approach. Panels B and C in Figure 5 show example side-by-side comparisons
of the R/G-SVE and R/G-emulator predictions of the spatial distributions of biomass at the end of the simulations for
two storm climatologies. Similar comparisons for all sixteen storms are provided as supporting information Dataset

S1. Hillslope-averaged summary metrics and errors are reported in supporting information Table S1.

2.6 | Exploratory simulations with the R/G-emulator model

Using the emulator model to predict infiltration sped up the prediction by a factor of >10,000 , enabling exploration
of the sensitivity of pattern morphology to storm characteristics under varying climate aridity and on a larger hillslope
domain of length 400 m and width 200 m. For each of the sixteen storm types, annual rainfall intensity R was varied
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between 219 and 511 mm, again by adjusting the wait interval between storms. All simulations were run to 10,000
days.

3 | RESULTS

Figure 6 illustrates the range of pattern morphologies generated by the sixteen storm types for a common annual
rainfall of R = 292 mm, illustrating the potential for storm properties to influence pattern morphology. With annual
rainfall held constant, the pattern morphology varies from a nearly-bare state, to fragmented vegetation conditions,
to coherent banded patterns with a range of wavelengths.

Figure 7 summarizes the sensitivity of the pattern spatial metrics to changes in annual rainfall and storm intensity
(increasing from left to right, where climatologies with the same intensity are grouped with vertical lines). In this plot,
some rainfall climatologies do not result in the formation of a vegetation pattern. In some low-intensity cases with
R > 365 mm, biomass cover is continuous and the vegetation cover is effectively homogeneous. Similarly, in some
high-intensity cases with R < 365 mm, minimal biomass is sustained (i.e. <5 g/m?2) and the patterns collapse. Based
on visual inspection, we required that the standard deviation of the biomass field, std(P), be greater than 7.0 g/m? for
the result to be considered a ‘pattern’ (see supporting information Figure S5 for visual comparisons of biomass fields

immediately above and below this threshold).

Several broad trends can be identified in Figure 7: increasing rainfall intensity is generally associated with decreas-
ing band count (panel A) and increasing P,a¢cx (panel C). The vegetation fraction does not exhibit clear trends with
rainfall intensity, but increases on average with increasing annual rainfall. Figure 7 suggests that desertification is not
only associated with lower annual rainfall R (note the greater number of ‘missing’ data points for R = 219 mm than
for higher annual rainfall cases), but also promoted by increasing rainfall intensity - presumably because more rainfall
runs off and is lost from the hillslope as intensity increases. This is illustrated in supporting information Figure Sé with
a sample vegetation pattern. Additional examples of desertification due to increasing rainfall intensity are shown in
supporting information Figures S7-S8 (for R = 219 - 292 mm). At higher annual rainfall totals, missing data in Figure 7
are associated with homogeneous vegetation cover (see supporting information Figures S10-S11, for R = 483 - 511

mm). For R = 365 mm, patterns form for all 16 storm scenarios, as shown in supporting information Figures S9.

While Figure 7 highlights the clear dependence of pattern band count and P,,cs, on rainfall intensity, intensity
alone does not determine the pattern morphology. For example, in Figure 6, intensity is constant along the upper-
left to lower-right diagonal (p = 2.4 cm/hr); however, from smaller, more frequent storms (d= 0.4 cm) to larger, less
frequent storms (d = 1.6 cm), pattern wavelengths and bandwidths increase, while pattern ‘coherency’ appears to
decrease. Similar dependencies of morphology on d can be seen for p = 2.4 cm/hr in Figure 7.

The results suggest that the conditions for pattern formation in these simulations vary in a complex fashion with
total annual rainfall and within-storm characteristics. The generalization that pattern formation and morphology is
sensitive to annual rainfall, widely identified in previous studies (Rietkerk et al., 2002; Guttal and Jayaprakash, 2007)
is repeated here: band count decreases and within-patch biomass increases with increasing annual rainfall inputs (see
e.g., supporting information Figures $12-515). However, as is also evident in supporting information Figures $12-515,

the range of annual rainfalls over which patterns form depends on storm characteristics.
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4 | DISCUSSION

The results demonstrate how the redistribution of water as surface runoff during storms, and the sensitivity of this
redistribution to storm properties such as intensity and duration, propagates and influences pattern morphology on
ecological timescales. Although the annual rainfall sets a broad trend in vegetation fraction within the simulations, the
organization of this vegetation into patchy landscapes of varying morphologies and biomass densities is sensitive to
storm-scale runoff-runon processes, and thus to the storm duration and intensity. Whereas previous research into the
connections between vegetation spatial organization and desertification focused on declining annual rainfall, these
simulations indicate that increased storm intensity could be sufficient to degrade landscapes, even if total annual
rainfall is constant. This finding is consistent with Siteur et al. (2014), who found that, for a constant annual rainfall
rate, an increase in storm intensity can trigger desertification as a greater fraction of the rainwater is lost as runoff.
This is significant because many climate projections predict increased intra-annual rainfall variability, characterized by
fewer yet larger, more intense rainfall events and longer dry spells (Giorgi et al., 2011; Kharin et al., 2013; Westra et al.,
2014, Prein et al., 2017), exactly the scenario associated with desertification in the simulations here. In the modeling
framework presented here, rainfall intensity is tightly coupled to runoff production and increasing rainfall intensity
reduces the fraction of rainfall that can infiltrate on a given hillslope. Additionally, and absent from these simulations,
greater rainfall intensity and runoff velocities promote surface erosion, which can powerfully accelerate degradation
and desertification (Watson and Laflen, 1986; Romkens et al., 2002).

The present study is limited in scope to rainfall with fixed intervals between identical showers of constant intensity.
However, the proposed framework is well suited to investigate the effects on vegetation patterns of rainfall season-
ality, stochasticity, intermittency and intensity, topics which have been previously examined with phenomenological
treatments of storm-scale processes (Gandhi et al., 2019; Ursino and Contarini, 2006; Kletter et al., 2009; Baudena
et al., 2013; D’Odorico et al., 2006). Indeed, the model modifications that would be necessary to explore rainfall
seasonality, intermittency and stochasticity are trivial, namely, adjusting the wait intervals between storm events.
Integrating a more realistic range of storm intensities and durations (e.g., following an intensity-duration-frequency
curve) would require training additional SVE emulators for each unique storm, also a minor modification.

In addition to better identifying the connections between rainfall processes and desertification risk, this study
highlights the difficulties associated with attempting to directly link the morphology of vegetation patterns to envi-
ronmental drivers. Previous studies have attempted to interrogate or invert models of vegetation pattern formation
to gain insight into dryland ecosystem function and improve predictions about their resilience (Penny et al., 2013;
Thompson and Katul, 2011; Mander et al., 2017), or to improve the process realism of patterned vegetation models
without addressing within-storm processes (Kefi et al., 2008; Thompson and Katul, 2009; Vincenot et al., 2016). In
part, these efforts aimed to improve the ability to compare observed and modeled patterns (Dunkerley, 2018; Barbier
et al., 2014, 2008). The present study, however, highlights that unless models address the multiscale nature of dry-
land ecohydrology, sensitivity to storm-scale processes (and the omitted issues of seasonality and stochasticity among
storm events) may confound such efforts (Guttal and Jayaprakash, 2007; Deblauwe et al., 2008; Vincenot et al., 2016;
Gandhi et al., 2019).

A valid question remains whether other water related parameters in the R/G model (e.g. the advection and in-
filtration parameters) could be tuned to "map" the pattern morphologies between the R/G-emulator and the original
R/G model for a given annual rainfall - i.e., adjusting these parameters to account for the errors involved in neglecting
storm-scale processes. Although we have not comprehensively explored this possibility, our preliminary attempts to
map the pattern morphologies between the models were not encouraging, as the pattern-forming regions of param-

eter space appear to be disparate between model versions (Crompton, 2018). The difficulties associated with this
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mapping also meant that we did not attempt to compare our predictions to phenomenological predictions, as it is
unclear how to meaningfully parameterize these models to represent the same landscape and climate as explicitly
defined in the SVE model.

Beyond the case study of vegetation patterns, coupling the emulator and pattern-forming models provides a
proof of concept of the usefulness of emulation methods for making multiscale ecohydrological predictions. This
study has demonstrated the feasibility of this approach, and the potential value of emulation modeling in revealing
dynamics that arise from multiscale interactions that were previously unexplored in the study system. While the
patterns generated by the R/G-SVE and R/G-emulator models exhibit small differences, changetheir predictions of
thethe simulated pattern morphologies and biomass distributions, and their sensitivities to storm characteristics, are
similar between model versions. The differences between the R/G-SVE and R/G-emulator model predictions are
likely attributable to the strongly nonlinear pattern-forming model - such nonlinearities are known to amplify small
differences in initial conditions, and likely also amplify the effects of small errors in the emulated infiltration fields.

The study was also subject to several computational considerations that could be improved upon by future re-
searchers, relating to: (i) the numerical demands of validating the use of emulation approaches in coupled multiscale
models, and (ii) the computational sophistication needed to implement the workflow that was used in this study. Most
pressingly, the use of the emulation within the multiscale model required assessment of how errors in the emulator
model propagated through the pattern-forming model. Unavoidably, such an assessment requires that researchers un-
dertake the very task that the use of an emulator model seeks to avoid - the coupling of the computationally-intensive
process model with the pattern-forming model. In this case, over 600 SVE model runs were needed per validation
case, approximately 2 months of supercomputer time. The situation is a little paradoxical: as the computational de-
mands of the physical model increase, the use of emulation modeling becomes both more urgent and more expensive
to validate. In cases where the slow processes are more linear than in the present case, validation may be less prob-
lematic, as such models are less likely to amplify small errors than the pattern-forming vegetation model. However,
this study illustrates the trade-offs between the numerical expense of validation, the required quality of uncertainty
characterization, and the numerical benefits of using an emulation approach at all.

Secondarily, the required workflow is non-trivial, involving (i) creating a library of physical model simulations upon
which to train the emulator model for the fast processes, (ii) coupling the physical and emulator models to the ‘slow’
model, (i) running both versions of the resulting multiscale model to validate the emulator version, and (iv) making
predictions with the final (emulation-based) multiscale model. Implementing this workflow requires significant time
investments in data organization, data storage, and coding, and the value of such investments for one-off applications
is questionable. Creating virtual and model-independent environments that could support such workflows in the
future (similar to those developed already to support e.g., uncertainty characterization or data assimilation (Anderson
et al., 2009; Welter et al., 2015)) could lower this burden and increase the accessibility of emulation methods for
multiscale modeling.

5 | CONCLUSION

This study illustrated how emulation modeling can provide a viable pathway towards including greater process com-
plexity within ecohydrological models that contain a strong timescale separation between interdependent processes.
By replacing a phenomenological representation of overland flow and infiltration processes with a machine-learning
emulation of a surface hydrological model, we were able to introduce within-storm processes to vegetation pattern-

forming systems without compromising model runtime.
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The patterns produced by the emulator version were sufficiently similar to those produced by the physical version
to enable the exploration of a larger parameter space of annual rainfall amounts, over a larger domain size. We were
able to demonstrate the sensitivity of pattern morphology to storm properties; specifically, increased storm depths
and reduced storm durations were associated with longer wavelengths (smaller band counts) and greater within-patch
biomass. In dry climates (i.e. those with lower annual rainfall totals), the pattern morphology was also sensitive to
increased intensity and lower frequency storms, fragmenting from bands to spots to non-vegetated states. No similar
behavior can be produced with the R/G model without representing storm properties.

Given that ecohydrological processes by their nature embrace complex biological and physical coupling across
multiple spatial and timescales, we suggest that emulation approaches deserve broad consideration to address the
computational challenges associated with representing such diverse multiscale phenomena.
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FIGURE 5 Test simulation results, comparing the R/G-SVE and R/G-emulator model predictions. Panel A shows
side-by-side violin plots for the three metrics of pattern morphology. From top to bottom, these metrics are band
count, the mean within-patch biomass P,,¢ch, and the vegetation cover fraction ¢y . The x-axis on each plot shows
each distinct storm scenario in terms of intensity p and storm duration ¢t,, and storms are ordered from left to right

with increasing p. Panels B and C show side-by-side comparisons for two storm climatologies with good and poor
agreement between models, respectively (B: ¢, = 10 min, d = 0.4 cm; and C: ¢, = 30 min, d = 1.6 cm).
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top to bottom. Pattern morphologies for the other annual rainfall cases are included in supporting information
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