egoTEB: Egocentric, Perception Space Navigation Using
Timed-Elastic-Bands

Justin S. Smith!, Ruoyang Xu', and Patricio Vela!

Abstract— The TEB hierarchical planner for real-time nav-
igation through unknown environments is highly effective
at balancing collision avoidance with goal directed motion.
Designed over several years and publications, it implements
a multi-trajectory optimization based synthesis method for
identifying topologically distinct trajectory candidates through
navigable space. Unfortunately, the underlying factor graph
approach to the optimization problem induces a mismatch
between grid-based representations and the optimization graph,
which leads to several time and optimization inefficiencies. This
paper explores the impact of using egocentric, perception space
representations for the local planning map. Doing so alleviates
many of the identified issues related to TEB and leads to a
new method called egoTEB. Timing experiments and Monte
Carlo evaluations in benchmark worlds quantify the benefits
of egoTEB for navigation through uncertain environments.

I. INTRODUCTION

The navigation system of an autonomous mobile robot
aims to identify a path connecting the start pose to a desired
terminal pose, preferably with good optimality properties.
In a perfectly known environment, navigation reduces to
planning. As with navigation, the objective of planning
is to find a globally optimal solution from start to goal
satisfying the robot’s motion and control constraints while
avoiding collisions. As this is generally too computationally
expensive to be performed in real time and unreliable in
unknown environments, practical navigation systems utilize
a hierarchical approach consisting of an approximate global
planner, which uses globally accumulated environmental data
to provide coarse globally optimal paths at a low rate, and
a local planner, which searches for locally optimal paths
that follow the global path. Global planning is generally
performed using graph search algorithms such as Dijkstra’s
[1], A* and variants [2], RRT and variants [3], [4], [5],
probabilistic road-maps [6], kino-dynamic planners [7], etc.

Options for the local planner include the aforementioned
planning approaches, reactive planners, sample-based plan-
ners [8], or optimal trajectory methods [9] applied to a small
region around the current robot pose and targeting waypoints
on the global path. The timed-elastic-bands (TEB) approach
is an effective local planner, first introduced in [10] and
iteratively refined over the span of 6 years [11], [12]. It
is an optimization-based approach to trajectory planning.
Similar approaches include [13], [14], [15], however these
have not been integrated into a hierarchical navigation system

*This work supported in part by NSF Award #1400256 and #1849333.

17.S. Smith, R. Xu, and P.A. Vela are with the School of Electrical
and Computer Engineering and the Institute for Robotics and Intelligent
Machines, Georgia Institute of Technology, Atlanta, GA 30308, USA.
{jssmith, rxu74, pvela}@Rgatech.edu

as TEB has. Key characteristics of TEB are that kinody-
namic constraints are considered as part of the planning
process; a richer space of trajectory options are output by
the optimization in contrast to sample-based methods; and
multiple trajectories with distinct topologies are maintained
and optimized. The last design element avoids local minima
issues by selecting from several trajectory options as needed
to ensure that TEB takes the estimated, most optimal path.

TEB uses factor graphs as the underlying representation in
order to optimize timed-elastic-bands (tebs) with g2o [16],
an open source graph-based optimization framework. The
graph representation allows TEB to optimize trajectories with
respect to a wide variety of soft constraints, represented as
edges on the optimization graph. However, this representa-
tion introduces a decoupling between the local environment
data structure (typically an occupancy grid) and the optimiza-
tion data structure (a factor graph). The decoupling is a data
structure mismatch that negatively impacts the optimization
setup and computation time.

Perception space representations in egocentric frames have
the potential to improve computational efficiency and nav-
igational performance by exploiting the geometric structure
of the obstacle information as measured by on-board sen-
sors. Using perception space enables more efficient collision
checking [17], [18]. Perception space also improves the
efficiency of trajectory scoring for local navigation [19]. Fur-
thermore, perception space representations have the potential
to better align with the graph-based representation employed
by TEB’s optimization process. We propose to improve the
efficiency of TEB by utilizing a perception space obstacle
representation as the source of obstacle data.

Moving to an egocentric representation permits the in-
corporation of concepts from the family of gap-based local
planning approaches. Gap-based local planners generally
operate on raw laser-scan data, making them perception
space approaches for 2D data. Range information implicitly
encodes the navigable free space immediately around the
robot, which is analyzed for openings or gaps. In general,
local navigation is performed by selecting a suitable gap
(based on various criteria) and generating commands to steer
through it [20], [21], [22]. Rather than using gaps to directly
generate navigation commands, we propose to use them as
a heuristic to inform more efficient sampling of candidate
trajectories residing in distinct topologies.

The main contributions of this paper include (C1) the
introduction of the egocircle representation (§III-A) for the
local TEB obstacle map, which captures boundaries rather
than areas; (C2) the use of a gap-based local navigation

[, Costmap — Egocircle Cl1
Costmap Depictions of TEB Processing C2 : _ ‘e Egocirdle
Converter : Gap Finder : Interface -
] | v v ' v
Hf)mology Exploration [«— Obstacles H.omology Exploration Obstacles
Signature Signature
(b) Update old tebs (c) Add global path o
Optimizer | C3 Optimizer |
Feasibility Feasibility
> heck C4 ™ Check
inal Path (d) Path exploration (e) Path optimization Final Path
(a) TEB (f) egoTEB
Fig. 1. Block diagrams of TEB approach (a) and proposed egoTEB approach (f), with depiction of TEB calculations (b-e).

scheme (§III-B) to identify distinct local trajectory topologies
from visible obstacle boundaries; (C3) a modified gap-based
cost (§III-C) to prevent trajectories from jumping from one
topology to another during the soft-constraint factor graph
optimization; and (C4) a fast, perception space feasibility
test (§III-D). Figure 1 depicts the original TEB pipeline (a)
and the proposed egoTEB pipeline (f) and serves as a guide
to understanding the contents of this paper. The components
impacted by the stated contributions are marked.

II. THE TEB OPTIMIZATION PROCESS

TEB is a state-of-the-art approach for optimization based
local planning. Trajectories are represented by timed-elastic-
bands, or febs. A teb consists of a sequence of poses and the
time intervals between each consecutive pair of poses. A feb
is optimized with respect to position and time. In effect, TEB
optimization uses a collocation-based approach to optimal
trajectory synthesis, with consideration for kinodynamic and
collision avoidance constraints, to establish a minimal time
path from the robot’s initial pose to a final pose [12]. Once
the trajectory has been computed, the associated controls are
backed out from the trajectory’s dynamics. TEB achieves
greater robustness by maintaining and optimizing multiple
tebs during each local planning cycle, allowing it to leave
a trajectory caught in a local minimum in favor of a more
globally optimal trajectory. This section covers the imple-
mentation details of TEB and indicates what problems arise
as a function of the internal representations and computa-
tions. Then, the following section covers the modifications
made to the TEB optimization procedure to arrive at egoTEB.

A. Update obstacle representation

The first step in a new optimization process is to convert
the local environment, typically a 2D occupancy grid, into
a set of obstacles to populate the factor graph edge cost
structure [23]. However, if the number of occupied cells is

large, the conversion leads to an excessive number of ob-
stacle points that increase the optimization time (sometimes
by several orders of magnitude). One solution is to use a
more compact obstacle representation, for which costmap
converter components [24] were added to the functionality
of TEB to convert a map to a set of points, lines, and/or poly-
gons. Figure 2 depicts a local environment whose occupancy
information is given by polygonal elements.

B. Prepare tebs

The preparation process for the tebs is depicted in Fig.
1(b-e). First, the start and end poses of any tebs from the
previous planning cycle are updated with the current g,opot
and gg0q1. Next, a new teb is created using the current global
plan. Finally, additional tebs are added by a sampling-based
exploration strategy that searches for candidate paths to the
goal. The exploration strategy builds a probabilistic roadmap
(PRM) for the local space, see Fig. 2, and in the process
oversamples the local trajectory space.

A search through this path graph may produce many
candidate trajectories, though only those with unique H-
signatures will be kept. The H-signature (a unique complex
number) identifies whether any two paths are of the same
homology class. Conceptually, two trajectories belong to the
same homology class if one can be warped into the other
without crossing over an obstacle (see Fig. 3). The result of
this preparation process is a set of topologically distinct tebs.

C. Optimize tebs

The next step is to set up and optimize each feb using
a factor graph. The edge costs in the factor graph act as
soft constraints for the included constraints (e.g., vehicle
kinematics, obstacles, time optimality, velocity limits, and
acceleration limits) leading to a multi-objective optimization
with tunable weights.

L 4

PRM Nodes

PRM Edges

Fig. 2. Path graph produced using PRM approach with polygonal obstacles
generated using a costmap converter. Some edges are not helpful.

This optimization does not always yield desirable results,
however. As a soft-constraint optimization approach, TEB
cannot guarantee that optimized tebs will fully satisfy all
constraints. Additionally, optimization can cause the poses
of a teb to jump over an obstacle, changing the teb’s H-
signature. This homology jumping may reduce the number
of distinct topologies represented (see Fig. 3).

D. Verify feasibility of ‘best’ teb

TEB has some flexibility when choosing the ‘best’ teb to
follow. Preference may be given to the feb selected during
the previous planning cycle or to the feb initialized with the
global plan. Since optimization may not have satisfied all
obstacle constraints (see Fig. 4), TEB tests for the feasibility
of the ‘best’ teb by checking the first kfcqsivitity poses for
collision using the current costmap. If the zeb is feasible, the
trajectory is executed. If not, the planner indicates that it has
failed, clears all current tebs, and triggers a global replan.

III. EGOTEB IMPLEMENTATION

The flowchart of the egoTEB system is shown in Fig. 1(f).
An egocircle representation replaces the costmap component
of TEB, Fig. 1(a). The modified representation structurally
changes many of the downstream computations and compo-
nents while leading to an optimization problem with the same
general features as TEB. However, several of the negative
characteristics are avoided under the new pipeline.

A. Egocentric Obstacle Representation Using the Egocircle

Moving from a geocentric to an egocentric frame improves
the computational performance of maintaining a local ob-
stacle map and aligns the world representation with that of
TEB’s factor graph approach. As a consequence, conversion
costs are avoided and many computational optimizations can
be implemented. Perception space representation (a boundary
representation) will give better scaling than occupancy grids
(an area representation), as will be shown in §IV.

We therefore employ the egocircle to store and propagate
the most relevent local environment information history in
the polar representation [19]. The egocircle data object L4,
stores object boundaries in an ordered circular data structure.
Similar to a laser scanner, the egocircle evenly divides the

() (b)

Fig. 3. TEB and homologies. (a) Example of trajectories belonging
to different homologies. TEB sometimes starts with (b) trajectories in
distinct homology classes prior to optimization, and finishes with (c) some
trajectories in the same homology class due to soft constraints.

©

P i
]] I .
[1]] "
-]
| =- |
n
5 n
, @ r
] ‘ |]
u
’ N .
[1] =
L™ - "
| N |
- (T . u g
[

Fig. 4. Example of infeasible trajectory after optimization.

angular space into n.;.. cells or buckets. As the robot moves,
the egocircle points are updated; for p.i € Lego and the
robot odometry update gmove € SE(2), the transformed
point is pl,. = gmove - Peir Which is the application of the
rigid body displacement ¢,,,,, to the planar polar coordinate
Peir- The transformed point p/,, . gets stored in a (potentially)
new bucket within the egocircle. Points with magnitude
greater than the egocircle radius R, are discarded. Gener-
ating an egocircle scan from stored data entails performing
a min operation over all egocircle buckets individually:

L (i) =)(”pciTH) (1

min
Peir€Lego(t
The process above renders a 1D measurement “image” L.,
from all points stored in memory. It is equivalent to a 360°
laser scan reading with angular resolution 7./ (27).

The Egocircle Interface decimates egocircle scans to pro-
duce a reduced set of point obstacles, serving a similar
purpose to TEB’s costmap converter. It also generates an
inflated egocircle scan, simplifying later processing by al-
lowing the robot to be treated as a point. Conceptually, a
circle of radius 7;,s. is placed at the location of each point
represented by L,, and a new egocircle scan is generated
based on the ranges to these inflated points. The inscribed
radius r;,s. of the robot is used to ensure that the result
is liberal (permits false negatives from a collision detection
perspective). Figure 5(a) depicts the egocircle scan L,, in
black and the corresponding inflated scan L™ in gray.

One potential disadvantage of the egocircle is that the
min operation destroys beyond-line-of-sight information. The
standard TEB implementation’s ability to consider non-line-

Inflated Egocircle

(a) ~—— —
Fig. 5.

Optimized Paths

(©

(a) Egocircle scan (in black) and inflated egocircle scan (grey), with decimated points (red squares). Yellow circles are inflated decimated points. (b)

Path graph produced using gap-based approach with decimated egocircle obstacles. (c) Example of scene with 2 febs, each with an attached gap constraint.
The local goal point of the global path is denoted by the violet square at the terminal points of the green curves, while the robot is the black circle.

of-sight obstacles using a 2D obstacle representation may
allow it to perform better in some scenarios. In order for
this ability to be of any use, however, the robot must know
of those obstacles. If they are not visible from the robot’s
current pose, then they must either have been seen earlier
or provided as prior obstacle information. In either case,
the obstacles would have been added to the global costmap.
Since the global plan, produced using this global costmap,
is used to initialize a teb, the extent of standard TEB’s
advantage over egoTEB should be minimal.

B. Gap-Based Navigation Graph

In perception space, a trajectory can either stay within
the star-shaped, perceived space or exit through a gap, as
visualized in Fig. 5(b). Since no information is available
regarding the environment beyond the gaps, all trajectories
passing through a particular gap are considered equivalent;
each gap represents a distinct homology class of trajectories.
This section describes how gaps are detected to define a
simple navigation graph for seeding trajectory candidates.

1) Egocircle Gaps: Our approach to gap analysis follows
that of [25] as applied to the 360 degree inflated egocircle
scan. Using the inflated egocircle eliminates the need to
remove gaps that are too narrow or within other gaps. Let
1 be a circular index into the egocircle scan. Candidate
regions where a gap will lie occur in the vicinity of elements
satisfying one of the following properties:

o Large range difference: ’L‘,‘}f@) — Linf(j + 1)| > 2inse
¢ One range is out-of-range and the other is not:
(LM(i) = Rimac) @ (L (i + 1) = Rinaa)

After identifying candidate gap indices in the egocircle, they
must be paired up (left edge and right edge) to define the gap
regions. Each gap region is represented by a line segment, or
gap segment, colored light blue in the example of Fig. 5(c).

2) Using Gaps to Determine Distinctiveness: A gap-
based homology representation provides an efficient means to
maintain trajectories associated to all local homologies with a
reduced computational cost relative to the oversampled PRM
approach of TEB (Fig. 2). Gap segments found in the robot’s
frame are transformed to the global planning frame. Define
the set of found gap segments GF = {GF}]27", with a

segment defined by the two points Gf',Gl, € R? Vi €
[1,14qp]- A trajectory is in the homology class of gap ¢ if it
crosses the line segment (i.e., passes between the two points).
3) Generating Candidate Trajectories Through Gaps:
Generation of trajectories for each homology is significantly
simpler with the gap-based approach than with the original
sampling-based approach. Trajectory candidates are initial-
ized by creating paths from the robot’s current pose through
gaps then on to the goal, as well as by going directly from
start to goal if it lives within the star-shaped, perceived
space. Exploiting this structure greatly reduces the number of
possible edges in the created graph. The maximum number of
edges in the graph is limited to 2144y, -+ 1. Furthermore, since
straight line paths from the start to a gap are by definition
collision free, the number of edges that must actually be
evaluated (collision checked) is reduced to ngqp + 1. In
contrast, the total number of edges that must be evaluated in
the PRM approach is n(n—1), where n is the total number of
points in the graph (sampled points plus start and goal). The
impact is improved scalability and reduced computational
cost of finding new candidate paths to the goal.

C. Optimization Cost Setup

In an effort to reduce the frequency of homology jumping,
we augment the optimization problem with a new gap-based
constraint. A gap constraint is added to each trajectory that
passes through a gap. The goal of the gap constraint is to
prevent trajectories from leaving their respective gaps by
penalizing such scenarios. For a given gap G, define its
radius Rgqp = |G — GF,|/2 and center G, = (GF, +
Gf 5)/2. The gap cost is based on the distance of the pose
from the center of the gap vs. the gap’s width:

d(y — Qthresh
A«

0, otherwise

2%kerp
:| ; if d(x > Othresh

C(da) = (2)

where do (pint) = ||pint — GL||/Rgap Pint is the trajectory
pose nearest to the intersection of the trajectory with the gap
segment, and Qitpresh, A, and kegy are parameters.

Luu LL—_LL:-
ﬂﬁﬁwm .

Fig. 6.

Benchmark navigation worlds. From left to right: Dense World, Campus World, and Office World. Red and green denote start and goal points,

respectively. In Office World, red points may serve as either start or goal points.

D. Perception Space Feasibility Checking

The feasibility checking component of egoTEB is mod-
ified to utilize the egocircle rather than a costmap. Since
egoTEB does not maintain a local costmap, its feasibility
checking component is modified to utilize the egocircle.
Pose feasibility is determined using an implementation of the
Planning in Perception Space (PiPS) approach to collision
checking [18]. The general concept is to perform collision
checking by projecting the robot’s geometry into the per-
ception space rather than by projecting the sensor data into
a costmap. Here, the pose to be evaluated is transformed
from the planning frame to the ego frame. Next, the robot’s
footprint is transformed by the ego frame pose and projected
into the egocircle coordinate system. Collision checking
compares the robot’s footprint against the egocircle values.
As long as the range of each point in the footprint is less than
the range of the corresponding measurement in the egocircle,
the pose is deemed safe. If the opposite holds, then the pose
is unsafe. For circular robots, the geometry can be reduced
to a point. An unsafe pose for a tested reb will result in the
teb being deemed infeasible.

IV. EXPERIMENTAL EVALUATION

This section contains timing test outcomes for the dif-
ferent components of TEB and egoTEB, as well as Monte
Carlo outcomes for navigation in benchmark worlds. For
the benchmark worlds, randomized obstacles and start/goal
points generate a rich set of navigation tests.

A. Benchmarking Environment Setup

The egoTEB, TEB, and Dynamic Window Approach
(DWA)[8] navigation schemes are run on a series of bench-
marking experiments in simulated ROS/Gazebo environ-
ments, with the configuration files available at [26]. Bench-
mark worlds are depicted and labeled in Fig. 6.

Dense World. The dense world is a single large room filled
with uniformly placed square and cylindrical posts. Start
poses are sampled from a horizontal region near the north
wall and place the robot facing inwards. Goal poses are
sampled from a horizontal region near the south wall.

Campus World. The campus world is intended to model
the outdoor free space of a university campus and consists
of several relatively large open areas connected by narrower
corridors. There is one starting pose and seven candidate

TABLE I
EGOCIRCLE VS COSTMAP UPDATE TIME

Size Parameter
Costmap 5m m Im 11m
Time 5.378ms | 9.355ms | 11.92ms | 17.75ms
Egocircle 3m 4m 5m 6m
Time 0.457ms | 0.601lms | 0.776ms | 0.940ms
TABLE I
EGOCIRCLE INTERFACE VS COSTMAP CONVERTER
min dist | Egocircle Interface | Costmap Conv (Poly)
0.5 0.219ms 1.653ms
0.75 0.219ms 0.817ms
1.0 0.228ms 0.398ms
TABLE III
EGOTEB vs TEB EXPLORATION
egoTEB TEB
min dist HSig Time per TEB / Total Time / Ave # TEB

0.5 33.38us/1.16ms/1.691
0.75 53.02us/1.62ms/2.286
1.0 48.09us/1.42ms/1.823

0.8435ms/8.23ms/1.205
0.3192ms/5.62ms/1.558
0.1146ms/2.89ms/1.788

TABLE IV
BUILDGRAPH AND OPTIMIZATION TIME
egoTEB TEB
min dist | Eezp =0 | kexp =1 | kexp = 10 N/A
0.5 11.53ms 11.87ms 11.44ms 16.47ms
0.75 10.88ms 12.96ms 12.70ms 14.11ms
1.0 10.64ms 11.63ms 12.10ms 10.75ms

goal poses. A given scenario will randomly select one of
these predefined goal poses. Obstacles (consisting of large
blue cylinders and small red boxes) are uniformly distributed
among the primary open areas of the world.

Office World. The office world is a simplified model of the
fourth floor of the building containing our lab. Start and goal
poses are randomly selected from a list of locations around
the office. A set number of obstacles are randomly placed
using the same approach as in Campus World.

The density parameter min dist specifies the minimum
distance permitted between the centers of any two obstacles
that are randomly added to a scenario. The simulated robot
platform is a differential drive Turtlebot 2 with a Kobuki
base and first generation Microsoft Kinect.

B. Computational Efficiency Analysis

The computational benchmarking analysis compares the
computational efficiency of various aspects of the ap-
proaches. These experiments are performed in the Dense

world with density parameter values {0.5,0.75,1}. Un-
less otherwise specified, the following parameters are used:
Necire = 5127Rmuw = 3mvr’insc = 0-18ma]€feasibility =
10, kexp = 2,04nresh = 0.1, Aa = 0.5, costmap size
leostmap = M, costmap resolution = 0.05m, costmap con-
verter type is “CostmapToPolygonsDBSConcaveHull” with
default parameters. The workstation used is an Intel 3.30GHz
15-4590 Quad core with a single-thread Passmark score of
2115 and a multi-thread score of 7336. The reported results
are averages from 4255 planner calls.

1) World Update: This first test compares the update
costs associated with assimilating new sensor data into the
local world representation. The results are found in Table I.
The egocircle representation has a lower baseline cost and
lower slope regarding dependence on the local map area.
The size parameters are chosen so that the area covered
by the costmap and the egocircle are approximately equal:
TR2, 0z X 120stmap- The egocircle updates its representation
and produces a new egocircle scan every time a sensor
measurement is received, whereas the costmap performs
updates at a specified frequency (5SHz in all experiments).
The fast updating performance of the egocircle makes it more
suitable for low latency applications.

2) Data Conversion: The second test evaluates the time
cost of translating the local map data for integration into the
factor graph. Table II compares egoTEB’s Egocircle Interface
with TEB’s polygonal costmap converter. The egocircle
calculations have better scaling properties as a function of
obstacle density versus the TEB converter. Both the boundary
representation and the line-of-sight only calculations limit the
computation’s growth.

3) Exploration: Benchmarking results for exploration-
related components are shown in Table III. The test measures
the time to calculate the homology signature of a single reb
trajectory, the time for exploring equivalence classes, and the
number of febs maintained. egoTEB’s exploration strategy
takes less time and scales better than TEB’s.

4) Optimization: The impact of using an egocentric,
perception space representation on the overall factor graph
optimization time is quantified in Table IV. The different
egoTEB columns provide results for several values of kegp.
Here, the compute times of egoTEB are similar to those of
TEB, but with better scaling as a function of world density.

5) Feasibility Checking: We benchmarked the time taken
for PiPS to collision check trajectories and compared against
the default collision checking algorithm utilizing traversabil-
ity cost. Table V shows the average run-time of both rep-
resentations. PiPS consistently performs feasibility checking
in less than 1/2 of the time used by geocentric methods.
The run-times for both algorithms scale linearly for this
component.

6) Total Time Cost: In the end, the egoTEB representation
results in a local navigation planning algorithm with lower
run-time costs and favorable scaling properties as a function
of world complexity. See Table VI for total run-times from
sensor measurement to navigation decision.

TABLE V
COLLISION CHECKING

k easibility

5 8 11 14 17
PiPS 15.42 | 18.47 | 22.30 | 23.87 | 27.20
Costmap | 31.70 | 42.19 | 52.62 | 60.84 | 67.46
TABLE VI
TOTAL PLANNING TIME
min dist | egoTEB TEB
0.5 11.76ms | 19.89ms
0.75 12.78ms | 20.60ms
1.0 12.33ms | 17.10ms
TABLE VII
NAVIGATION TEST
egoTEB TEB DWA
Success Rate/Path Length(m)/Execution Time(s)
0.5 79.5%1/28.3/86.7 | 59.5%/26.7/76.7 | 10.5%/29.4/97.9
0.75 100%/21.9/49.2 99%/21.8/51.3 94%/22.6/59.9
1.0 100%/19.8/41.7 | 99.5%/19.8/42.2 | 100%/20.3/47.0
Campus | 100%/22.6/46.1 93%/22.7/49.4 99%/23.3/49.5
Office 98%/47.7/96.4 98%/47.7/97.4 | 100%/48.7/100.6

C. Navigation Performance

Lastly, the performance outcomes for the different naviga-
tion methods are given in Table VII. Navigation benchmarks
are run 4 at a time on an Intel Xeon E5-2640 @ 2.50GHz
processor with a single-thread Passmark score of 1468 and a
multi-thread score of 14649. Performance is measured as the
average final executed path length, path execution time and
navigation task completion rate over 200 runs. The baseline
methods do well for all worlds except the most dense one.
For all other worlds egoTEB matches or outperforms the
original TEB. For the most dense, egoTEB has the best
performance, suggesting that egocentric perspectives may
be of value in dense environments. Overall, the outcomes
indicate that egoTEB successfully translated TEB to a more
egocentric, perception space model of operation for the local
planner.

V. CONCLUSION

This paper described a modification to the Timed-Elastic-
Band (TEB) navigation system whose primary character-
ization is that of modifying the internal, local planning
representation from being world-centric to being egocentric.
Exploring the numerical and computational issues associated
to TEB and their negative consequences provides guidance
on how to incorporate the egocentric representation with the
explicit goal of remedying these issues. The final egoTEB
implementation nicely unifies alternative local navigation
strategies and modern sensor-based navigation methods for
unknown environments. The net result is a more efficient
implementation with equal or improved collision avoidance
properties that also shows significant potential for low
computational power devices. This implementation is open
source software [27]. As future work, it would be interesting
to explore how egoTEB might improve TEB for the case of
moving objects.

[1]

[3]

[4]

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

REFERENCES
E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269-271, 1959.
P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.
S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Technical Report 98-11, Computer Science Department,
Towa State University, 1998.
J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in /EEE International Conference on
Robotics and Automation, 2000, pp. 995-1001, vol.2.
S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846-894, 2011.
L. E. Kavraki, M. N. Kolountzakis, and J. . Latombe, “Analysis
of probabilistic roadmaps for path planning,” IEEE Transactions on
Robotics and Automation, vol. 14, no. 1, pp. 166-171, 1998.
R. B. Rusu, I. A. Sucan, B. Gerkey, S. Chitta, M. Beetz, and L. E.
Kavraki, “Real-time perception-guided motion planning for a personal
robot,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2009, pp. 4245-4252.
D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” Robotics Automation Magazine, IEEE, vol. 4,
no. 1, pp. 23-33, 1997.
S. Quinlan and O. Khatib, “Elastic bands: connecting path planning
and control,” in International Conference on Robotics and Automation,
1993, pp. 802-807, vol.2.
C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram,
“Trajectory modification considering dynamic constraints of au-
tonomous robots,” in 7th German Conference on Robotics, 2012, pp.
1-6.
C. Rosmann, W. Feiten, T. Wosch, F. Hoffmann, and T. Bertram,
“Efficient trajectory optimization using a sparse model,” in European
Conference on Mobile Robots, 2013, pp. 138-143.
C. Rosmann, F. Hoffmann, and T. Bertram, “Integrated online
trajectory planning and optimization in distinctive topologies,”
Robotics and Autonomous Systems, vol. 88, pp. 142-153, 2017.
M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
IEEE International Conference on Robotics and Automation, 2011,
pp. 4569-4574.
N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
IEEE International Conference on Robotics and Automation, 2009,
pp. 489-494.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Mukadam, X. Yan, and B. Boots, “Gaussian process motion plan-
ning,” in IEEE International Conference on Robotics and Automation,
2016, pp. 9-15.

R. Kiimmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o0: A general framework for graph optimization,” in IEEE Interna-
tional Conference on Robotics and Automation, 2011, pp. 3607-3613.
L. Matthies, R. Brockers, Y. Kuwata, and S. Weiss, “Stereo vision-
based obstacle avoidance for micro air vehicles using disparity space,”
in IEEE International Conference on Robotics and Automation, 2014,
pp. 3242-3249.

J. S. Smith and P. Vela, “PiPS: Planning in perception space,” in
IEEE International Conference on Robotics and Automation, 2017,
pp. 6204-6209.

J. S. Smith, S. Feng, F. Lyu, and P. Vela, “Real-time egocentric
navigation using 3d sensing,” in Machine Vision and Navigation,
0. Sergiyenko, W. Flores-Fuentes, and P. Mercorelli, Eds. Springer,
pp. 431-484, 2020.

J. Minguez and L. Montano, “Nearness diagram navigation (ND): a
new real time collision avoidance approach,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, vol. 3, 2000, pp.
2094-2100.

V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm:
“Follow the Gap Method”,” Robotics and Autonomous Systems,
vol. 60, no. 9, pp. 1123-1134, 2012.

M. Mujahed, D. Fischer, and B. Mertsching, “Tangential Gap Flow
(TGF) navigation: A new reactive obstacle avoidance approach for
highly cluttered environments ,” Robotics and Autonomous Systems,
vol. 84, pp. 15-30, 2016.

C. Rosmann. (2019) teb_local_planner - ros wiki. [Online]. Available:
http://wiki.ros.org/teb_local_planner.

—— (2019) costmap_converter - ros wiki. [Online]. Available:
http://wiki.ros.org/costmap_converter.

M. Mujahad, D. Fischer, B. Mertsching, and H. Jaddu, “Closest Gap
based (CG) reactive obstacle avoidance Navigation for highly cluttered
environments,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2010, pp. 1805-1812.

J. S. Smith, J. Hwang, and P. Vela, “Benchmark worlds for testing
autonomous navigation algorithms,” 2018, [Repository]. [Online].
Available: http://github.com/ivalab/NavBench.

J. S. Smith, “egoTEB Source Code”, 2020, [Repository]. [Online].
Available: http://github.com/ivaros/egoTEB.

