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ABSTRACT: Despite significant advances in resolution, the potential
for cryo-electron microscopy (EM) to be used in determining the
structures of protein−drug complexes remains unrealized. Determi-
nation of accurate structures and coordination of bound ligands
necessitates simultaneous fitting of the models into the density
envelopes, exhaustive sampling of the ligand geometries, and, most
importantly, concomitant rearrangements in the side chains to
optimize the binding energy changes. In this article, we present a
flexible-fitting pipeline where molecular dynamics flexible fitting
(MDFF) is used to refine structures of protein−ligand complexes
from 3 to 5 Å electron density data. Enhanced sampling is employed to
explore the binding pocket rearrangements. To provide a model that
can accurately describe the conformational dynamics of the chemically
diverse set of small-molecule drugs inside MDFF, we use QM/MM
and neural-network potential (NNP)/MM models of protein−ligand
complexes, where the ligand is represented using the QM or NNP
model, and the protein is represented using established molecular
mechanical force fields (e.g., CHARMM). This pipeline offers structures commensurate to or better than recently submitted high-
resolution cryo-EM or X-ray models, even when given medium to low-resolution data as input. The use of the NNPs makes the
algorithm more robust to the choice of search models, offering a radius of convergence of 6.5 Å for ligand structure determination.
The quality of the predicted structures was also judged by density functional theory calculations of ligand strain energy. This strain
potential energy is found to systematically decrease with better fitting to density and improved ligand coordination, indicating
correct binding interactions. A computationally inexpensive protocol for computing strain energy is reported as part of the model
analysis protocol that monitors both the ligand fit as well as model quality.

■ INTRODUCTION

Cryo-electron microscopy (EM) has emerged as one of the
most powerful tools in structural biology, providing molecular
models that approach the resolution commonly achieved in X-
ray crystallography and NMR spectroscopy.1 Some recent
examples of high-resolution cryo-EM structures include
GPCR-G protein complexes,2 rabbit ryanodine receptor,3

and ligand-bound ribosomal subunits,4 all of which are
resolved at near-3 Å resolution. Furthermore, cryo-EM based
structure determination overcomes two key limitations faced in
traditional X-ray crystallography, namely, the arduous task of
preparing well-ordered crystals of macromolecules,5 and the
more fundamental problem with capturing these molecules in
unphysiologically relevant states as a result of crystal contacts.
Thus, Cryo-EM allows structure determination of large and/or
dynamic macromolecular assemblies in native-like environ-
ments.

In view of the methodological advantages and milestone
discoveries made by leveraging cryo-EM, it holds strong
potential for monitoring the interactions between proteins and
RNA with small molecules.1−6 However, data processing from
cryo-EM is slowEM would require about half a year of data
collection (assuming 8 h per data set) and at least a year of
computation and model building. In contrast, once the arduous
crystallization protocol is established, the postprocessing of the
X-ray diffraction takes little time. Around 2000 crystallization
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conditions can be set up in 1 h, with a further 2−3 h needed to
evaluate all the images for identifying suitable crystallization
conditions (which can be reduced with image recognition
software).6 Thus, following the sample preparation stage, cryo-
EM is not nearly as high-throughput as X-ray crystallography.
The second drawback of cryo-EM stems from the popular

choices of systems relevant to drug discovery. Many drug
targets are small proteins or their complexes, but cryo-EM is
mostly employed to determine structures of larger biomole-
cules with molecular mass >500 kDa. The poor contrast
transfer function seen in defocused single-particle images
makes analysis of smaller complexes challenging.7 Finally, there
are issues of inhomogeneous local resolution,8 radiation
damage of acidic side chains9 and inherent disorder of large
macromolecular complexes, which makes ab initio determi-
nation of accurate protein−ligand interactions intractable
within the routinely available 3−5 Å EM models.6,10 Therefore,
applications of cryo-EM in the mainstream of drug discovery is
still limited. New methods need to be developed to transform
this structural biology paradigm into a physical chemistry tool
for drug discovery, drawing parallels to a journey that NMR
has successfully undertaken albeit for small proteins.
One approach to overcome the protein-size limitation of

cryo-EM is to form a rigid complex with the antigen-binding
fragment. This strategy improves the quality of the data
collected by increasing the size of the complex, while also
facilitating alignment of the single-particle images. Combined
with the so-called energy filtering methods,11 the overall
performance of cryo-EM is being gradually improved both in
terms of size and resolution to suit drug discovery applications.
Development of 4D cryo-electron microscopy by integrating
the fourth dimension, time, into this powerful technique is also
posited to offer information on protein dynamics.12

A positive impact of the aforementioned advances in cryo-
EM instrumentation is seen on the completeness of the
reported models, and growth in the automated structure
building protocols in EMBD competitions.13 Contingent on
data resolution, information-driven modeling tools trace large
pieces of the protein backbone and several side chains in
minutes of computer time.14−16 However, resolution of the
binding pocket remains a stiff challenge as, unlike standard
protein structure prediction, most of these tools are not trained
a priori on the physics of protein-small molecule interactions.
For low-resolution data, particularly in transmembrane
systems, such structure determination of protein−ligand
complexes is even more difficult,17 given the extensive
sampling of the structures that needs to be undertaken for
finding the correct protein−ligand conformation.
Molecular modeling of the ligand, guided by the density of

the protein, offers a concrete solution to resolving the drug−
protein problems in cryo-EM. Already performed with high-
resolution X-ray data, quantum mechanics/molecular mechan-
ics (QM/MM) methods have resolved several protein−ligand
complexes.18 Key to the success of QM/MM, however, is the
initial docking of the ligand to the proteins. To this end, a
molecular docking protocol can be employed.19 Very recently,
a hybrid pipeline composed of GLIDE-docking (built within
the Schrödinger package),20 QM/MM geometry optimizations
using the Gaussian QM package21 and real-space refinement
with the structure determination toolkit, PHENIX,22 was
proposed.23 For the midresolution models derived from cryo-
EM, the docking predictions e.g. from GLIDE, AUTODOCK,
or ROSETTA-DOCK are often fraught with false-positives

born out of multiple local minima within which the ligands can
fit.24 Therefore, an enhanced sampling tool needs to be
coupled to the docking and the QM/MM protocol, so the
false-positives can be avoided. Monte Carlo (MC) methods
have been employed together with QM/MM protocols and
classical force fields to perform enhanced sampling and resolve
ion-binding to channels.25 Despite these plausible MC
remedies, QM/MM or the development of new force fields
for novel drugs is prohibitively time-consuming for biological
systems.26 In the past, we combined classical CHARMM force
fields on NAMD and density functional theory (DFT) on
Gaussian iteratively with the ELBOW module of PHENIX to
determine the structure of organic macrocycle-ligand com-
plexes from 1 Å-resolved X-ray diffraction data.27 The
investigation of lower-resolution data for biological systems,
however, requires a much larger number of such iterative re-
refinements, slowing the model-building step. The deployment
of a single parallelizable refinement platform that combines
both quantum and classical descriptions of proteins with
molecular docking and flexible fitting of ligands is therefore
needed to address the iterative structure determination of the
protein−ligand systems.
In this article, we use electron density data with resolutions

between 3−5 Å to determine the structure of protein−ligand
complexes by combining the GLIDE-docking protocol with
the popular molecular dynamics (MD)-based real-space
refinement tool molecular dynamics flexible fitting (MDFF).8

We demonstrate this method on protein−ligand complexes of
horse liver alcohol dehydrogenase, EGFR tyrosine kinase, and
the kinase domain of the insulin receptor. The initial ligand-
docked model derived from GLIDE is refined either with a
hybrid QM/MM-MD platform28 or by combining the
traditional CHARMM force fields of the proteins with the
neural network potentials (NNPs)29,30 to describe the
intramolecular forces of the ligands, all in the presence of an
additional biasing force that conforms this refinement to the
EM density data. The outcome is a computational protocol,
implemented in the MD platform NAMD,31 that docks and
optimizes the geometry of the ligand within the protein, while
simultaneously fitting to the density. The uncertainties of
lower-resolution data are addressed using the built-in enhanced
sampling capabilities of MD that are available on NAMD.32

A key advantage of using an NNP to represent the
intramolecular interactions of the ligand stems from avoiding
the reparameterization of a new force field for approximating
these interactions. This is particularly significant for novel
ligands, where a well-validated force field is not available and
where the chosen force field does not define optimal
parameters for all torsional barriers. The efficacy of the NNP
is validated here by comparison with the QM/MM refinements
on the same systems. Furthermore, discrepancies in the
GLIDE-docked structures are removed by the use of either
traditional or accelerated MD to equilibrate the structures;
these accelerations are derived using the collective variable or
COLVAR module of NAMD.32 Taken together, for the first
time, we combine GLIDE docking with refinement using QM/
MM or NNP/MM models of the protein−ligand interactions
and with MDFF refinements of cryo-EM data on the protein−
ligand complexes accelerated by COLVAR. The entire
refinement protocol is available for free on the latest builds
of NAMD. As indicators of model quality, we monitor the (i)
local geometry in the vicinity of the protein−ligand complex,
(ii) consistency of the ligand coordination states with those
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derived from high-resolution X-ray or cryo-EM structures in
the PDB, and (iii) the interplay between protein−ligand
interaction and ligand strain potential energies. These
indicators are found to be robust to the resolution of the
data, yet sensitive to the quality of the model and that of the
fitting. Thus, we can credibly determine protein−ligand
models by respecting the high-level molecular physics at
play, while being concomitantly constrained by the information
extractable from the data at hand.

■ METHODS
In what follows, we describe the individual components of our
hybrid MD-based structure determination workflow, namely
(i) MDFF and converting experimental data to synthetic
potentials within MD; (ii) the QM/MM implementation with
associated spatial embedding and COLVAR schemes available
on NAMD,31 which provided the basic framework for the
refinement of ligand structures from cryo-EM; (iii) the scheme
for hybridizing the NNP force fields for ligand with CHARMM
force fields for proteins; (iv) the docking scheme by employing
Schrodinger’s GLIDE; and (v) computations of ligand
coordination and strain energies for analysis of model quality.
Finally, we integrate these five individual methodologies into
one protocol for the structure determination and refinement of
ligand geometries embedded in protein pockets.
Molecular Dynamics Flexible Fitting. MDFF works by

supplementing an MD force field (Vforce‑field) with an
electrostatic-like potential derived from the cryo-EM density
(VEM).

8 The Vforce‑field can be split into three terms describing
the potential energies of the protein (Vprotein), that of the ligand
(Vligand) and the protein−ligand interactions (Vprotein‑ligand). The
VEM biases MD simulations toward structures that are
consistent with the cryo-EM electron density maps. Structural
models are refined against the EM density by determining
atomic positions that minimize the weighted sum of Vforce‑field
and VEM. A detailed explanation of the terms in the MDFF
potential can be found in Supplementary Note 1.
There are a number of force fields for calculating Vprotein,

notably CHARMM, AMBER, and OPLS. However, construct-
ing the potential energy functions Vligand and Vprotein‑ligand is
challenging due to the enormous chemical diversity of known
ligands. This process can require a tedious parametrization of
the ligand force field based on experimental or quantum
chemical data. Several force field construction protocols have
been developed to capture the ligand interactions.26,33,34 Yet,
even the most elaborate versions of these force fields cannot
provide universally accurate models for the structure and
relative stability of the conformations of all possible ligands. A
truly general strategy for resolving the structures of cryo-EM
protein−ligand complexes requires an accurate method for
calculating Vligand for all possible ligands. Here, we explore two
alternatives to force fields for calculating Vligand and Vprotein‑ligand
within MDFF simulations: employing quantum mechanics and
neural network potentials.
Data Integration. In this subsection, we detail the method

to generate low-resolution synthetic densities from exper-
imentally determined high-resolution densities for the three
macromolecules (PDB: 4HJO, 3ETA, and 6NBB). X-ray
crystallographic structure and intensity files of the inactive
conformation of the EGFR tyrosine kinase domain bound with
chemotherapy drug erlotinib (4HJO, resolution: 2.75 Å)35 and
of the kinase domain of an insulin receptor with a pyrrolo
pyridine inhibitor (3ETA, resolution: 2.6 Å)36 were down-

loaded from the Protein Databank for MDFF refinements. The
cryo-EM structure reported by Herzik et al. was also used in
the MDFF simulations of nicotinamide adenine dinucleotide-
bound horse liver alcohol dehydrogenase (6NBB, resolution:
2.9 Å).17

For the high-resolution experimental densities determined
from X-ray crystallography, we truncated the diffraction data at
3 and 5 Å using the phenix.maps tool from the Phenix software
suite.37 After truncating the high-resolution data to 5 Å, the
data were smoothed using a B factor of 35 Å2, in a fashion
similar to the technique used in ref 38. This smoothing
procedure further reduces the signal-to-noise ratio of the 5 Å
resolution diffraction data, posing perhaps a more realistic
refinement scenario. To generate synthetic densities of lower
resolution from a high-resolution cryo-EM density, the
experimental map is blurred by adding Gaussian functions
with increasing half-widths, σ, using the volutils plugin of VMD.
For σ = 0 Å, high-resolution experimental density is recovered,
while for values of σ > 0 Å, synthetic densities of lower
resolution are achieved.8 After these density files are created in
a .ccp4 format, they are projected on a 3D grid space in the .dx
format using the MDFF plugin in VMD. Using Supplementary
eq 3, this density is converted into potential VEM, for driving
MDFF.

NAMD QM/MM. The QM/MM interface of NAMD allows
partitioning of a system into quantum and classical levels of
description. The ligand is described quantum chemically, while
the protein and the solvent are probed classically. The energies
from the protein are computed using molecular mechanics
force fields, such as CHARMM. The ligand energies can be
calculated with an external QM software, such as MOPAC and
ORCA, as well as a number of other programs amendable to
the NAMD interface.28 Forces are passed from the QM
program into NAMD, which are then integrated using r-
RESPA31 multiple time step scheme to evolve the system.
More details on NAMD’s QM/MM interface are provided in
ref 28 and Supplementary Note 2.
Normally, higher levels of electronic structure theory are

prescribed for accurate QM/MM single point energy
computations.39 However, the semiempirical level theories
(PM6 or AM1) are found applicable for geometry
optimization, as evidenced by a number of protein−ligand
systems involving atoms from main-group elements.40 The
constraints imposed by the experimental data during QM/
MM-MDFF also prevents the ligand geometry from deviating
toward unphysical structures, and yet, resolving negatively
charged ligands or ones coordinated with transition metal ions
remains a seminal challenge in cryo-EM.13 These computations
take ∼1.3 s of wall-clock time to perform MD steps of 1 fs,
allowing MDFF to sample for ∼65 ps per day on a 2-CPU
node in a typical system with 60−70 QM atoms and 500 000
MM atoms. For proteins alcohol dehydrogenase, EGFR kinase,
and insulin receptor, the QM and MM regions are demarcated
in Table S1 of the Supporting Information. The choice of the
partitioning scheme follows from high-level QM/MM studies
of these proteins by Zhu et al.39 and independent simulations
by Lahey et al.30 Hydrogen was employed as the link-atom
connecting the QM and MM regions, and an electrostatic
embedding is employed. A NAMD input file for running QM/
MM-MDFF is provided with the Supporting Information.

NAMD COLVAR. The CoordNum collective variable
defines a coordination number (or the number of contacts),
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represented by C.31,32 It is calculated using the following
expression

∑ ∑=
− | − |
− | − |∈ ∈

C
d

d

x x

x x
(group , group )

1 ( / )

1 ( / )i j

i j o
n

i j o
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group group1 2

(1)

Here, we have considered the ligand as one group (group1)
and the key residues in the binding pocket of the protein as
another group (group2). Table S2 presents the details of the
ligands and the protein key residues used in defining groups 1
and 2 to compute the CoordNum (C) for each of the three
complexes.
Neural Network Potentials Embedded in MM Models.

Recently, neural-network potentials (NNPs) have emerged as
an alternative to quantum mechanical calculations of molecular
interactions.29,30 NNPs like the ANI-1ccX are trained to
reproduce the QM-calculated molecular energies of a large
ensemble of molecules in a range of conformations. These
potentials are almost as accurate as the high-level ab initio
calculations they are trained to reproduce but are far less
computationally expensive. This allows nanosecond length
simulations to be performed readily. The ANI-1ccX NNP was
trained to reproduce highly accurate CCSD(T*)/CBS
calculations, so it avoids some of the limitations of low-cost
semiempirical quantum methods that are commonly used in
QM/MM MD. In MDFF simulations of protein−ligand
complexes, NNPs can be used to represent the ligand
embedded within a MM model for the protein. The
protein−ligand interactions are calculated by pairwise additive
Lennard-Jones and electrostatic potentials, as in a mechanically
embedded QM/MM model.
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In this work, the ligand charges and Lennard-Jones parameters
from CGenFF are used without modification for the
calculation of the protein−ligand interactions.
The TorchANI implementation of the ANI-1ccX was

interfaced with NAMD through its Custom QM/MM
interface. Interactions between the ligand and the protein/
solvent were calculated by conventional QM/MM MD
interactions defined by the CGenFF model. We note that
the ANI-1ccX model was not trained to model charged
systems, so it is not designed to model a complex like 3ETA,
which has an ammonium group. Nevertheless, we found that
this potential provides reasonable descriptions of the intra-
molecular interactions of the ligand in the binding site. The
NNP performance in NAMD is 10-folds faster than QM/MM
MD.
GLIDE Docking Procedure. Ligand Preparation. The

first step in the docking protocol entails ligand preparation and
conformer generation. All ligands used in the study were
generated using Maestro in the sdf format. Thereafter, the
LigPrep utility of the Schrodinger molecular modeling toolkit
was employed to generate 3D conformers. The 3D conformers
were optimized utilizing the OPLS3e force field (default
settings). Furthermore, Ligprep was employed to assign correct
bond order with correct chirality along with ionization states
and tautomers.

Protein Preparation. The protein structures for ligand
docking were prepared and optimized using the Maestro
molecular modeling software. The protonation state of the
ionizable residues: ASP, GLU, ARG, and LYS were assigned
based on the pKa calculation using PROPKA. Crystal structure
water molecules were removed except close (5.0 Å) to the
binding site. Thereafter, restrained minimization was per-
formed on the protein−ligand system using the impact
refinement module and the OPLS3e force field. This allows
for the relaxation of steric clashes that may have been present
in the deposited PDB structure. The minimization protocol
was terminated upon energy convergence or when the root-
mean-square deviation (RMSD) between the minimization
steps reached a tolerance of 0.30 Å.

Generation of Grid and Docking Protocol. The receptor
grid was generated by defining the grids centered on the bound
ligands in the crystal structure employing default settings for
the box size in Glide. The van der Waals radii of the protein
atoms with atomic charges ≤0.25 were scaled by 1.0. On the
other hand for the ligand atoms, the van der Waals radii of the
atoms with atomic charge ≤0.15 were scaled by 0.8. Docking
was performed in the unconstrained mode while allowing for
5- and 6-membered ring flips and penalizing for nonplanar
amide bonds. The van der Waals radii of ligand atoms with a
partial atomic charge less than 0.15 were scaled by 0.8. All the
docking used in this work was performed using GLIDE in the
“extra precision” XP mode.20 Subsequently, the docked ligand
poses were minimized and rescored using the Glide (Gscore)
scoring scheme. The Glide score (Gscore) is defined as

= * + * + + +

+ + +

a bGscore vdW Coul Lipo Hbond Metal

BuryP RotB Site (3)

Here vdW represents the van der Waals energy, Coul =
Coulomb energy, Lipo = lipophilic contact term, Hbond =
hydrogen-bonding term, Metal = metal-binding term, BuryP =
penalty for buried polar groups, RotB = penalty for freezing
rotatable bonds, Site = polar interactions at the active site, and
the coefficients of vdW and Coul are a = 0.065 and b =
0.130.20

Strain Energy. The internal conformational energy of
bound ligands changes because the protein interactions allow a
conformation that may be higher in energy than the
conformation of the ligand in solution. This extra energy of
the bound ligands is termed strain potential energy. To this
end, following,18 we used the MOPAC NAMD-QM/MM
optimized geometries of the ligand in the protein−ligand
complex and that of the ligand in water and performed high-
level quantum chemistry calculations. Illustrated in Figure S1
of the Supporting Information, these protein-bound and
solvated ligand geometries represent local energy minima in
the PM6/CHARMM computations. The energy difference
between the ligand conformations in the protein complex vs in
the water yields the strain potential energy

Δ = −E E E(ligand conformation in complex) (ligand conformation in water)

(4)

All single-point calculations were performed using the
density functional theory (DFT) employing the Minnesota
06 functional (M06)41 in conjunction with the 6-311+G-
(d,p)42,46 basis set. The calculations denoted SMDwaterM06/6-
311+G(d,p) in the following were performed using the SMD43

solvation model, i.e., a self-consistent reaction field method (ε
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= 78.4) in the Gaussian 16 software package.21 The present
combination of DFT functional and basis set has resulted in
quite reasonable results compared to MP2 calculations in an
earlier calculation of the strain energy.18 Moreover, we have
performed strain potential energy computations using the
MMFF94s force fields with the same geometries as employed
in the DFT studies. Subsequently, the strain potential energy
trends are compared between these two levels of
theory.18,41−43

Hybrid Workflow. Illustrated in Figure 1, the first step of
the protocol is to construct a preliminary protein model using
either ab initio methods or rigid and flexible fitting.44,45 This
step can be achieved using real-space refinement tools such as
Phenix or Rosetta,46,47 manual building on Coot,48 or a
combination of backbone tracing and flexible fitting of side
chains.14 Direct fitting of available homology models to density
maps has also been successful.49 CHARMM36 force fields have
been the most successful for MDFF refinements. Second, when
the density has a high resolution of 2−4 Å, the key side chains
are resolvable. Subsequently, this model can be subjected to
GLIDE, followed by NNP-MDFF and/or a final QM/MM
refinement step. NNP-MDFF can be performed both in
implicit and explicit solvents with comparable accuracy.50

When NNP force fields are unavailable, QM/MM-MDFF will
be performed directly. Modeling of the solvent environment
explicitly is essential to maintaining adequate solvation of the
ligand-binding pocket during QM calculations and provide
enhanced sampling through thermal fluctuations.
The radius of convergence of MDFF is defined in terms of

the RMSD of the final refined model relative to the initial
search model. When the density has a low resolution or the

local resolution in the vicinity of the binding pocket is larger
than 4 Å, NNP-MDFF is more useful as it has a higher radius
of convergence than QM/MM-MDFF (see Results). To avoid
the sampling of unphysical local minima, the CoordNum
collective variable of NAMD is employed to improve the
coordination between the protein and ligand in increments of
10%. When available, prior biochemical knowledge, e.g., from
mutational assays on key residues engaging in protein−ligand
interactions can also be introduced at this stage. This fitting
step will continue until the local correlation coefficient of the
binding pocket change converges. Normally it takes around
200 000−1 000 000 MDFF steps (200−1000 ps of simulation
time) for the ligand correlation and coordination measures to
converge.
In the third step, the low-energy structures are isolated and

ligand strain energy is computed. Molecular mechanics
methods are sufficiently accurate to offer a qualitative trend
over a large ensemble.51 For an accurate estimation of strain
energy, higher level single point computations are recom-
mended. Noting that lower strain correlates with higher
binding affinity, the model with the lowest strain will be
reported. For cross-validation, the ligand will be removed from
this refined model to create an apo structure. Then, GLIDE
will be used to reintroduce the ligand into the apo structure. If
the GLIDE-docked apo structure and the MDFF prediction
are commensurate in terms of model quality (to be determined
using MolProbity52) within a chosen tolerance, the hybrid
protocol will be deemed complete. In case these models are
different, the next round of MDFF will begin with the new
GLIDE-docked apo structure.

Figure 1. Workflow for molecular docking and refinement of protein−ligand complex using hybrid algorithms, integrating QM/MM, NNPs, and
MDFF. The initial step is a real-space refinement of protein structure performed using popular ab initio structure determination tools (Phenix or
Rosetta). Second, rigid-body docking using GLIDE (Schrödinger) is performed to get a starting model for the protein−ligand complex. Next, based
on EM map resolution, high (<3 Å) and low (>3 Å), either simple MDFF or accelerated MDFF using CoordNum is adopted as the desired
refinement protocol. For low-resolution EM maps, additional biochemical information may be included to improve the quality of side chain
refinement. Third, further refinement of the structure is performed using MDFF with CHARMM force field for the protein and a neural network
trained potential (NNP) for the ligand. The final step of the refinement involves another round of refinement of the NNP-derived model by QM/
MM-MDFF. Next, the analysis stage includes calculating cross-correlation, strain energy and geometric parameters (MolProbity statistics), which
helps determine both the quality of the fit and the quality of the bound model.
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■ RESULTS

In the following, we will describe how the QM/MM and NNP
description of ligands is achieved within MDFF to refine the
three example protein−ligand complexes. This hybrid flexible
fitting procedure is repeated across (i) synthetic density maps
of multiple resolutions and (ii) GLIDE-docked initial ligand
poses of varying confidence to monitor the accuracy of the
structure determination. The QM/MM and NNP models of
the ligands are compared in terms of their geometric quality
and binding-pocket energetics. Finally, to enhance the radius of
convergence of ligand refinement within MDFF, particularly
for determining binding pocket structures from poorly resolved
side chains and small-molecule conformations, we resort to
combining known biochemical information with NNP-MDFF
via the enhanced sampling and COLVAR module of NAMD.
QM/MM-Modified MDFF has a Low Radius of

Convergence. The PM6/CHARMM interface was employed
with MDFF to study the structure of nicotinamide adenine
dinucleotide (NAD)-bound horse liver alcohol dehydrogenase
(6NBB) in explicit solvent. Two different search models were
prepared to test the radius of convergence of this MDFF
protocol. The first search model is the best GLIDE-docked
model, where the NAD ligand is docked into the apo form of
6NBB. The second model is a GLIDE-docked conformation of
an MD-modified apo 6NBB (see Methods). During this MD

simulation, the side chains of the binding pocket are displaced
by an RMSD of 5.5 Å using 300 K heating for 10 ns, while still
maintaining the backbone in place. Effectively, this treatment
produces an apo model with the backbone resolved but side
chains uncertain, as is often the case with real low-resolution
models. We examine the quality of GLIDE predictions when
the binding-pocket side chains are thermally randomized and
determine whether a subsequent MDFF with QM/MM
refinement resurrects this binding conformation commensurate
to the submitted PDB structure.
In the first QM/MM-MDFF, we refine the high-quality

GLIDE docked dehydrogenase model. The NAD ligand has
been reported in nine distinct binding poses in the 6NBB
structure derived from cryo-EM at 2.9 Å resolution. The
positional variance between these poses ranges from 0.4 to 0.7
Å (Figure S2A). Starting with the GLIDE-docked model and
the experimental density, a similar diversity in conformation is
captured by 200 ps of QM/MM MDFF, and even with a
lower-resolution density blurred by a Gaussian function of half-
width σ = 5 Å (Figure S2B−E). The ligand cross-correlation
was found to be 0.86 and 0.90 at 2.9 and 5 Å, respectively
(Figure 2). The local binding-pocket and global cross-
correlation values converged to ∼0.20 and ∼0.88, respectively,
at 2.9 Å and ∼0.21 and ∼0.81, respectively, at 5.0 Å (Figures 3
and S4). The ligand coordination measured in terms of the
CoordNum variable (described in Methods) changed between

Figure 2. QM/MM-MDFF refinement of horse liver alcohol dehydrogenase. (A) Local cross-correlation (CC) changes of the NAD ligand during
200 ps of MDFF with the 2.9 Å cryo-EM density (EMD0406), where the ligand is described using the PM6 level of theory and the protein by
CHARMM force fields. Starting with a GLIDE-docked model of the apo−6NBB structure, the CC stabilized around 0.86. (B) Key residues of the
binding pocket from the refined model are labeled, together with ligand-stabilizing side chain contacts. This conformation is comparable to the one
in the crystal (compare Figures 3C and S3−6NBB). Fitted atomic models of the NAD-binding pocket at the beginning (C) and end (D) of the
MDFF refinement, illustrating comparable conformations of the ligand (pink) and the side chains (red and green).
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2150 to 2350 and 2125 to 2220 at low resolution (Figure 3B).
All the results are within the margin of error of 6NBB models
reported from the 2.9 Å EM densitythe ligand cross-
correlation is 0.94, and the local and global correlations are
approximately 0.2 and 0.91. Remarkably, the NAD coordina-
tion in this reported model is almost half of that determined
here by PM6/CHARMM-MDFF, suggesting improvements in
binding interactions derived from our QM treatment.
Despite strong model bias, the alcohol dehydrogenase

example demonstrates that our protocol does not degrade
the quality of the structure even at low resolution (Figures 3C,
S3−6NBB, and S4). The overall MolProbity score is 0.82, an
improvement over 1.90 from the reported 6NBB model (Table
S3): Ramachandran and rotamer statistics are comparable
(97% and 95% favored), while all the unphysical clashes are
removed by the PM6/CHARMM level of protein−ligand
description. This result confirms that the physical accuracy of
the ligand’s quantum chemical description supersedes biases
from the uncertainty in EM density, providing an accurate
model of the NAD coordination geometry (Figuress 2−3) and
local interaction energy minimum (Figure S1A).
The PM6/CHARMM MDFF computations were repeated

with GLIDE-docked NAD into the MD-modified apo alcohol
dehydrogenase structure, our second search model. The
system has a low global cross-correlation of 0.66 with respect
to the 6NBB models, which improved to 0.80 (Figure S5)
following the same protocol as with the first model (200 ps of

flexible fitting with the 2.9 Å density determined structures).
The RMSD and ligand cross-correlations improved from 5.5 Å
and 0.30 relative to 6NBB to only 3.2 Å and 0.32 (Figure S6).
Thus, consistent with the previous studies,55 the quality of
QM/MM refinement depends completely on the accuracy of
the docked model, which in turn, is biased by the side chain
assignments in the original density. With the first search model,
PM6 maintained the correct binding pocket conformation,
while with the second model starting from rearranged side
chain conformations, the pocket was never recovered even
from the 2.9 Å data. In effect, the introduction of QM/MM
with MDFF has limited the radius of convergence to sub-1 Å
RMSDs. This discrepancy will be addressed below with
enhanced sampling simulations.
Strain potential energies of the ligand are computed to

monitor how the quality of the model evolves across the 200 ps
of the fitting procedure (Figure 3D). Fitting to the 2.9 Å EM
density produces structures with a 10-fold decrease in the
strain energy values with respect to the submitted 6NBB model
(see Table S4 for details on the protein−ligand and water−
ligand interactions derived using DFT). Consistent with the
increase in CoordNum of Figure 3B, the lowering of the strain
energy confirms improvement in the ligand-binding affinity.56

Therefore, our PM6/CHARMM-MDFF starting with GLIDE-
docked NAD into the 6NBB protein structure refines the
ligand with comparable statistics as those reported in the
Protein Data Bank, but now we achieve much stronger

Figure 3. Model quality of the NAD binding pocket in horse liver alcohol dehydrogenase. (A) Per-residue cross-correlation coefficient of the NAD
binding pocket side chains showing minimal changes across 200 ps of MDFF. (B) Binding coordination number, monitored in terms of the
CoordNum collective variable,53 improves by almost 2-fold over the submitted 6NBB model after GLIDE docking (t = 0 ps). These improved
coordination interactions are maintained by PM6/CHARMM MDFF for 200 ps. (C) Details of the NAD binding pocket conformation (presented
as a 2D projection or ligplot54) remain conserved across the MDFF refinement. (D) Consistent with the gain in ligand-coordinating interactions,
strain potential energy on the NAD ligand is an order of magnitude lesser than the GLIDE-docked and MDFF-refined models than in the
submitted 6NBB model.
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protein−ligand interactions due to minor sub-1 Å changes
brought forth by the QM/MM treatment of the pocket.
NNP Force Fields Improve the Radius of Conver-

gence of Ligand Determination. The QM computations
employed in the QM/MM-MDFF refinements of the previous
section require simulations that may take a few days to
complete. Additional computing resources can only improve
this performance in a limited way because the Semiempirical
QM (SQM) code used here cannot be efficiently parallelized
beyond four nodes. Furthermore, the approximations inherent
in the low-cost SQM methods that are amenable to MDFF can
be inaccurate for some types of intramolecular interactions.
NNPs have the potential to overcome the limitations of SQM
because they are more computationally efficient, and they can
also be more accurate due to their training to reproduce the
results of high-level ab initio methods (e.g., CCSD(T*)/CBS).
Following this assumption, we employ NNPs to describe the
intramolecular interactions of the ligand instead of an SQM
method. Because the NNPs are yet to be trained for phosphate
moieties of NAD, a second example with a binding pocket
structure that is comparable in complexity to alcohol
dehydrogenase was chosen, namely the EGFR kinase binding
to erlotinib.35

Similar to the QM/MM MDFF simulations, two of the
GLIDE-docked structures were used as the starting points for
NNP-MDFF simulations. The first structure had erlotinib
docked to the apo form of the reported 4HJO model. Again, in
the second structure, the side chains in the binding pockets
were first rearranged using 10 ns of MD, and thereafter
erlotinib was docked using GLIDE. Simulations were
attempted using synthetic electron density maps truncated at
a resolution of 4 and 5 Å resolution. With the 4 Å data, the
bound-pose was recovered with both the starting structures

after a maximum of 215 ps of MDFF in implicit solvent
(Figure 4 and Table S5). The RMSD values of the refined
models with respect to the crystallographic structures are ∼1.6
Å, starting with models that are deviated from 4HJO by 2.0
and 3.5 Å, respectively. The local cross-correlation of erlotinib
is 0.90, comparable to 0.94 from the crystal structure (Figure
S7A). Similarly, the strain energy of the refined erlotinib pose
is 35.1 kcal/mol, 3.6 kcal/mol more stable than the initial pose,
and comparable to that of 4HJO conformation (Figure S7D).
Thus, the application of NNP enhances the radius of
convergence of MDFF to 3.5 Å, at least 3-fold higher than
the sub-1 Å radius of convergence achieved in QM-MM/
MDFF.
Figure S8 compares the extent of conformational sampling

achieved by the QM/MM-MDFF and NNP-MDFF methods,
starting refinements from the 4HJO crystal structure. The
NNP-MDFF modeled ligand explores 3-fold more conforma-
tional space than those from the QM/MM-MDFF refinements.
The conformations sampled by the NNP method are also
lower in potential energy. Taken together, the higher radius of
convergence observed in the NNP-guided refinements is
attributed to a more exhaustive sampling of the potential
energy surface enabled by these force fields, which cannot be
accessed by the SQM methods. The computational cost of this
model is considerably lower than the QM/MM model. Even
with the rudimentary NNP/MM interface used in the
refinements, the simulations were completed at a rate of 0.5
ns/day using a single Titan Xp GPU, enabling structure
determination with MDFF.
Simulations were also attempted where the resolution of the

synthetic electron density was set to 5 Å instead of 4 Å. These
simulations failed to reproduce the high-resolution crystallo-
graphic binding pose starting from the GLIDE-docked model

Figure 4. NNP-MDFF refinement of the erlotinib-bound EGFR tyrosine kinase domain. (A) Local CC changes of the erlotinib ligand during 215
ps of MDFF with synthetic X-ray density truncated at 4 Å, where the ligand is described using the NNP force field and the protein is described by
CHARMM force fields. Starting with a GLIDE-docked model of the apo-4HJO structure, the CC stabilized around 0.90. (B) Key residues of the
binding pocket from the refined kinase model are labeled, together with ligand-stabilizing side chain contacts. Fitted atomic models of the NAD-
binding pocket at the beginning (C) and end (D) of the MDFF refinement, illustrating that the ligand conformation at t = 215 ps is more
embedded into the density than at t = 0 ps (highlighted by the red circle).
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of the rearranged pocket. At these coarser resolutions, the
electron density associated with the protein backbone and the
ligand becomes more ambiguous. So the simulation begins to
adopt poses where the ligand overlaps with the electron
density that corresponds to the protein. We will overcome this
limitation in the subsequent example.
NNP Refinements Offer Higher-Quality Models than

PM6. MDFF simulations of the first two examples clearly
establish the computational challenges of resolving protein−
ligand interactions from mid- to low-resolution electron
density maps. Based on two separate examples we have
established that the radius of convergence of NNP-driven
refinements is higher than that of PM6/CHARMM-MDFF.
For another comparison between PM6 and NNP inside
MDFF, we perform both the refinements on a third system,
namely the insulin receptor bound to a pyrrolo pyridine
inhibitor (PDB: 3ETA) in explicit solvent. Unlike erlotinib in
4HJO that is charge neutral, this inhibitor ligand in the
reported 3ETA model has a net −1 charge and is composed of
68−52 = 16 more atoms, making the insulin receptor a more
challenging system for ligand refinement with MDFF.
We start with GLIDE docking of the high-resolution apo

model. MDFF simulations were repeated at two different
resolutions: the inherent resolution of the data set (2.6 Å), and
the other truncated to 5 Å. Remarkably, strain energy of the

ligands from the NNP-driven refinements is only 25−50% of
that derived using PM6, both fitted for 60 ps with MDFF
(Figure 5). This decrease in strain energy implies that NNP is
better able to predict stable bound conformations of the ligand
than the SQM methods.57 In these conformations, stronger
protein−ligand interactions can be obtained. For instance,
additional π−π stacking interactions are observed in the NNP
models that were missing from the PM6 description (Figure
5A−B). These interactions are indeed present in the 2.6 Å-
resolved 3ETA model (Figure S3−4HJO).35 In addition,
MolProbity statistics of the NNP results (0.61 overall score,
97% favored Ramachandran and 92% favored rotamer,
presented in Table S6) are an improvement over the QM/
MM results (0.95 overall score, 95% favored Ramachandran
and 93% favored rotamer) and that in the reported X-ray
model of 3ETA (1.34 overall score, 96% favored Ramachan-
dran and 94% favored rotamer). Altogether, the NNP
refinement of the inhibited insulin receptor structure offers
better geometries and lower energies than the PM6 scheme.

Enhanced Sampling with NNPs Vastly Improves
Ligand Predictions at 3−5 Å Resolution. The productive
binding of small molecules to proteins ensues from specific
side chain conformations. Consequently, the binding energy
surface represents a funnel accommodating a large number of
closely lying higher energy states, and a few, often unique,

Figure 5. PM6 vs NNP refinement of pyrrolo pyridine inhibitor-bound insulin receptor. Ligplots of the pyrrolo pyridine inhibitor binding pocket in
the 3ETA complex rerefined at 5 Å resolution using 60 ps of MDFF with PM6 level of theory (A) and NNP force field (B). The π−π protein−
inhibitor interaction captured by the NNP-driven refinements is highlighted in a red block. A similar interaction is present in the 2.9 Å-resolved
structure reported in the PDB (Figure S3−4HJO). (C) Strain energies computed on the structures optimized by NNP (red) are almost half of that
derived by PM6 (blue). These structures are selected from potential energy minima lying along the MDFF refinement path, similar to Figure S1.
(D) Strain energies computed from DFT [SMDwaterM06/6-311+G(d,p)presented in blue] and MM [MMFF94spresented in red] show
commensurate trends.
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lower energy states. Starting from a poorly docked model, one
major limitation of finite-time MD stems from the entrapment
of simulated structures in the higher energy states. This
limitation precludes the sampling of the most relevant binding
poses in MD.56 Despite the ability of NNP force fields in
recovering structures from initial models that are deviated by
3.5 Å (demonstrated for the 4HJO example), such results are
applicable up to 4 Å data. At even lower resolutions, the
assignment of side chains conflicts with those of the ligand
heavy atoms, pushing the ligand into unphysical pockets away
from the primary docking site. Here, we increase the radius of
convergence of MDFF and recover ligand-binding to the
correct site by imposing additional knowledge of the binding
pocket through the CoordNum variable in the COLVAR
module of NAMD.32

First, the 3ETA complex was heated at 800 K for 10 ns in
explicit solvent employing a protocol described in ref 8, and
then the system was cooled back to room temperature in
another 10 ns. This simulated annealing procedure disengaged
the inhibitor and shifted its center of mass by ∼3 Å from the
primary pocket into a distinct coordination environment
(Figures 6 and 7) and with ligand-RMSD of 6.5 Å relative
to the 3ETA conformation. The use of NNP force fields inside
MDFF marginally improved the binding, wherein the
coordination to the correct side chains improved by 20%.
Yet, the aromatic ring of the pyrrolo pyridine ligand was
inversely oriented, reproducing a classic problem of MD
binding aromatic rings in an inverted pose seen in case studies
of benzene binding to lysozyme.58,59

From prior biochemical studies, residue MET 101 was
known to be involved in binding the inhibitor.60 To recover
the correct binding-site during MDFF, we enhanced the
contact between this methionine with the ligand heavy atoms

using the CoordNum COLVAR (see Methods−eq 1). While
performing this step, no specific part of the ligand was over
weighted to define the contact with the particular residue. The
methionine−ligand contact was raised by increments of 10%
on the instantaneous values, while the ligand was simulta-
neously refitted into the 5 Å density for 200 ps. After four such
incremental steps, the ligand coordination number converged.
Remarkably, the inverted orientation of the ligand’s aromatic
ring is corrected over the cumulative time of 4 × 200 ps = 800
ps CoordNum-accelerated MDFFan observation that
normally takes microseconds of conventional MD.59 Following
this convergence, 200 ps more of simple NNP-MDFF was
performed without any further bias from the known contact of
the methionine residue. This simulation recovers the inhibitor-
bound insulin receptor commensurate with the 2.6 Å-resolved
3ETA model. The strain energies rapidly decreased by 10-fold
and the MolProbity score improved from 1.92 to 0.91 across
the refinement (Figure 7 and Table S6).
Surprisingly, the strain energy trend derived using molecular

mechanical force fields (MMFF94S) is comparable to that
derived from higher-level DFT (Figure 5D and Table S7).
Since the MMFF94S computations take only seconds of
compute-time using the Avogadro software,61 we suggest that
qualitative strain energy trends from these MM calculations
can be employed as an efficient measure for probing model
quality. Taken together, with the enhanced sampling of
protein−ligand contacts inside MDFF using NNP force fields,
the correct binding site and pose are resolved at 5 Å refining,
beginning from a completely different binding site and
coordination. Therefore, this procedure increases the radius
of convergence for the determination of the ligand structure to
6.5 Å. Also, the strain energy of the inhibitor derived from
MDFF is lower than that of the 3ETA model. This result

Figure 6. Enhanced NNP-MDFF refinement of pyrrolo pyridine inhibitor-bound insulin receptor. (A) Local CC changes of the pyrrolo pyridine
inhibitor ligand during four iterative 200 ps steps of CoordNum driven NNP-MDFF refinements. In the last 200 ps, forces from the CoordNum
bias are switched off. Starting with a GLIDE-docked structure of the annealed-3ETA model, the CC improved from 0.4 and stabilized around 0.9.
(B) Key residues of the insulin receptor binding pocket from the refined model are labeled, together with ligand-stabilizing side chain contacts.
Fitted atomic models of the binding pocket at the beginning (C) and end (D) of the MDFF with CoordNum refinement, as well as (E) the end of
the last 200 ps with CoordNum switched off, illustrating that the inhibitor conformation at t = 800 ps is more akin to the density than at t = 0 ps.
The convergence of the fitted model is illustrated by minimal changes in the cross-correlation of the inhibitor after 900 ps of MDFF.
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suggests that the NNP force field-derived models guided by
prior biochemical knowledge capture the physics of protein−
ligand interactions better than traditional real-space refinement
or manual methods, even when the fitting is performed into
low-resolution data.

■ DISCUSSION

In this article, we present a hybrid MDFF methodology for the
refinement of protein-embedded ligand structure, geometry
and coordination from electron density of 3−5 Å resolution.
The quality of MDFF results heavily depends on the quality of
the initial docked model, derived here using Schrödinger’s
GLIDE software. Lower-quality docked models offer poorly
refined structures, even with high-resolution density data,
particularly when the ligand is described with an SQM. This
limitation is overcome by employing NNP force fields for the
ligand in concert with traditional CHARMM force fields for
the protein within MDFF. Finally, the use of prior biochemical
information via the CoordNum collective variable enhances
the sampling of the ligand geometry within the solvated
protein environment. The deployment of such enhanced
sampling schemes increases the radius of convergence of ligand
structures to 6.5 Å.
Structures determined using the SQM and NNP models

were validated with DFT calculations of strain potential

energy. Besides having a 6-fold higher radius of convergence
over SQM refinements, NNPs offer higher quality models of
the ligands than PM6. MDFF simulations of the protein-
pocket refined by the NNP/CHARMM interface converge on
improved MolProbity scores relative to the use of PM6/
CHARMM interface for structure determination, starting from
the same initial model. The strain energies of ligands are
systematically lower for the former, suggesting access to
stronger binding interactions. The overall better quality of the
NNP results reflects its very high fidelity to the high-level ab
initio training data over the on-the-fly application of semi-
empirical models.
The entire methodology, including the use of QM/MM,

NNP, and CoordNum collective variables inside MDFF is
scripted within NAMD and can be employed as a single
structure-determination platform. Ligand determination from
low-resolution data will further benefit from the built-in
simulated annealing and resolution-exchange schemes in
MDFF.8 The docking and analysis tools form stand-alone
segments of the pipeline. Surprisingly, the strain energy trends
for monitoring model quality show a remarkable similarity
between MM and DFT methods. In congruence with cross-
correlation measures, MolProbity statistics, and ligand
coordination values, these MM-based energy computations
serve as a list of high-throughput model quality criteria.

Figure 7. Model quality of the insulin receptor. (A) The per-residue cross-correlation coefficient of the insulin receptor binding pocket shows a
significant rearrangement for residues involved in ligand coordination over 900 ps. (B) The CoordNum variable measured for nine structures from
the 900 ps simulation as well as the crystal structure. Over the course of the iterative simulations, the CoordNum variable approximately converged
to the value measured for the crystal structure. (C) Ligplots of pyrrolo pyridine inhibitor and surrounding residues. At 0 ps, the molecular
environment of the pyridine inhibitor is shifted from its original docked position. At 800 ps, the pyridine inhibitor recovers key interactions with the
residues originally strongly interacting in the 3ETA crystal structure, e.g. GLU 69, GLU 87, and ASP 172. The recovery of ligand interactions
follows from the gain in MET 101−inhibitor coordination, which is imposed by using prior biochemical knowledge within the CoordNum
collective variable and NNP-driven MDFF. All the protein−ligand interactions remain stable at 900 ps even after removing the additional
CoordNum constraints. (D) Strain potential energies of the pyridine inhibitor decrease throughout the simulations and converge to a value
commensurate with the crystal structure.
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The NNPs are trained using results from the coupled cluster
level of theory. This training allows the NNP force fields to
mimic a number of ground-state properties of small molecules
that are captured by the high-level QM methods. In contrast to
the higher-level theories, the use of SQM in QM/MM results
in less accurate representation of ligand. Using a higher level of
theory directly in QM/MM is expected to result in a more
accurate description of the ligand. However, the QM/MM
method, which is already slow at the SQM level of theory, will
become even more computationally expensive for the use of
any post-SCF QM method, making it intractable to resolve the
conformationally diverse ligand ensembles. These practical
differences between the NNP and QM approaches make the
former a method of choice within MDFF. Nonetheless, with
high-resolution X-ray data, close to 1 Å resolution, quantum
chemical methods have been employed successfully for
structure refinement.18,27 With further improvements in
resolution, which is definitely forthcoming in cryo-EM,1−4

higher-level QM methods will certainly find more applications
in structural biology.
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