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ABSTRACT

Driving molecular dynamics simulations with data-guided collective variables offer a promising strategy to recover thermodynamic informa-
tion from structure-centric experiments. Here, the three-dimensional electron density of a protein, as it would be determined by cryo-EM or
x-ray crystallography, is used to achieve simultaneously free-energy costs of conformational transitions and refined atomic structures. Unlike
previous density-driven molecular dynamics methodologies that determine only the best map-model fits, our work employs the recently
developed Multi-Map methodology to monitor concerted movements within equilibrium, non-equilibrium, and enhanced sampling simu-
lations. Construction of all-atom ensembles along the chosen values of the Multi-Map variable enables simultaneous estimation of average
properties, as well as real-space refinement of the structures contributing to such averages. Using three proteins of increasing size, we demon-
strate that biased simulation along the reaction coordinates derived from electron densities can capture conformational transitions between
known intermediates. The simulated pathways appear reversible with minimal hysteresis and require only low-resolution density information
to guide the transition. The induced transitions also produce estimates for free energy differences that can be directly compared to experi-
mental observables and population distributions. The refined model quality is superior compared to those found in the Protein Data Bank.
We find that the best quantitative agreement with experimental free-energy differences is obtained using medium resolution density informa-
tion coupled to comparatively large structural transitions. Practical considerations for probing the transitions between multiple intermediate
density states are also discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0022433

I. INTRODUCTION

Single-particle cryo-electron microscopy (cryo-EM) has evolved
into one of the most effective structure determination tools in
modern-day structural biology. Following advances in electron
detector technology,’ and cold field-emission electron gun sources
and energy filters,” cryo-EM has achieved resolutions rivaling those
of x-ray crystallography or nuclear magnetic resonance (NMR) spec-
troscopy,” often providing novel structures or conformations.”
However, static x-ray or cryo-EM structures alone offer limited

information on the function of biomolecules. The determination of
conformational trajectories remains a key stumbling block toward
associating structure and function. These trajectories are expected to
deliver substantial information beyond static structures, revealing,
for example, the propagation of allosteric signals in complex biolog-
ical molecules’ and important clues to the conformational diversity
of sites associated with diseases.””

Traditionally, molecular trajectories are derived using molec-
ular dynamics (MD) simulations either by imposing classical
assumptions via all-atom and coarse-grained force fields'”"" or by
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introducing ab initio methodologies coupled with the classical par-
ticles via extended Lagrangian schemes.'”* However, it is now well
established that biologically relevant conformational transitions and
timescales remain inaccessible to brute force MD. This drawback
of traditional MD has motivated the inception and application of
a range of alchemical ”'® and geometric methods'’*’ for enhanced
sampling of molecular movements.

Experimental methods have also moved beyond calorimet-
ric measures to capture the thermodynamic manifestations of
structural ensembles and molecular trajectories. Single-molecule
measurements routinely derive free energy profiles and rates as a
function of simple distance or angular metrics,”"*” though their spa-
tial resolution is limited. Highly resolved molecular ensembles are
determined from NMR and EPR experiments,””” but such data
are limited in size compared to MD and typically miss fast kinetic
information. Addressing the need to construct free energy surfaces
directly from experiments while simultaneously recovering the con-
formational changes, geometric machine learning methodologies
are employed to hierarchically cluster millions of two-dimensional
single-particle images onto a low-dimensional manifold using dif-
fusion maps.”® The population of points on this manifold is cor-
related with free energy changes between 10 and 100 molecular
conformations by a Boltzmann factor.”’ Such an examination of the
conformational trajectories (the so-called “molecular movies”) from
the cryo-EM data offers arguably the first experimentally verifiable
and structurally resolved view of an entire free energy landscape,
including both the intermediates and rare conformations. There-
fore, going beyond the visualization of realistic stationary struc-
tures, incorporating these energy-ranked cryo-EM ensembles in MD
can accelerate the potential of mean force (PMF) estimation from
simulations.

Integration of cryo-EM data, and more generally, experimental
data with MD, has followed from the development of two families
of methods, namely, flexible fitting’’' and Bayesian inferencing.’
While the former serves as a real space refinement tool available in
almost all the structure determination software,””" the latter has
been successful in either folding small proteins (<115 residues)’”
or seeking small-scale structural changes of subdomains [<5 A
of root mean square deviation (RMSD)] and free energy changes
within larger cryo-EM density segments.”” The combination of flex-
ible fitting and Bayesian inferencing’® overcomes this system-size
restriction on protein folding and captures extremely large-scale
conformational transitions from cryo-EM data of heterogeneous
complexes. Nevertheless, extracting the free energy from these inte-
grative simulations is non-trivial. A reduced representation based on
collective variables would lend itself to the computation of PMFs to
be compared with experiments.

As a step toward facilitating data-guided free energy estima-
tions, we propose here to use directly the 3D electron density fields
to define plausible reaction coordinates. To this end, we employ
the recently introduced Multi-Map method,”” which uses volumet-
ric maps to measure and simulate changes in shape for molecular
aggregates. This is achieved by quantifying the similarity between
the instantaneous molecular configuration and each of the target
volumetric maps. The Multi-Map method has so far been success-
ful at computing the thermodynamic cost of wetting/dewetting in
hydrophobic cavities,” as well as membrane deformations that are
spontaneous’’ or protein-induced.” Tt is thus tempting to use this
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method to simulate changes in the internal structure of biological
macromolecules.

Here, we demonstrate that the use of volumetric maps rep-
resenting cryo-EM densities resolved between 1 A and 9 A allows
modeling of large-scale transformations in the protein structure.
Biased sampling along Multi-Map variables constructed from this
density induces the protein to alter its shape reversibly in the man-
ner prescribed by the series of electron densities, and the corre-
sponding PMF is derived from the simulated trajectory. Typically,
high-quality atomistic structures for each of the relevant states are
required to simulate a molecule’s transformation and extract the
associated PMF. However, formulating the free energy problem in
terms of the density itself enables structural ensemble determina-
tion by biasing any starting model to a given state defined by a
density map. By varying the maps’ resolution between the atomic
and molecular scale, we allow simultaneous real-space refinement
of the data and biased sampling of the conformations. Thus, start-
ing with only one high-quality atomistic structure defining one end
state in a series of maps, low-resolution EM maps corresponding
to the adjacent states can be sampled producing refined atomistic
models for all the states. Due to such built-in refinement capability,
free energy surfaces can be obtained even from Multi-Map variables
based on low-resolution maps, with accuracy consistent with those
from high-resolution structures and maps.

In what follows, the conformational dynamics of three protein
molecules are investigated: apo and APsA-bound adenylate kinase
(ADK), carbon monoxide dehydrogenase (CODH), and Francisella
lipoprotein3 (FLPP3). To allow comparisons between the three, the
synthetic density maps of equal resolutions were generated and
used to construct a Multi-Map collective variable for each pro-
tein (Sec. II B). The proteins are then simulated with equilibrium
MD (Sec. III A), non-equilibrium MD (Sec. III B), and enhanced
sampling simulations (Sec. III C).

An analysis of the non-equilibrium work associated with these
conformations offers a theoretical framework to determine the
“resolvability” of a map.” Employing two maps for each protein, we
demonstrate that a two-state Multi-Map variable is able to monitor
open and closed protein conformations in equilibrium and during
slow conformational transitions, and how the accuracy of the free
energy estimates changes with the density map resolution. Finally,
the effect of solvation environments on the PMF is discussed, and
limitations in capturing nominal structural changes, such as single
sidechain rearrangements, are brought to light.

Il. METHODS

To quantitatively compare between the three proteins studied
and explore the role of density map resolution, we generated syn-
thetic maps from atomic models with multiple states deposited in the
Protein Data Bank (PDB). These maps were then used to construct
a Multi-Map variable”” for enhanced sampling. The conformational
dynamics of A — B and the reverse B — A transition were mon-
itored using the Multi-Map variable itself, the Euclidean distance
between states as measured by root mean square deviation (RMSD),
sidechain contacts, and cross-correlation (CC) to the target densi-
ties. In addition to varying the system-sizes and environmental con-
ditions, we compared the results obtained from maps generated at
five different resolutions (1 A,3 A,5 4,7 A,and 9 A).
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A. Molecular dynamics simulations

Modeling and system setup utilized the molecular visualization
program VMD," leveraging the solvate and autoionize plugins to
generate a water box and NaCl neutralizing counterions for each
protein system. The dimensions of the water box were chosen such
that there was at least 20 A of padding around the protein. All simu-
lations described in this study share standard simulation parameters,
consistent with the CHARMM36m and TIP3P force fields used to
describe the protein, ions, and water. 142 These explicit solvent sim-
ulations were run with 2 fs time steps enabled by restraining bond
lengths to hydrogen atoms via the SETTLE algorithm™ and a 12
A cutoff, which is switched at 10 A. Temperature for all simula-
tions was maintained by a Langevin thermostat set to 300 K, and
pressure was maintained by a Langevin barostat set to 1 atm."*"’
Long-range electrostatics were calculated using particle mesh Ewald
with a 1 A grid spacing.”” All MD simulations in this study were
carried out with the molecular dynamics engine NAMD 2.14b1,"
which was the first version to support grid-based collective variables.
The parameters for the explicit solvent simulations are outlined in
Table S1. Simulation lengths and replica number are tabulated in
Table S2.

B. Construction of the Multi-Map collective variable

The recently developed Multi-Map variable’” is briefly summa-
rized here. Given the Cartesian coordinates of N atoms of interest,
indicatedasR=r1, 12, ..., ey withr = (x, y,z) and ¢4 (k=1 ... K),
a set of volumetric maps, the general form of a Multi-Map variable

(is
K N K
((R) = Y& > wigi(ri) = D" &Di(R), 1)
i1

where w; is the statistical weight assigned to the ith atom and & rep-
resents the contribution of the atomic configuration R to the state @y
along a K point-long pathway.”” The physical nature of this pathway
is thus determined, aside from the assigned statistical weights, by the
choice of the maps themselves.

In the following, we assume each map ¢ (r) to represent the
electron density of a protein, as it would be determined from a cryo-
EM or crystallography experiment. For each 3D electron density,
the value of the corresponding map ¢, (r) varies between a maxi-
mum value ¢qx and a threshold value ¢y, as done in the traditional
implementation of the molecular dynamics flexible fitting (MDEFF)
method.”® The use of ¢y, is dictated by the use of an experimen-
tally measured map, and the choice of its value is simplified by the
analysis of the cryo-EM density histogram with the MDFF plugin
in VMD."""*"" Generally, cryo-EM maps will display a large density
peak corresponding to the solvent; a threshold value at or above the
solvent peak should be chosen to yield a flat potential in the solvent
regions (see the work of Wells et al. for a detailed discussion).”

To confine sampling to the transition between two states
defined by cryo-EM maps, we start with two maps (¢4 and ¢p) and
we choose the coefficients £4 = —1 and &g = +1. With this choice,
the Multi-Map collective variable (or colvar for short) in Eq. (1) is a
two-state variable,

(aB(R) = ©p(R) — D4 (R), (2)
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where ®(R) = Y ;wi¢(r;) measures the fitness of the atomic config-
uration R against the three-dimensional map ¢(r). The two-state
colvar {43 lies on a range between a minimum negative and max-
imum positive value, which corresponds to perfect fits to maps A
and B, respectively. The range of (4p is estimated a priori using
the formulation described in Appendix A. Since this range can vary
depending on the specifics of the system and the map resolution,
during analysis, we frequently re-normalize this range into a reac-
tion progress coordinate (changing between —1 and +1) from states
A —B.

Figure 1 illustrates how the Multi-Map variable { is constructed
to link the density maps of multiple protein states to conformational
transitions, with the specific setup provided in Appendix B. The use
of a two-state variable {45 thus defined also draws upon the for-
malism of other two-state paradigms, such as two-state RMSDs and
anisotropic networks,”””* where the two endpoints are known, and
the transition between them is simultaneously monitored from both
the pathway termini. In analogy, when (4 is at its minimum, R is
fitted to cryo-EM map A, while when {43 is at its maximum, the
structure, R, is fitted to cryo-EM map B (Fig. 1). {ap values near 0
represent protein configurations neither in state A nor in state B.
The conformational space near 0 is vast, necessitating a thorough
sampling of the associated cartesian space to determine any statisti-
cal average. However, the advantage of the two-state {4p sampling
protocol is that its gradient is steepest along the most direct path
between states A and B. The number of these reactive conformations
is much smaller than those needed to be monitored in a protocol
using as a variable either ®4-only or ®p-only, where a productive

1000

¢(R)
o

Cryo-EM Cryo-EM

Map State A Map State B
-250
-500
<I)A
750 —_— Oy
1000 - CAB
- 0.0 25 5.0 7.5 100 125 150 175 200

Time (ns)

FIG. 1. lllustration of three possible choices of Multi-Map reaction coordinates cap-
turing the closed to open transition of ADK, where @4 and ®g describes structures
similarity to cryo-EM states A and B, respectively (K = [A] and &4 = 1 in Eq. (1)
for state A and K = [B] and &g = 1 for state B). The variable {45 [Eq. (2)] has a
negative value for structures similar to state A and a positive value for those like
state B. The bottom of the plot shows snapshots of ADK transitioning from state
A to B color-coded by the value of the {45 collective variable. The arrow indicates
the direction of motion the LID domain of ADK takes during the transition. Surface
representations for cryo-EM maps corresponding to states A and B of ADK (PDB
IDs 1AKE?” and 4AKE,” respectively).
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exit from A does not guarantee entry in B, and therefore, the system
would need to sample an intractably larger phase space to obtain a
free energy estimate.

Generalization of the two-state colvar for incorporating more
than two cryo-EM maps could benefit from the existing computa-
tional methodologies to analyze density maps. If the sequence of
events captured by the K maps is predetermined, e.g., by machine
learning,” the overall conformational transition can be captured
simply by concatenating the two-state transformations along the
pathway.”” If the sequence of events is unknown, then combinations
of these two state transitions will have to be repeated following dif-
ferent orders of the events until the lowest energy or work pathway
is determined for subsequent refinement.”

C. System preparation

Synthetic density maps were constructed for the demonstra-
tion of the Multi-Map colvar. The structures representing states A
and B for each system are shown in Fig. 2 and were the density
targets used to drive transitions between states. First, molecular sys-
tems were chosen based on having multiple conformational states
for a single structure in the Protein Data Bank.” The proteins used
in this study and their corresponding PDBIDs are shown in Fig. 2.
These systems were translated into simulatable models through psf-
gen using the CHARMM36m protein force field"' and the compati-
ble TIP3P water model.”” Second, a map corresponding to a specific
state was generated using the mdff sim command, which is part of
the MDFF Plugin within VMD."’ Five maps in total were generated
for each state at varying resolutions from 1 A to 9 A increasing by
2 A. These density maps can be used directly without inversion to
a grid potential; unlike MDFF, where density maps need to be con-
verted to grid-potentials to be incorporated as an energy term."* The
atoms selected to be coupled to the cryo-EM map depend on the
map resolution. As a rule of thumb, based on ab initio electron den-
sity map refinements, "’ data with resolutions between 4 A and 8 A
are fitted to backbone atoms, while resolutions higher than 4 A are
fitted to all protein atoms except hydrogen. Taking into account that
we are using simulated maps, we compared the experimental 2F.-F,
map of ADK’s closed state (PDBID 1AKE) to simulated maps at 3 A,

Carbon monoxide

Adenylate kinase dehydrogenase

RMSD: 7.12 A

RMSD: 7.19 A

ADK
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5 A, 7 A, and 9 A. The correlation coefficient ranged from 0.89
to 0.71, indicating that dynamics derived from the simulated and
experimental maps would be similar.

Analogous to MDFF, biasing with the Multi-Map colvars
requires secondary structure constraints utilizing the extraBonds
feature in NAMD." These constraints, which retain secondary
structure folds, prevent the overfitting of the models to the maps.
Additional positional and orientational constraints are used to con-
fine the sampling in regions between adjacent cryo-EM maps, as
discussed in Subsection II E.

D. Unbiased equilibrium simulation

In order to evaluate the propagation of the Multi-Map col-
lective variable over time when not restrained, 100 ns of constant
temperature and pressure sampling was performed for each of the
six initial states used in the steered molecular dynamics (SMD) sim-
ulations, following the simulation parameters described above and
in Table S1. These trajectories were analyzed with python scripts
leveraging the python interface in VMD." Due to the state drift as
the simulations progressed, these analyses were carried out over the
trajectory frames from 10 ns to 20 ns of simulation.

E. Steered molecular dynamics (SMD)

The formulation above lays the groundwork for using the
Multi-Map colvar to define a structure’s similarity to states defined
by cryo-EM maps. Besides monitoring the configurational state of a
protein, the Multi-Map colvar can be used to steer a protein configu-
ration to a target map, ¢. By employing a moving harmonic restraint,
we can derive an initial pathway between states using atomic forces
derived from the following equation:

Unis(R) = SA(E(R) - &)* 0

Here, A is the force constant and (j is the Multi-Map colvar target
value, which changes uniformly over the course of the simulation.
The force constant is chosen according to the range of colvar values
required for describing a transition (Table S4). The total simulation
time for the SMD simulations presented here was 20 ns, and the

Francisella

Lipoprotein FIG. 2. The graphical overlay of states A

and B for three two-state protein systems
used to study the Multi-Map collective
variable. Adenylate kinase (ADK) states
are defined by the open (A) PDBID
4AKE®® and closed (B), PDBID 1AKE®’
states. The carbon monoxide dehydro-
genase (CODH) A and B states are
taken from chains D and C of the PDBID
10A0% structure. The FLPP3 A and B
states are drawn from the crystal struc-
ture PDBID 6PNY* and the NMR struc-
ture PDBID 2MU4,% respectively. The
flipped tyrosine residue, Tyr83, is high-
lighted within the FLPP3 structure.

RMSD: 3.72 A

FLPP3
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pulling rates, as measured by center of mass movement, ranged from
0.5 Ans™' to 1.5 Ans™". Expanding the harmonic and calculating the
atomistic forces derived from Uy, one sees that the force coming
from the first term is proportional to d¢/dr;. Similar to MDFF," this
term localizes atoms onto the density surface. The second term, pro-
portional to d(¢(R)¢o(Ro))/dri, is akin to taking the derivative of a
correlation and acts to drive R — Ry, effectively steering the atomic
structures toward the target density ¢o.

The quantity and quality of cryo-EM data are typically insuffi-
cient to refine atomic models with a high degree of accuracy using
(B as the only input. We supplement the energy function U, with
additional terms used in conventional molecular dynamics, Uy, the
CHARMM all-atom additive potential, as well as additional con-
straining terms to confine sampling to realistic configurations. The
following equation thus governs the simulation dynamics:

Utotal(R) = Uff(R) + Ubias(R) + Upo:—ori(R) + USS(R)~ (4)

Here, Uss represent secondary structure restraints defined using the
extraBonds feature of NAMD"” and Upos-ori include center-of-mass
and orientational restraints provided by the Colvars module” to
prevent protein diffusion. Uss maintain the set of secondary struc-
ture folds the systems start with and are typical for MDFF structure
refinement.”’ The Ugs constraint could be omitted when folding
from a random coil based on cryo-EM map data;”' however, the pro-
tein folding problem remains challenging in MD for proteins larger
than 115 residues.”” Thus, we start with a model that has commen-
surate folds to the target states. The term Upos_ori ensures that the
system does not translate or rotate relative to the cryo-EM maps
when biasing {4p near 0. Such treatment reduces the orthogonal
degrees of freedom that do not contribute meaningfully to the tran-
sition pathway and is commonly seen in free energy perturbation
simulations.”” The positional and orientational constraints ensure
that structures derived along the pathway are relevant to the states
defined by the cryo-EM maps.

F. Bias exchange umbrella sampling

Enhanced sampling methods are used to calculate the free
energy change between two states in molecular simulations. Some
of the well-established methods are umbrella sampling (US),"” adap-
tive biasing force (ABF) method,”’ and metadynamics.”* We use an
exchanging US algorithm to reconstruct the PMF along the reaction
coordinate path sampled using SMD. Here, we briefly describe the
method and application to the recently introduced system-specific
reaction coordinate, cryo-EM map density collective variable, {(R).
For biomolecular systems with large degrees of freedom, the sam-
pling efficiency of US is significantly improved when combined
with a replica-exchange scheme, hence the term bias-exchange (or
replica-exchange) umbrella sampling.””*° In replica-exchange MD
or bias exchange umbrella sampling (BEUS), each replica (or win-
dow) is assigned a different value of a given property for the sys-
tem. Periodic attempts are made to exchange between replicas using
a rule defined by the Metropolis criteria. The exchange rule is set
based on biasing potentials, attempting a swap every 500 steps (or
0.5 ps) over a range of 126 windows. The mixing of replicas in BEUS,
ensures continuous sampling for protein conformations between
each replica, generating a more reliable free energy profile for the
process. To remove any unphysical bias toward a particular state,
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50% of the windows, i.e., 63 of them were initialized with models
picked from the A — B SMD, evenly interspersed with initial mod-
els for the other 63 windows chosen from steering along the B — A
direction. Further details on BEUS and applications to different
biomolecular systems are discussed elsewhere.”*""’

G. Calculating potentials of mean force

There are various methods of assessing the potential of mean
force. For the steered molecular dynamics trajectories, the non-
equilibrium work is computed internally by the Colvars mod-
ule.”’ The non-equilibrium work permits an initial free energy esti-
mate based on the second law of thermodynamics, which has as
a consequence that the work for a non-equilibrium process W is
bounded from below by the overall free energy difference, W > AFE,®
although the short simulations typically substantially overestimate
the difference. From the bias exchange umbrella sampling simu-
lations, we estimate the free energy profiles and their uncertain-
ties along the defined reaction coordinate using a modified version
of BayesWHAM.” The implementation has been accelerated by
using Habeck’s Gibbs sampling method”” rather than Metropolis-
Hastings sampling as originally implemented.”” As an additional
check, multistate Bennett’s acceptance ratio calculations,”" as imple-
mented in pyMBAR, are used to verify our methodology. Uncer-
tainty estimates are obtained by trajectory subsampling to compute
the variation in the computed free energies, which is used to assess
convergence.

lll. RESULTS AND DISCUSSION

The changes in the Multi-Map colvar were monitored dur-
ing equilibrium, non-equilibrium, and free energy simulations. We
focus on how these colvars track global and local conformational
rearrangements. The results bring to light the pros and cons of
applying this reduced representation over traditional geometric col-
lective variables emerging from a linear combination of atomic
coordinates.

A. Multi-Map colvars describe large-scale structural
transitions at >5 A density resolution

First, we seek to determine whether the colvar can distinguish
between states A and B based exclusively on the (4p value com-
puted from Eq. (2). Figure 3(a) shows histograms of the {4p colvar
distribution during an explicit solvent equilibrium simulation. At
resolutions of 3 A-9 A, we find that the conformations initiated
at state A retain the negative values they start with, and similarly,
configurations that start in the state B sample around the positive
values for the {4p coordinate. The initial values of the {45 colvar
for simulations starting in either state A or B reflect a perfect fit to
the data by construction and are near unity in the scaled {45 space.
These are the minimum and maximum values the {45 colvar can
assume. For the colvars derived from high-resolution density maps,
the equilibrium conformations rapidly drift away from these limit-
ing (ap values; the explicit values of {4p are presented in Fig. S2.
The {4p relaxes to distributions with a near-zero mean, implying
minimal separation between the states and is shown clearly through
a map correlation coefficient becoming equivalent (Figs. S5-S7).
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This trend of {4 approaching 0 observed with all high-resolution
maps also suggests the need for sampling an intractably high num-
ber of conformations for estimating averages, irrespective of the
system-size. In contrast, the degeneracy in conformations under-
lying the endpoint {43 values is higher for the colvars derived
at a lower resolution. This is reflected in the broader distribu-
tion of low-resolution {4p values, peaked about non-zero means
(Fig. 3).

At any given resolution, the range of {4p values visited is the
highest for CODH, followed by ADK and then FLPP3. These val-
ues follow a trend guided by the number of atoms in these systems,
where the range increases with increasing system size (Table S4).
The separation between {4p(Ra) and {4p(Rp) is, therefore, most
prominent in CODH and least in FLPP3. Conversely, for any sys-
tem size, the scaled {4p peak separation increases and finally plateaus
with lower map resolution [Fig. 3(b)]. Fuzzier density features for
the maps of lower resolution have reduced values of ¢ for any r;,
resulting in lower values of the {4p summation in Eq. (2). Despite
this lower range of (g values, the separation of states improves
dramatically at lower resolutions (Fig. 3).

For resolutions of 5 A or lower, the colvar tracks distinct large-
scale conformational changes, clearly representing the open and
close states in ADK and CODH [Fig. 3(a)]. At these resolutions, the
separation between states on the (4p profile is roughly equivalent
to or higher than the corresponding RMSD 43 scaled peak separa-
tion [Fig. 3(b) and Fig. S4 and Sec. S1]. This finding suggests that
the path length in the {-space is longer than or equivalent to the
path created in the space of geometric collective variables (Fig. S3).
The longer path length in the { can accommodate more bins to sep-
arate the meta-stable states between endpoints. A more important
benefit of { over the traditional geometric collective variables is that
knowledge of the endpoint structures is not required. Unlike geo-
metric collective variables (such as RMSDp) where atomic models
or structures need to be fit to each of the K maps to define a path-
way, the definition of { requires only the knowledge of one endpoint
(Appendix A). This formulation precludes the need for a priori real
space refinements, although the resolution needs to be accounted for
(Sec. S3).

Molecular rearrangements for both ADK and CODH require
large domain movements and have significantly larger RMSDs when
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compared to FLPP3 (Fig. 2). In contrast, FLPP3 conformational
transition involves breaking an interior hydrogen bond made by
Tyr83 and the tyrosine residue’s movement to an outward-facing
conformation. The subtle rearrangements involved in the Tyr83
flip are only distinguishable with high-resolution maps (i.e, 1 A
and 3 A). The lower resolution maps, and therefore the {45 colvar,
cannot distinguish between FLPP3 configurations in state A or
B. At low-resolution, the cryo-EM maps for FLPP3 states A and
B are highly similar with a correlation coefficient of 0.85, 0.92,
and 0.95 for map resolutions 5 A, 7 A, and 9 A, respectively
(Figs. S2-S7).

Altogether, the {4p colvar has two requirements to be able to
discern protein configurations into individual states. First, the tran-
sition between states needs to be large enough to distinguish between
cryo-EM maps at nominal resolutions. Second, the cryo-EM map
needs to be at a low enough resolution to incorporate an ensemble
of structures undergoing thermal motion into a single state defined
by the map. This first requirement is system dependent. The sec-
ond requirement can be met by low-pass filtering of high-resolution
cryo-EM maps using VMD’s voltools plugin if required.”’ The blur-
ring adds Gaussian halfwidths ¢ to the maps and enables the maps
to account for more structures in their state definitions and thus
a colvar, which is better able to distinguish between the structural
ensembles from states A and B.

Cas

RMSD4g
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B. Steering MD along low-resolution Multi-Map
variables produces complete transitions

Trial pathways for probing large-scale conformational tran-
sitions are often generated using external forces via steered MD
(SMD) simulations.”””’ Starting from state A or B for each of the
three proteins, SMD was used to drive the transition to the other
endpoint using the Multi-Map colvar defined at density map res-
olutions between 1 A and 9 A. The transitions were monitored as
a function of transition progress using (ap (Fig. S8), as well as by
changes in RMSD (Figs. S9 and S10), and density map correla-
tion coefficients (Figs. S12 and S11) relative to both the initial and
final states. Regardless of the preferred metric, the steered trajecto-
ries consistently demonstrate that our enforced Multi-Map biases
allow the initial state to approach the final state. At resolutions
5 A or lower, the colvar traces for the forward and reverse paths
derived from two independent simulations, considerably overlap. By
comparing the pathways via RMSD calculations of the A — B and
B — A trajectories for three independent SMD protocols with {45,
RMSDysp, and LID-CORE distance harmonic potentials, we find that
{ap steering has marginally lower hysteresis than RMSDyp steer-
ing, particularly at the endpoints, which is significantly lower than
center of mass distance steering (Fig. 4). Taken together, SMD with
the {4p variable is found to achieve reproducible non-equilibrium

Lid-Core Distance

—— Mean
4.5+ o

4.0

Stafe A

Sta'te B Stai:e A

Stafe B Stai:e A Stafe B

FIG. 4. Hysteresis observed in pathways described by 20 ns explicit solvent SMD simulations of the Multi-Map (left), RMSD4g (center), and LID-CORE distance (right)
variables. The distance between the center of mass of the LID (residues 1-29, 68-117, and 161-214) and CORE (residues 118-167) domains in ADK is defined as the LID-
CORE distance. Hysteresis at any point along the conformational variable is indicated by deviations in the structures sampled in the forward and backward SMD trajectories
visiting that point, which we measure using RMSD. SMD trajectories along the A — B trajectory were aligned to those from the B — A such trajectory by reversing the order
of their snapshots, and overlaying the first frame of the A — B trajectory to the last frame of the trajectory from B — A trajectory. Five A to B and five B to A trajectories were
used in total giving 25 RMSD calculations per frame. The shaded region represents 1 standard deviation from the mean RMSD value for that frame. Plotted is the moving
average over 4000 frames with a window size of 100 frames. While the short timescale simulations do not capture microscopic reversibility, hysteresis is the least at the
endpoints and magnifies in the middle of the trajectories. {4p offers the lowest irreversibility within the simulated forward and backward trajectories. For simulation lengths

and system size information, see Table S2.
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pathways even within the short simulation times used (20 ns each
direction).

At high-resolution (1 A and 3 A), ADK and FLPP3 are driven
through transitions that appear to be complete along the correlation
coefficient dimension but struggle to reach the extreme {4p values
that are expected for state A or B (Fig. S12). Incomplete transitions
are in large part due to the well-defined local density features. At
high-resolutions, 1 A and 3 A, the density features are quite nar-
row and include sidechain conformations. Thermal motion prevents
simulated systems from perfectly fitting to the maps, similar to the
fast correlation decay observed in equilibrium simulation (Figs. S5
and S6). Thus, for the high-resolution maps, the collective variable
cannot find configurations that perfectly fit the maps and complete
the transition in {ap space, even though other collective variable
metrics such as RMSD (Fig. S9) or density correlation coefficient
(Fig. S11) indicate that the transition has completed.

Low-resolution maps are also not without their issues within
a steered simulation context. As visualized in Fig. 2 and noted in
discussions of prior simulations,”* the transition in FLPP3 depends
on the rotation of Tyr83 from packing in the interior to becoming
solvent-exposed. This relatively subtle shift is difficult to capture in
the context of low-resolution electron densities, unlike the much
larger conformational changes for ADK and CODH (Fig. 2). For
low-resolution maps, similar states have largely overlapping electron
densities, resulting in comparatively few density differences that the
Multi-Map collective variable can exploit to drive a conformational
change. This is particularly clear in the variation of abscissa ranges
in Fig. S12, where {4 varies less for FLPP3 along the transition than
it does for the other systems tested. In summary, the small structural
change for FLPP3 complicates transitions driven by low-resolution
structural data, while the narrow densities for high-resolution data
complicate the search process for poses that do not already fit the
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imposed density well. Nonetheless, with density data at 5 A or lower
resolution, large-scale conformational transitions on the order of
7 A change in RMSD are captured with minimal hysteresis between
the forward and reverse pathways.

The “resolvability”” of a map can be inferred from the mag-
nitude of non-equilibrium work needed to fit that map. While the
lower resolution maps require less work to fit a broad set of correct
models into the map, higher resolution maps require more work to
fit the correct model (Fig. S14), as the number of such models non-
linearly decreases with an increase in resolution.”” The work needed
for fitting higher resolution maps further increases with system-size
from FLPP3 to ADK to CODH. Establishing a common theoretical
underpinning for why real-space refinement becomes more cumber-
some for high-resolution maps.”® The non-equilibrium work of the
Multi-Map colvar explains several refinement challenges faced by
MDFF, ROSETTA-EM, or other density-guided MD protocols when
the low-resolution EM refinement tools were originally re-purposed
to resolve high-resolution density maps.””” A large amount of work
is needed to bring structures into density features when maps A and
B are non-overlapping. This scenario is prominent with sub-3 A
density maps wherein negative work accumulates as the structure
initially relaxes and deviates from the small set of correct models
defined by the high-resolution density map of the initial state. As the
system approaches the final state, a large amount of positive work
is needed to make up for the significant loss of entropy at the end
state. Such physical limitations have proved detrimental in extend-
ing straight-forward MD refinements of maps between 3 A and 5 A
resolution.”® At lower resolution, when the overlap between maps A
and B improves, less work is needed, and most of the MD is produc-
tive in fitting the model to the map. Furthermore, once the transition
has completed we find that the structural statistics, as measured by
MolProbity,”” improve over the scores calculated from the deposited
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== CODH
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PDB structures except for the case of the FLPP3 structure, 6PNY
(Fig. 5), which had incomplete transitions in the steered molecular
dynamics simulations (Fig. S12). The refinement of structures is seen
in their growth of correlation coefficients during the SMD (Figs. S12
and S13) and improved overall MolProbity scores for the associated
structures, even when re-evaluated against deposited data from the
PDB (Fig. 5).

C. Free energy profiles with Multi-Map variables
resolve large-scale conformational transitions

We test how a reaction coordinate defined by the difference
between the two maps estimates the relative free energy differences
between the two end states. To this end, we implement the BEUS
protocols to derive free energy differences along the {4p profile for
the three examples. The windows are linearly distributed along {4
pathways of minimal hysteresis derived from Fig. S12.

1. ADK open-to-close transition

To examine the relationship between free energy differences
and map resolution, BEUS was performed with {43 at five different
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map resolutions for ADK [see Figs. 6(a) and 6(b)]. At the highest
resolutions (1 A and 3 A), the endpoints are thermodynamically
inaccessible, consistent with the fact that only a handful of confor-
mations can fit the distinct features of the high-resolution density
maps. Thus, there is a frustration that entropically boosts free energy
at extreme (4p values. These artificially sharp features on the energy
landscape subside at the lower resolutions (>5 A), wherein the states
close to the endpoints A and B (indicated by —1 and +1 values along
the conformational coordinate), become more thermodynamically
accessible. Furthermore, there is disagreement in free energy profiles
between the high and low-resolution maps. While these differences
are drastic for the 1 A and 3 A maps compared to the lower reso-
lution maps, the 5 A-9 A maps are in agreement both in terms of
endpoint free energy values and their differences between the local
minima.

Free energy profiles of both ADK systems have been obtained
in previous computational studies using geometric collective vari-
ables, such as RMSD, and the angle between domains and dis-
tance between the center of mass of one domain to that of
another domain.””*” Free energy estimates have also been derived
from single-molecule Forster resonance energy transfer (FRET)

B ADK+AP;A PMF
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FIG. 6. Free energy profiles for ADK without (a) and with (b) the APsA ligand, FLPP3 (c) and CODH (d), obtained from explicit solvent bias exchange umbrella sampling
simulations using the Multi-Map reaction coordinate across resolutions 1 A, 3A, 5A, 7 A, and 9 A. The abscissa has been scaled so that the reaction coordinate ranges are
commensurate across different resolutions. Error estimates obtained by the spread of 5 ns trajectory subsamples are represented by the shaded regions around each free
energy estimate. For convergence estimates based on subsamples, see Figs. S16-S30. For simulation lengths and replica information, see Table S2.
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spectroscopy and NMR studies.””** Despite significant discrep-
ancies in the magnitude of free energy estimates present in the
literature, a clear trend is observed across all studies. The closed
state of apo-ADK (denoted as state B here) is less favorable than
the open state (A); this trend reverses for holo-ADK.” ** The free
energy profiles for both apo and holo (APsA inhibited) ADK pre-
sented in Figs. 6(a) and 6(b) reproduce the expected trends, but now
through the refinement of only low-resolution density information
as a guide for defining a suitable collective variable, rather than geo-
metric collective variables defined using expensive high-resolution
molecular structures.

Using the density maps of resolution 5 A or lower, apo-ADK’s
free energy difference between states is ~10 kcal/mol, which is com-
parable to the values found in previous computational studies.””*""
In contrast, the holo-ADK shifts the population toward the closed
conformation (state B), with both the open and closed states hav-
ing approximately equivalent free energy. For map resolutions lower
than 5 A, the APsA binding changes the well depths for both states
to be within 2 kcal/mol of one another. A result is in close agree-
ment with experimentally observed small-molecule FRET and NMR
population distributions (see Table $3).”*** The 5 A and 7 A maps
for holo-ADK converge at free energy differences between basins of
~—1kcal/mol and 0 kcal/mol, respectively, which is in the vicinity of
experimental estimates of —1 kcal/mol and —0.5 kcal/mol.

Our results enhance other computational studies in terms of
the magnitude of the free energy differences found (see Table S3)
and the abundance of minima observed. Previous computations did
not identify a local minimum for the closed state of apo-ADK.*""
The most analogous of these studies used RMSD4p as the bias-
ing variable” and was able to obtain single minima for the open
state but had unrealistically high free energy values as this vari-
able constrained the protein conformation to a small number of
structures with very low RMSD values to the closed state. In addi-
tion, we found the RMSD4p variable to have considerable hysteresis
at the endpoints (Fig. 4). In contrast, as the Multi-Map variable
approaches values corresponding to the closed state, low-resolution
maps provide a constraint that encompasses a greater number of
similar structures isolating a plausible thermodynamic state consis-
tent with the experimentally observed maps. This distribution of free
energy implies that induced fit (and not conformational selection)
is at work to enable APsA binding to ADK, a result that matches
kinetic assays and NMR results."”” Put together, the free energy
profiles obtained though the two state Multi-Map method are able
to distinguish between apo and holo ADK and produce biophysically
relevant information about the systems.

2. Sidechain flip in FLPP3

To elucidate the limitation of the Multi-Map colvar, we present
the free energy profile for Tyr83 flip and the associated pocket
opening in FLPP3 [Fig. 6(c)]. We have recently isolated the open,
close (states A and B, respectively) and occluded conformations of
FLPP3 using serial femtosecond crystallography (SFX) and NMR
spectroscopy.” " Umbrella sampling simulations enabled the hier-
archization of these conformations in terms of distinct Tyr83 ori-
entations,”* whereby the open conformation with solvent-exposed
Tyr83 was found to be significantly more stable. Already depicted in
Fig. S12, the Multi-Map colvar fails to capture the complete transi-
tion between the Tyr83-flipped end states of FLPP3. Unlike ADK,
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where the most separated end states were observed 5 A or lower res-
olutions, the most resolved FLPP3 states are seen at 3.0 A (Fig. 3).
Under these conditions, the PMF shows a more probable closed
state or state A. At lower resolutions (>5 A), the converged statis-
tics heavily favor state A over state B. This result is in stark contrast
to NMR that favors state B to state A by a population ratio of 2:1.”*
The crystal structure (state A) seen in the SFX data is over stabi-
lized by lattice contacts and is, therefore, even rarer. Thus, for this
system, the BEUS of the Multi-Map colvar converged to unreli-
able results. This failure can be rationalized using Fig. S12. Unlike
the ADK and CODH, the end states for FLPP3 are only accessible
to the Multi-Map colvar at higher resolutions, albeit with hystere-
sis artifacts in forward and backward pathways (Fig. S8). Since the
sidechain motions contribute minimally to the overall map transfor-
mation, the slow degrees of freedom of the subtle transition of Tyr83
from an outward facing conformation to an inward facing confor-
mation were not captured by the Multi-Map colvar. We expect a
slower SMD to allow more chances for the Tyr83 to flip outward
and therefore address this error, possibly only at higher resolutions
given the small-scale structural transition at hand.

3. Hinge-bending in CODH

The largest system we applied the Multi-Map reaction coordi-
nate to was CODH. Unlike PMFs for ADK and FLPP3, which were
relatively consistent in shape between different input map resolu-
tions, CODH demonstrates significant changes in the shape of the
free energy profile in a resolution-dependent manner [Fig. 6(d)].
For similar entropic considerations mentioned previously, the PMF
minima are near {43 = 0 for 1 A and 3 A maps. The profiles for
these high-resolution maps have sharp edges due to the difficulty
of fitting thermalized states into a high-resolution map. The val-
ley broadens when 5 A resolution maps are applied to the Multi-
Map colvar, offering comparable probability to the open and closed
CODH structures, marginally skewed toward state A, while 7 A and
9 A maps are skewed toward state B.

This energy landscape is consistent with the biochemical
knowledge available for CODH, which implies that the protein
structure fluctuates to accommodate substrate ingress.‘W Indeed, the
existence of both states within a single crystal structure implies that
at least in crystallization conditions,” the two states are equally
probable and thus equal in free energy. This scenario is akin to clas-
sic conformational selection,’ highlighting that both conformations
are thermally accessible in the absence of CODH substrates. Given
the observation of substrate access tunnels in both states, while
only state B is thought to be competent for chemistry,” allosteric
regulation for the CODH structure may be one mechanism for
guiding metabolism through this multifunctional enzyme.”” Taken
together, between the ADK and CODH examples, the Multi-Map
colvars capture two of the most universal mechanisms of allosteric
interactions.

IV. CONCLUSION

The use of volumetric maps as sources of external potentials
in MD simulations has allowed the development of many enhanced
sampling methods such as grid-steered MD,”' MDFF,”"*’ and atom
resolved Brownian dynamics.”” The most recent addition to these
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methods is the Multi-Map variable,”” which is applied here to mon-
itor transitions in the protein structure based on electron density
maps from cryo-EM or crystallography. Transformations between
two protein states are successfully sampled for different protein sizes
and types of conformational changes, suggesting that the method is
generalizable to a series of cryo-EM maps akin to the outcome of the
manifold-based cryo-EM data analysis.””** In addition to the simul-
taneous utility of the Multi-Map colvar toward non-equilibrium
work and free energy estimation, we here demonstrate its useful-
ness in the refinement of map-structure correlation coefficients and
model-quality without requiring high-quality search structures. The
Multi-Map formulation offers a statistical mechanical description
for the resolvability of a map, addressing a point of concern in
cryo-EM modeling.

Previous work demonstrated that the Multi-Map variable can
characterize shape changes in supra-molecular aggregates such as
biological membranes or confined-water pockets.”””" The results
shown here also open the door to its application together with a
number of geometric or alchemical free energy methods focused
on protein conformational cycles.” Furthermore, in the specific
application of structure refinement, data-driven approaches such as
MELD (Modeling Employing Limited Data) ° or meta-inference”
can readily employ data simulated using the Multi-Map variable as
a source of coarse-grained information for computing the Bayesian
priors. From a biophysical standpoint, two of the most universal
allosteric pathways, namely, induced fit and conformational selec-
tion, were here successfully investigated. In this work, we used simu-
lated density maps; however, these protocols are shown to be equally
applicable to the experimentally determined density maps. Through
the use of simulated maps, we were able to determine map resolu-
tion’s effect on energy cost of flexible fitting. The free energy studies
were found to be most efficient using low-resolution maps, and the
estimates are comparable to those determined from high-resolution
structures.

SUPPLEMENTARY MATERIAL

See the supplementary material for details regarding simula-
tion parameters and calculations of collective variables other than
the Multi-Map variable, as well as equilibrium, SMD, and BEUS
simulation analysis figures.
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APPENDIX A: ESTIMATING ENDPOINTS
FOR THE MULTI-MAP COLVAR FOR DIFFERENT
RESOLUTIONS

The Multi-Map collective variable used here is defined in com-
pact form as {4 [Eq. (2)] by using two three-dimensional volumet-
ric maps ¢4 (r) and ¢p(r), which are synthetically generated but are
treated otherwise as experimental data. Based only on the atomic
density maps, it is thus possible to estimate what the colvar range
should be. Given an atomic configuration R, a synthetic map ¢r(r)
may be generated and its cross-correlation with ¢4(r) defined as

CC(R,A) = [ #n(x)ga(r)dr (A1)

_1
R ||¢
and similarly for CC(R, B). Inserting Eq. (Al) into Eq. (2), we
arrive at

{as(R) =~ O(R)'[CC(R, B) - CC(R,A)], (A2)

where the approximation lies in assuming that the density map ¢r
is used in lieu of the precise atomic coordinates R. In addition,
®(R) = Yiwid(r;) is the term of the Multi-Map variable evaluated
at the coordinates R that best fit the set of local map ¢. It is essen-
tial at this stage to recognize that correlation coefficient values fall
in the range (0,1) due to non-negative densities. For instance, if
a 0 A resolution map were to exist, the densities would be delta
functions with values equal to the atomic weight (w;), meaning that
®(R)™" = (=, wi)~". For other resolutions, ®(R) ™" will similarly be
a scaling factor related to the total atomic weight and will be invari-
ant for well-fitted maps with equivalent resolution. Stated concretely
for this special mass-conserving transition between states A to B,

Ca(Ra) = (8(Rp). (A3)

Assuming that a map is a Gaussian mixture model, the equality
holds if both maps have homogeneous and equivalent resolutions. If
the resolutions are not equivalent, then a scaling factor is needed to
maintain the equality, as outlined below. However, a more general
boundary condition is

CC(A,A) =CC(B,B) = 1. (A4)
Combining Egs. (A2) and (A3),
(an(Ra) = @(R4)™'[CC(4,B) - CC(4,4)],  (AS)

(a(Rp) = ©(Rp) ™' [CC(B,B) - CC(B,A)], (A6)

and therefore,
CaB(Ra) = —(a(Rp) (A7)

because CC(A, B) = CC(B, A). In practice, Eq. (A7) is limited by
discretization errors because both maps are interpolated onto a
grid. However, by comparing the numerical and theoretical values
{ap(Ra) = ®7'[CC(A,B) — CC(A,A)] determined from Egs. (2)
and (A2) in Table S4 within Sec. S3 for a range of resolutions, we
find that a 1 A grid spacing has acceptable numerical error. As a
consequence of Eq. (A7), the target value for {4 can be estimated,
knowing only one endpoint from the transition for two maps with
equal resolution. Importantly, all other atomic configurations other
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than R4 or Rp will generate {43 values whose magnitude is less than
|CaB(Ra)| = [CaB(Rp)], as the correlation coefficients are bounded
and the density weight is conserved [Eq. (A3)].

If two maps have unequal resolutions with comparable local
densities, the range for {4 will depend on the ratio between ®4(Ry4)
and ®p(Rp) like

exp(o3%)

(aB(Ra) = —exp‘(liz;z)CAB(RB), (A8)

A

where 04 and op are the resolutions of maps A and B. The local
density is calculated as the sum of atom weights divided by the map
volume, which can be computed in VMD. Thus, even when the res-
olutions of the contributing maps are different, but their local den-
sities are similar, we can still determine {45(Rp) with the knowledge
of only one high-quality structure across a series of maps. How-
ever, when the resolution of a map is nonuniform and the local
densities do not match between the states A and B, the assump-
tions of Egs. (A7) and (A8) fail. In these cases, structural informa-
tion on both R4 and Rp is needed a priori to determine the end-
point values of {4 for subsequent application in equilibrium and
non-equilibrium MD or enhanced sampling simulations.

These considerations are non-trivially generalizable to cap-
ture conformational changes across the entire series of K-maps,

ARTICLE scitation.org/journalljcp

which are considered a sum of two-map transformations. Thus,
by knowing the structure R at only one endpoint, the Multi-
Map colvar allows, in principle, the construction of ensembles
and simultaneous real-space refinement for each of the K maps
contributing to the colvar. In practice, the variation of the local
resolution within a cryo-EM map may prevent the application
simple scaling rules to all the maps. Nonetheless, the nomi-
nal resolution of majority of the maps coming from confor-
mational analysis with EM has highly comparable resolution as
seen in the ribosome,”’ RyR1 receptor,““’ and recently in spike
protein.”

APPENDIX B: IMPLEMENTATION AND AVAILABILITY
OF THE MULTI-MAP COLLECTIVE VARIABLE

The derivation and implementation of the Multi-Map vari-
able are documented in Ref. 37. The implementation leverages
recent improvements to the GridForces’ and Colvars” modules,
both of which are freely available in the most recent version of
NAMD."" Up-to-date documentation and input file fragments for
several use cases are available at https://colvars.github.io/colvars-
refman-namd/colvars-refman-namd.html#sec:cve_multimap.

A NAMD configuration file fragment for invoking the two-
state colvar (i.e. where the coefficients of the Multi-Map variable are
-1 and +1, respectively) is provided below:

# Load the two electron density maps

set GRIDFILE [list stateA.dx stateB.dx]

mgridForce on

for {set i 0} {$i <[llength $GRIDFILE]} {incr i} {
mgridForceFile $i gridpdb.pdb ; # Flag coupled atoms
mgridForceCol $i 0; #Couple to the map if 0 ! = 0
mgridForceChargeCol $i B; #Weight based on value in B
mgridForcePotFile $i [lindex $GRIDFILE $i];
mgridForceScale $i O O O; #Maps do not contribute bias themselves,
#except through the Multi-Map colvar, which is defined below.

}
# Initialize Zeta_AB colvar
colvars on
cv config "
colvar {
name zeta_AB
mapTotal {

#Maps are O-indexed, so map O is state A.

mapName O
componentCoeff - 1

X

mapTotal {

#Map 1 is state B
mapName 1
componentCoeff 1

## End code ##
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DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material. The underlying
trajectories and analysis scripts will be released using the Constel-
lation Portal at the OLCF, https://doi.ccs.ornl.gov/ui/doi/108, with
doi 10.13139/0OLCF/1674982.
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