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ABSTRACT: Machine learning (ML) has emerged as one of the
most powerful tools transforming all areas of science and engineering.
The nature of molecular dynamics (MD) simulations, complex and
time-consuming calculations, makes them particularly suitable for ML
research. This review article focuses on recent advancements in
developing efficient and accurate coarse-grained (CG) models using
various ML methods, in terms of regulating the coarse-graining
process, constructing adequate descriptors/features, generating
representative training data sets, and optimization of the loss function.
Two classes of the CG models are introduced: bottom-up and top-
down CG methods. To illustrate these methods and demonstrate the
open methodological questions, we survey several important principles
in constructing CG models and how these are incorporated into ML
methods and improved with specific learning techniques. Finally, we
discuss some key aspects of developing machine-learned CG models with high accuracy and efficiency. Besides, we describe how
these aspects are tackled in state-of-the-art methods and which remain to be addressed in the near future. We expect that these
machine-learned CG models can address thermodynamic consistent, transferable, and representative issues in classical CG models.

1. INTRODUCTION

Over the past decades, molecular dynamics (MD) simulations
have become one of the most important computational
techniques to study the relationship between the properties
of materials and the interactions of atoms, especially with the
advances of computational resources, i.e., high-performance
computing (HPC).1 Although it has achieved great success, the
progress driven by the demand to model more complex
systems across multiple spatial and temporal scales is severely
restrained by the limitations of computing aspects.2 As shown
in Figure 1a, the sweet spot for MD simulations is confined by
the boundaries of memory limit (size of the system),
communication limit (time across multiscale), and parallel
limit (HPC). To model a larger system or a longer time,
coarse-graining is required to overcome the current limitations
and push the boundaries of MD simulations for a broad range
of applications, such as self-assembly of organic molecules and
crystallization of polymers.3−5

The central problem for coarse-graining is how to link
simulations of detailed models with simulations of coarse-
grained (CG) ones through the propagation of information.
Note that the CG model enables efficient simulations covering
different spatial and temporal scales, from the quantum
mechanics with the highest level of accuracy to the
macroscopic continuum model that depends on the theoretical
constitutive law or experimental empirical relationship.

According to the direction of information propagation, CG
methods can be classified into two different categories:
bottom-up3 and top-down6 approaches. For the bottom-up
methods, the fundamental physical principles at the smaller
scales are used to parametrize a model at a CG scale; while the
behavior at larger scales is used to inform the interactions at
smaller scales in top-down CG methods. When designing a CG
model, the first step is to define a pseudo atom or CG site.
These sites can be designed to represent combined groups of
multiple atoms or functional groups. For example, Figure 1b
shows the coarse-graining process of polyalanine. The pseudo
atom sites can be either groups of hydrogens or functional
groups. The second key aspect in developing the CG model is
to define an effective energy function U for the CG model,
which determines the interactions between pseudo atoms.
In the top-down CG methods, the energy function U is

constructed and parametrized by either atomistic simulations
or experiments to reproduce target properties, such as density,
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diffusivity, and partition energy. For example, Marrink et al.6

developed the MARTINI model for biomolecular simulations,
especially for the modeling of lipids and proteins. In the
MARTINI model, the force field is parametrized in a
systematic way to reproduce the free energies between polar
and apolar phases of a large number of chemical compounds
through increasing the number of possible interaction levels of
the CG sites. On the contrary, in the bottom-up CG methods,
the target properties are not used to optimize the potentials;
instead, they are predicted by the CG potentials. Typical
bottom-up methods use structure- and force-based approaches,
depending on the target quantities. If the method aims to
reproduce the structural distributions given by all-atom (AA)
simulations, then it is structure-based, which is known as the
iterative Boltzmann inversion (IBI) method, the inverse Monte
Carlo (IMC) method, and the relative entropy method.5 The
force-matching method intends to match the force distribution
of the CG model to that obtained from AA molecular
simulations. Each method has its advantages and disadvan-
tages: the IBI method can reproduce the correct structural
distributions and conformations but misses the right
thermodynamics and many-body free-energy landscape; while
the force-matching method captures many-body effects and
proper dynamics, it can misrepresent the structural distribu-
tions.
Although these CG models are straightforward and can

model much larger systems with reasonable computation costs,
they still suffer from some important issues in terms of
thermodynamic representability, transferability, and consis-
tency.5 The CG model cannot adequately reproduce the

properties of the AA system due to the degeneration of
freedoms during the CG process. Some properties that are
highly sensitive to small-scale phenomena will be lost in the
simulations using CG models.7 Thus, the CG process from AA
coordinates to CG sites strongly depends on the understanding
of the physical problem and chemical intuition, and a poor CG
process will lose more important information. Besides, both
CG methods take distributions from AA molecular simulations
for a specific thermodynamic state. Therefore, the derived
effective CG potentials have limited thermodynamic trans-
ferability to other conditions, such as temperature and
pressure. It results in the limited applications of the CG
potentials into a subset of thermodynamics states. Last but not
the least, the thermodynamic consistency can be influenced by
the CG process. The most common inconsistency is caused by
the dilemma of balancing structural and dynamic properties.
Taking the IBI method as an example, the forces that CG sites
bear are not rigorously reproduced as the optimization
objective is the preservation of the structural distributions,
compared to the force-matching method. Consequently, the
optimized CG model, based on the IBI method, usually shows
faster dynamics. It requires a dynamic rescaling factor, despite
faithfully preserving structural distributions and properties.5

Recently, machine learning (ML) of potentials is emerging
as an alternative approach, in comparison with classical force
fields with explicit functions. This method represents potential-
energy surfaces by training large data sets from density-
functional theory (DFT) calculations. Machine-learned AA
potentials have excellent representability, accuracy, efficiency,
and thermodynamic transferability, in comparison to DFT

Figure 1. (a) Boundaries of all-atom molecular dynamics (MD) simulation using high performance computing facilities in terms of system size and
time scale. (b) Schematic to show two types of coarse-grained methods: bottom-up and top-down in different time and length scales. Besides, the
coarse-graining process of a polypeptide, polyalanine, is shown in the inset.

Table 1. Classification of Different Machine-Learned CG Modelsa

category name machine learning technique architecture hyperparameter selection training data sets

top-down BOP9 HOGA two-stage optimization genetic algorithm Experiment and atomistic simulation
CG-LJ10 DNN (48, 15) ground-truth error MD simulation
ANN-PSO11 ANN (50, 50) property of force-match MD simulation

bottom-up DeepCG12 DNN (120, 60, 30, 15) minimization of mean force atomistic simulation
CGnet13 ANN (160, 160, 160, 160, 160) three-stage cross-validation all-atom MD simulation
Autoencoder15 auto-encoding encoder and decoder Gubmel-softmax reparametrization all-atom MD simulation
Kernel-based14 kernel optimization Hessian kernel mean force estimation atomistic simulation
Graph-based16 graph-theoretic principles adjacency matrix structure of material atomistic simulation

a(p, q) in the architecture column are the numbers of nodes in the layers of the neural network.
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simulations. Similarly, machine-learned CG potentials are
proposed to represent the free-energy landscape of AA
molecular models with high efficiency and accuracy. Thus,
ML of CG potentials becomes a new way to bridge the gap
between accurate but computationally expensive ab initio
methods and approximate but computationally cheap CG
method.8−19 Particularly, machine-learned CG potentials can
predict the physical properties of complex molecular systems
with ab initio accuracy. The general idea of this approach is to
use statistical learning techniques, such as artificial neural
network (ANN),13 deep neural network (DNN),12 and
convolutional neural network (CNN),18 to name a few, to
formulate complex potentials with many model parameters,
which are undetermined and optimized using ab initio or AA
molecular simulation results as references. Similarly, based on
the classes of CG methods, the machine-learned CG methods
have two categories: bottom-up machine-learned CG meth-
od9−11 and top-down machine-learned CG method,12−16 as
listed in Table 1.
For the top-down machine-learned CG method, an

empirical expression of the interactions between CG particles
is given in prior, such as Tersoff−Brenner potential for CG
water9 and Lennard-Jones potential for simple molecular
liquids,10 to perform MD simulations. Usually, the potential
parameters in these expressions are undetermined and
optimized by statistical learning techniques to match the
structural properties (e.g., radial distribution functions, angular
distribution functions) and dynamics properties (e.g., diffusion
coefficient) with the corresponding experimental/computa-
tional results. On the contrary, in the bottom-up machine-
learned CG method, an unknown CG potential U should be
introduced and U is related to the representations (features
associated with the coordinates of CG particles) through high-
dimensional neural networks.12 The neural networks can be
trained and optimized by using the data set from AA molecular

simulations. For instance, the mean force is used to regularize
the optimization of the loss function in the learning process. In
this study, we will review some of the typical machine-learned
CG methods in these two categories. And we will focus more
on the ML framework, the validation of the trained model, and
its applications. We will also discuss the open problems and
challenges facing the ML of CG models and possible solutions.
We expect machine-learned CG models can play an important
role in understanding the physical and mechanical properties
of complex molecular systems and hope that this work inspires
future studies in this field.

2. TOP-DOWN MACHINE-LEARNED CG METHODS

2.1. Machine-Learned Bond Order Potential for CG
Water. Accurate and efficient molecular models for water
molecules are highly desirable to understand their phase
transformation behaviors at different temperatures or pres-
sures. However, it remains challenging to develop robust and
efficient molecular models for water molecules. Recently, Chan
and co-workers9 have introduced an ML workflow to train the
CG models that can accurately describe the behaviors of ice,
supercooled, and normal liquid water at the mesoscopic scale.
Two bond-order CG models are utilized: bond-order potential
(BOP) and BOP with on-the-fly dihedrals (BOPdih), which are
both based on the Tersoff−Brenner potential with 7 and 11
parameters undetermined and to be optimized, respectively.
In conventional MD simulations, these parameters in the

potential functions are given a priori. It limits the application of
the potential, and modeling systems at different thermody-
namic states requires the recalibration of the potential
parameters. In this study, the CG potential parameters are
optimized by a multilevel evolutionary strategy (hierarchical
objective genetic algorithm−HOGA) as shown in Figure 2a. A
two-stage optimization technique is introduced to find the

Figure 2. (a) Work flow for ML CG model of water molecules through hierarchical objective genetic algorithm. Two stages: global minimization
and local minimization are shown. (b) Comparisons of the results of density anomaly, diffusion coefficients, radial distribution functions and heat
capacity between the experiments and predictions by ML CG model. (c) Application of ML model to predict the nucleation and crystallization
process of water (Reprinted with permission from the work of Chan et al.9 Copyright 2019 Springer Nature Limited).
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global minimum in the objective value landscape. During the
global optimization, the genetic algorithm20 is used. It begins
with the random sampling of the parameter sets Np. The
objective value for each of these parameter sets is evaluated,
and the convergence is checked until the convergence criteria
are met. If not, a new list of Np is generated using genetic
operations. Typically, this stage can return a list of close-to-
optimal parameter sets. And using these parameter sets, the
second stage local optimization technique starts to search the
final parameter sets with the Nelder−Mead simplex algorithm.
The extensive training data set of energies and structural

properties for ice and liquid water are taken from both the
atomistic model (TIP4/2005) through MD simulations and
experimental data. The data set is chosen with the requirement
to ensure the adequate representation of the diverse configura-
tional space of ice and liquid water. The trained CG model is
first validated by comparing the structural and dynamic
properties with experimental data, such as radial distribution
function (RDF), angular distribution function (ADF), and
diffusion coefficient. From Figure 2b, it is found that the ML-
BOP models can successfully capture the best-known
thermodynamic anomaly and the existence of a density
maximum at 277 K. Also, it can correctly describe the
freezing/melting transition at 273 ± 1 K, densities of ice
(140−273 K), and water (243−273 K) within 1.4% of
experiments. For the transport properties of water, the room
temperature diffusivity is calibrated as ∼3 × 10−5 cm2 s−1,
which is close to that in experiments (2.3 × 10−5 cm2 s−1).
Regarding the structural property, the O−O RDFs for ice at 77
K and water at 254 K are compared with the experiments. As
shown in Figure 2b, the location and intensities of the peaks of
these RDF are in good agreement with the corresponding

experimental results. Finally, the heat capacities Cp for liquid
water are investigated. It can reproduce the thermodynamic
anomaly indicated by the sharp increase in Cp of supercooled
water (cf. Figure 2b). After the validation, a representative test
case is performed on multimillion water molecules to study
nucleation of supercooled water, leading up to the formation
and growth of grains as shown in Figure 2c. The water is slowly
cooled from 275 to 210 K over 130.4 ns. When the first
nucleation forms, the temperature is held at 210 K for another
100 ns, and the first nucleation event is followed by a slow
transformation (150 ns), an accelerated transformation of a
large number of nuclei (200 ns), and completion of grain
growth to form polycrystalline ice.
This workflow demonstrates the high accuracy of the

machine-learned CG model in capturing the structural and
dynamic properties of water, in comparison to the
experimental results. Besides, this workflow shows almost the
same computational cost as the other CG methodthe
monatomic water (mW) modelbut with higher accuracy.
Nevertheless, this workflow suffers from some limitations.
First, it is partially temperature-transferable. It can only
reproduce the thermodynamics within the regime which is
covered in the training data set. Second, it cannot fully
reproduce all the physical properties. For example, to improve
the predictions on diffusion coefficient and temperature of
maximum density, the prediction accuracy of the melting point
is sacrificed.

2.2. Transfer-Learning-Based CG Method for Simple
Molecular Fluids. In MD simulations, once the interatomic
potential is specified, many properties like RDF and ADF are
determined. However, the inverse problem−parametrization of
the potential for a specific property is not straightforward.

Figure 3. (a) Schematic of a deep neural network (DNN). (b) Comparison of the pair potential parameters determined from the DNN with the
ground-truth values for training, validation, testing, and transferability data sets. (c) Comparison of RDFs obtained with DNN, relative entropy, and
simplex CG models and the all-atom (AA) model. Three types of molecules are studied: CO, F2, and CH4 (Reproduced from the work of
Moradzadeh et al.10 Copyright 2019 American Chemical Society).
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Moradzadeh et al.10 adopted DNN to study this inverse
problem, in terms of the relation between the RDF and the
Lennard-Jones (LJ) potential parameters. Figure 3a shows the
schematic of the DNN. The training data is taken from MD
simulations with the potential parameters and thermodynamic
states (density ρ and temperature T) sampled over a wide
range. Here, the LJ potential has the form

u r
C
r

C
r

( ) 12
12

6
6= −

(1)

where C12 and C6 are potential parameters. After performing
the MD simulations, the RDFs g(r) under specific thermody-
namic states (ρ, T) are collected. And the complex relationship
between potential parameters (C12 and C6) and RDFs can be
expressed as (C12, C6) = f(g(r); ρ, T), where f is a vector
function. In this work, a feed-forward neural network (FFNN)
is adopted to represent this function based on the universal
approximation theorem as xi = (gi(r), ρi

1, ρi
2, ..., ρi

p, Ti
1, Ti

2, ...,
Ti
p,)m, where xi is the input vector composed of the

concatenation of system i RDF (size of n) and thermodynamic
states (each with a size of p) in the data set with a total size of
m. The node in DNN applies a linear transformation after
receiving the input signal and is followed by a nonlinear
activation function, resulting in an output signal. Finally, the
DNN can be mathematically expressed as

C C W W Wx b b

b

( , ) ( (... ( ( ) ))

)
n i12
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6
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0 0 2 2 1 1 1 2
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where ϕk is the nonlinear activation function of layer k,Wk and
bk are weights and biases. The FFNN is trained based on the
loss function: mean-squared error (MSE) between the ground-
truth and the predicted parameters

D
D
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i D j C C
j
i

j p
i

iL
,
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( )
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( ) 2
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| |

−
∈ ∈ (3)

where θ represents the free parameters like the weights and
biases. vj,GT

(i) and vj,p
(i)(θ, xi) are the ground-truth and predicted

LJ interaction parameters.
The performance of DNN is examined by investigating two

cases. The first one is the generalizability and transferability of
the interatomic potential parameters. The generalizability
refers to the use of DNN to estimate the case, which is not
part of the training data set, but falls within the range of the
training data set; the transferability refers to the use of DNN to
estimate the case, which is outside the range of the training
data set. One-to-one comparison between the ground-truth
(denoted by subscript GT) and predicted (denoted by
subscript DL) potential parameters are shown in Figure 3b.
The left four and right four panels are for C12 and C6,
respectively. In each panel, the first one is for the training
process; the second one shows the validation; the third one
gives the generalizability, and the last one demonstrates the
transferability. The accuracy is quantified by introducing the
mean absolute percentage error (MAPE), defined as

100j
v v

vMAPE,
i D j

i
j
i

i D j
i

,DL
( )

,GT
( )

,GT
( )ϵ = ×

∑ − |

∑ |
∈

∈
. The solid black line represents

that the predicted parameters are exactly consistent with the
ground-truth parameters. The dashed black lines are the
boundaries in which the ∼99% of prediction points are located,
in comparison to the ground-truth of the training data set. The
low MAPE in Figure 3b demonstrates the DNN has good
generalizability and transferability.
The second one is transfer learning, which is studied by

developing single-bead CG models for simple molecular liquids
such as carbon monoxide, fluorine, and methane. The

Figure 4. Artificial neuron network (ANN) assisted particle swarm optimization (PSO). (a) Flowchart of the ANN-PSO. In every iteration, the
ANN trained by data collection of all the previous iterations provides a new particle (a set of force field parameters). (b) Molecules D2O and DMF
coarse-grained to nonpolar beads. (c) Optimization of the D2O. Error histories of systems with 40, 8, and 4 particles. (d) Optimization of the DMF.
Error histories of systems with 40, 8, and 4 particles (Reproduced from the work of Bejagam et al.11 Copyright 2018 American Chemical Society).
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corresponding RDFs predicted from DNN, simplex, relative
entropy method, and AA molecular simulations are shown in
Figure 3c. It indicates that DNN prediction has a high accuracy
from these comparisons. However, this high accuracy is only
limited to simple molecular liquids. For complex molecules
that cannot be described by the simple LJ potential functions,
the CG process to a single LJ particle will lose plenty of
information, leading to the wrong predictions of both
structural and dynamic properties.
2.3. ANN-Assisted Particle Swarm Optimization for

Transferable CG Models. Particle swarm optimization
(PSO), inspired by Mother Nature and first applied to
animate social behaviors, is an iterative global optimization
technique powered by population migration. Although it is
capable of nonlinear optimization, the convergence becomes
slow when applied to force field development because of the
increasing amount of expensive MD simulations. In addition,
due to its population-based nature, its optimization path relies
on only the local bests and the global bests, instead of all the
MD results. Therefore, a cost-effective way to harness all the
costly simulation data is desirable. Recently, Bejagam et al.11

developed an artificial neural network (ANN) assisted-PSO
framework to optimize the potential parameters for CG
models.
In a traditional PSO optimization, a particle represents a

state in the multidimensional optimization space. In the case of
CG potential development, the state represents the potential
parameters. In each iteration of the PSO, MD simulations are
first performed with particle-specified potential parameters. By
comparing each of the MD results and target properties, a
fitness value, which quantifies the particle-specific deviation

from the target properties, is assigned to the particle as a
personal score. For each particle, the local best will be updated
if the current fitness value is higher than all the previous values.
The best of all the local bests is assigned as the global
optimized point for the current iteration and used to guide the
next iteration. The process of optimization is performed until
the global best particle (the best potential parameters) being
capable of producing the target properties with a satisfactory
small, usually 2−5%, error.
On top of the classic PSO framework, an ANN is used to

accelerate the convergence of the PSO. As shown in Figure 4a,
in each iteration of the PSO, after the MD runs, all the MD
data are used to train a dynamic ANN. The ANN then makes a
prediction of an extra particle (a set of potential parameters).
This extra particle is fed back to the group of particles in the
PSO. In the next iteration, the new group of particles is used to
advance the PSO. Thus, the combination of PSO and ANN
algorithms could dramatically accelerate the searching process
for the best solution for CG potential parameters.
Molecules of D2O and DMF, as depicted in Figure 4b, are

used to demonstrate the competence of the proposed
framework. The molecules are coarse-grained as one and two
nonpolarizable beads, respectively. The single-bead CG model
for the D2O needs two parameters, i.e., the ϵ and σ, in 12−6 LJ
potential, to descried the interaction between beads. The
model for DMF needs five parameters: kb the strength
describing the bonding between the AM beads and the
CGD2 beads, ϵAM and σAM for the AM beads, and ϵCGD2 and
σCGD2 for the CGD2 beads respectively. The results of the
optimization for the D2O and the DMF are shown in Figure 4c
and d, respectively. The error of each iteration is calculated as

Figure 5. (a) Schematic of the deep neural network (DNN). (b) Example for CG of water molecules and the local transformation of coordinates of
CG sites. {Dik} and {Dij} are radial and angular descriptors, respectively. (c) (upper) comparison of the O−O RDFs for liquid water between
AIMD and DeePMD and DeePCG simulation; (lower) deviations of DeePMD and of two DeePCG models relative to the AIMD result. (d) O−
O−O ADFs of liquid water from AIMD, DeePMD, and DeePCG simulations with four different cutoff radii (Reprinted with permission from the
work of Zhang et al.12 Copyright 2018 AIP Publishing LLC).
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the root-mean-square error between the optimization and the
experimental target values of the densities and diffusion
coefficients. The particle numbers used in the optimization are
40, 8, and 4 from the left to the right, respectively. In all the
cases, the ANN-PSO method shows better prediction and fast
convergence with smaller errors than the PSO method.
In this study, the ANN is used to exploit all the MD results

that the PSO produces to accelerate the convergence of the
PSO, reducing the demand for expensive MD simulations.
However, because one still needs to predefine the CG potential
forms (12−6 LJ form in this study). Generally speaking, this
framework can only preserve limited structural and dynamic
properties for the CG models.

3. BOTTOM-UP MACHINE-LEARNED CG
APPROACHES

3.1. DeepCG: Constructing a CG Model via DNN.
Defining an accurate free energy function in the space of CG
variables is always the key to developing a CG model. But, it is
the most difficult part, which requires substantial physical and
chemical intuitions. ML methods can address this problem in a
more accurate and automated way. Nevertheless, most of the
ML approaches so far focus on the representation of potential
energy surface, such as the deep potential method.21 It allows
us to perform MD simulations with comparable accuracy as the
ab initio molecular dynamics (AIMD) but only at the cost of
classical empirical force fields. To find a good ML approach to
represent the free energy surface, Zhang et al.12 developed the
deep coarse-grained potential (DeePCG) scheme. Note that
the ML of AA and CG models tends to represent potential-
energy and free-energy surfaces, respectively, by high-dimen-
sional neural networks.
In DeePCG, a neural network representation Uw(ξ) is

adopted for the CG potential U(ξ) (see Figure 5a). Here, ξ
variables are the coordinates of the CG particles. The CG

potential is assumed to be the sum of the local contributions of
the CG particles, i.e., U U( ) ( )w

i i
wξ ξ= ∑ , U ( )i

w ξ is the
potential contribution of the CG particle i. It is constructed
in two steps: (1) The first is local frame transformation
according to the descriptor {Dij}, which includes radial
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(Figure 5b). (2) The descriptor {Dij} will be given as input
to a fully connected FFNN (total of four layers with two
hidden layers) to compute the potential contribution of the
CG particle i (see Figure 5a). Because the CG potential in the
DeePCG is free energy that is not directly available, the
optimization of CG potential is required. Here, the force-
matching scheme is employed through fitting accurate mean
forces from AIMD simulations. Therefore, the loss function in
DeePCG is defined as
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1 1
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where D is the number of configurations for CG variables in
the data set and Fi(ξn) is the mean force estimated from AIMD
simulations. The optimization of the loss function is fulfilled by
the stochastic gradient descent (SGD) method, which is a
highly noncanvex function corresponding to a rugged land-
scape in the large parameter space.
To demonstrate the capability of the DeePCG, the CG

model of liquid water is adopted. The training data set is
obtained from the AIMD simulations. The AIMD data set
consists of a total of 40 000 snapshots, during a 20 ps-long
trajectory in the NVT ensemble with the system size N = 192
atoms (64 H2O molecules) at T = 300 K. After the training
process, the NVT simulation with the trained DeePCG model
is performed on the CG waters. The results of O−O RDF and
O−O−O ADFs are compared with those from AIMD and

Figure 6. (a) ML schemes of CGnet and regularized CGnet. (b) Comparisons of force and free energy between predictions from CGnet, feature
regression, and the exact results for the two-dimensional toy model. (c) Free energy profiles of alanine dipeptide using all-atom and machine-
learned CG models (Reproduced from the work of Wang et al.13 Copyright 2019 American Chemical Society).
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DeePMD (see Figure 5c). It is found the DeePCG can
reproduce the same RDF as those from AIMD and DeepMD.
Also, the ADF results are examined for the CG system with
different cutoff Rc values as shown in Figure 5d. In DeepCG,
the CG site is the oxygen, and the cutoff determines the
maximum distance where the surrounding CG particles can
interact with each other. It is found that, with the increase of
the cutoff distance Rc, the ADF from DeePCG will be more
consistent with those from AIMD and DeePMD. It means that
a short cutoff distance may lose information contained within
the interactions among the CG particles.
From the modeling of liquid water, DeePCG demonstrates

the same accuracy as AIMD. And it performs faster than the
corresponding AIMD since DeePCG only considers the local
contributions of the potential functions, similar to classical
atomistic MD simulations (see Figure 5b). Nevertheless, in the
DeePCG simulations, the force discontinuity is found due to
the sharp cutoff and limitation of the descriptors for angular
information (see ADF results in Figure 5d). Moreover, the
thermodynamic transferability of the developed CG model
remains to be further examined with DeePCG.
3.2. CGnet: ML CG Force Fields. Another force-matching

based ML approach for CG potential is named CGnet, as
shown in Figure 6a. The difference is that in the CGnet, the
CG potential U(x) is represented by ANN. Similarly, the ANN
includes a transformation y = g(x) from CG particle’s
coordinates x to a set of features y that contains the invariance
of the free energy. The invariance is conserved by using the
features: distances between all pairs of CG particles and the
angles between three consecutive CG particles like those

shown in Figure 5b. The features y are then given as inputs of
the ANN. The loss function in ANN is defined:
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( ( )) ( ( ); )
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i i
1

2∑θ ξ ξ θ= + Δ |
= (5)

where θ are parameters used in ANN, ξ(R) are matrices of CG
particle’s coordinates, and ξ(F(R)) are instantaneous force
components projected on the CG coordinates, with F(R)
defined as the instantaneous atomistic forces. This loss
function reflects the potential mean force (PMF) error
between the mean force ξ(F(R))) and the CG force predicted
by the gradient of CG potentialΔU(ξ(ri); θ). To minimize
this error, another gradient layer is added into the ANN to
compute the derivatives with respect to the input coordinates/
features. With this ANN at hand, the trained CG potential
form can be used to perform MD simulations that will produce
new CG coordinates. When part of the new coordinates are
outside the training data set, it is possible that the ANN can
generate unphysical predictions. To avoid the unphysical
predictions, a regularized CGnet is introduced by utilizing
“regularization” methods (see Figure 6a). In the regularized
CGnet, a baseline (prior) energy U0(x) is added into the
energy function as U(x; θ) = U0(x) + Unet(x; θ), where Unet is
the neural network free energy as used in CGnet. The role of
U0(x) is to enforce U → ∞ for unphysical states, in which the
new CG coordinates are outside the training data set.
A two-dimensional toy model is used as an illustration to

show the predicted potential energies by using different CG
models. The two-dimensional potential energy has the
analytical form

Figure 7. (a) (left) Description of the body expansion on pairs and triplets. Two- and three-body forces are shown. (right) Representations used
for two- and three-body interactions. (b) Learning curves for two-body LJ fluid with different kernel matrices. (c) Learning curves for three-body
SW fluids with different kernel matrices. (d) Comparison of MD simulation of tabulated three-body kernel predictions with the reference SW
simulation, including RDF and ADF results. (e) Comparisons of RDF and ADF between atomistic simulations, the CG model using the force-
matching scheme, and the SW model (Reproduced from the work of Scherer et al.14 Copyright 2020 American Chemical Society).
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, shown in Figure 6b. The CG mapping is defined by the
projection of a two-dimensional model onto the x-axis (see
Figure 6b). A long simulation trajectory of the two-dimen-
sional model is obtained, which is used as the training data set.
The CG potential and mean force are compared between those
from feature regression, i.e., least-squares regression, and those
from CGnet and regularized CGnet. It is found that within the
training data set, both feature regression and CGnets (both
CGnet and regularized CGnet) can accurately capture the
mean force and free energy. However, outside the training data
set, the predictions from CGnet severely deviates from the
exact results, but the regularized CGnet, to some extent, can
still nearly capture the exact results due to the introduction of
the prior energy (here is a harmonic energy form). To further
demonstrate the application of CGnet, the coarse-graining of
alanine dipeptide in an explicit solvent is studied. To make a
comparison, another CG model named the “spline model” is
also studied.2 The free energy profiles from these three CG
models are displayed with the result from the AA molecular
model (see Figure 6c). It can be found that only the
regularized CGnet model can correctly reproduce the position
of all the main free-energy minima. On the contrary, the spline
model cannot capture the energy minimal corresponding to
the positive value of the dihedral angle ϕ, and the CGnet can
only reproduce part of the free energy minima.
The above results demonstrate that the CGnets (CGnet and

regularized CGnet) can be used to reproduce effective free
energies for CG models, which can capture the equilibrium
distribution of a specific atomistic model. However, the CGnet
here is not transferable to the study of different systems, since
it is designed ad hoc for a specific molecule. Besides, the CGnet
can only reproduce the structural/configurational properties of
the system with the dynamic properties remained to be
explored using alternative approaches.
3.3. Kernel-Based ML of the CG Model for Efficient

MD Simulation. Since current ML models for CG force fields
suffer from high computational cost at every integration time
step, Scherer et al.14 proposed a kernel-based ML of the CG
model for efficient simulations of molecular liquids. The
central idea is to utilize a kernel machine to learn the mapping

Q F→ (6)

where Q is the representation of the systems, i.e., trans-
formation of the coordinates of the atoms and F is the force.
The kernel function is K̂ = K(Qi, Qj). Directly learning this
mapping is very challenging, due to the large interpolation size
of Q, even within a region defined by the cutoff distance rcut. In
this work, the Q is decomposed into two terms q(2) and q(3),
which represent two-body pair and three-body triplet
interactions, respectively. To predict a rotationally invariant
property, the two-body pair representation is chosen as the

interparticle distance: q rm
(2)

ab
= , and the three-body triplet is

chosen as a vector of three interparticle distances:

q r r r( , , )m m m
T(3)

ab ac bc
= (see the interaction m part in Figure

7a). Accordingly, the force F can be split into 2 terms f(2) and
f(3), respectively (see the body expansion in Figure 7a).
Therefore, the problem is simplified as the learning of the local

mapping: q(b) → f(b), b = 2, 3, with the local kernel k̂(b). Once
trained for the local kernel, the ML model can be used to
predict the local interactions, f*. And after correlating the local
kernel k̂(b) to the global kernel K̂, the new ML model can be
used to predict the global force F*.
One of the key aspects in this ML framework is to construct

the kernel matrix K̂. The basic energy conservation requires the
kernel matrix is curl-free and the property rotates with the
sample. Based on these requirements, three approaches are
proposed: explicit rotations, integration over SO(3), and
Hessian kernel. The performances of these three types of
kernels are compared by studying the learning process for a
two-body Lennard-Jones fluid (Figure 7b) and three-body
Stillinger−Weber (SW) fluid (Figure 7c). It is found that, for
the two-body interaction, there is no difference between the
performances of the three kernels. However, for the three-body
SW fluid, the Hessian kernel outperforms the other two
kernels. Besides, by sorting and permutating the triplet
representation vector q(3), the learning process will be
significantly accelerated. Before performing MD simulations
using the trained ML model, a switch function is used close to
the cutoff distance to avoid numerical instabilities and maintain
energy conservation. Furthermore, to reduce the error induced
by the kernel predictions, the training data size is increased by
the covariant meshing technique.
To demonstrate this ML framework, the trained CG model

is adopted to run MD simulations. The results of RDF and
ADF are compared with those from the referenced SW model.
It is found all the curves are almost identical, which means the
kernel predictions lead to the correct sampling of the canonical
ensemble. In addition, the computational costs of these
simulations are comparable with the original SW potential,
without the restriction on the explicit functional form of three-
body potentials.
This ML framework is further applied to the learning of the

CG force field. After the CG process Ri = Ri(rj), the
instantaneous collective forces (ICFs) are expressed as Fi(r)
=∑j∈i f j(r), where f j(r) are the atomistic forces and i is the CG
bead. Here, the mapping is not directly from the R to mean
force. Instead, a two-step procedure is provided: first, the two-
body force Fi

2‑body is obtained by the force-matching scheme,
and second, the three-body forces are averaged as the residual
force between target and two-body force: ΔFi = Fi − Fi

2‑body. To
learn these residual forces, a binned three-body Hessian kernel
is adopted. The simulation results for liquid water with three
different CG models are compared in Figure 7e. The Hessian
kernel-based ML model is found to be very close to the
atomistic results of RDF and ADF. More interestingly, it is
found the ML model is even more accurate than the force-
matched SW model.
This kernel-based ML framework demonstrates that by

adding of switch function close to the cutoff distance and
covariant meshing of the training data set, it can accurately
capture two-body and three-body interactions with the
comparative computational cost as the original SW model.
And the extension to CG liquids confirms it is a promising
technique to construct efficient two- and three-body models
for a wide range of CG applications. However, for many-body
interactions, i.e., four-body (dihedral) interaction, more
complex and efficient kernel functions should be introduced.
And the computational efficiency could be a significant
challenge, as more interactions are included in the kernel
matrix within the cutoff distance.
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3.4. Autoencoders for CG Molecular Models. The
selection of an appropriate mapping from AA to CG models
plays a critical role in developing CG models to reproduce
consistent dynamics, structural correlation, and thermody-
namics.5 In general, the criteria for selecting CG mappings
highly depends on the prior physical and chemical knowledge
and intuition. Although many efforts have been devoted to
develop forward- and back-mapping algorithms, the statistical
connections are missing to reversibly bridge resolutions across
different scales. To solve this issue, the powerful unsupervised
learning technique−variational autoencoders (VAEs) are
introduced. The VAEs compress the data through an
information bottleneck that can first continuously map
complex data into a low-dimensional latent space; second
probabilistically infer the real data distribution via a generating
process.22 Accordingly, Wang et al.15 proposed an autoen-
coder-based generative modeling framework that includes four
steps: (1) learning discrete CG variables in latent space and
decoding back to atomistic detail via geometric back−
mapping; (2) using a reconstruction loss to help capture
collective features from AA reference data; (3) regularizing the
CG space with a semisupervised mean instantaneous force
minimization to obtain a smoothed CG free-energy landscape;
and (4) variationally finding the highly complex CG potential
that matches the instantaneous mean force acting on the AA
training data. Figure 8a shows the autoencoding framework.
The atomistic data are first reconstructed by encoding
atomistic trajectories through a low-dimensional bottleneck,
and the CG mapping is parametrized by using the Gumbel-
softmax reparametrization. In the training process, the encoder
and decoder are variationally optimized to minimize the
reconstruction loss:

L
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D E x x F E x
1

( ( ( )) ) ( ( ))ae x P x( )
2

h inst
2ρ= Σ [ − + ]≈ (7)

where the first term on the right-hand side is atom-wise
reconstruction loss and the second term is the average
instantaneous mean force regularization. ρh is the hyper-
parameter. Using this loss function, the force fluctuations of
the encoded space is minimized by the instantaneous force
regularizer and the CG free-energy landscape will be
smoothed.
This unsupervised autoencoding process is first shown for

gas-phase ortho-terphenyl (OTP) (Figure 8b) and aniline
(Figure 8c). In the case of OTP, it is found if the number of
degrees of freedom is less than 4, for example, 3-beads
mapping that partitions each of the phenyl rings, this encoding
loses the configuration information that describes the relative
rotation of the two side rings, and thus leads to higher error for
decoded structures. In the case of a small peptide molecule, the
latent variables of 8 CG beads are adequate to recover heavy
atom positions through the arrangement of hydrogen atoms is
not fully reproduced.
With the minimization of the average of instantaneous mean

forces as a regularization term, the learning of a smooth CG
free energy surface is realized. This applicability of the
framework is demonstrated by bulk simulations of liquids.
Here, an example of liquid ethane is shown in Figure 8d. The
CG resolution is 2. An autoencoder is trained to obtain the
latent CG variables, and then a neural network-based CG force
field is minimized by a force-matching scheme. Finally, the CG
simulations are performed at the same density and temperature
as the atomistic simulation. From the Figure 8d, it is found that
the RDFs of both COM−COM and CG1−CG1 are captured

Figure 8. (a) CG autoencoding framework including the encoder, decoder, and the reconstruction of original all-atom data. (b) Reconstruction
and mean force losses in Auto-Encoder training of gas-phase molecules with different resolutions. (c) Coarse-graining encoding and decoding for
alanine dipeptide and the free energy profiles with different CG resolutions, compared to the atomistic simulation. (d) Comparison of the
simulation results on RDF, bond distance distribution, and mean squared displacement (MSD) between atomistic and CG models for liquid ethane
using a CG resolution of 2 per molecule (Reprinted with permission from the work of Wang et al.15 Copyright 2019 Springer Nature Limited).
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accurately compared to those in the atomistic simulations.
Also, the bond length distributions are in good agreement with
that from atomistic simulations. The dynamic property
informed from the mean squared displacement (MSD) is
also shown in Figure 8d. The CG model exhibits faster
dynamics, in comparison to atomistic simulations, which is the
typical issue in classical CG models.5

This ML framework proposes to use the CG coordinates as
latent variables that can be regularized with force. Through the
training of encoding mapping, deterministic decoding, and a
CG potential, a larger system is able to be simulated for a
longer time, thus accelerating the MD simulations. However,
this framework has its limitations. First, the deterministic CG
mapping leads to an irreversible loss of information that is
reflected in the reconstruction of average AA molecular
structures. Second, due to the force-matching scheme, the
individual pair correlation cannot be fully recovered compared
to the atomistic trajectories. Lastly, as the same as other
bottom-up approaches based on force-matching, this frame-
work can only reproduce structural correlation function at one
point in the thermodynamics space. It is not transferable
among different thermodynamic conditions, which should be
further addressed.18

3.5. Graph-Based CG Molecular Model. The represent-
ability, in terms of describing the ground-truth system, has
drawn less attention compared to the transferability. However,
its importance still deserves special notice because it is the
baseline of building CG models and the success of a CG model

relies on a good representation.5 Webb et al.16 proposed a
graph-based coarse-graining (GBCG) scheme. The method
essentially uses graph theory to describe the chemical
connectivity of an organic molecule, mapping the ground-
truth system of the molecule to a coarser description by basic
graph operation of edge contraction, with a controllable degree
of the coarse-graining.
Generally, a unique adjacency matrix is a complete

description of the chemical structure of an organic molecule.
The specific adjacency matrix includes vertexes, representing
the atoms in the molecule, and edges, standing for the
topological connections of these atoms. With this knowledge,
the GBCG is nothing but a series of grouping and contraction
operations, as illustrated in Figure 9a. In the grouping process,
related vertexes are assigned to new groups; while in the
contraction, vertexes in the new groups are combined together
to form coarser sites. Here, a molecule with the SMILES string
[C(= O)1OCC(CO)C(CC)C1] is coarse-grained into models
with 12, 6, 2, and 1 sites in a sequential and systematic manner.
The essential questions needed to be answered in the GBCG

are how and in what sequence one should combine the
vertexes. There are generally speaking different methods.
However, in the following, a simple protocol, spectral grouping
that uses only the adjacency matrix, is adopted for a simple but
effective demonstration. An example of dimethyl carbonate is
shown in Figure 9b. All the hydrogen atoms are first discarded
and the rest are in united-atoms fashion, for simplicity. The 6
united-atoms are defined as 6 vertexes. A 6 × 6 symmetric

Figure 9. CG mapping scheme based on the graphic description of organic molecules. (a) Logistic of the graph-based coarse-graining (GBCG).
The groupings and contractions produce different levels of CG descriptions of the original molecule. (b) (dashed-line box) Adjacency matrix A.
(solid-line box) Grouping method contracts the adjacency matrix A. The spectral grouping ensures that those topologically important atoms are
coarse-grained later than those less important atoms. (c) Example of toluene. Sequential CG mappings are shown. (d) Structural properties
predicted by the CG models with potentials developed based on the different levels of coarse-graining. The results suggest the graphic CG
mappings preserve the structural properties well (Reproduced from the work of Webb et al.16 Copyright 2019 American Chemical Society).
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adjacency matrix A, highlighted in the dash-line box, is used to
describe the connectivity of the system with the elements Aij
equal to either 1 or 0, representing the connection between
vertexes Ni and Ni exists or not, respectively. The grouping
logic is in the solid-line box. The rank-order is defined by the
eigenvector corresponding to the largest eigenvalues of the
adjacency matrix A, based on the eigenvector centrality that
counts the contributions of the vertexes to the overall
connectivity. The grouping follows the queue, in which
vertexes with a low-rank order lie in the front. Every vertex
is grouped with its direct neighbor. The contraction of the
atoms here is by the center of mass for simplicity. According to
the listed ranks, the carbon atoms 1 and 5 are merged with
their neighbors−the oxygen atoms 2 and 4 first. Then the
oxygen atom 6 is combined with its neighborthe carbon
atom 3. Following this protocol, a toluene molecule is coarse-
grained as shown in Figure 9c. The original molecule is labeled
as TOL0, and it is sequentially coarse-grained into CG models
TOL1, TOL2, and TOL3 that have 4, 2, and 1 beads,
respectively. Validation to the example is shown in Figure 9d,
where RDFs of the CG models at three different levels,
equipped with potentials derived from IBI and force-matching
methods, are shown. These results suggest that the graph
method gives legitimate CG mappings that capture the
essential structural properties, in comparison to the ground-
truth atomistic system.
It is worth noting that the difference between the GBCG

from the intuitive CG site definition as the center-of-mass of
the original molecule is that the mappings in this method are in
a sequence, corresponding to the topological connection of the
chemical structure. Consequently, the GBCG gives a system-
atic way to derive a CG mapping with chemical essence.

4. DISCUSSION AND REMARKS
CG molecular simulations offer a unique opportunity to
address challenging problems, such as phase separation, self-
assembly, and crystallization of organic molecules and
polymers. However, the classical CG models are limited by
thermodynamic transferability and consistency.5 Effective
potential functions for the CG model are usually derived and
optimized from one set of thermodynamic conditions. Thus,
CG models derived from one thermodynamic state cannot be
transferable to another set of conditions, limiting their
applications to a small range of thermodynamic states. During
the CG process, the free-energy landscape of the system is
dramatically changed. Thus, it leads to thermodynamic
inconsistency between AA and CG models. To overcome
these limitations, the ML-based CG models provide an
alternative solution, which can be optimized by using an
extensive training data set of forces and structures from AA
molecular simulations. In direct comparison with classical CG
models, we believe that the ML-based CG models could have
the following advantages: (i) thermodynamic consistency as
neural networks can in principle approximate any function to
arbitrary accuracy, which captures the surface roughness and
highly nonconvex free-energy landscape of CG molecules; (ii)
temperature/pressure transferability as neural networks has
multiple layers of nonlinear functions and many model
parameters, which can be optimized by extensive training
data from AA simulations at different thermodynamic states;
(iii) representability as neural networks can take two- and
multibody molecular descriptors as inputs, which represents
many-body interactions that are typically ignored in classical

CG models. We should emphasize that the ML of AA and CG
models tends to represent potential-energy and free-energy
surfaces, respectively, by high-dimensional neural networks.
During the ML of the AA model, both energies and forces are
obtained directly from DFT simulations, leading to a fast and
accurate neural network construction for the potential-energy
surface. However, for the ML of CG models, only structures
and forces are given from AA molecular simulations. The free-
energy surface is challenging to estimate. Thus, most machine-
learned CG models are formulated based on the force-
matching scheme.12−15 Note that both structure and force
distributions are related to the free-energy landscape of the CG
model. Therefore, the structural distributions (e.g., RDF and
ADF) should be used to train the ML-based CG models in the
near future. We also expect that these ML-based CG models
can unify both structure- and force-matching during the
optimization of neural network parameters.
Analogous to the typical ML of AA models for potential-

energy surface construction, the ML of a CG model includes
four major steps: (1) generating an extensive training data set
using AA molecular simulations at different thermodynamic
states; (2) mapping from a AA model to a CG model and
extracting target structure or force distributions; (3) trans-
forming Cartesian coordinates of CG particles to a suitable set
of input coordinates (descriptors, features or symmetry
functions) for the training of neural networks; (4) defining
the architecture of neural networks and formulating a fitting
procedure to optimize the weights and minimize the loss
function. Each step can dramatically affect the accuracy and
efficiency of the machine-learned CG models, in terms of
reproducing the correct structural or dynamical properties of
AA molecular systems. In the following, we discuss the efforts
and unsolved issues in each step.

4.1. Generation of Training Data Set. The ML is usually
a highly nonlinear fitting process with enormous parameters to
be determined, in order to minimize the loss functions of
neural networks. Theoretically, the ML model can fit an
arbitrary system with the assumptions that the training data set
is representative, diverse enough and the computational
resource is adequate. In reality, the training data cannot
cover all thermodynamic conditions. And actually, we are only
interested in a system within a specific regime of thermody-
namic states. Nevertheless, the training data set in the specific
regime should be representative and diverse, which means the
training data set needs to cover all the typical behaviors
happening within this regime in terms of different thermody-
namic states (e.g., pressure and temperature). The lack of data
set will result in wrong thermodynamic transferability and
consistency. The CG model trained by the data set within a
specific regime of temperature or pressure cannot predict the
physical states outside the trained thermodynamic regime (no
extrapolation and exploration). In general, the sampling of the
training data within the interested regime should be uniform,
except for the extreme events. For example, two CG water
beads can approach each other closely. If this scenario is not
included in the training data set, the trained ML model will
produce unstable MD simulations when two CG beads are
close to each other. Frequent extrapolations will be necessary
to handle this situation, and it can generate unphysical results.
Therefore, the training data set should include enough
information about different events, particularly extreme events.
An alternative approach to relieve the lack of representation or
diversity of the training data set is applying physical constraints
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in the trained ML model, such as physics-informed ML. For
instance, in the CGnet model,13 an a priori energy form is
adopted to regularize the motion of CG particles in the
simulations when extrapolation is needed. This can ensure the
correct physical behaviors near the boundary of the training
data set, as shown in Figure 6b.
4.2. Mapping from AA to CG Models: Representation.

As mentioned before, the CG process from atomistic
coordinates to CG sites strongly depends on the under-
standings of physical problems and chemical intuition.5 CG
will degenerate the system’s degree of freedom and lose some
important information that only can be observable in the
atomistic simulations. A poor CG representation will lead to
the loss of more important information and cannot reproduce
it, no matter how efficiently and accurately the CG model
performs in the following steps. Typically, for the well-known
systems, for example, water molecules and peptides, it is easy
to define the CG site on the oxygen atom and the backbone
carbon atom, respectively. However, for unfamiliar systems, the
center of mass is the most commonly used definition of the
CG site, which is straightforward at first glance. But, the
ambiguous nature of this method may jeopardize its usefulness.
For example, when coarse-graining a linear flexible polymer
chain, a CG site based on the center of mass of several
monomers could be an inferior choice because the
thermodynamic fluctuation for the center-of-mass potentially
leads to an undesirable variation of the CG site.5 Therefore,
rigorous methods that give consistent and effective definitions
of the mapping from AA to CG models are particularly
important. To address this issue, the VAE-based ML
framework can learn discrete CG variables in the latent
space and decode them back to atomistic detail with high
accuracy.15 Besides, the graph-based CG adopts the graphic
theory to describe the chemical connectivity of an organic
molecule.16 It maps the ground-truth system of the molecule to
a coarser description by basic graphic operation of edge
contraction, which provides a promising and efficient way for
mapping from AA to CG models.
4.3. Inputs of ML Models: Descriptors, Features, or

Symmetry Functions. The potential energy of the CG model
should be only dependent on the internal interactions and be
invariant with respect to the translation, rotation, or
permutation of the entire molecules.8 ML is a numerically
fitting method and the output of an ML model depends on the
absolute value of the input. Thus, Eulerian coordinates of the
CG particles are not suitable as the inputs for ML models.
Accordingly, molecular descriptors, features, or symmetry
functions should be used to train these ML models.23 The
most straightforward input for the ML-based CG model is the
distance between two CG particles. However, this choice is not
unique and can0not capture many-body interactions. Cur-
rently, there are different transformations of Eulerian
coordinates of CG particles as inputs of ML models, such as
using local coordinate systems,12 two- or three-body
correlation functions,14 permutation-invariant distance met-
rics,24 and VAE-based encoder-decoder.15 Apart from the
energy invariance, the symmetry functions for ML models
should be first- and second-order continuous that the force can
be derived as the gradient of CG potential with respect to
coordinates. Furthermore, the symmetry functions should be
broad enough to capture the interactions between two nearby
CG particles and ensure the decay of energy to zero when the
distance between two CG particles approaches the cutoff

distance. Therefore, too simple or too small symmetry
functions can lower the accuracy of machine-learned CG
models.8

4.4. Optimization of Weights in Neural Networks. In
the development of a machine-learned CG model, the
optimization of parameters is always the most time-consuming
part. For neural networks, a variety of gradient-based
optimization algorithms are available, from simple gradient
descent (back-propagation) and variants-like RPROP (resilient
back-propagation) or Adam to higher-order methods, such as
the L-BFGS method and extended Kalman filter (EKF).25 The
choice of optimization algorithms depends on the specific
problem. For example, EKF performs very well in training one
or two hidden layers with each having less than 100 neurons
but poorly in training networks with four or more hidden
layers. Also, considering the resources of HPC, we need to
choose the optimization algorithm, which can perform training
with a large data set more efficiently.

4.5. Future Opportunities. So far, the machine-learned
CG models have made extensive efforts in either one or two
aspects of the above discussions to improve accuracy. This has
led to limited applications of these models. For example, the
methods of kernel-based and graph-based CG models focus on
the representation aspect and provide different protocols to
retain the information contained in the molecular structure as
much as possible. While the optimization of these CG models
is limited to the basis of the force-matching scheme. It can lead
to poor reproductions of structural properties, such as RDF,
ADF, etc. A potential way to solve this issue is by adding
another loss function (target), such as RDF, to optimize the
CG models. Due to the complexity of high dimensional neural
networks, both structural and force distributions could be
simultaneously reproduced by the machine-learned CG
models. In terms of the training data set, the ML-BOP
model focuses on the temperature-transferability by covering a
wide range of temperature states.9 Meanwhile, pressure-
transferability remains to be studied. If we include more
train data sets at different pressures, the ML-BOP model may
realize pressure-transferability and, then, can predict the
nucleation process of the water molecules more accurately.
For the choice of symmetry functions, in general, it depends on
the experience of trial-and-error. On one side, the symmetry
functions should be more than enough to capture all the
typical interactions among CG particles. On the other side,
symmetry functions should be small enough to have good
performance in terms of computational efficiency. Therefore,
we need to pay close attention to how to choose appropriate
symmetry functions. In conclusion, we are still facing
enormous challenges and opportunities for constructing an
accurate and efficient machine-learned CG model to be
thermodynamically consistent, transferable, and representative.
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