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A machine-learning-assisted study of the
permeability of small drug-like molecules
across lipid membranes

Guang Chen, Zhiqiang Shen and Ying Li *

Study of the permeability of small organic molecules across lipid membranes plays a significant role in

designing potential drugs in the field of drug discovery. Approaches to design promising drug molecules

have gone through many stages, from experiment-based trail-and-error approaches, to the well-

established avenue of the quantitative structure–activity relationship, and currently to the stage guided

by machine learning (ML) and artificial intelligence techniques. In this work, we present a study of the

permeability of small drug-like molecules across lipid membranes by two types of ML models, namely

the least absolute shrinkage and selection operator (LASSO) and deep neural network (DNN) models.

Molecular descriptors and fingerprints are used for featurization of organic molecules. Using molecular

descriptors, the LASSO model uncovers that the electro-topological, electrostatic, polarizability,

and hydrophobicity/hydrophilicity properties are the most important physical properties to determine

the membrane permeability of small drug-like molecules. Additionally, with molecular fingerprints, the

LASSO model suggests that certain chemical substructures can significantly affect the permeability

of organic molecules, which closely connects to the identified main physical properties. Moreover,

the DNN model using molecular fingerprints can help develop a more accurate mapping between

molecular structures and their membrane permeability than LASSO models. Our results provide deep

understanding of drug–membrane interactions and useful guidance for the inverse molecular design of

drug-like molecules. Last but not least, while the current focus is on the permeability of drug-like

molecules, the methodology of this work is general and can be applied for other complex physical

chemistry problems to gain molecular insights.

1 Introduction

Permeability of small drug-like molecules across lipid membranes
characterizes one of the most important physicochemical proper-
ties of potential drugs.1–6 Study of the passive permeation of drug
molecules, driven by a concentration gradient, is of great signifi-
cance to understand the molecular mechanism behind, and most
importantly, to facilitate new drug design in pharmaceutical
applications.7–9

The most widely adopted metric to evaluate permeability is
the partition coefficient of a molecule, which is physically
related to the potential of mean force (PMF) and local diffusivity
across lipid membranes by the following inhomogeneous
solubility-diffusion model:2,10

P�1 ¼
ð
z

expðGðzÞ=kBTÞ
DðzÞ dz (1)

where P is the permeability coefficient, kB and T are the Boltzmann
constant and absolute temperature, and G(z) and D(z) are the PMF
profile and local diffusivity distribution along the direction of
membrane thickness z, respectively. Another common metric is to
evaluate PMF alone since diffusion is a physical process mainly
driven by concentration gradient while relatively insensitive
to molecular types.11,12 Therefore, in computer simulations, the
distribution of diffusivity across lipidmembranes is assumed to be
the same for small organic molecules for simplicity.12

There are several different ways to quantify membrane
permeability. Experimental measurements of the partition
coefficient of small organic molecules across certain membranes
can be carried out by, for example, high-performance liquid
chromatography (HPLC)14 and the shake-flask method.15

However, experimental measurements are very time- and cost-
consuming, which makes them intractable by doing one-by-one
screening of massive candidates of molecules. Additionally,
they can hardly provide a passive transport mechanism at the
molecular level.16 Furthermore, since the chemical space of
potential drug-like molecules is extremely large, as is approximated
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to contain 1060–10100 molecules,17,18,19,20 a study of a small range of
organicmolecules in the whole chemical space is not universal and
heuristic. As a result, experimental methods are not suitable for
high-throughput screening (HTS),12 which is the most common
approach to predict the pharmacokinetic properties and screen
potential drugs in pre-clinical drug development.21

On the other hand, physics-based molecular dynamics (MD)
simulation provides a tractable way to study drug permeability.
Through MD simulations, the PMF profile and local diffusivity
can be obtained simultaneously, which (when necessary) can
be used to compute the permeability coefficient P using the
inhomogeneous solubility-diffusion model. For example, using
all-atom MD (AAMD) simulations of the PMF, Kim et al. were
able to verify the selectivity of certain antibiotics to target only
bacteria’s membrane which does no harm to the mammalian
membrane in their molecular design of antibiotics.9 However,
AAMD modeling of the permeation of drug-like molecules
across lipid membranes is extremely computationally expensive
to explore the vast chemical space.2 To deal with this issue,
coarse-grained molecular dynamics (CGMD),22,23,24,25,26 by
reducing the complexity and degree of freedom of the simula-
tion system through coarse-graining, enables accelerated
exploration of the large chemical space with reasonable com-
putational cost. A brief illustration of the CGMD simulation
framework is given in Fig. 1a. With this simulation technique,
the publicly available data of membrane permeability is enriched.
For example, a recent work by Menichetti et al.12 explored the
chemical space of 511427 small drug-like molecules using CGMD
simulations by considering the coarse-grained degree and hydro-
phobicity of these molecules.

In addition to experimental measurements andMD simulations,
statistical methods, such as linear regression, have long been
used to study the quantitative structure–activity relationship
(QSAR) in pharmaceutical engineering.27,28 Thanks to the recent
advancements of machine learning (ML) and artificial intelli-
gence techniques, especially deep learning (DL), deep neural
network (DNN) based methods have been another important

workhorse for permeability prediction. Using several layers of
perceptrons, DNN can learn any continuous functions,29 which
is one of the reasons why it is so powerful and popular
nowadays. Therefore, DL has the potential to find the complex
and underlying relationships between a molecular structure and
its permeability with high accuracy and efficiency. Though DNN-
based models are very advantageous in some situations, other
ML methods such as the LASSO model can still be beneficial in
revealing molecular insights into drug–membrane interactions,
as will be presented in this study.

In the development of ML models, the efficiency of the ML
models to make new predictions instantaneously with less cost
is of great importance in the mind of the developers. For
example, though it is found that12 acidity pKa and bulk parti-
tioning free energy barrier from water to membrane midplane
DG have an extremely high correlation with membrane perme-
ability log P, these two descriptors are not readily available to
make instantaneous predictions for new molecules. Rather,
expensive computer simulations are needed to obtain these
two descriptors in order to feed into ML models. Thus, in this
work, we aim to link molecular descriptors and fingerprints30

to the permeability of small organic molecules, which are easily
obtained using popular cheminformatics packages, e.g. RDKit.31

Moreover, taking advantage of ML techniques to study drug–
membrane interactions, there are two main questions we are
trying to answer. Firstly, what are the main features determin-
ing the permeability of small organic molecules across lipid
membranes? Secondly, can an accurate structure–property
relationship be constructed using ML methods? We find that
LASSO and DNNmodels are able to answer these two questions,
respectively.

In this paper, we adopt two types of ML methods and two
different representations of organic molecules to study the
drug–membrane interaction problem as illustrated in Fig. 1b.
In the first scenario, a linear regression method called LASSO32

is adopted to quickly find the main features (descriptors and
chemical substructures) of the molecules. The most important

Fig. 1 Computational methods for drug–membrane interactions. (a) Coarse-grained molecular dynamics (CGMD) simulations in which three examples
of organic molecule are first mapped to their corresponding Martini representations, as indicated by the numeric indexes. The umbrella sampling
method13 is then used to quantify their potential of mean force (PMF) profiles across lipid membranes (for simplicity only one profile is displayed); (b) the
machine learning (ML)-assisted approach in which the organic molecules are firstly converted to their molecular fingerprints and/or descriptors. These
features are then used by ML models to predict free energy barriers across lipid membranes. It is assumed that ML models are established by training on
the existing CGMD data.
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molecular properties and substructures are revealed by the LASSO
model. In the second scenario, the DNN method is employed to
build a more accurate predictive model, in comparison with the
LASSO model, linking molecular structures to the permeability
property for organic molecules. We expect that our results can
be further applied to design drug-like molecules with different
membrane permeabilities in the near future.

2 Computational method

In a ML-based study, the database, featurization, and ML
models are key ingredients,30 which are described in detail in
this section.

2.1 Database

The database of this study comes from the published
literature,12,33,34 where data containing small drug-like mole-
cules are publicly available. Through the coarse-grained Martini
model,35 the authors were able to perform high-throughput CG
simulations of drug-like molecules across a 1,2-dioleoyl-sn-glycero-
3-phosphocholine (DOPC) lipid bilayer through the umbrella
sampling technique.36 In this way, a large number and range of
small organic molecules have been studied in detail.

The organic molecules, in the form of coarse-grained Martini
beads, are divided into three categories, namely unimers, dimers,
and trimers, each of which has one, two, and three Martini beads,
respectively. The number of molecules in each category is shown
in Fig. 2a. In the current database, unimer and dimer data are
taken from CGMD simulations,12 while trimer data are from
taken CG Monte Carlo (CGMC) simulations.33 One issue with
the public data is that in the original CGMD database, the label is
bulk partitioning free energy of water/octanol for unimers and
dimers, but not that of water/membrane. However, these data can
be easily converted to the bulk partitioning free energy of water/
membrane since a linear relation exists between bulk partitioning
of water/octanol and water/membrane for unimers and dimers.37

Therefore, a big and valid chemical database containing a large
number of molecules and associated permeability values (DG) is
obtained for the current ML-based study.

To have direct visualization of the chemical space and PMF
distribution, using representative data points is a more cost-
effective way. Visualization of the total database of 770 231 data
points would otherwise be very time-consuming and exhausting.
Therefore, 8000 data points are extracted from the total database
using the K-means clustering technique38 based on similarities
between molecules in the form of Morgan fingerprints in 1024
bit.39 Specifically, 1000, 4000, and 3000 data points are selected
from unimers, dimers, and trimers, respectively, as shown in
Fig. 2b. During clustering of these molecules, the total data are
firstly divided into N clusters, and then one data point from each
cluster is selected to form the selected database. Note that we
employed K-means not for finding clustering features of them, but
for data reduction or selection. That is, selecting representative
and enough candidates for ML model development, which will be
justified more in the following part.

The adopted selection method is superior to a random
selection of data points, which cannot guarantee that the
selected data are uniform and representative of the total data
points. Fig. 2c, e and g show the t-SNE plot40 of selected and
unselected data points from each category of unimers, dimers,
and trimers. Fig. 2d, f and h show the cluster distributions of
unimers, dimers, and trimers. One can see that the distribution
is nearly uniform in each category, which confirms that the
selected data are uniform and representative. In plotting the
t-SNE figures using the scikit-learn package,41 the fingerprints
of organic molecules are transformed by principal component
analysis (PCA) using 50 dimensions first and then followed by
the nonlinear t-SNE transformation to ensure reasonable overall
variance.42

Fig. 3 plots the PMF distribution of the selected data points.
Fig. 3a shows the distribution of all categories, while Fig. 3b
shows the individual distribution of each category. There are
two main observations. Firstly, the overall PMF distribution for
each category is nearly symmetric about the zero value and in a
bimodal shape; secondly, the range and shape of the distribu-
tion for each category are different. Unimers are in a narrow

Fig. 2 Database information. (a) Count of unimers, dimers, and trimers in
the total database; (b) count of unimers, dimers, and trimers in the selected
database (8000 data points in total); (c) t-SNE plot of selected and all
unimers in the database; (d) distribution of divided clusters of unimers;
(e) t-SNE plot of selected and all dimers in the database; (f) distribution of
divided clusters of dimers; (g) t-SNE plot of selected and all trimers in the
database; and (h) distribution of divided clusters of trimers.
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and concentrated range, while the distribution curves are wider
and more uniform for dimers and trimers. Fig. 3c shows the
t-SNE plot of all the selected data points. One can see that
unimers are more widely distributed than dimers and trimers;
while Fig. 3d gives the corresponding PMF distribution, which
is consistent with the observations in Fig. 3b.

2.2 Feature representation

In terms of molecular featurization, different methods have
been widely used to predict partition coefficients, which mainly
fall into two classes: substructure-based and property-based
features.43 Though the graph-based representation, an emer-
ging molecular representation, seems to have huge potential in
ML model development, it still uses atomic and pair properties
to form the molecular featurization.44 Thus, we classify it into
property-based features.

In a substructure-based representation method, the simplified
molecular-input line-entry system (SMILES) notation45 for an
organicmolecule is usually adopted, which is then used to generate
molecular fingerprints carrying the substructure information of the
molecule. Note that SMILES is a specification in the form of a line
notation for describing the structure of chemical species using
short ASCII strings.46 The advantage of this representation is that it
converts the molecular formula into a text form that can be
processed by a computer. For example, the SMILES form can not
only be converted into fingerprint vectors39 or molecular-graph-
based vectors;44 but also be employed directly as input features in
ML models, e.g. a grammar variational autoencoder.47

On the other hand, property-based features or so-called
molecular descriptors,48,49 which can be obtained either by
experiments or theoretical computations, are mathematical
representations of spatial, physical, and/or chemical informa-
tion of organic molecules. Utilization of molecular descriptors
has facilitated the development of QSAR in the pharmaceutical
engineering field.50,51,52,53 In this work, molecular descriptors
and fingerprints are chosen as molecular features for small
organic molecules.

Currently, there are many cheminformatics packages that
can easily generate molecular fingerprints and descriptors from
the SMILES form of a molecule, such as RDKit.31 RDKit is used
in this work to generate Morgan fingerprints in 1024 bits and
all descriptors that are available in the package (200 in total) for
molecular featurization.

2.3 ML algorithms and model training

To develop QSAR, ML regression algorithms have been widely
applied which define a mapping function f = f (x;w) from input
variables x (molecular featurization) to output variables f (free
energy barrier values in the present work), where w are the
associated weights in this regression function. In general, the
input and output variables can be scalar, vector or tensor. A ML
algorithm determines the weights by minimizing the loss
function, such as the mean squared error (MSE) between
predicted values and true values, on given data named ‘training
data’. The minimization process is the process of training, in
which the model keeps updating the weights until the mini-
mum loss is obtained. In different ML models, the mapping
functions and loss functions may be designed differently,
which differentiates various ML models.

In this work, the LASSO model and DNN model are adopted.
The LASSO model, implemented using the scikit-learn package,42 is
able to find the main features (molecular descriptors and finger-
prints) since the use of regularization can shrink the unimportant
features and leave only important features. Thus, it can prevent the
model from overfitting the data. Moreover, it helps to explain the
PMF distribution given in Fig. 3 and to provide molecular insights
into drug permeability across lipid membranes; the DNN model,
implemented using the Tensorflow platform54 and taking advantage
of a large data set, is able to build a more accurate link between
molecular structures and their permeabilities. In training the LASSO
model, since increasing the data size does not necessarily improve
the performance of regular ML models such as linear regression,55

only the selected 8000 data points are used for model development.
While in training the DNN model, all data points are used.

In the development of the ML models, it is found that the
order of training data significantly affects the performance of
MLmodels in terms of stability and robustness, as shown in the
box plot of Fig. 4. It is important to see that the performance
of the LASSO model using ordered data varies significantly,
compared to the shuffled data. Note that the original data in
the referenced literature were stored orderly from simple to

Fig. 3 Potential of mean force (PMF) distribution. (a) The density distribu-
tion of PMF of the selected data points; (b) the distribution of PMF of the
selected unimers, dimers, and trimers; (c) t-SNE plot of the selected data
points; and (d) spatial distribution of the PMF of selected data points.

Fig. 4 Performance comparisons of the LASSO model using molecular
descriptors. (a) Using shuffled selected data points and (b) using original
ordered data points.
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complex molecules. Thus, the data shuffle technique is adopted
in training both ML models. To avoid overfitting of the data and
construct an accurate MLmodel, various advanced techniques are
selected. Specifically, in building the LASSO model, the n-fold
cross-validation technique56 is employed to make sure stable
models with less variance of prediction ability are developed;
while in building the DNN model, train/test/validation data split,
dropout, early stopping57 and checkpoint techniques are applied
to select the best model during training.

3 Results
3.1 LASSO model reveals molecular features affecting
membrane permeability

In training the LASSO models, molecular descriptors and
fingerprints are used for molecular featurization separately.
The 10-fold cross-validation technique is applied to ensure the
development of a stable model with less variance of prediction
capability.

The R2 correlation and mean squared error (MSE) score of
the LASSO model using molecular descriptors are plotted in
Fig. 5a and b. It can be seen that the performance of the LASSO
model is comparable on the training dataset and test dataset.
Additionally, the deviations of scores are very small. Thus, the
LASSO model obtained is stable and robust.

With the trained model at hand, important molecular
descriptors are found by analyzing the weights of the LASSO
model. There are 200 total weights associated with 200 mole-
cular descriptors. All weights are ordered by the ratio of their
absolute weights to the total absolute weights. It is found that
only 39 weights are nonzero, which means that they have roles
in the permeation process. Among these nonzero weights,
16 weights take up over 80% (about 81.13%) of the total
absolute weights, the molecular descriptors associated with
which are called main molecular descriptors, as listed in Table 1.

To confirm the validity of these main molecular descriptors,
the results of using only the 16 main molecular descriptors and
200 molecular descriptors on the total database are compared, as
shown in Fig. 5c and d. As can be seen that using only 8% of the
total molecular descriptors gives comparable performance of the
LASSO model, indicating that using main features for ML model
development is a cost-effective way, especially when a very large
database is involved.

Further analysis of these main molecular descriptors58

indicates that the electro-topological, electrostatic, polarizability,
and hydrophobic/hydrophilic properties of organic molecules are
the crucial factors influencing the permeation process. This is
consistent with the like-likes-like principle.59 Since the lipid
bilayer core is hydrophobic, small molecules are less favorable
to permeate if they are more polarized and hydrophilic. Therefore,
when doing large scale screening, these four molecular properties
can be selected as the most important values to assess their
permeability properties.

These main molecular descriptors derive certain under-
standing of the drug–membrane interaction problem to some
extent. However, they are too general to reveal molecular level
insights. Specifically, it would be better if decisive substructures
can be known. Towards this goal, the LASSO model is again
adopted while molecular fingerprints are used as the input
features of the ML model. Morgan fingerprints with 1024 bits
and 2-bond length as the radius are generated for the selected
8000 data points. 10-Fold cross-validation is also employed to
obtain a stable model. The R2 and MSE scores are plotted in
Fig. 6. Again, comparable performances of the LASSO model
on both the training dataset and test dataset are observed for
R2 and MSE metrics, which confirms the stability of the
trained LASSO model.

Fig. 5 Performance of the LASSO model using molecular descriptors and
10-fold cross-validation. (a and b) The R2 correlation score and MSE score
of the LASSO model using only selected database; (c and d) R2 correlation
score and MSE score for the LASSO model using only main molecular
descriptors and total molecular descriptors on the total database.

Table 1 The main molecular descriptors and associated weights found by
the LASSO model

Mol. des. Abs. wt ratio Mol. des. Abs. wt ratio

FpDensityMorgan3 0.212 PEOE_VSA2 0.027
SMR_VSA3 0.086 PEOE_VSA6 0.026
VSA_EState9 0.070 fr_allylic_oxid 0.026
PEOE_VSA1 0.066 VSA_EState8 0.025
SlogP_VSA2 0.065 PEOE_VSA8 0.023
VSA_EState4 0.065 EState_VSA5 0.019
SlogP_VSA5 0.038 SMR_VSA5 0.018
EState_VSA8 0.030 EState_VSA1 0.018

Fig. 6 Performance of the LASSO model using molecular fingerprints and
10-fold cross-validation. (a and b) The R2 correlation score and MSE score
of the LASSO model using only selected data points.
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Following a similar procedure to the previous analysis of
molecular descriptors, we can also extract important informa-
tion of molecular substructures influencing the permeability of
small organic molecules across lipid membranes. It should
be noted that since a radius of two is used to generate the
Morgan fingerprints, the substructures here only represent the
chemical environments with at most two-bond length. Namely,
only 0-bond (atom), 1-bond, and 2-bond connectivity informa-
tion is captured. For hydrophobicity property evaluation, this
radius is large enough; while for other properties, the size of
the radius may need to change accordingly.

From the above LASSO model, only 17 weights are nonzero,
which correspond to 17 bit positions, the bit indices of which
are 33, 90, 128, 147, 222, 283, 294, 342, 378, 623, 650, 656, 694,
725, 807, 881, and 935. Using appropriate molecules which
have a bit-on value, viz. 1, in these 17 bit positions by the RDKit
package, the main substructures can be directly visualized. It is
found that although the mapping from the bit position to
substructure is not strictly one-to-one, there is still a prevailing
substructure for each bit position with very high percentages of
presence. Here we only plot these substructures that are shared
by most of the eligible molecules. For example, there are 5939
molecules in the selected database (8000 in total) that have
values of 1 at bit position 33. Among them, 5897 molecules
(about 99.3% presence rate) map to the primary carbon atom as
shown in Fig. 7.

By the same procedure, 14 unique substructures are identified,
including 11 distinct chemical environments of carbon, nitrogen,
and oxygen atoms and three different bonds (bit position: 283,
294, and 222 which are two methyl groups connected to the
secondary and tertiary carbon atoms, and one alcohol group), as
shown in Fig. 7. These substructures indicate that they are critical
to determine the membrane permeability of small organic mole-
cules. This is consistent with domain knowledge2 and can be
explained qualitatively in the following way. Molecules dominant
in nitrogen- and oxygen-based substructures have more signifi-
cant polarizability and hydrophilicity. Therefore, they are more
similar to water and are restricted to pass through lipid mem-
branes. Thus, these molecules should have high free energy
barriers. On the other hand, alkanes, which are dominant in
carbon-based substructures, are favorable to permeate across lipid
membranes and consequently have low (negative) free energy
barriers.

To further demonstrate the importance of these substruc-
tures, 10 molecules with the highest free energy barriers and
another 10 with the lowest free energy barriers are taken from
the selected database, as shown in Fig. 8. The left two columns
of molecules have the highest free energy barriers (difficult to
permeate); while the right two columns of molecules have the
lowest free energy barriers (easy to permeate), which are clearly
differentiated by the main substructures found using the
LASSO model. One can see that molecules in the left two
columns are dominated by oxygen and nitrogen substructures;

Fig. 7 Main substructures found by the LASSO model in certain bit
positions (the labeled integer value), in which blue dots without label in
the center and non-labeled nodes are carbon atoms. Atoms with grey
bonds are 0-bond (atoms) substructures indicating their bonding informa-
tion; while atoms with black bonds are the captured 1-bond (first nearest
neighbor) information.

Fig. 8 Organic molecules with the highest (left two columns) and lowest
(right two columns) free energy barriers from the selected database.
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while the molecules in the right column have only carbon
substructures. This observation is in excellent agreement with
the findings of the substructures. The reason for selecting these
20 molecules rather than a random selection of molecules is to
differentiate the roles of these main substructures. That is,
when random molecules comprised of both nitrogen (or oxygen)
and carbon atoms are selected (their free energy barriers are
intermediate), it would be difficult to tell that these substructures
are important since their effects are neutralized.

The finding of substructures can also help explain the
distribution of free energy barriers in Fig. 3b. For unimers with
just one bead, the free energy barriers are mostly either
negative (more lipid-like) or positive (more water-like) with
small absolute values. Thus, the distribution of unimers tends
to be in a narrow range and sharp bimodal. However, for
dimers and trimers with more constituents of single beads,
the combinations of unimers with small negative or positive
values forming dimers and trimers give rise to a wider range
and flattened bimodal distribution. It is seen that the range of
dimers is approximately twice that of unimers. The distribution
of trimers is even much wider and more flattened than that of
dimers, since they are longer and have more combinations.
But there is no three-time relation of the range for trimers and
unimers, which indicates that simple linear combination alone
is not enough to explain the properties of complex molecules by
using the properties of single constituents.

3.2 DNN model leads to accurate prediction of membrane
permeability

The DNN model is very powerful in learning latent complex
structure–property relationships. Nevertheless, it can easily
overfit data. To avoid overfitting and obtain a precise model,
the early stopping (with certain epochs patience), and dropout
(rate = 0.5) techniques are applied. The train–test–validation
split ratio adopted in this work is 90–5–5 since the size of the
database is very large. The DNN model is first trained and
tested on the training and test dataset, and then validated
by the unseen validation dataset. During model training,
checkpoints are set to save the best model.

The input of the DNN model is 1024-bit fingerprints; the
output is a single node of the free energy barriers DG. Two
hidden layers with 600 and 100 nodes with the rectified linear
unit (ReLU) being the activation function are employed. The
loss function is MSE between train and test datasets, while the
evaluation metric is the mean absolute error (MAE) between
predicted DG and true value on the validation dataset.
These values are recorded to log the learning curves of the
DNN model.

Fig. 9 plots the performance of the DNN model. As seen
from Fig. 9a the model trained at about epoch 11 has compar-
able ability on both the training dataset and test dataset, at
which the model is saved as the best model. Fig. 9b shows the
prediction of the DG values of the trained DNN model on the
validation dataset. A higher correlation between molecular
structures in the form of fingerprints and the permeability is
established, compared to that obtained by LASSO models.

4 Discussion

With LASSO and DNN models, we are able to identity main
molecular features affecting the permeability of small drug-like
molecules across the membrane, i.e., important physical
descriptors and substructures, and to develop a relatively
accurate correlation function between a molecular structure
and its permeability (DG). One can see that the model perfor-
mance of LASSO using molecular descriptors is better than that
using molecular fingerprints. This suggests that molecular
descriptors are more suitable for ML model development than
fingerprints in a linear regression model. In addition, one can
notice that only eleven 0-bond (atoms) and three 1-bond sub-
structures stand out by the LASSO model using molecular
fingerprints. However, this never means that other substructures
(e.g. 2-bond substructures) are not important at all. The LASSO
model can actually capture 2-bond substructures, but their
presence rate is much lower than these identified substructures,
due to their less common presence. These fourteen substructures
are discovered merely from the selected 8000 molecules, in terms
of membrane permeability. If different numbers or types of
molecules are adopted to feed into the LASSO model for evalua-
tion of other properties, the main substructures may vary to some
degree.

These newly identified main substructures can be further
verified by commercial drugs qualitatively, as shown in Fig. 10.
As seen from this figure nitrogen- and oxygen-based substruc-
tures are dominant in these drug molecules. Thus, these drugs
have positive free energy barriers, i.e. difficult to pass through
lipid membranes. This result is promising for the inverse
molecular design of drug-like molecules. For inverse molecular
designs, generative models are usually adopted for molecular
generation.60,61 In the case of molecular design with good

Fig. 9 Performance of the DNN model. (a) Loss evolution for training and
test datasets during the training process; (b) the predictability of the trained
DNN model on free energy barrier DDG using the validation dataset.

Fig. 10 Free energy barriers of three representative commercial drug
molecules.
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membrane permeability (lower free energy barrier DG), generated
molecules with more carbon-based substructures will be given
rewards, while molecules with more oxygen- or nitrogen-based
substructures will be given penalties, through the reinforcement
learning technique.62 Consequently, new molecules are generated
towards the desired range of membrane permeability. It has to be
noted that for real drug design, other properties such as solubility,
melting point, hydrophobicity, inhibitory activity and toxicity are
also very important, and must be considered simultaneously as a
multi-objective optimization problem.

Though the correlations in both LASSO models are not high,
they can help identify important molecular features affecting
the permeability of small molecules across lipid membranes as
discussed above. Since no single method alone can solve all the
questions, a method can be useful at certain aspects provided
that the findings by the method are properly verified and
consistent with domain knowledge. Therefore, we suggest that
if one wants to find main features within the problems of
interest in qualitative sense, the LASSO model might be useful;
or if one wants to build a higher correlation model to make
predictions, the DNN model is a better choice. Furthermore,
one can even use LASSO as a pre-processing tool on the
database to get some useful insights from the problem before-
hand, and feed these findings by the LASSO model into the
DNN model to develop a better predictive model.

Interestingly, it is seen that the performance of the LASSO
model using total database is worse than that using selected
8000 data points. We believe that this is due to the feature
of the database. Though many molecules are present in the
database, the free energy barriers are not numerically com-
puted one by one. Rather, they are computed by Martini coarse-
graining. For example, there are only 26 unique unimer bead
types in the database, while there are 92 458 small molecules
mapped to these 26 bead types. For molecules mapped to the
same bead type, they have the same free energy barrier,
i.e. there are 26 unique free energy barriers of these 92 458
small molecules. This is reasonable from a physical perspective
since different molecules can be similar and thus have similar
free energy barriers. However, from the perspective of ML
model development, it is not a good thing since these mole-
cules are like repeated data points. This issue can also be
reflected from both Fig. 8 and 9. As shown in the left two
columns of Fig. 8, there are many molecules with the same
positive free energy barriers (DG = 10.52). Similarly, in Fig. 9b,
there are many different predicted free energy barriers corres-
ponding to the same true values of DG. This leads to very
significant vertical patterns in the positive region of DG. This
issue is especially worthy of notice since currently the CGMD
simulation is a main computational source to provide big data
for data-driven studies such as this work. Possible solution to
improve the ML model includes pre-processing of the data
before model development. For example, one can only use repre-
sentative data, rather than the total data for model development;
and perhaps it is better to use Martini bead types as input
features of ML models. We leave it for future studies, as it is not
the scope of the present study.

5 Conclusions

In this work, two types of ML models, namely LASSO and DNN
models, are used to investigate the drug–membrane interaction
problem. The LASSO model using molecular descriptors reveals
that electro-topological, electrostatic, polarizability, and hydro-
phobic/hydrophilic properties of a molecule are critical proper-
ties to determine its membrane permeability. Additionally,
using molecular fingerprints integrated with the LASSO model,
14 unique substructures are identified, which are in excellent
agreement with the main molecular descriptors and domain
knowledge. Last but not least, using the DNN model, a rela-
tively higher correlation between molecular structures and
membrane permeability is developed. These findings can help
us understand the physical problem of drug–membrane inter-
action and provide guidance for the inverse molecular design of
drug-like molecules in the near future.
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