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ABSTRACT: Cyclic block copolymers are predicted to
assemble into nanostructured domains up to 40% smaller
than their linear analogues, making them promising alternatives
for nanoscale patterning applications. The limited cyclic block
copolymer structures observed experimentally, however, have
not met the domain reductions predicted by scaling theory.
Through a systematic dissipative particle dynamics simulation
study of linear and cyclic block copolymer assembly into
lamellar and cylindrical nanostructures, we explore these
discrepancies. We find standard implementations of scaling
theory, which assume a cyclic BCP behaves as a linear molecule
of half the contour length, fail to account for finite chain size
effects, resulting in overpredictions of the extent of domain shrinkage upon cyclization. We propose a revised scaling law that
clarifies the interplay of chain length, segregation strength, and chain architecture in determining domain spacing reduction
attainable by molecular cyclization and offers an explanation for the discrepancies between prior theoretical predictions and
experimental results.

1. INTRODUCTION
Advancements in photolithography to produce increasingly
finer features have spurred an exponential growth in computing
power over the past 50 years, doubling the number of
transistors on silicon wafers approximately every 18 months.
Realizing features 10 nm or smaller by photolithography,
however, is prohibitively expensive due to the need for high-
powered, extreme ultraviolet light sources1 with superior
resolution to circumvent the diffraction limit of light.2

Nanopatterning by block copolymers (BCPs), which form
nanoscale assemblies with dimensions dictated by polymer
molecular weights, chemistry, and architecture, offers an
attractive, potentially lower cost alternative to photolithog-
raphy.
BCPs consist of two or more covalently bound chemically

distinct homopolymer blocks. Thermodynamic incompatibility
between blocks drives phase separation; however, the covalent
linkages limit segregation to the nanometer scale. As a result,
BCPs self-assemble into a variety of nanoscale morphologies
that minimize the free energy under the constraints imposed
by the polymer’s chemical composition and topology.3,4

Generally, the equilibrium diblock copolymer (i.e., AB BCP
where A and B refer to the two blocks) self-assembled
nanostructure is dictated by the volume fraction of the A block
( fA = 1 − f B) and the segregation strength (χN, the product of
the Flory−Huggins interaction parameter, χ, and the BCP
degree of polymerization, N). Symmetric linear BCPs ( fA = f B
= 0.5) form lamellar structures above the order−disorder

transition (χN|lin
ODT ≈ 10.5), while asymmetric linear BCPs ( fA

≠ f B) can form hexagonally packed cylinders (HPC), spheres,
or bicontinuous structures. Significant research has focused on
the use of the lamellar and cylindrical BCP morphologies for
“bottom-up” nanolithography, although commercial applica-
tions have been limited. The ability to reliably pattern large
scale, defect-free, sub-10 nm features would significantly
advance BCP nanolithography, meeting the microelectronics
industry’s needs for improved pattern resolution.
Linear BCP feature sizes depend most strongly on N, which

controls the overall polymer size, and weakly on χ, which
characterizes the degree of incompatibility between the
different blocks. Thus, the most direct approach to reducing
linear BCP domain spacing has been to synthesize shorter
chains. High χ systems allow for shorter chains to maintain
order, but the large surface energy difference between blocks
introduces additional challenges for BCP synthesis and
assembly.5−8 Use of multiblock and nonlinear BCP architec-
tures is a promising paradigm for overcoming these challenges.
For example, both linear ABA triblock and (AB)x star
copolymers form smaller ordered domains9−15 at lower
χN13,16,17 with narrower interfaces18 than their AB counter-
parts.
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Cyclic BCPs are expected to form domains significantly
smaller than their linear analogues while exhibiting superior
thin film stability19 and assembly dynamics.20−22 Theory,23,24

simulation predictions,25−27 and experimental observations28,29

have all found that the phase diagram of cyclic BCPs resembles
the linear phase diagram with the ODT shifted to a slightly
higher segregation strength (χN|cyc

ODT ≈ 1.7χN|lin
ODT), but with

smaller nanostructures. Poelma et al., for example, found that
cyclic polystyrene-b-poly(ethylene oxide) (cyc-(PS-b-PEO))
formed cylindrical domains 25% smaller than those of linear
BCPs with the same chemistry and degree of polymerization.30

When they tried to achieve similarly sized domains with a
linear BCP of half the molecular weight, the system was
disordered. Similarly, Gartner and co-workers showed that
cyclizing linear polystyrene-b-poly(oligo(ethylene glycol)
methacrylate) (PS-b-POEGMA) decreased domain spacing
by 18−21%.31 A consensus of theoretical and simulation work
suggests that cyclization can decrease diblock copolymer
feature sizes up to 40%.9,23,24,27 However, to our knowledge,
no one has systematically explored the relationship between
degree of polymerization and intermolecular interactions in
determining feature sizes formed by cyclic copolymers.
Semenov’s theoretical framework32−34 has been widely

influential for predicting linear BCP feature sizes in the strong
segregation regime (χN ≫ χN|lin

ODT). In this theory, the free
energy of the BCP melt is expressed as a linear combination of
contributions due to unlike monomer contact at the domain
interfaces, which favors domain swelling to minimize inter-
block contact, and chain stretching, which opposes domain
growth that drives chains away from their ideal Gaussian
conformations.33,35 Minimization of the free energy with
respect to the domain spacing, d, yields the scaling law

d N1/6 2/3βχ= (1)

where the prefactor β depends on the characteristic segment
length and fA.

4,36 Experiments with lamellar BCPs have
confirmed the strong dependence of domain spacing on N
with scaling exponents ranging from 0.61 to 0.64,37,38 but to
our knowledge, this relationship has not been tested for
asymmetric BCPs. The weaker χ dependence has proven
challenging to study experimentally but has been verified by
simulation.31,39 Additionally, the derivation of strong segrega-
tion theory (SST) assumes the polymers are very long (χN →
∞) which may limit its applicability for lithography, where N is
minimized to shrink feature sizes. Most critically, eq 1 was
developed in the context of linear BCPs, such that its
applicability to nonlinear architectures is uncertain.
Previous theoretical and simulation works have concluded

that a cyclic BCP effectively behaves as a linear molecule of
half the contour length.9,23−25,27,40−42 However, this model
apparently overestimates domain spacing reduction that should
be achieved by cyclizing a linear diblock copolymer. For
instance, on the basis of eq 1, Marko hypothesized that cyclic
BCP domain size should scale as (N/2)2/3 in the long chain
limit,23 implying that cyclization should reduce domain spacing
by 37%. Meanwhile, the limited experimental data available
comparing linear and cyclic diblock copolymers have found
only 18−25% reductions.30,31 In addition, experiment and
simulation comparing the mean-square radius of gyration (Rg

2)
of cyclic homopolymers in solution to that of their linear
analogues have established that the g-factor (g = Rg,cyc

2/Rg,lin
2)

for these molecules does not follow the N/2 prediction, instead

ranging from 0.5 to 0.73 depending on molecular weight and
solvent quality.43−45

Motivated by the challenge of meeting nanolithography
design specifications for feature sizes, we use dissipative
particle dynamic (DPD) simulation to quantify the depend-
ence of BCP lamellar and HPC domain spacings on the
experimentally tunable parameters χ, N, and polymer
architecture (linear vs cyclic). We recognize that although it
is well-established that nonconcatenation requirements force
cyclic homopolymers in a melt to be significantly more
compact than the Gaussian prediction,46−52 the soft potentials
used in DPD may allow nonphysical bond crossing to occur.
However, the conformational impacts of nonconcatenation
increase with chain length, and very short cyclic molecules
show Gaussian scaling even in the melt state.46,50,51,53−56 The
high degree of coarse-graining in DPD makes DPD cyclic
polymers necessarily very short, suggesting they are in a regime
in which bond crossing will not impact the conformational
statistics. Also, while there is a wealth of work quantifying the
effects of nonconcatenation on cyclic homopolymer dimen-
sions, its impacts on BCP domain spacing are unknown. It is
not unreasonable to expect that nonconcatenation contribu-
tions to BCP free energy would be much smaller than the
interblock repulsion and chain stretching forces, both of which
are well-captured in the DPD representation.25,39,57,58

We therefore employ DPD in a first attempt to understand
the interplay of chain length, chemistry, composition, and
architecture in determining cyclic BCP domain spacings. Our
simulations generate computational “experimental” results for
linear and cyclic BCPs over a range of segregation strengths
and degrees of polymerization. These data are analyzed within
the context of SST with heuristic modifications that account
for polymer architecture and localized chain stretching at the
domain interface. Our revised scaling law is then applied to
understand how cyclization of linear BCPs impacts self-
assembly, illuminating the complex interplay of chain length,
segregation strength, and architecture in determining BCP
domain spacing and rationalizing the gap between theoretical
predictions and experimental observations for feature size
reduction by BCP cyclization.

2. MATERIALS AND METHODS
DPD is a coarse-grained simulation technique that represents the BCP
as a chain of soft beads, each representing tens of monomers,
connected by Hookean springs and interacting through soft pairwise
forces. The high degree of coarse graining and softness of the
interactions permits DPD to examine the phase behavior and
microstructure of BCPs as a function of χ, N, fA, and chain
architecture.25,39,57,59,60 A full description of the model can be found
in the Supporting Information, but briefly, interparticle forces in DPD
are broken up into a sum of pairwise conservative (Fij

C), dissipative
(Fij

D), and random (Fij
R) forces between particles i and j. Interactions

between bonded particles are modeled by using a Hookean spring
(Fij

S), which enforces bead connectivity and polymer architecture. The
conservative (energy-conserving) force enforces the chemical identity
of the constituent coarse-grained bead, modeled in DPD as a soft
repulsive interaction

a
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where aij is the DPD interaction parameter between beads i and j
(dependent on the chemical identities of the interacting beads) that
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represents the maximum repulsion at complete overlap, rij is the
distance between interacting beads, r  ij = rij/rij = (ri − rj)/rij is the
normalized direction vector pointing from j to i, and rc is the cutoff
distance after which interbead interactions vanish. For simplicity, we
set rc = 1 for all interbead interactions. The interaction between like
beads, aAA and aBB, which is set to 25, establishes the compressibility
of the system while the interaction between unlike beads, aAB, controls
miscibility between the two blocks. At a bead number density of ρ = 3
(the density of the simulations conducted here), the interbead
interactions can be mapped to the Flory−Huggins χ parameter via the
empirical correlation57

a a
1

3.27
( )AB AAχ = −

(3)

We note that since DPD is a coarse-grained simulation technique, we
cannot directly compare simulation and experimental values of χ.
Rather, DPD values of χ are typically calculated to match the
experimental segregation strengths, i.e., χNBCP|DPD = χNBCP|expt, to
affect a meaningful comparison between simulation and experiment.60

As discussed above, we recognize that the soft conservative force
allows nonphysical bond crossing and ring concatenation to occur in
DPD simulations. However, numerous simulations of BCPs with
novel topologies such as cyclic, star, and π-shaped demonstrate that
DPD captures the impacts of chain architecture on equilibrium
polymer nanostructure including shifts in bulk morphology and
feature size61−63 and solution micelle formation.64−67 In addition,
Huang et al. demonstrated that adding a spring−spring repulsion to
the DPD model (thus preventing bond crossing) had a negligible
impact on the morphologies and characteristic sizes of nanostructures
formed by BCPs of several different topologies.61 Our simulation
results show good agreement with experiment and strong segregation
theory (see the Results and Discussion section), suggesting that bond
crossing has a negligible effect on the minimum-energy conformations
of the BCP systems studied here.

DPD simulations of linear (lin-AmBn) and cyclic (cyc-AmBn) BCP
melts were performed using the LAMMPS software package.68 The
subscripts m and n indicate the number of monomers in the A and B
blocks, respectively, so that the overall degree of polymerization is
determined to be NDPD = m + n. Both symmetric ( fA = 0.5), lamellae-
forming and asymmetric ( fA = 0.25), hexagonally packed cylinder-
forming systems were simulated. The Flory−Huggins parameter was
varied from 3 < χDPD < 40, and the degree of polymerization ranged
from 6 < NDPD < 20 for linear BCPs and 6 < NDPD < 30 for cyclic
BCPs. The segregation strength was chosen to be sufficiently large
(χN > 30) so that all the systems simulated here are expected to
exhibit strong segregation-like domain scaling.37,38 A plot of d/
(χDPD

1/6NDPD
2/3 versus (χN)DPD supports the validity of this

assumption (see the Supporting Information); the Supporting
Information also includes a full list of the cyclic and linear BCP
simulations performed in this work. All simulations consisted of
81000 total beads in a periodic, cubic simulation box with side length
L = 30, corresponding to a bead number density of ρ = 3. Simulations
were started from random initial configurations and equilibrated for at
least 106 time steps. Following equilibration, production simulations
were conducted for 5 × 105 time steps. Structural quantities were
calculated from configurations generated during the production run
by averaging over a minimum of 50 configurations evenly sampled
over the entire production run.

3. RESULTS AND DISCUSSION
Above the ODT, symmetric linear and cyclic BCPs formed
lamellae (LAM) and asymmetric ( fA = 0.25) polymers formed
hexagonally packed cylinders (HPC) as shown in Figures 1a
and 1b, consistent with experimental and theoretical phase
diagrams. The characteristic dimension of the LAM (inter-
lamellar spacing between A or B domains) and HPC (inter-rod
center-to-center spacing) structures can be extracted from the
radial distribution functions (RDFs) between polymer beads.

Figure 1. Effect of cyclization on nanoscale feature sizes formed by symmetric ( fA = 0.5) and asymmetric ( fA = 0.25) block copolymers. Images in
(a) and (b) show VMD72 renderings of the equilibrated structures, while the graphs in (c) and (d) demonstrate the use of radial distribution
functions to measure domain spacing, d. d is related to the distance between the first and third (or i and i + 2) crossing points between gAA(r) (red
trace), gBB(r) (orange), and gAB(r) (gray) as further described in the main text. Because of the symmetry of the lamellar phase, gAA(r) = gBB(r) for
the symmetric case shown in (c). Linear radial distribution functions in (c) and (d) have been shifted upward by an arbitrary amount for clarity.
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For the symmetric LAM morphology, the RDFs between like
beads, gAA(r) and gBB(r), are equivalent and distinct from that
between unlike beads, gAB(r). The interlamellar spacing is
subsequently determined by the distance between the first and
third crossing points between gAA(r) and gAB(r), which bound a
single cycle of minima and maxima beyond the primary
packing peak near r ≈ 1,69 as shown in Figure 1c.
In the cylindrical structure, the symmetry between gAA(r)

and gBB(r) is broken due to the B monomers forming a
continuous domain, while the A monomers are confined to a
minority discontinuous domain. As a result, gBB(r) is relatively
featureless compared to gAA(r), while gAB(r) for the HPC
system is comparable to that for the LAM system (Figure 1d).
The cylindrical domain spacing is defined as the distance
between the first and third crossings of gAA(r) and gAB(r)

multiplied by a factor of 2 3
3

due to the hexagonal geometry of

the system (see the Supporting Information).70 Our RDF
analysis consistently finds that cyclic BCPs form domains
≈30% smaller than their linear counterparts in both the LAM
and HPC morphologies, demonstrating that DPD captures the
impact of chain architecture on domain spacing. We note that
BCP domain spacings can also be determined from static
structure factors or from density profiles. In a previous work,
we demonstrated that all three methods give results within 1%
of each other.71 We therefore only report spacings determined
from the RDF method in this article.
Figure 2 illustrates the impacts of N, χ, and polymer

architecture on feature sizes for the LAM (Figure 2a) and HPC
(Figure 2b) morphologies. In agreement with eq 1, LAM
domain spacings scale most strongly with N and comparatively
weakly with χ. Additionally, linear domain spacings increase
more sharply with N than those formed by cyclic polymers,
regardless of morphology. Finally, the LAM and HPC domain
sizes formed at a fixed χ display very similar scaling behavior
with N, indicating the polymer molecular weight plays a
dominant role in the domain size over the phase morphology.
On the basis of these observations, we describe a heuristic
modification of the SST scaling law (eq 1) that captures the
impact of chain topology and finite chain length on LAM and
HPC domain sizes.
Following the form established by SST, we propose that the

BCP domain sizes are described as

d βχ= Λγ ε (4)

where β and χ assume the same role as in eq 1, but N is
replaced with the polymer “extent” embodied by the parameter
Λ. Ideally the exponents γ and ε are 1/6 and 2/3, respectively;
however, we treat them as adjustable parameters.
We model Λ as the product of two variables: λ, an

architecture dependent term that grows with N, and σ, a
correction that accounts for chain stretching at the interface
(Figure 3). Considering random walk statistics41,42,73 and

experimental observations74 for polymer radius of gyration
(Rg

2), we propose λ is determined to be the number of bonds
in the polymer, which provides a measure of the contour
length, divided by the number of bonds between unlike
monomers. For the linear and cyclic polymers then

N 1linλ = − (5a)

and

N/2cycλ = (5b)

Figure 2. (a) Lamellar feature size scaling with N and χ. (b) Comparison of lamellar and HPC feature size scaling with N for χDPD = 4. In both
figures, points represent domain spacings measured from DPD simulation, and lines are the fits to eq 4.

Figure 3. Snapshots from DPD simulations of the equilibrated
systems of symmetric linear and cyclic BCPs (NDPD ∼ 10 and χDPD ∼
12) with exemplary chain conformations demonstrating the
components of eqs 4−7. λ is an architecture-dependent measure of
overall polymer size, represented by the dashed yellow circle. Bonds
between unlike monomers, bAB, are ∼35% longer than those between
like monomers, bAA = bBB; this interfacial stretching is incorporated
into the revised scaling law through the term σ.
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In the SST limit, N → ∞ and λlin → N as expected. For the
short, coarse-grained polymers simulated here, however, we
must consider the finite polymer length.
A secondary concern to applying SST is that it assumes each

polymer bond has the same average length. Even casual
examination of the simulation snapshots in Figure 3, however,
shows this assumption may not hold for the bonds pinned to
the interface between the A and B domains. In fact, the bonds
between unlike monomers seated at the domain interface, bAB,
are ∼35% longer than those between like monomers, bAA = bBB.
Because of the highly coarse-grained (i.e., very short) chains
used in DPD simulation, the localized interfacial stretching
contributes to the effective polymer length, especially for cyclic
BCPs, which contain two A−B bonds. Random walk theory
finds that the impact of the localized stretching can be
accounted for by the correction

b
b

1
1

1AB

AA

2

σ
λ

= + −

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (6)

which corresponds to the ratio of the mean-square bond length
of the actual BCP to the mean-square bond length assuming
each bond is of length bAA = bBB (see the Supporting
Information).
The interfacial bond stretching in a DPD model mirrors

differences observed experimentally between BCP chain
conformations near the microphase interface compared to
within the domain centers.75,76 For example, Deloche and
coworkers76 used 2H NMR to probe the orientations of PDMS
chains in strongly segregated linear PS-b-PDMS copolymers
and found that the PDMS chain segments near lamellar
interfaces were oriented along the lamellar normal (and
therefore made the strongest contributions to domain
spacing); segment orientations gradually became more
isotropic as distance from a PS block increased until chain
segments in the center 14% (1.7 nm) of each PDMS block
were randomly oriented. Therefore, while eq 6 may be unique
to DPD simulation, the underlying physical concept of two A−
B bonds in a cyclic BCP magnifying the impacts of interfacial
anisotropy on domain spacing is universal.
Combining eq 5 and eq 6 gives the polymer extent as

b
b

1AB

AA

2

λσ λΛ = = + −
i
k
jjjjj

y
{
zzzzz (7)

Equation 7 reduces to the asymptotic linear (Λ ∼ N) and
cyclic (Λ ∼ N/2) measures of polymer extent for infinitely
long chains but accounts for the short chain length effects
critical for translating scaling law predictions to experimental
systems.
We performed a least-squares fit of the revised scaling law

(eq 4) to our simulation results to determine β, γ, and ε. The
ratio bAB/bAA was taken as 1.356 based on an average of bond
length measurements from simulations of cyclic and linear
BCPs (see the Supporting Information). As demonstrated by
Matsen and Bates,77 β depends on both fA and BCP phase
morphology. Therefore, we fit our results with two distinct
prefactors, βLAM and βHPC. The fit parameters are reported in
Table 1. The fitted exponents γ (= 0.140) and ε (= 0.653)
closely match those predicted by SST (1/6 and 2/3),
providing confidence in the physics underlying the model.
The fitted prefactors βLAM and βHPC are nearly equal to one
another, falling within theoretical predictions78−81 that the two

parameters differ by −4% to +6% for LAM ( fA = 0.5) and HPC
( fA = 0.25) phases. The lines in Figure 2 show the fit of eq 4 to
the simulated domain spacings at selected χ values. We also
compare our fit of eq 4 against all simulation results in Figure
4. Overall, the comparison is excellent with a root-mean-square

error in the scaling model of 0.103, less than 2% of the
measured domain spacings when all phase morphologies and
chain architectures are considered.
To further validate our revised scaling law, we compare the

predictions of eq 4 against the available experimental results.
As noted above, a key motivation for utilizing cyclic polymers
is to achieve smaller features using the same molecular weight
polymer. Marko hypothesized that cyclic BCP domain size
should scale as (N/2)2/3 in the long chain limit,23 which, when
applied to eq 1, predicts cyclization reduces domain spacing by
37%, significantly more than the 18−25% reductions observed
in experiment.30,31 Our simulation results and eq 4, however,
predict a significant chain length dependence of the fractional
domain size reduction (Figure 5). As noted above, Poelma et
al. found that cyclization of low molecular weight PS-b-PEO
(Mn = 18 kg/mol, Nexp = 240) decreased the domain spacing
by 25%. Our revised scaling law matches that prediction when
NDPD = 6, corresponding to a coarse-graining of 40 monomers
per DPD bead. This degree of coarse-graining is well within
the range where DPD accurately reproduces experi-
ment.25,39,57,58,82,83 Applying the same degree of coarse-
graining to the Gartner et al. system of PS-b-POEGMA (Mn
= 18 kg/mol, Nexp = 200) predicts a 21% decrease in domain
spacing from cyclization, in agreement with the experimentally
observed values (18−21%). The consistency of the χ and N
scaling behavior for LAM and HPC features, recovery of the

Table 1. Fit Parameters of Eq 4 to the DPD Simulation
Resultsa

βLAM 0.832 ± 0.016
βHPC 0.842 ± 0.018
γ 0.140 ± 0.005
ε 0.653 ± 0.007
bAB/bAA 1.356

aError bars represent the 95% confidence interval determined by
bootstrap resampling with 1000 iterations.

Figure 4. Parity plot comparing simulated domain spacings and
model predictions. Overall, the RMS error between simulation and
scaling theory eq 4 domain spacings is less than 2% of the measured d
value.
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SST exponents and morphology-specific prefactors in eq 4, and
match between eq 4 prediction and experimental results give
us confidence in the revised scaling law to capture the impact
of cyclic chain architecture on domain size. More critically, the
revised scaling law shows that the ability of molecular
cyclization to shrink BCP domain spacings decreases with
polymer length, explaining why experimentalists have been
unable to obtain the previously predicted ∼40% reduction in
feature size.
A key consequence of the revised scaling law is that the

domain spacing of a cyclic BCP nanostructure can be predicted
from that of its linear analogue. It is worthwhile, then, to
consider the impact of scaling law parameter values on the
decrease in feature size achievable through molecular
cyclization. The β and χ contributions cancel when calculating
the percent reduction (see the Supporting Information),
indicating that domain shrinkage arises purely due to
cyclization-induced changes in the polymer extent (Λ). The
solid line in Figure 5 (case A) shows the reductions in domain
spacing from molecular cyclization that would be predicted by
eq 4 using the scaling exponents in Table 1. This prediction
agrees with both our DPD simulations and reported
experimental results. The lines in Figure 5 indicate that the
finite chain length effects (see eqs 5a, 6, and 7) are significant
up to NDPD ∼ 20. This DPD chain size corresponds to an
experimental degree of polymerization of Nexp = 800, a chain
length that would be challenging to synthesize and that would
be unable to self-assemble into sub-10 nm features even in the
cyclic architecture. We therefore conclude that the finite chain
length effects are likely to be important in the vast majority of
experimental cyclic BCPs. Note that the assignment N ∼ Nexp/
40 is specific to the DPD model employed here. To apply eq 4
to a more detailed model or experimental system, one would
need to establish the appropriate definitions of N, which we
anticipate would depend on physical properties of the specific
polymer chains being studied, such as monomer volumes and
persistence lengths. However, the impact of chain architecture
on molecular size, as reflected by the definitions λlin = N − 1
and λcyc = N/2, should be model-independent.

Figure 5 also illustrates the impacts of non-SST scaling (ε)
and interfacial elongation (bAB/bAA) on domain spacing. The
maximum domain shrinkage occurs in the limit NDPD →∞ at a
plateau value of (1 − 1/2ε) × 100% (see the Supporting
Information), suggesting ε has a strong impact on the ability of
cyclization to reduce feature size. The N0.653 scaling behavior
found in this study means that cyclizing a very long, strongly
segregated linear BCP will reduce d by 36%. However, in a
regime where feature sizes scale more strongly with degree of
polymerization such as the d ∼ N0.8 behavior of weakly
segregated BCPs (i.e., χN < 30),38,84 cyclic features may be
more than 40% smaller than domains formed by their linear
analogues (cases A, B, and C). In contrast, extended chain
conformations at the interface counteract efforts to shrink
feature sizes (cases A, D, and E). Because a cyclic polymer has
twice as many interfacial bonds as a linear BCP, the ability of
cyclization to shrink BCP feature sizes decreases as bAB/bAA
increases and as N decreases. In summary, decreasing N will
directly reduce d by decreasing λ and promote further
reduction in d upon cyclization if the polymer enters the
weak segregation regime, but interfacial stretching of polymer
chains (higher bAB/bAA) will limit the percent reduction in d
achievable by cyclization. Thus, experimentalists seeking to
reduce domain sizes by cyclization must consider finite chain
length effects, the scaling regime in which they are operating,
and how the specific block chemistries may affect interfacial
conformations.

4. CONCLUSIONS
We have systematically explored the relationship between the
degree of polymerization, chemistry, and block volume fraction
in determining domain sizes of self-assembled linear and cyclic
BCPs. Previous experimental studies conducted with relatively
short polymers found cyclization decreases BCP domain
spacing by 18−25%, whereas prior theoretical work predicted
domain shrinkage up to 40% in the long-chain limit. Our
revised scaling law provides important insights into physics
underlying cyclic BCP self-assembly that account for the
discrepancy between experiment and theory. First, it
establishes that the size of a BCP chain depends on the

Figure 5. Percentage reduction in domain spacing, defined as (dlin − dcyc) × 100%/dlin, obtained by cyclizing a linear diblock copolymer. Hollow
circles represent domain spacing decreases measured from DPD simulation while the yellow symbols show the experimental results from ref 30
(diamond) and ref 31 (star). Lines give eq 4 predictions with different values of the scaling exponent ε and bAB/bAA. Case A: ε = 0.653, bAB/bAA =
1.356 (Table 1 values). Case B: ε = 0.8, bAB/bAA = 1.356. Case C: ε = 0.5, bAB/bAA = 1.356. Case D: ε = 0.653, bAB/bAA = 1. Case E: ε = 0.653, bAB/
bAA = 2.
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number of bonds in the molecule and the number of times the
chain crosses the interface in its self-assembled state. Second, it
highlights how increased BCP anisotropy around interfacial
bonds (captured by the σ term) impacts equilibrium feature
size and the role this phenomenon plays in swelling cyclic BCP
domain spacings beyond what strong segregation theory would
predict. While the exact equations presented herein have been
developed from coarse-grained simulation results, these
underlying physics should be universal. Overall then, the
revised scaling law provides a method for predicting BCP
feature sizes based on experimentally tunable parameters and
also highlights key challenges in developing polymers for next
generation BCP lithography by manipulating chain architec-
tures.
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2 
 

Section 1: DPD Simulation Methods 

Dissipative particle dynamics (DPD) is a coarse-grained simulation technique that 

represents the block copolymer (BCP) as a chain of soft beads, each representing 10s of monomers, 

connected by Hookean springs. The high degree of coarse graining and softness of the interactions 

permits DPD to examine the phase behavior and meso-scale structure of BCPs and polymer blends 

as a function of 𝜒𝜒, 𝑁𝑁, 𝑓𝑓𝐴𝐴, and chain architecture.1-5  Significantly, DPD retains the inherent thermal 

fluctuations eliminated from mean field theories that can be significant in polymer phase 

behavior.1, 6-8    

Interparticle forces in DPD are broken up into a sum of pairwise conservative (𝑭𝑭𝑖𝑖𝑖𝑖𝐶𝐶 ), 

dissipative (𝑭𝑭𝑖𝑖𝑖𝑖𝐷𝐷 ), and random (𝑭𝑭𝑖𝑖𝑖𝑖𝑅𝑅 ) forces between particles 𝑖𝑖 and 𝑗𝑗.  Interactions between bonded 

particles are modeled using a Hookean spring (𝑭𝑭𝑖𝑖𝑖𝑖𝑆𝑆 ), which enforces bead connectivity and polymer 

architecture.  The net force on DPD bead i is subsequently determined as a sum over interactions 

with all other beads in the simulation14,15 

 𝑭𝑭𝑖𝑖 =  ∑  𝑭𝑭𝑖𝑖𝑖𝑖𝐶𝐶 + 𝑭𝑭𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑭𝑭𝑖𝑖𝑖𝑖𝑅𝑅 + 𝑭𝑭𝑖𝑖𝑖𝑖𝑆𝑆𝑗𝑗≠𝑖𝑖 . (S1) 

This force governs the time evolution of the particle system according to Newton’s Laws of 

Motion; our simulations use the velocity Verlet algorithm9  with a timestep Δ𝑡𝑡 = 0.025. The mass 

of each bead in the simulation is assumed to be 𝑚𝑚 = 1. 

The conservative (energy-conserving) force enforces the chemical identity of the 

constituent coarse-grained bead, modeled in DPD as a soft repulsive interaction 

 𝑭𝑭𝑖𝑖𝑖𝑖𝐶𝐶 = �
𝑎𝑎𝑖𝑖𝑖𝑖
𝑟𝑟𝑐𝑐
�1 − 𝑟𝑟𝑖𝑖𝑖𝑖

𝑟𝑟𝑐𝑐
� 𝒓𝒓�𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑟𝑟𝑐𝑐

0 𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑟𝑟𝑐𝑐
, (S2) 

where 𝑎𝑎𝑖𝑖𝑖𝑖 is the DPD interaction parameter between beads 𝑖𝑖 and 𝑗𝑗 (dependent on the chemical 

identities of the interacting beads) that represents the maximum repulsion at complete overlap; 𝑟𝑟𝑖𝑖𝑖𝑖 
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is the distance between interacting beads;  𝒓𝒓�𝑖𝑖𝑖𝑖 = 𝒓𝒓𝑖𝑖𝑖𝑖/𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒓𝒓𝑖𝑖 − 𝒓𝒓𝑗𝑗)/𝑟𝑟𝑖𝑖𝑖𝑖 is the normalized 

direction vector pointing from 𝑗𝑗 to 𝑖𝑖; and 𝑟𝑟𝑐𝑐 is the cut-off distance after which inter-bead 

interactions vanish. For simplicity, we set 𝑟𝑟𝑐𝑐 = 1 for all inter-bead interactions. The interaction 

between like beads, 𝑎𝑎AA and 𝑎𝑎BB, which is set to 25, establishes the compressibility of the system 

while the interaction between unlike beads, 𝑎𝑎AB, controls miscibility between the two blocks.14 At 

a bead number density of 𝜌𝜌 = 3 (the density of the simulations conducted here), the inter-bead 

interactions can be mapped to the Flory-Huggins 𝜒𝜒 parameter via the empirical correlation1 

 𝜒𝜒 = 1
3.27

(𝑎𝑎AB − 𝑎𝑎AA). (S3) 

We note that since DPD is a coarse-grained simulation technique, we cannot directly compare 

simulation and experimental values of 𝜒𝜒. Rather, DPD values of 𝜒𝜒 are typically calculated to match 

the experimental segregation strengths, i.e., 𝜒𝜒𝑁𝑁BCP|DPD = 𝜒𝜒𝑁𝑁BCP|expt, to affect a meaningful 

comparison between simulation and experiment.5   

The dissipative force accounts for the viscous drag of the multiple atomic sites condensed 

onto a single coarse-grained bead. DPD models the dissipative force as 

 𝑭𝑭𝑖𝑖𝑖𝑖𝐷𝐷 = −𝛾𝛾𝜔𝜔𝑖𝑖𝑖𝑖
𝐷𝐷�𝑟𝑟𝑖𝑖𝑖𝑖��𝒗𝒗𝑖𝑖𝑖𝑖 ∙ 𝒓𝒓𝑖𝑖𝑖𝑖�𝒓𝒓�𝑖𝑖𝑖𝑖, (S4) 

where 𝛾𝛾 is the friction coefficient, and 𝒗𝒗𝑖𝑖𝑖𝑖 = 𝒗𝒗𝑖𝑖 − 𝒗𝒗𝑗𝑗  is the relative velocity between particles 𝑖𝑖 

and 𝑗𝑗. The random force accounts for thermal Brownian kicks from the coarsened degrees of 

freedom, modeled in DPD as 

 𝑭𝑭𝑖𝑖𝑖𝑖𝑅𝑅 = −𝜎𝜎𝜔𝜔𝑖𝑖𝑖𝑖
𝑅𝑅 �𝑟𝑟𝑖𝑖𝑖𝑖�

𝜁𝜁𝑖𝑖𝑖𝑖
√∆𝑡𝑡

𝒓𝒓�𝑖𝑖𝑖𝑖, (S5) 

where 𝜎𝜎 is a constant noise amplitude related to the temperature, and 𝜁𝜁𝑖𝑖𝑖𝑖 is a Gaussian random 

number with a mean of zero and unit variance. The fluctuation dissipation theorem imposes the 
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following constraints on the distance dependent weight functions 𝜔𝜔𝑖𝑖𝑖𝑖
𝐷𝐷(𝑟𝑟) and 𝜔𝜔𝑖𝑖𝑖𝑖

𝑅𝑅 (𝑟𝑟) and the 

amplitudes of the viscous and random forces10: 

 𝜔𝜔𝑖𝑖𝑖𝑖
𝐷𝐷�𝑟𝑟𝑖𝑖𝑖𝑖� = �𝜔𝜔𝑖𝑖𝑖𝑖

𝑅𝑅 �𝑟𝑟𝑖𝑖𝑖𝑖��
2
 (S6a) 

and 

 𝜎𝜎2 = 2𝛾𝛾𝑘𝑘𝐵𝐵𝑇𝑇,  (S6b) 

where 𝑘𝑘𝐵𝐵𝑇𝑇 is the product of the Boltzmann’s constant and the absolute temperature. Taken 

together then, eqs. (S4-S6) act as a thermostat ensuring DPD simulations sample the canonical 

(constant NVT) ensemble. Since the form of one of the weighting functions appearing in eq. (S4 

and eq. (S5) is arbitrary, for simplicity DPD simulations adopt the expression 

 𝜔𝜔𝑖𝑖𝑖𝑖
𝐷𝐷�𝑟𝑟𝑖𝑖𝑖𝑖� = �𝜔𝜔𝑖𝑖𝑖𝑖

𝑅𝑅 �𝑟𝑟𝑖𝑖𝑖𝑖��
2

= ��1 − 𝑟𝑟𝑖𝑖𝑖𝑖
𝑟𝑟𝑐𝑐
�
2

𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑟𝑟𝑐𝑐
0 𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑟𝑟𝑐𝑐

, (S7) 

which vanishes beyond 𝑟𝑟𝑐𝑐, like the conservative force. Here, we assume 𝑘𝑘𝐵𝐵𝑇𝑇 = 1 and 𝜎𝜎 = 3 (𝛾𝛾 = 

4.5) as recommended in ref. 6 to ensure fast, stable simulations. 

Finally, the Hookean spring force in eq. (S1) is a second conservative interaction only 

between bonded beads that enforces intramolecular polymer connectivity. The spring force is 

evaluated as   

 𝐹𝐹𝑖𝑖𝑖𝑖𝑆𝑆 = 𝑘𝑘𝑟𝑟𝑖𝑖𝑖𝑖𝒓𝒓�𝑖𝑖𝑖𝑖, (S8) 

where 𝑘𝑘 is the spring constant, assumed here to be equal to 4,1, 7 independent of the chemical 

identity of the bonded monomers. 
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Section 2: HPC Domain Spacing Calculation from Radial Distribution Functions 

While others have demonstrated the use of RDFs to measure lamellar domain sizes,11 we are 

unaware of references using RDFs to measure HPC structures.  To confirm the approach’s validity, 

we calculated the “ideal” RDFs for an HPC structure formed by a BCP with 𝑓𝑓𝐴𝐴 = 0.25 and compared 

these to the known domain spacing.  We randomly selected 106 points in an 8 × 4√3 × 10 box and 

identified the points as being located within a minority (cylindrical) or majority (matrix) domain 

based on the Figure S1 inset geometry.  We then generated 𝑔𝑔𝐴𝐴𝐴𝐴(𝑟𝑟), 𝑔𝑔𝐵𝐵𝐵𝐵(𝑟𝑟), and 𝑔𝑔𝐴𝐴𝐴𝐴(𝑟𝑟) between all 

of these points as shown in Figure S1.  Due to the hexagonal geometry of the HPC system, the 

characteristic length given by the RDF intersections is actually the distance between cylinder rows 

(√3 in the Figure S1 inset) so 𝑑𝑑HPC is calculated as the distance between the first and third crossings 

of 𝑔𝑔𝐴𝐴𝐴𝐴(𝑟𝑟) and 𝑔𝑔𝐴𝐴𝐴𝐴(𝑟𝑟) multiplied by a factor of  2√3
3

.12   
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Figure S1. Radial distribution function measurement of domain spacing for the HPC structure shown in 
the inset.  The distance between the first and third (or 𝑖𝑖 and 𝑖𝑖 + 2) crossing points between 𝑔𝑔AA(𝑟𝑟) (red 
trace), 𝑔𝑔BB(𝑟𝑟) (orange)  and 𝑔𝑔AB(𝑟𝑟) (gray) gives the characteristic spacing between cylinder rows (√3 in 
this example).  The hexagonal geometry of the system dictates that 𝑑𝑑HPC (the inter-cylinder center-to-center 
spacing) is related to this characteristic length by a factor of 2√3

3
. 
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Section 3: Domain Spacing Measurements from Simulation 

 

Figure S2. Ratio of domain spacings, 𝑑𝑑, measured from DPD simulation to the strong segregation theory 
(SST) scaling prediction, 𝜒𝜒1/6𝑁𝑁2/3, as a function of segregation strength, 𝜒𝜒𝜒𝜒.  Lines are drawn to guide 
the eye.  If the DPD simulations followed eq. (1), the simulated 𝑑𝑑 would be a horizontal line at 
𝑑𝑑/(𝜒𝜒1/6𝑁𝑁2/3) = 𝛽𝛽 for linear molecules and 𝑑𝑑/(𝜒𝜒1/6𝑁𝑁2/3) = 𝛽𝛽/22/3 for cyclic.  The deviations observed 
here are due to the differences in the exponents calculated in this study (see Table 1, main text) and finite 
size effects. The smooth negative slope of the data points indicate that all simulated systems are strongly 
segregated; we do not observe any sharp changes in slope which would be associated with a scaling regime 
transition.   
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 Table S1a: Cyclic lamellar BCP domain spacings 
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Table S1b: Linear lamellar BCP domain spacings
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Table S1c: HPC domain spacings 
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Section 4: Derivation of 𝜎𝜎 from random walk statistics 
 

The squared end-to-end length 𝑅𝑅𝑒𝑒𝑒𝑒2  of a linear molecule is proportional to the number of 

bonds in the molecule (which is one less than the number of monomers (𝑁𝑁)), and the length of the 

bond between adjacent monomers, 𝑏𝑏𝑖𝑖  

〈𝑅𝑅𝑒𝑒𝑒𝑒2 〉 = ∑ ∑ 〈𝑏𝑏𝚤𝚤���⃑ ∙ 𝑏𝑏𝚥𝚥���⃑ 〉𝑁𝑁−1
𝑖𝑖=1 .𝑁𝑁−1

𝑗𝑗=1            (S9) 

In the case where bond length differences are negligible (the assumption underlying Semenov’s 

Strong Segregation Theory, main text eq. (1)), we define 

〈𝑅𝑅𝑒𝑒𝑒𝑒2 〉0 = (𝑁𝑁 − 1)𝑏𝑏2.      (S10) 

For relatively short block copolymers, however, the interfacial bonds between unlike monomers, 

𝑏𝑏𝐴𝐴𝐴𝐴, measure ~35% longer than bonds between like monomers, 𝑏𝑏𝑖𝑖𝑖𝑖 (𝑖𝑖 = 𝐴𝐴 or 𝐵𝐵), for both the linear 

and cyclic BCPs.  Due to the highly coarse-grained (i.e., very short) chains used in DPD 

simulation, the localized interfacial stretching contributes significantly to the effective polymer 

length.  In this situation, the squared end-to-end length of a linear BCP becomes 

〈𝑅𝑅𝑒𝑒𝑒𝑒2 〉 = (𝑁𝑁 − 2)𝑏𝑏𝐴𝐴𝐴𝐴2 + 𝑏𝑏𝐴𝐴𝐴𝐴2 .          (S11) 

Multiplying and dividing by (𝑁𝑁 − 1) and factoring out 𝑏𝑏𝐴𝐴𝐴𝐴 gives 

〈𝑅𝑅𝑒𝑒𝑒𝑒2 〉 =
𝑏𝑏𝐴𝐴𝐴𝐴
2 �𝑁𝑁−1+�𝑏𝑏𝐴𝐴𝐴𝐴𝑏𝑏𝐴𝐴𝐴𝐴

�
2
−1�

𝑁𝑁−1
(𝑁𝑁 − 1),                                    (S12) 

so that the ratio of mean squared end-to-end length for a BCP with significant interfacial stretching 

to that of an unstretched molecule is 

〈𝑅𝑅𝑒𝑒𝑒𝑒2 〉
〈𝑅𝑅𝑒𝑒𝑒𝑒2 〉0

=
𝑁𝑁−1+�𝑏𝑏𝐴𝐴𝐴𝐴𝑏𝑏𝐴𝐴𝐴𝐴

�
2
−1

𝑁𝑁−1
= 1 + 1

𝜆𝜆lin
��𝑏𝑏𝐴𝐴𝐴𝐴
𝑏𝑏𝐴𝐴𝐴𝐴

�
2
− 1�         (S13) 

where 𝜆𝜆lin = 𝑁𝑁 − 1.  This ratio can be considered a correction for the interfacial chain elongation 

observed in strongly-segregated BCPs.  We therefore include it as part of Λ, the term representing 

polymer size in eq. (4), defining, 
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 𝜎𝜎 = 1 + 1
𝜆𝜆
��𝑏𝑏𝐴𝐴𝐴𝐴
𝑏𝑏𝐴𝐴𝐴𝐴

�
2
− 1�, (S14) 

and 

  Λ = 𝜆𝜆𝜆𝜆 = 𝜆𝜆 + �𝑏𝑏𝐴𝐴𝐴𝐴
𝑏𝑏𝐴𝐴𝐴𝐴

�
2
− 1. (S15) 

Table S2 gives values for the ratio 𝑏𝑏𝐴𝐴𝐴𝐴/𝑏𝑏𝐴𝐴𝐴𝐴 measured in simulations of cyclic and linear BCPs 

over a range of chain lengths, morphologies, and architectures.  An average value of 1.356 was 

used for eq. (4) fitting.   

 

                                   Table S2: Values of the ratio 𝑏𝑏𝐴𝐴𝐴𝐴/𝑏𝑏𝐴𝐴𝐴𝐴 measured in DPD simulation 
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To confirm the validity of using random walk statistics to describe BCPs in DPD simulation, we 

calculated the g-factor (𝑅𝑅𝑔𝑔,𝑐𝑐𝑐𝑐𝑐𝑐
2 /𝑅𝑅𝑔𝑔,𝑙𝑙𝑙𝑙𝑙𝑙

2 ) for 6 ≤ 𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 20 at 𝜒𝜒 = 12.2 and 𝜒𝜒 = 15.3.  We found 

0.46 < 𝑅𝑅𝑔𝑔,𝑐𝑐𝑐𝑐𝑐𝑐
2 /𝑅𝑅𝑔𝑔,𝑙𝑙𝑙𝑙𝑛𝑛

2 < 0.53, in good agreement with the random walk theory prediction of 0.50.  

This narrow range suggests that our use of random walk principles in developing the revised 

scaling law is reasonable.   

Table S3: Radii of gyration (𝑅𝑅𝑔𝑔) for cyclic and linear BCPs of 
identical 𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷.  Standard deviations for all 𝑅𝑅𝑔𝑔 measurements are 

less than 0.005. 
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Section 5: Predicting percent reduction in lamellar size from cyclization 
 

The percent reduction in lamellar size that can be achieved by cyclizing a linear BCP of length 𝑁𝑁  

is defined as 

% 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐)/𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙 × 100%,    (S16) 

which can be calculated from eq. (4) as 

% 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
(𝛽𝛽Λ𝜀𝜀𝜒𝜒𝛾𝛾)𝑙𝑙𝑙𝑙𝑙𝑙−(𝛽𝛽Λ𝜀𝜀𝜒𝜒𝛾𝛾)𝑐𝑐𝑐𝑐𝑐𝑐

(𝛽𝛽Λ𝜀𝜀𝜒𝜒𝛾𝛾)𝑙𝑙𝑙𝑙𝑙𝑙
× 100%.      (S17) 

Because the cyclic product will have the same 𝑓𝑓and 𝜒𝜒 as its linear precursor, the 𝛽𝛽 and 𝜒𝜒 terms 

cancel to give 

% 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
(Λ𝜀𝜀)𝑙𝑙𝑙𝑙𝑙𝑙−(Λ𝜀𝜀)𝑐𝑐𝑐𝑐𝑐𝑐

(Λ𝜀𝜀)𝑙𝑙𝑙𝑙𝑙𝑙
× 100%.           (S18) 

Plugging the definition of Λ into the equation gives 

% 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
�N−1+�𝑏𝑏𝐴𝐴𝐴𝐴𝑏𝑏𝐴𝐴𝐴𝐴

�
2
−1�

𝜀𝜀
−�N2+�

𝑏𝑏𝐴𝐴𝐴𝐴
𝑏𝑏𝐴𝐴𝐴𝐴

�
2
−1�

𝜀𝜀

�N−1+�𝑏𝑏𝐴𝐴𝐴𝐴𝑏𝑏𝐴𝐴𝐴𝐴
�
2
−1�

𝜀𝜀 × 100%           (S19) 

which simplifies to 

% 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �1 −
�N2+�

𝑏𝑏𝐴𝐴𝐴𝐴
𝑏𝑏𝐴𝐴𝐴𝐴

�
2
−1�

𝜀𝜀

�N+�𝑏𝑏𝐴𝐴𝐴𝐴𝑏𝑏𝐴𝐴𝐴𝐴
�
2
−2 �

𝜀𝜀� × 100%.         (S20) 

The lines in Figure 5 come from this equation.  In the long chain limit, the % reduction plateaus 

based on the scaling exponent as 

lim
𝑁𝑁→∞

(% 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = �1 − �1
2
�
𝜀𝜀
�× 100%.     (S21) 
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We achieve this same limiting result by starting with eq. (1) (Semenov’s Strong Segregation 

Theory) and applying Marko’s hypothesis that a cyclic BCP should scale (𝑁𝑁/2) 2/3 in the long 

chain limit.  In this approach, the 𝛽𝛽 and 𝜒𝜒 terms cancel to give 

% 𝑟𝑟𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑁𝑁2/3−�𝑁𝑁2�

2/3

𝑁𝑁2/3 × 100%.    (S22) 

which simplifies to 

% 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �1 − �1
2
�
2/3
� × 100% = 37%.    (S23) 
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