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ABSTRACT: Cyclic block copolymers are predicted to
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theory, which assume a cyclic BCP behaves as a linear molecule
of half the contour length, fail to account for finite chain size
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effects, resulting in overpredictions of the extent of domain shrinkage upon cyclization. We propose a revised scaling law that
clarifies the interplay of chain length, segregation strength, and chain architecture in determining domain spacing reduction
attainable by molecular cyclization and offers an explanation for the discrepancies between prior theoretical predictions and

experimental results.

1. INTRODUCTION

Advancements in photolithography to produce increasingly
finer features have spurred an exponential growth in computing
power over the past 50 years, doubling the number of
transistors on silicon wafers approximately every 18 months.
Realizing features 10 nm or smaller by photolithography,
however, is prohibitively expensive due to the need for high-
powered, extreme ultraviolet light sources' with superior
resolution to circumvent the diffraction limit of light.”
Nanopatterning by block copolymers (BCPs), which form
nanoscale assemblies with dimensions dictated by polymer
molecular weights, chemistry, and architecture, offers an
attractive, potentially lower cost alternative to photolithog-
raphy.

BCPs consist of two or more covalently bound chemically
distinct homopolymer blocks. Thermodynamic incompatibility
between blocks drives phase separation; however, the covalent
linkages limit segregation to the nanometer scale. As a result,
BCPs self-assemble into a variety of nanoscale morphologies
that minimize the free energy under the constraints imposed
by the polymer’s chemical composition and topology.”*
Generally, the equilibrium diblock copolymer (i, AB BCP

transition (yNIp°" ~ 10.5), while asymmetric linear BCPs (f,
# fp) can form hexagonally packed cylinders (HPC), spheres,
or bicontinuous structures. Significant research has focused on
the use of the lamellar and cylindrical BCP morphologies for
“bottom-up” nanolithography, although commercial applica-
tions have been limited. The ability to reliably pattern large
scale, defect-free, sub-10 nm features would significantly
advance BCP nanolithography, meeting the microelectronics
industry’s needs for improved pattern resolution.

Linear BCP feature sizes depend most strongly on N, which
controls the overall polymer size, and weakly on y, which
characterizes the degree of incompatibility between the
different blocks. Thus, the most direct approach to reducing
linear BCP domain spacing has been to synthesize shorter
chains. High y systems allow for shorter chains to maintain
order, but the large surface energy difference between blocks
introduces additional challenges for BCP synthesis and
assembly.”™® Use of multiblock and nonlinear BCP architec-
tures is a promising paradigm for overcoming these challenges.
For example, both linear ABA triblock and (AB), star

91
copolymers form smaller ordered domains’™"> at lower

where A and B refer to the two blocks) self-assembled AN with narrower interfaces'® than their AB counter-
nanostructure is dictated by the volume fraction of the A block parts.

(fa =1 — f5) and the segregation strength (yN, the product of
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Cyclic BCPs are expected to form domains significantly
smaller than their linear analogues while exhibiting superior
thin film stability'” and assembly dynamics.”*~>* Theory,”>**
simulation predictions,”~>” and experimental observations”**’
have all found that the phase diagram of cyclic BCPs resembles
the linear phase diagram with the ODT shifted to a slightly
higher segregation strength ()(NlCOy?T L.7xNIFPT), but with
smaller nanostructures. Poelma et al., for example, found that
cyclic polystyrene-b-poly(ethylene oxide) (cyc-(PS-b-PEO))
formed cylindrical domains 25% smaller than those of linear
BCPs with the same chemistry and degree of polymerization.*’
When they tried to achieve similarly sized domains with a
linear BCP of half the molecular weight, the system was
disordered. Similarly, Gartner and co-workers showed that
cyclizing linear polystyrene-b-poly(oligo(ethylene glycol)
methacrylate) (PS-b-POEGMA) decreased domain spacing
by 18—21%.”" A consensus of theoretical and simulation work
suggests that cyclization can decrease diblock copolymer
feature sizes up to 40%.”°****” However, to our knowledge,
no one has systematically explored the relationship between
degree of polymerization and intermolecular interactions in
determining feature sizes formed by cyclic copolymers.

Semenov’s theoretical framework’>>* has been widely
influential for predicting linear BCP feature sizes in the strong
segregation regime (yN > yNIgCT). In this theory, the free
energy of the BCP melt is expressed as a linear combination of
contributions due to unlike monomer contact at the domain
interfaces, which favors domain swelling to minimize inter-
block contact, and chain stretching, which opposes domain
growth that drives chains away from their ideal Gaussian
conformations.””** Minimization of the free energy with
respect to the domain spacing, d, yields the scaling law

~
~

d = pr'°N*" (1)
where the prefactor f depends on the characteristic segment
length and fA.4’36 Experiments with lamellar BCPs have
confirmed the strong dependence of domain spacing on N
with scaling exponents ranging from 0.61 to 0.64,>”*" but to
our knowledge, this relationship has not been tested for
asymmetric BCPs. The weaker y dependence has proven
challenging to study experimentally but has been verified by
simulation.”*” Additionally, the derivation of strong segrega-
tion theory (SST) assumes the polymers are very long (yN —
00) which may limit its applicability for lithography, where N is
minimized to shrink feature sizes. Most critically, eq 1 was
developed in the context of linear BCPs, such that its
applicability to nonlinear architectures is uncertain.

Previous theoretical and simulation works have concluded
that a cyclic BCP effectively behaves as a linear molecule of
half the contour hength.g’B_25’27’40_42 However, this model
apparently overestimates domain spacing reduction that should
be achieved by cyclizing a linear diblock copolymer. For
instance, on the basis of eq 1, Marko hypothesized that cyclic
BCP domain size should scale as (N/2)** in the long chain
limit,”* implying that cyclization should reduce domain spacing
by 37%. Meanwhile, the limited experimental data available
comparing linear and cyclic diblock copolymers have found
only 18—25% reductions.”””" In addition, experiment and
simulation comparing the mean-square radius of gyration (Rgz)
of cyclic homopolymers in solution to that of their linear
analogues have established that the g-factor (g = Rye,*/Ryjin’)
for these molecules does not follow the N/2 prediction, instead
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ranging from 0.5 to 0.73 depending on molecular weight and
solvent quality.”~*

Motivated by the challenge of meeting nanolithography
design specifications for feature sizes, we use dissipative
particle dynamic (DPD) simulation to quantify the depend-
ence of BCP lamellar and HPC domain spacings on the
experimentally tunable parameters y, N, and polymer
architecture (linear vs cyclic). We recognize that although it
is well-established that nonconcatenation requirements force
cyclic homopolymers in a melt to be significantly more
compact than the Gaussian prediction,**>* the soft potentials
used in DPD may allow nonphysical bond crossing to occur.
However, the conformational impacts of nonconcatenation
increase with chain length, and very short cyclic molecules
show Gaussian scaling even in the melt state.****"*375% The
high degree of coarse-graining in DPD makes DPD cyclic
polymers necessarily very short, suggesting they are in a regime
in which bond crossing will not impact the conformational
statistics. Also, while there is a wealth of work quantifying the
effects of nonconcatenation on cyclic homopolymer dimen-
sions, its impacts on BCP domain spacing are unknown. It is
not unreasonable to expect that nonconcatenation contribu-
tions to BCP free energy would be much smaller than the
interblock repulsion and chain stretching forces, both of which
are well-captured in the DPD representation,”>*”>7>

We therefore employ DPD in a first attempt to understand
the interplay of chain length, chemistry, composition, and
architecture in determining cyclic BCP domain spacings. Our
simulations generate computational “experimental” results for
linear and cyclic BCPs over a range of segregation strengths
and degrees of polymerization. These data are analyzed within
the context of SST with heuristic modifications that account
for polymer architecture and localized chain stretching at the
domain interface. Our revised scaling law is then applied to
understand how cyclization of linear BCPs impacts self-
assembly, illuminating the complex interplay of chain length,
segregation strength, and architecture in determining BCP
domain spacing and rationalizing the gap between theoretical
predictions and experimental observations for feature size
reduction by BCP cyclization.

2. MATERIALS AND METHODS

DPD is a coarse-grained simulation technique that represents the BCP
as a chain of soft beads, each representing tens of monomers,
connected by Hookean springs and interacting through soft pairwise
forces. The high degree of coarse graining and softness of the
interactions permits DPD to examine the phase behavior and
microstructure of BCPs as a function of y, N, f;, and chain
architecture. %7950 A full description of the model can be found
in the Supporting Information, but briefly, interparticle forces in DPD
are broken up into a sum of pairwise conservative (Fg), dissipative
(Fi[j)), and random (Ff]{) forces between particles i and j. Interactions
between bonded particles are modeled by using a Hookean spring
(Fg), which enforces bead connectivity and polymer architecture. The
conservative (energy-conserving) force enforces the chemical identity
of the constituent coarse-grained bead, modeled in DPD as a soft
repulsive interaction

a.. .

Yy Y |a
S o Rl VAR
Fij =T 7.

0 T 2T,

)
where a; is the DPD interaction parameter between beads i and j

(dependent on the chemical identities of the interacting beads) that
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Figure 1. Effect of cyclization on nanoscale feature sizes formed by symmetric (f, = 0.5) and asymmetric (f, = 0.25) block copolymers. Images in
(a) and (b) show VMD"* renderings of the equilibrated structures, while the graphs in (c) and (d) demonstrate the use of radial distribution
functions to measure domain spacing, d. d is related to the distance between the first and third (or i and i + 2) crossing points between g,,(r) (red
trace), ggg(r) (orange), and g,5(r) (gray) as further described in the main text. Because of the symmetry of the lamellar phase, g,,(r) = ggs(r) for
the symmetric case shown in (c). Linear radial distribution functions in (c) and (d) have been shifted upward by an arbitrary amount for clarity.

represents the maximum repulsion at complete overlap, r; is the
distance between interacting beads, i‘i; = 1;/ry = (r; — rj)/ r; is the
normalized direction vector pointing from j to i, and r, is the cutoff
distance after which interbead interactions vanish. For simplicity, we
set r. = 1 for all interbead interactions. The interaction between like
beads, a,, and agp, which is set to 25, establishes the compressibility
of the system while the interaction between unlike beads, a,3, controls
miscibility between the two blocks. At a bead number density of p = 3
(the density of the simulations conducted here), the interbead
interactions can be me;pped to the Flory—Huggins y parameter via the
empirical correlation®

1
X = 3T7(QAB - aAA) (3)

We note that since DPD is a coarse-grained simulation technique, we
cannot directly compare simulation and experimental values of y.
Rather, DPD values of y are typically calculated to match the
experimental segregation strengths, i.e, yNpcplppp = ¥Npcplegy to
affect a meaningful comparison between simulation and experiment.
As discussed above, we recognize that the soft conservative force
allows nonphysical bond crossing and ring concatenation to occur in
DPD simulations. However, numerous simulations of BCPs with
novel topologies such as cyclic, star, and #-shaped demonstrate that
DPD captures the impacts of chain architecture on equilibrium
polymer nanostructure including shifts in bulk morphology and
feature size® ™ and solution micelle formation.®*™" In addition,
Huang et al. demonstrated that adding a spring—spring repulsion to
the DPD model (thus preventing bond crossing) had a negligible
impact on the morphologies and characteristic sizes of nanostructures
formed by BCPs of several different topologies.”’ Our simulation
results show good agreement with experiment and strong segregation
theory (see the Results and Discussion section), suggesting that bond
crossing has a negligible effect on the minimum-energy conformations
of the BCP systems studied here.
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DPD simulations of linear (lin-A,,B,) and cyclic (cyc-A,,B,) BCP
melts were performed using the LAMMPS software package.”® The
subscripts m and n indicate the number of monomers in the A and B
blocks, respectively, so that the overall degree of polymerization is
determined to be Nppp = m + n. Both symmetric (f4 = 0.5), lamellae-
forming and asymmetric (f, = 0.25), hexagonally packed cylinder-
forming systems were simulated. The Flory—Huggins parameter was
varied from 3 < yppp < 40, and the degree of polymerization ranged
from 6 < Nppp < 20 for linear BCPs and 6 < Nppp < 30 for cyclic
BCPs. The segregation strength was chosen to be sufficiently large
(¥N > 30) so that all the systems simulated here are expected to
exhibit strong segregation-like domain scaling.37’38 A plot of d/
(forn " Nppp>"® versus  (¥N)ppp supports the validity of this
assumption (see the Supporting Information); the Supporting
Information also includes a full list of the cyclic and linear BCP
simulations performed in this work. All simulations consisted of
81000 total beads in a periodic, cubic simulation box with side length
L = 30, corresponding to a bead number density of p = 3. Simulations
were started from random initial configurations and equilibrated for at
least 10° time steps. Following equilibration, production simulations
were conducted for 5 X 10° time steps. Structural quantities were
calculated from configurations generated during the production run
by averaging over a minimum of 50 configurations evenly sampled
over the entire production run.

3. RESULTS AND DISCUSSION

Above the ODT, symmetric linear and cyclic BCPs formed
lamellae (LAM) and asymmetric (f, = 0.25) polymers formed
hexagonally packed cylinders (HPC) as shown in Figures la
and 1b, consistent with experimental and theoretical phase
diagrams. The characteristic dimension of the LAM (inter-
lamellar spacing between A or B domains) and HPC (inter-rod
center-to-center spacing) structures can be extracted from the
radial distribution functions (RDFs) between polymer beads.
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Figure 2. (a) Lamellar feature size scaling with N and y. (b) Comparison of lamellar and HPC feature size scaling with N for yppp, = 4. In both
figures, points represent domain spacings measured from DPD simulation, and lines are the fits to eq 4.

For the symmetric LAM morphology, the RDFs between like
beads, gs4(r) and ggs(r), are equivalent and distinct from that
between unlike beads, gsz(r). The interlamellar spacing is
subsequently determined by the distance between the first and
third crossing points between g44(r) and g,5(r), which bound a
single cycle of minima and maxima beyond the primary
packing peak near r ~ 1,°” as shown in Figure Ic.

In the cylindrical structure, the symmetry between g,,(r)
and ggp(r) is broken due to the B monomers forming a
continuous domain, while the A monomers are confined to a
minority discontinuous domain. As a result, gzs(r) is relatively
featureless compared to g,,(r), while g5(r) for the HPC
system is comparable to that for the LAM system (Figure 1d).
The cylindrical domain spacing is defined as the distance
between the first and third crossings of gi(r) and guz(r)

multiplied by a factor of % due to the hexagonal geometry of

the system (see the Supporting Information).”” Our RDF
analysis consistently finds that cyclic BCPs form domains
~30% smaller than their linear counterparts in both the LAM
and HPC morphologies, demonstrating that DPD captures the
impact of chain architecture on domain spacing. We note that
BCP domain spacings can also be determined from static
structure factors or from density profiles. In a previous work,
we demonstrated that all three methods give results within 1%
of each other.”' We therefore only report spacings determined
from the RDF method in this article.

Figure 2 illustrates the impacts of N, y, and polymer
architecture on feature sizes for the LAM (Figure 2a) and HPC
(Figure 2b) morphologies. In agreement with eq 1, LAM
domain spacings scale most strongly with N and comparatively
weakly with y. Additionally, linear domain spacings increase
more sharply with N than those formed by cyclic polymers,
regardless of morphology. Finally, the LAM and HPC domain
sizes formed at a fixed y display very similar scaling behavior
with N, indicating the polymer molecular weight plays a
dominant role in the domain size over the phase morphology.
On the basis of these observations, we describe a heuristic
modification of the SST scaling law (eq 1) that captures the
impact of chain topology and finite chain length on LAM and
HPC domain sizes.

Following the form established by SST, we propose that the
BCP domain sizes are described as

d=py' X (4)
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where f and y assume the same role as in eq 1, but N is
replaced with the polymer “extent” embodied by the parameter
A. Ideally the exponents y and ¢ are 1/6 and 2/3, respectively;
however, we treat them as adjustable parameters.

We model A as the product of two variables: 4, an
architecture dependent term that grows with N, and o, a
correction that accounts for chain stretching at the interface
(Figure 3). Considering random walk statistics*"**”> and

Figure 3. Snapshots from DPD simulations of the equilibrated
systems of symmetric linear and cyclic BCPs (Nppp ~ 10 and yppp ~
12) with exemplary chain conformations demonstrating the
components of eqs 4—7. A is an architecture-dependent measure of
overall polymer size, represented by the dashed yellow circle. Bonds
between unlike monomers, by, are ~35% longer than those between
like monomers, by, = bgp; this interfacial stretching is incorporated
into the revised scaling law through the term o.

experimental observations’* for polymer radius of gyration
(Rgz) , we propose A is determined to be the number of bonds
in the polymer, which provides a measure of the contour
length, divided by the number of bonds between unlike
monomers. For the linear and cyclic polymers then

Ain =N -1 (5a)
and
Age = N/2 (5b)
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In the SST limit, N = oo and A, = N as expected. For the
short, coarse-grained polymers simulated here, however, we
must consider the finite polymer length.

A secondary concern to applying SST is that it assumes each
polymer bond has the same average length. Even casual
examination of the simulation snapshots in Figure 3, however,
shows this assumption may not hold for the bonds pinned to
the interface between the A and B domains. In fact, the bonds
between unlike monomers seated at the domain interface, by,
are ~35% longer than those between like monomers, by, = byp.
Because of the highly coarse-grained (i.e., very short) chains
used in DPD simulation, the localized interfacial stretching
contributes to the effective polymer length, especially for cyclic
BCPs, which contain two A—B bonds. Random walk theory
finds that the impact of the localized stretching can be
accounted for by the correction

2
c=1+ 1 [bﬁ] -1

A\ s ©
which corresponds to the ratio of the mean-square bond length
of the actual BCP to the mean-square bond length assuming
each bond is of length b,y = bpy (see the Supporting
Information).

The interfacial bond stretching in a DPD model mirrors
differences observed experimentally between BCP chain
conformations near the microghase interface compared to
within the domain centers.””’® For example, Deloche and
coworkers’® used 2H NMR to probe the orientations of PDMS
chains in strongly segregated linear PS-b-PDMS copolymers
and found that the PDMS chain segments near lamellar
interfaces were oriented along the lamellar normal (and
therefore made the strongest contributions to domain
spacing); segment orientations gradually became more
isotropic as distance from a PS block increased until chain
segments in the center 14% (1.7 nm) of each PDMS block
were randomly oriented. Therefore, while eq 6 may be unique
to DPD simulation, the underlying physical concept of two A—
B bonds in a cyclic BCP magnifying the impacts of interfacial
anisotropy on domain spacing is universal.

Combining eq 5 and eq 6 gives the polymer extent as

AA

2
A=la=i+[bﬁ] -1
b @)

Equation 7 reduces to the asymptotic linear (A ~ N) and
cyclic (A ~ N/2) measures of polymer extent for infinitely
long chains but accounts for the short chain length effects
critical for translating scaling law predictions to experimental
systems.

We performed a least-squares fit of the revised scaling law
(eq 4) to our simulation results to determine f, 7, and &. The
ratio b,p/bs, was taken as 1.356 based on an average of bond
length measurements from simulations of cyclic and linear
BCPs (see the Supporting Information). As demonstrated by
Matsen and Bates,”” 8 depends on both f, and BCP phase
morphology. Therefore, we fit our results with two distinct
prefactors, i oy and Pypc. The fit parameters are reported in
Table 1. The fitted exponents y (= 0.140) and & (= 0.653)
closely match those predicted by SST (1/6 and 2/3),
providing confidence in the physics underlying the model.
The fitted prefactors f oy and Pypc are nearly equal to one
another, falling within theoretical predictions’*™*" that the two
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Table 1. Fit Parameters of Eq 4 to the DPD Simulation
Results”

Biam 0.832 + 0.016
Buvc 0.842 + 0.018
¥ 0.140 + 0.005
€ 0.653 + 0.007
bap/ban 1.356

“Error bars represent the 95% confidence interval determined by
bootstrap resampling with 1000 iterations.

parameters differ by —4% to +6% for LAM (f, = 0.5) and HPC
(fa = 0.25) phases. The lines in Figure 2 show the fit of eq 4 to
the simulated domain spacings at selected y values. We also
compare our fit of eq 4 against all simulation results in Figure
4. Overall, the comparison is excellent with a root-mean-square
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Revised Scaling Theory d

Figure 4. Parity plot comparing simulated domain spacings and
model predictions. Overall, the RMS error between simulation and
scaling theory eq 4 domain spacings is less than 2% of the measured d
value.

error in the scaling model of 0.103, less than 2% of the
measured domain spacings when all phase morphologies and
chain architectures are considered.

To further validate our revised scaling law, we compare the
predictions of eq 4 against the available experimental results.
As noted above, a key motivation for utilizing cyclic polymers
is to achieve smaller features using the same molecular weight
polymer. Marko hypothesized that cyclic BCP domain size
should scale as (N/2)*? in the long chain limit,”* which, when
applied to eq 1, predicts cyclization reduces domain spacing by
37%, significantly more than the 18—25% reductions observed
in experiment.’”*' Our simulation results and eq 4, however,
predict a significant chain length dependence of the fractional
domain size reduction (Figure S). As noted above, Poelma et
al. found that cyclization of low molecular weight PS-b-PEO
(M, = 18 kg/mol, Ny, = 240) decreased the domain spacing
by 25%. Our revised scaling law matches that prediction when
Nppp = 6, corresponding to a coarse-graining of 40 monomers
per DPD bead. This degree of coarse-graining is well within
the range where DPD accurately reproduces experi-
ment.” 739828 Applying the same degree of coarse-
graining to the Gartner et al. system of PS-b-POEGMA (M,
= 18 kg/mol, N,,, = 200) predicts a 21% decrease in domain
spacing from cyclization, in agreement with the experimentally
observed values (18—21%). The consistency of the y and N
scaling behavior for LAM and HPC features, recovery of the
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Figure S. Percentage reduction in domain spacing, defined as (dj;, —

deye) X 100%/dy,, obtained by cyclizing a linear diblock copolymer. Hollow

circles represent domain spacing decreases measured from DPD simulation while the yellow symbols show the experimental results from ref 30
(diamond) and ref 31 (star). Lines give eq 4 predictions with different values of the scaling exponent & and b,p/b,,. Case A: € = 0.653, byg/by, =
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SST exponents and morphology-specific prefactors in eq 4, and
match between eq 4 prediction and experimental results give
us confidence in the revised scaling law to capture the impact
of cyclic chain architecture on domain size. More critically, the
revised scaling law shows that the ability of molecular
cyclization to shrink BCP domain spacings decreases with
polymer length, explaining why experimentalists have been
unable to obtain the previously predicted ~40% reduction in
feature size.

A key consequence of the revised scaling law is that the
domain spacing of a cyclic BCP nanostructure can be predicted
from that of its linear analogue. It is worthwhile, then, to
consider the impact of scaling law parameter values on the
decrease in feature size achievable through molecular
cyclization. The f and y contributions cancel when calculating
the percent reduction (see the Supporting Information),
indicating that domain shrinkage arises purely due to
cyclization-induced changes in the polymer extent (A). The
solid line in Figure S (case A) shows the reductions in domain
spacing from molecular cyclization that would be predicted by
eq 4 using the scaling exponents in Table 1. This prediction
agrees with both our DPD simulations and reported
experimental results. The lines in Figure S indicate that the
finite chain length effects (see eqs Sa, 6, and 7) are significant
up to Nppp ~ 20. This DPD chain size corresponds to an
experimental degree of polymerization of N, = 800, a chain
length that would be challenging to synthesize and that would
be unable to self-assemble into sub-10 nm features even in the
cyclic architecture. We therefore conclude that the finite chain
length effects are likely to be important in the vast majority of
experimental cyclic BCPs. Note that the assignment N ~ N,/
40 is specific to the DPD model employed here. To apply eq 4
to a more detailed model or experimental system, one would
need to establish the appropriate definitions of N, which we
anticipate would depend on physical properties of the specific
polymer chains being studied, such as monomer volumes and
persistence lengths. However, the impact of chain architecture
on molecular size, as reflected by the definitions A, = N — 1
and A, = N/2, should be model-independent.

cyc
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Figure S also illustrates the impacts of non-SST scaling (&)
and interfacial elongation (bp/bss) on domain spacing. The
maximum domain shrinkage occurs in the limit Nppp — oo ata
plateau value of (1 — 1/2°) X 100% (see the Supporting
Information), suggesting € has a strong impact on the ability of
cyclization to reduce feature size. The N**** scaling behavior
found in this study means that cyclizing a very long, strongly
segregated linear BCP will reduce d by 36%. However, in a
regime where feature sizes scale more strongly with degree of
polymerization such as the d ~ N°® behavior of weakly
segregated BCPs (i.e, yN < 30),°*** cyclic features may be
more than 40% smaller than domains formed by their linear
analogues (cases A, B, and C). In contrast, extended chain
conformations at the interface counteract efforts to shrink
feature sizes (cases A, D, and E). Because a cyclic polymer has
twice as many interfacial bonds as a linear BCP, the ability of
cyclization to shrink BCP feature sizes decreases as byp/byy
increases and as N decreases. In summary, decreasing N will
directly reduce d by decreasing A and promote further
reduction in d upon cyclization if the polymer enters the
weak segregation regime, but interfacial stretching of polymer
chains (higher b,5/b,,) will limit the percent reduction in d
achievable by cyclization. Thus, experimentalists seeking to
reduce domain sizes by cyclization must consider finite chain
length effects, the scaling regime in which they are operating,
and how the specific block chemistries may affect interfacial
conformations.

4. CONCLUSIONS

We have systematically explored the relationship between the
degree of polymerization, chemistry, and block volume fraction
in determining domain sizes of self-assembled linear and cyclic
BCPs. Previous experimental studies conducted with relatively
short polymers found cyclization decreases BCP domain
spacing by 18—25%, whereas prior theoretical work predicted
domain shrinkage up to 40% in the long-chain limit. Our
revised scaling law provides important insights into physics
underlying cyclic BCP self-assembly that account for the
discrepancy between experiment and theory. First, it
establishes that the size of a BCP chain depends on the
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number of bonds in the molecule and the number of times the
chain crosses the interface in its self-assembled state. Second, it
highlights how increased BCP anisotropy around interfacial
bonds (captured by the ¢ term) impacts equilibrium feature
size and the role this phenomenon plays in swelling cyclic BCP
domain spacings beyond what strong segregation theory would
predict. While the exact equations presented herein have been
developed from coarse-grained simulation results, these
underlying physics should be universal. Overall then, the
revised scaling law provides a method for predicting BCP
feature sizes based on experimentally tunable parameters and
also highlights key challenges in developing polymers for next
generation BCP lithography by manipulating chain architec-
tures.

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02015.

DPD simulation methods; HPC domain spacing
calculation from radial distribution functions; domain
spacing measurements from simulation; derivation of ¢
from random walk statistics; predicting percent reduc-
tion in lamellar size from cyclization (PDF)

B AUTHOR INFORMATION

Corresponding Authors
*E-mail hanka@tulane.edu.
*E-mail jalbert6@tulane.edu.

ORCID

Amy D. Goodson: 0000-0002-5596-9033
Henry S. Ashbaugh: 0000-0001-9869-1900
Julie N. L. Albert: 0000-0002-6000-9408

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the National
Science Foundation through a Graduate Research Fellowship
(A.D.G., Grant B55600G1), NSF-CMMI Grant 1825881, and
NSE-DMR-REU Grants 1460637 and 1852275. Additional
support for this work came from the Robert and Gayle
Longmire Early Career Professorship in Chemical Engineering
(JN.LA.).

B REFERENCES

(1) Dammel, R. R. Cost-effective sub-20 nm lithography: smart
chemicals to the rescue. J. Photopolym. Sci. Technol. 2011, 24 (1), 33—
42.

(2) Beyond the diffraction limit. Nat. Photonics 2009, 3, 361.

(3) Bates, F. S. Polymer-polymer phase behavior. Science 1991, 251
(4996), 898—905.

(4) Bates, F. S.; Fredrickson, G. H. Block Copolymer Thermody-
namics: Theory and Experiment. Annu. Rev. Phys. Chem. 1990, 41 (1),
525-557.

(5) Lo, T.-Y.; Krishnan, M. R; Lu, K.-Y.,; Ho, R-M. Silicon-
containing block copolymers for lithographic applications. Prog.
Polym. Sci. 2018, 77, 19—68.

(6) Farnham, W.; Sheehan, M. RAFT synthesis of block copolymers
and their self-assembly properties. In Directed Self-assembly of Block
Co-polymers for Nano-manufacturing; Elsevier: 2015; pp 27—4S.

(7) Maher, M. J.; Rettner, C. T.; Bates, C. M.; Blachut, G.; Carlson,
M. C; Durand, W. J,; Ellison, C. J.; Sanders, D. P.; Cheng, J. Y,;

9395

Willson, C. G. Directed self-assembly of silicon-containing block
copolymer thin films. ACS Appl. Mater. Interfaces 2018, 7 (5), 3323—
3328.

(8) Kim, J. M,; Hur, Y. H; Jeong, J. W,; Nam, T. W,; Lee, J. H,;
Jeon, K,; Kim, Y,; Jung, Y. S. Block Copolymer with an Extremely
High Block-to-Block Interaction for a Significant Reduction of Line-
Edge Fluctuations in Self-Assembled Patterns. Chem. Mater. 2016, 28
(16), 5680—5688.

(9) Lescanec, R. L.; Hajduk, D. A; Kim, G. Y;; Gan, Y,; Yin, R;
Gruner, S. M.; Hogen-Esch, T. E.; Thomas, E. L. Comparison of the
Lamellar Morphology of Microphase-Separated Cyclic Block
Copolymers and Their Linear Precursors. Macromolecules 1995, 28
(9), 3485—3489.

(10) Takano, A.; Nonaka, A.; Kadoi, O.; Hirahara, K.; Kawahara, S.;
Isono, Y.; Torikai, N.; Matsushita, Y. Preparation and characterization
of cyclic polystyrene with short poly (2-tert-butylbutadiene)
sequences. J. Polym. Sci, Part B: Polym. Phys. 2002, 40 (15), 1582—
1589.

(11) Zhu, Y.; Gido, S. P.; Iatrou, H.; Hadjichristidis, N.; Mays, J. W.
Microphase separation of cyclic block copolymers of styrene and
butadiene and of their corresponding linear triblock copolymers.
Macromolecules 2003, 36 (1), 148—152.

(12) Isono, T.; Otsuka, I; Kondo, Y.; Halila, S.; Fort, S.; Rochas, C.;
Satoh, T.; Borsali, R.; Kakuchi, T. Sub-10 nm Nano-Organization in
AB2- and AB3-Type Miktoarm Star Copolymers Consisting of
Maltoheptaose and Polycaprolactone. Macromolecules 2013, 46 (4),
1461—1469.

(13) Isono, T.; Kawakami, N.; Watanabe, K.; Yoshida, K.; Otsuka, I;
Mamiya, H.; Ito, H.; Yamamoto, T.; Tajima, K; Borsali, R.; Satoh, T.
Microphase Separation of Carbohydrate-Based Star-Block Copoly-
mers with Sub-10 nm Periodicity. Polym. Chem. 2019, 10 (9), 1119—
1129.

(14) Shi, W.; Tateishi, Y.; Li, W.; Hawker, C. J.; Fredrickson, G. H.;
Kramer, E. J. Producing Small Domain Features Using Miktoarm
Block Copolymers with Large Interaction Parameters. ACS Macro
Lett. 2015, 4 (11), 1287—1292.

(15) Minehara, H; Pitet, L. M.; Kim, S.; Zha, R. H,; Meijer, E. W,;
Hawker, C. J. Branched Block Copolymers for Tuning of Morphology
and Feature Size in Thin Film Nanolithography. Macromolecules 2016,
49 (6), 2318—2326.

(16) Sun, Z.; Zhang, W.; Hong, S.; Chen, Z; Liu, X; Xiao, S,;
Coughlin, E. B.; Russell, T. P. Using block copolymer architecture to
achieve sub-10 nm periods. Polymer 2017, 121, 297—303.

(17) Mayes, A. M.; Olvera de la Cruz, M. Microphase separation in
multiblock copolymer melts. J. Chem. Phys. 1989, 91 (11), 7228—
723S.

(18) Matsen, M. W.,; Thompson, R. Equilibrium behavior of
symmetric ABA triblock copolymer melts. J. Chem. Phys. 1999, 111
(15), 7139-7146.

(19) Kelly, G. M.; Haque, F. M.; Grayson, S. M.; Albert, J. N. L.
Suppression of Melt-Induced Dewetting in Cyclic Poly (e-
caprolactone) Thin Films. Macromolecules 2017, S0 (24), 9852—9856.

(20) McLeish, T. Polymers without beginning or end. Science 2002,
297 (5589), 2005—2006.

(21) Habuchi, S.; Satoh, N.; Yamamoto, T.; Tezuka, Y.; Vacha, M.
Multimode diffusion of ring polymer molecules revealed by a single-
molecule study. Angew. Chem., Int. Ed. 2010, 49 (8), 1418—1421.

(22) Habuchi, S.; Fujiwara, S.; Yamamoto, T.; Vacha, M.; Tezuka, Y.
Single-molecule study on polymer diffusion in a melt state: Effect of
chain topology. Anal. Chem. 2013, 85 (15), 7369—7376.

(23) Marko, J. Microphase separation of block copolymer rings.
Macromolecules 1993, 26 (6), 1442—1444.

(24) Zhang, G.; Fan, Z.; Yang, Y.; Qiu, F. Phase behaviors of cyclic
diblock copolymers. J. Chem. Phys. 2011, 135 (17), 174902.

(25) Qian, H.-J; Lu, Z.-Y,; Chen, L.-J; Li, Z.-S; Sun, C.-C.
Computer Simulation of Cyclic Block Copolymer Microphase
Separation. Macromolecules 2005, 38 (4), 1395—1401.

DOI: 10.1021/acs.macromol.9b02015
Macromolecules 2019, 52, 9389-9397


https://pubs.acs.org/doi/10.1021/acs.macromol.9b02015?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.9b02015/suppl_file/ma9b02015_si_001.pdf
mailto:hanka@tulane.edu
mailto:jalbert6@tulane.edu
http://orcid.org/0000-0002-5596-9033
http://orcid.org/0000-0001-9869-1900
http://orcid.org/0000-0002-6000-9408
http://dx.doi.org/10.1021/acs.macromol.9b02015

Macromolecules

(26) Jo, W. H; Jang, S. S. Monte Carlo simulation of the order-
disorder transition of a symmetric cyclic diblock copolymer system. J.
Chem. Phys. 1999, 111 (4), 1712—1720.

(27) Weyersberg, A; Vilgis, T. A. Microphase separation in
topologically constrained ring copolymers. Phys. Rev. E: Stat. Phys,,
Plasmas, Fluids, Relat. Interdiscip. Top. 1994, 49 (4), 3097—3101.

(28) Takano, A.; Kadoi, O.; Hirahara, K.; Kawahara, S.; Isono, Y.;
Suzuki, J.; Matsushita, Y. Preparation and Morphology of Ring-
Shaped Polystyrene-block-polyisoprenes. Macromolecules 2003, 36 (9),
3045—3050.

(29) Ryan, A. J.; Mai, S.-M.,; Fairclough, J. P. A; Hamley, 1. W,;
Booth, C. Ordered melts of block copolymers of ethylene oxide and 1,
2-butylene oxide. Phys. Chem. Chem. Phys. 2001, 3 (15), 2961—2971.

(30) Poelma, J. E,; Ono, K; Miyajima, D.; Aida, T.; Satoh, K;
Hawker, C. J. Cyclic Block Copolymers for Controlling Feature Sizes
in Block Copolymer Lithography. ACS Nano 2012, 6 (12), 10845—
10854.

(31) Gartner, T. E,; Kubo, T.; Seo, Y,; Tansky, M; Hall, L. M,;
Sumerlin, B. S.; Epps, T. H. Domain Spacing and Composition Profile
Behavior in Salt-Doped Cyclic vs Linear Block Polymer Thin Films: A
Joint Experimental and Simulation Study. Macromolecules 2017, SO
(18), 7169—7176.

(32) Likhtman, A.; Semenov, A. An advance in the theory of strongly
segregated polymers. EPL (Europhysics Letters) 2000, S1 (3), 307—
313.

(33) Semenov, A. Contribution to the theory of microphase layering
in block-copolymer melts. Zh. Eksp. Teor. Fiz. 1985, 88 (4), 1242—
1256.

(34) Semenov, A. Theory of block copolymer interfaces in the strong
segregation limit. Macromolecules 1993, 26 (24), 6617—6621.

(35) Matsen, M. W. The standard Gaussian model for block
copolymer melts. J. Phys.: Condens. Matter 2002, 14 (2), R21—R47.

(36) Hadjichristidis, N.; Pispas, S.; Floudas, G. Block Copolymers:
Synthetic Strategies, Physical Properties, and Applications; John Wiley &
Sons: 2003.

(37) Matsushita, Y.; Mori, K;; Saguchi, R;; Nakao, Y.; Noda, L;
Nagasawa, M. Molecular weight dependence of lamellar domain
spacing of diblock copolymers in bulk. Macromolecules 1990, 23 (19),
4313—-4316.

(38) Papadakis, C. M.; Almdal, K; Mortensen, K; Posselt, D. A
small-angle scattering study of the bulk structure of a symmetric
diblock copolymer system. J. Phys. I 1997, 7 (12), 1829—1854.

(39) Gavrilov, A. A; Kudryavtsev, Y. V.; Chertovich, A. V. Phase
diagrams of block copolymer melts by dissipative particle dynamics
simulations. J. Chem. Phys. 2013, 139 (22), 224901.

(40) Ryan, A. J.; Mai, S.-M,; Fairclough, J. P. A; Hamley, I. W,;
Booth, C. Ordered melts of block copolymers of ethylene oxide and
1,2-butylene oxide. Phys. Chem. Chem. Phys. 2001, 3 (15), 2961—
2971.

(41) Kramers, H. A. The behavior of macromolecules in
inhomogeneous flow. J. Chem. Phys. 1946, 14 (7), 415—424.

(42) Zimm, B. H.; Stockmayer, W. H. The Dimensions of Chain
Molecules Containing Branches and Rings. J. Chem. Phys. 1949, 17
(12), 1301—-1314.

(43) Gartner 111, T. E.; Haque, F. M; Gomi, A. M.; Grayson, S. M.;
Hore, M. J.; Jayaraman, A. Scaling Exponent and Effective
Interactions in Linear and Cyclic Polymer Solutions: Theory,
Simulations, and Experiments. Macromolecules 2019, 52 (12),
4579—4589.

(44) Takano, A.; Ohta, Y.; Masuoka, K.; Matsubara, K.; Nakano, T.;
Hieno, A.; Itakura, M.; Takahashi, K; Kinugasa, S.; Kawaguchi, D ;
Takahashi, Y.; Matsushita, Y. Radii of Gyration of Ring-Shaped
Polystyrenes with High Purity in Dilute Solutions. Macromolecules
2012, 45 (1), 369—373.

(45) Halverson, J. D.; Lee, W. B,; Grest, G. S.; Grosberg, A. Y,;
Kremer, K. Molecular dynamics simulation study of nonconcatenated
ring polymers in a melt. I. Statics. J. Chem. Phys. 2011, 134 (20),
204904.

9396

(46) Cates, M.; Deutsch, J. Conjectures on the statistics of ring
polymers. J. Phys. (Paris) 1986, 47 (12), 2121-2128.

(47) Hur, K; Winkler, R. G.; Yoon, D. Y. Comparison of ring and
linear polyethylene from molecular dynamics simulations. Macro-
molecules 2006, 39 (12), 3975—3977.

(48) Iyer, B. V; Lele, A. K.; Shanbhag, S. What Is the Size of a Ring
Polymer in a Ring- Linear Blend? Macromolecules 2007, 40 (16),
5995—6000.

(49) Jeong, C.; Douglas, J. F. Relation between polymer conforma-
tional structure and dynamics in linear and ring polyethylene blends.
Macromol. Theory Simul. 2017, 26 (S), 170004S.

(50) Miiller, M.; Wittmer, J.; Cates, M. Topological effects in ring
polymers: A computer simulation study. Phys. Rev. E: Stat. Phys,
Plasmas, Fluids, Relat. Interdiscip. Top. 1996, 53 (S), 5063—5074.

(51) Richter, D.; Gooflen, S.; Wischnewski, A. Celebrating Soft
Matter’s 10th Anniversary: Topology matters: structure and dynamics
of ring polymers. Soft Matter 2015, 11 (44), 8535—8549.

(52) Arrighi, V.; Gagliardi, S.; Dagger, A.; Semlyen, J.; Higgins, J;
Shenton, M. Conformation of cyclics and linear chain polymers in
bulk by SANS. Macromolecules 2004, 37 (21), 8057—8065.

(53) Halverson, J. D.; Grest, G. S.; Grosberg, A. Y.; Kremer, K.
Rheology of ring polymer melts: From linear contaminants to ring-
linear blends. Phys. Rev. Lett. 2012, 108 (3), 038301.

(54) Pakula, T.; Geyler, S. Cooperative relaxations in condensed
macromolecular systems. 3. Computer-simulated melts of cyclic
polymers. Macromolecules 1988, 21 (6), 1665—1670.

(55) Vettorel, T.; Grosberg, A. Y.; Kremer, K. Statistics of polymer
rings in the melt: a numerical simulation study. Phys. Biol. 2009, 6 (2),
025013.

(56) Brown, S.; Lenczycki, T.; Szamel, G. Influence of topological
constraints on the statics and dynamics of ring polymers. Phys. Rev. E:
Stat. Phys, Plasmas, Fluids, Relat. Interdiscip. Top. 2001, 63 (S),
052801.

(57) Groot, R. D.; Madden, T. J. Dynamic simulation of diblock
copolymer microphase separation. J. Chem. Phys. 1998, 108 (20),
8713—8724.

(58) Groot, R. D.; Madden, T. J,; Tildesley, D. J. On the role of
hydrodynamic interactions in block copolymer microphase separation.
J. Chem. Phys. 1999, 110 (19), 9739—9749.

(59) Posel, Z; Lisal, M.; Brennan, J. K. Interplay between
microscopic and macroscopic phase separations in ternary polymer
melts: Insight from mesoscale modelling. Fluid Phase Equilib. 2009,
283 (1), 38—48.

(60) Soto-Figueroa, C.; Rodriguez-Hidalgo, M.-d.-R.;; Martinez-
Magadan, J.-M.; Vicente, L. Dissipative Particle Dynamics Study of
Order-Order Phase Transition of BCC, HPC, OBDD, and LAM
Structures of the Poly(styrene)-Poly(isoprene) Diblock Copolymer.
Macromolecules 2008, 41 (9), 3297—3304.

(61) Huang, C. I; Yang, L. F; Lin, C. H,; Yu, H. T. A Comparison
of Y-, H-, and 7-shaped Diblock Copolymers via Dissipative Particle
Dynamics. Macromol. Theory Simul. 2008, 17 (4—S5), 198—207.

(62) Xu, Y.; Feng, J.; Liu, H.; Hu, Y. Microphase separation of star-
diblock copolymer melts studied by dissipative particle dynamics
simulation. Mol. Simul. 2006, 32 (5), 375—383.

(63) Soto-Figueroa, C.; Vicente, L.; Martinez-Magadan, J.-M;
Rodriguez-Hidalgo, M.-d.-R. Self-Organization Process of Ordered
Structures in Linear and Star Poly (styrene)- Poly (isoprene) Block
Copolymers: Gaussian Models and Mesoscopic Parameters of
Polymeric Systems. J. Phys. Chem. B 2007, 111 (40), 11756—11764.

(64) Lin, C.-M.; Chen, Y.-Z.; Sheng, Y.-J.; Tsao, H.-K. Effects of
macromolecular architecture on the micellization behavior of complex
block copolymers. React. Funct. Polym. 2009, 69 (7), 539—545.

(65) Wang, J; Li, J.; Yao, Q; Sun, X,; Yan, Y.; Zhang, J. One-pot
production of porous assemblies by PISA of star architecture
copolymers: a simulation study. Phys. Chem. Chem. Phys. 2018, 20
(15), 10069—10076.

(66) Zhao, Y.; Liu, Y.-T.; Lu, Z.-Y.; Sun, C.-C. Effect of molecular
architecture on the morphology diversity of the multicompartment

DOI: 10.1021/acs.macromol.9b02015
Macromolecules 2019, 52, 9389-9397


http://dx.doi.org/10.1021/acs.macromol.9b02015

Macromolecules

micelles: A dissipative particle dynamics simulation study. Polymer
2008, 49 (22), 4899—4909.

(67) Xia, J; Liu, D.; Zhong, C. Multicompartment micelles and
vesicles from 7-shaped ABC block copolymers: A dissipative particle
dynamics study. Phys. Chem. Chem. Phys. 2007, 9 (38), 5267—5273.

(68) Plimpton, S. Fast Parallel Algorithms for Short-Range
Molecular Dynamics. J. Comput. Phys. 1995, 117 (1), 1—19.

(69) Li, Y; Qian, H.-J; Lu, Z.-Y. The influence of one block
polydispersity on phase separation of diblock copolymers: The
molecular mechanism for domain spacing expansion. Polymer 2013,
54 (14), 3716—3722.

(70) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Ordered structure in
mixtures of a block copolymer and homopolymers. 1. Solubilization of
low molecular weight homopolymers. Macromolecules 1991, 24 (1),
240—-251.

(71) Goodson, A. D.; Liu, G; Rick, M. S.; Raymond, A. W.; Uddin,
M. F.; Ashbaugh, H. S.; Albert, J. N. L. Nanostructure stability and
swelling of ternary block copolymer/homopolymer blends: A direct
comparison between dissipative particle dynamics and experiment. J.
Polym. Sci., Part B: Polym. Phys. 2019, 57 (12), 794—803.

(72) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular
dynamics. J. Mol. Graphics 1996, 14 (1), 33-38.

(73) Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford
University Press: New York, 2003; Vol. 23.

(74) Hadziioannou, G.; Cotts, P. M.; Ten Brinke, G.; Han, C. C,;
Lutz, P.; Strazielle, C.; Rempp, P.; Kovacs, A. J. Thermodynamic and
hydrodynamic properties of dilute solutions of cyclic and linear
polystyrenes. Macromolecules 1987, 20 (3), 493—497.

(75) Matsushita, Y.; Mori, K;; Mogi, Y.; Saguchi, R; Noda, L;
Nagasawa, M.; Chang, T.; Glinka, C. J; Han, C. C. Chain
conformation of a block polymer in a microphase-separated structure.
Macromolecules 1990, 23 (19), 4317—4321.

(76) Lorthioir, C.; Randriamahefa, S.; Deloche, B. Some aspects of
the orientational order distribution of flexible chains in a diblock
mesophase. J. Chem. Phys. 2013, 139 (22), 224903.

(77) Matsen, M.; Bates, F. Block copolymer microstructures in the
intermediate-segregation regime. J. Chem. Phys. 1997, 106 (6), 2436—
2448.

(78) Helfand, E. Block copolymer theory. III. Statistical mechanics
of the microdomain structure. Macromolecules 1975, 8 (4), 552—556.

(79) Helfand, E.; Wasserman, Z. Block copolymer theory. S.
Spherical domains. Macromolecules 1978, 11 (5), 960—966.

(80) Helfand, E.; Wasserman, Z. Block copolymer theory. 6.
Cylindrical domains. Macromolecules 1980, 13 (4), 994—998.

(81) Likhtman, A. E.; Semenov, A. N. Stability of the OBDD
structure for diblock copolymer melts in the strong segregation limit.
Macromolecules 1994, 27 (11), 3103—3106.

(82) Vazquez-Quesada, A.; Ellero, M.; Espaiol, P. Consistent scaling
of thermal fluctuations in smoothed dissipative particle dynamics. J.
Chem. Phys. 2009, 130 (3), 034901.

(83) Martinez-Veracoechea, F. J.; Escobedo, F. A. Simulation of the
gyroid phase in off-lattice models of pure diblock copolymer melts. J.
Chem. Phys. 2006, 125 (10), 104907.

(84) Almdal, K; Rosedale, J. H.; Bates, F. S; Wignall, G. D;
Fredrickson, G. H. Gaussian- to stretched-coil transition in block
copolymer melts. Phys. Rev. Lett. 1990, 65 (9), 1112—1115

9397

DOI: 10.1021/acs.macromol.9b02015
Macromolecules 2019, 52, 9389-9397


http://dx.doi.org/10.1021/acs.macromol.9b02015

Supporting Information for
Impact of cyclic block copolymer chain architecture and degree of polymerization on
nanoscale domain spacing: a simulation and scaling theory analysis
Amy D. Goodson,! Jessie E. Troxler,! Maxwell S. Rick!, Henry S. Ashbaugh,!” and Julie N. L. Albert!*

"Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana

70118, United States of America

Section 1: DPD Simulation Methods ..........cooooiiiiiiiiiii e 2
Section 2: HPC Domain Spacing Calculation from Radial Distribution Functions ............. 5
Section 3: Domain Spacing Measurements from Simulation ............ccccceeveieeniiiencieenieenee, 7
Section 4: Derivation of ¢ from random walk StatiStiCs ..........ccevoueiiieniiieieeniiiinienieeeeee, 11
Section 5: Predicting percent reduction in lamellar size from cyclization.............c...c.......... 14
References for Supporting Information...................ccooooiiiiiiiiiiiii e 15

*Address correspondence to hanka@tulane.edu and jalbert6@tulane.edu.



Section 1: DPD Simulation Methods

Dissipative particle dynamics (DPD) is a coarse-grained simulation technique that
represents the block copolymer (BCP) as a chain of soft beads, each representing 10s of monomers,
connected by Hookean springs. The high degree of coarse graining and softness of the interactions
permits DPD to examine the phase behavior and meso-scale structure of BCPs and polymer blends
as a function of y, N, f,, and chain architecture.!” Significantly, DPD retains the inherent thermal
fluctuations eliminated from mean field theories that can be significant in polymer phase
8

behavior." ¢

Interparticle forces in DPD are broken up into a sum of pairwise conservative (F l-Cj),
dissipative (F Z-), and random (F fj) forces between particles i and j. Interactions between bonded
particles are modeled using a Hookean spring (F f]-), which enforces bead connectivity and polymer

architecture. The net force on DPD bead i is subsequently determined as a sum over interactions
with all other beads in the simulation'*!°

Fi= Y. Fij+ FJ; + F{ + F};. (S1)
This force governs the time evolution of the particle system according to Newton’s Laws of
Motion; our simulations use the velocity Verlet algorithm® with a timestep At = 0.025. The mass
of each bead in the simulation is assumed to be m = 1.

The conservative (energy-conserving) force enforces the chemical identity of the

constituent coarse-grained bead, modeled in DPD as a soft repulsive interaction

aij( Tij)/\
— ——\ 7T 1. <71
Fé ={n ")ty TusTe

(S2)
0 ri]' > e

where a;; is the DPD interaction parameter between beads i and j (dependent on the chemical
identities of the interacting beads) that represents the maximum repulsion at complete overlap; 7;

2



is the distance between interacting beads; #;; =r;;/r;; = (r; —1r;)/r;j is the normalized
direction vector pointing from j to i; and 7. is the cut-off distance after which inter-bead
interactions vanish. For simplicity, we set 7, = 1 for all inter-bead interactions. The interaction
between like beads, axs and agg which is set to 25, establishes the compressibility of the system
while the interaction between unlike beads, a,g, controls miscibility between the two blocks.!* At
a bead number density of p = 3 (the density of the simulations conducted here), the inter-bead

interactions can be mapped to the Flory-Huggins y parameter via the empirical correlation’

X = $ (aaB — aaa)- (S3)
We note that since DPD is a coarse-grained simulation technique, we cannot directly compare
simulation and experimental values of y. Rather, DPD values of y are typically calculated to match
the experimental segregation strengths, i.e., ¥Ngcplppp = XNpcplexpt, to affect a meaningful
comparison between simulation and experiment.’

The dissipative force accounts for the viscous drag of the multiple atomic sites condensed

onto a single coarse-grained bead. DPD models the dissipative force as
Fij = —ywjj(ry) (vy - 1)y, (S4)
where y is the friction coefficient, and v;; = v; — v; is the relative velocity between particles i

and j. The random force accounts for thermal Brownian kicks from the coarsened degrees of

freedom, modeled in DPD as

Cij o
Ffi = —owf§(r;) =1, (S5)

where o is a constant noise amplitude related to the temperature, and {;; is a Gaussian random

number with a mean of zero and unit variance. The fluctuation dissipation theorem imposes the



following constraints on the distance dependent weight functions a)g(r) and a)fj(r) and the
amplitudes of the viscous and random forces'’:
wh(ry) = [wf ()] (S6a)
and
02 = 2ykgT, (Sé6b)
where kgT is the product of the Boltzmann’s constant and the absolute temperature. Taken
together then, eqs. (S4-S6) act as a thermostat ensuring DPD simulations sample the canonical
(constant NVT) ensemble. Since the form of one of the weighting functions appearing in eq. (S4
and eq. (S5) is arbitrary, for simplicity DPD simulations adopt the expression
N2
wh (i) = [08(r)]” = (1- r’_]) ST (S7)
0 rij =1
which vanishes beyond 7., like the conservative force. Here, we assume kgT =1 and o0 =3 (y =
4.5) as recommended in ref. 6 to ensure fast, stable simulations.

Finally, the Hookean spring force in eq. (S1) is a second conservative interaction only
between bonded beads that enforces intramolecular polymer connectivity. The spring force is
evaluated as

Fg = ki), (S8)
where k is the spring constant, assumed here to be equal to 4," 7 independent of the chemical

identity of the bonded monomers.



Section 2: HPC Domain Spacing Calculation from Radial Distribution Functions

While others have demonstrated the use of RDFs to measure lamellar domain sizes,!' we are
unaware of references using RDFs to measure HPC structures. To confirm the approach’s validity,

we calculated the “ideal” RDFs for an HPC structure formed by a BCP with f, = 0.25 and compared

these to the known domain spacing. We randomly selected 10° points in an 8 X 4v/3 X 10 box and
identified the points as being located within a minority (cylindrical) or majority (matrix) domain
based on the Figure S1 inset geometry. We then generated g,4(7), ggg(r), and g45(r) between all
of these points as shown in Figure S1. Due to the hexagonal geometry of the HPC system, the
characteristic length given by the RDF intersections is actually the distance between cylinder rows

(v/3 in the Figure S1 inset) so dypc is calculated as the distance between the first and third crossings

2V3 |y

of gaa(r) and g,p(r) multiplied by a factor of -
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Figure S1. Radial distribution function measurement of domain spacing for the HPC structure shown in
the inset. The distance between the first and third (or i and i + 2) crossing points between gaa (r) (red

trace), ggg(r) (orange) and gap(r) (gray) gives the characteristic spacing between cylinder rows (v/3 in
this example). The hexagonal geometry of the system dictates that dyp (the inter-cylinder center-to-center

spacing) is related to this characteristic length by a factor of %g



Section 3: Domain Spacing Measurements from Simulation

1.1 -
B Linear LAM
1 Linear HPC
104 ® Cyclic LAM
O Cyclic HPC
00| "D
o ' ‘ﬁ- """"" | 2R +
2
= 08 -
HQ
a
3 0.7
)
0.6 - + 3?@%?@.@ Qjogﬁm o o
0.5 . . . . .
0 100 200 300 400 500

Figure S2. Ratio of domain spacings, d, measured from DPD simulation to the strong segregation theory
(SST) scaling prediction, y*/®N?/3, as a function of segregation strength, yN. Lines are drawn to guide
If the DPD simulations followed eq. (1), the simulated d would be a horizontal line at
d/(x*/®N?/3) = B for linear molecules and d/(y*/®N?/3) = 8 /2%/3 for cyclic. The deviations observed
here are due to the differences in the exponents calculated in this study (see Table 1, main text) and finite
size effects. The smooth negative slope of the data points indicate that all simulated systems are strongly
in slope which would be associated with a scaling regime

the eye.

segregated; we do not observe any sharp changes
transition.
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Table S1a: Cyclic lamellar BCP domain spacings

Architecture

f

a

X

N

-
=3
E

d

Cyclic

0.5

40

4.59

16

5.059

Architecture

f

a

X

Trial

5.066

Cyclic

0.5

70

13.76

20

6.628

6.548

4.957

Cyclic

0.5

40

4.59

20

5.872

6.548

5.859

Cyclic

0.5

70

13.76

24

7.276

7.460

5.763

Cyclic

0.5

40

4.59

24

6.540)

7.276

6.540

Cyclic

0.5

70

13.76

30

8.315

8.315

6.540

Cyclic

0.5

40

4.59

28

7.260

8.315

7.268

Cyclic

0.5

75

15.29

3.462

3.417

7.076

Cyclic

0.5

40

4.59

32

7.996

3.396

7.996

Cyclic

0.5

75

15.29

3.838

3.838

8.101

Cyclic

0.5

40

4.59

36

8.315

3.934

8.624

Cyclic

0.5

75

15.29

4.500

4418

8.016

Cyclic

0.5

40

4.59

40

9.040

4.418

9.040

Cyclic

0.5

75

15.29

5.061

5.061

9.040

Cyclic

0.5

65

12.23

3.331

4.989

3.331

Cyclic

0.5

75

15.29

6.000

6.540

3.310

Cyclic

0.5

65

12.23

3.806

6.122

3.890

Cyclic

0.5

75

15.29

20

7.060

6.876

3.838

Cyclic

0.5

65

12.23

10

4.447

6.876

4.284

Cyclic

0.5

75

15.29

24

7.484

7.276

4.279

Cyclic

0.5

65

12.23

12

4.863

7.460

4.682

Cyclic

0.5

75

15.29

30

9.040

9.030

4.861

Cyclic

0.5

65

12.23

18

6.122

9.040

6.390

Cyclic

0.5

80

16.82

3.486

3.462

6.000]

Cyclic

0.5

65

12.23

20

6.548

3.486

6.540

Cyclic

0.5

80

16.82

4.025

3.970

6.628

Cyclic

0.5

65

12.23

24

7.292

3.994

7.420

Cyclic

0.5

80

16.82

4.562

4.466

7.276)

Cyclic

0.5

65

12.23

30

8.646

4.466

8.315

Cyclic

0.5

80

16.82

5.067

4.863

8.315

Cyclic

0.5

70

13.76

3.389

5.064

3.393

Cyclic

0.5

80

16.82

6.388

6.396

3.393

Cyclic

0.5

70

13.76

3.834

6.612

3.838

Cyclic

0.5

80

16.82

20

6.876

7.068

3.806

Cyclic

0.5

70

13.76

4414

6.876

4414

Cyclic

0.5

80

16.82

24

7.611

8.005

4418

Cyclic

0.5

70

13.76

4.893

7.996

4.893

Cyclic

0.5

80

16.82

30

9.040

8.656

5.059

W[ = [W = W= W[ =W =W [N —= W[ —= W[ —= W[ = [W|N =W =W = W= W[ =W =W = W[ |—= W[ |—]|wW|o

9.030

Cyclic

0.5

70

13.76

6.397

6.122

W[ =[N = W[ =W || — || =W =W =W —= [N =[N —= W= W= W= | W= |W[N| = |W[N|—=|W[N|—= W[ | =W —=[W]|N]|—

6.390




Table S1b: Linear lamellar BCP domain spacings

Architecture

f

a

X

N

Trial

d

Linear

0.5

40

4.59

12

1

6.340

Architecture

f

a

X

Trial

5.994

Linear

0.5

70

13.76

9.328

6.352

9.328

Linear

0.5

40

4.59

16

7.268

9.488

7.316

Linear

0.5

70

13.76

20

10.000

7.444

9.883

Linear

0.5

40

4.59

20

8.315

10.000

8.315

Linear

0.5

75

15.29

4.675

8.656

4.675

Linear

0.5

40

4.59

24

9.488

4.682

9.787

Linear

0.5

75

15.29

5.756

9.488

5.564

Linear

0.5

65

12.23

4.637

5.769

4.568

Linear

0.5

75

15.29

6.388

4.625

6.540

Linear

0.5

65

12.23

5.469

6.540

5.474

Linear

0.5

75

15.29

7.274

5.469

7.274

Linear

0.5

65

12.23

10

6.388

7.316

6.394

Linear

0.5

75

15.29

9.488

6.392

9.485

Linear

0.5

65

12.23

12

7.069

9.485

7.267

Linear

0.5

75

15.29

20

10.000

7.068

9.997

Linear

0.5

65

12.23

8.317

9.997

8.659

Linear

0.5

80

16.82

4.856

8.315

4.850

Linear

0.5

65

12.23

20

9.776

4.682

9.992

Linear

0.5

80

16.82

5.764

9.997

5.764

Linear

0.5

70

13.76

4.720

5.877

4.568

Linear

0.5

80

16.82

6.540

4.678

6.542

Linear

0.5

70

13.76

5.565

6.540

5.565

Linear

0.5

80

16.82

7.453

5.566

7.272

Linear

0.5

70

13.76

6.532

7.276

6.388

Linear

0.5

80

16.82

9.488

6.388

9.488

Linear

0.5

70

13.76

12

7.269

9.936

7.268

Linear

0.5

80

16.82

20

10.267

W R = W= W= W= [W|NR =W = W= [W|R =W =W = W[ =W =W ]| —=[w|

7.276

10.000

W= ]wof=|wro]—=|w o =]w|o|=[w|o]—=]w o[ =[w|o]=]w|o|—=]w|o]—=[w|to] =] —=[w]ro]—w |

10.000




Table S1c: HPC domain spacings

Architecture

N

Trial

d

Cyclic

0.25

40

—_

Architecture

f

Trial

Linear

0.25

35

24

—_

9.071

8.288

9.216

Cyclic

0.25

40

4.59

28

6.884

9.085

7.076

Linear

0.25

35

3.06

28

10.263

6.928

10.263

Cyclic

0.25

40

4.59

32

7.866

10.255

7.653

Linear

0.25

40

4.59

20

8.631

7.919

8.311

Cyclic

0.25

40

4.59

36

8.365

8.660

8.383

Linear

40

4.59

24

9.481

8.248

9.481

Cyclic

0.25

40

4.59

40

8.993

9.619

8.669

Linear

50

7.65

6.851

9.215

6.878

Cyclic

0.25

50

7.65

20

6.248

6.638

6.381

Linear

50

7.65

6.099

Cyclic

0.25

60

10.70

16

5.716

7.986

5.776

Linear

0.25

60

10.70

5.457

5.773

5.466

Cyclic

0.25

60

10.70

20

6.396

5.412

6.544

Linear

60

10.70

7.074

6.662

7.122

Cyclic

0.25

60

10.70

24

7.209

7.092

7.478

Linear

65

12.23

5.495

7.531

5.541

Cyclic

0.25

60

10.70

28

8.124

5.623

7.894

Linear

65

12.23

7.329

8.019

7.170

Cyclic

0.25

60

10.70

32

8.494

7.187

8.503

Linear

0.25

70

13.76

5.650

8.660

5.607

Cyclic

0.25

60

10.70

36

8.197

5.724

9.465

Linear

0.25

75

15.29

5.792

9.623

5.794

(OS] § NS Ty RUST RIS R By RUSR | NR FEy QUSY § SO By RUSH B SR IEg HOVR § NS FEy RUST R SR Fooy ROVR I SR [Py QUSE § SO By RUSY B R FEoy RUSY | NS Ty QUS] § 8]

5.773

Cyclic

0.25

65

12.23

28

8.143

7.967

8.283

Cyclic

0.25

75

15.29

12

5.187

5.192

5.094

Cyclic

0.25

75

15.29

16

5.997

5.908

5.973

Cyclic

0.25

75

15.29

20

6.884

6.884

7.217

Cyclic

0.25

75

15.29

24

7.847

7.690

QN [N = W= WD =W [N = | W | N = |G N[ = [ B = ||| —= | N[ = [ W[ N[ = [N —= | W N = W[ =W [N — W= [w]

7.531
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Section 4: Derivation of ¢ from random walk statistics

The squared end-to-end length RZ, of a linear molecule is proportional to the number of
bonds in the molecule (which is one less than the number of monomers (N)), and the length of the
bond between adjacent monomers, b;

(RZ.) = B)=i T, - b)) (S9)
In the case where bond length differences are negligible (the assumption underlying Semenov’s
Strong Segregation Theory, main text eq. (1)), we define
(RZe)o = (N — 1)b?. (S10)
For relatively short block copolymers, however, the interfacial bonds between unlike monomers,
b,p, measure ~35% longer than bonds between like monomers, b;; (i = A or B), for both the linear
and cyclic BCPs. Due to the highly coarse-grained (i.e., very short) chains used in DPD
simulation, the localized interfacial stretching contributes significantly to the effective polymer
length. In this situation, the squared end-to-end length of a linear BCP becomes
(Rée) = (N — Z)bfm + bjB- (S11)

Multiplying and dividing by (N — 1) and factoring out by, gives

b 2
N—1+(ﬂ) -1
baa

N-1

2
bia

(RZ.) = (N -1, (S12)
so that the ratio of mean squared end-to-end length for a BCP with significant interfacial stretching

to that of an unstretched molecule is

bap 2
(R%) _ N-“(m) -1 1 [(bap)?
= e — =1+ (322) -1 (S13)

where Aj;, = N — 1. This ratio can be considered a correction for the interfacial chain elongation

observed in strongly-segregated BCPs. We therefore include it as part of A, the term representing

polymer size in eq. (4), defining,
11



a=1+§K%%2—4, (S14)

and

A=Aa=a+@£f—1. (S15)

baa
Table S2 gives values for the ratio byg/bs4 measured in simulations of cyclic and linear BCPs

over a range of chain lengths, morphologies, and architectures. An average value of 1.356 was

used for eq. (4) fitting.

Table S2: Values of the ratio b,g /by, measured in DPD simulation

Architecture f a X N bag/ b ga
Cyclic 0.5 40 4.6 16 1.200
Cyclic 0.5 40 4.6 20 1.192
Cyclic 0.5 40 4.6 24 1.187
Cyclic 0.5 40 4.6 28 1.183
Cyclic 0.5 65 12.2 6 1.464
Cyclic 0.5 65 12.2 10 1.370
Cyclic 0.5 65 12.2 12 1.350
Cyclic 0.5 65 12.2 20 1.317
Cyclic 0.5 65 12.2 30 1.301
Cyclic 0.5 80 16.8 6 1.521
Cyclic 0.5 80 16.8 10 1.412
Cyclic 0.5 80 16.8 12 1.391
Cyclic 0.5 80 16.8 20 1.356
Cyclic 0.5 80 16.8 30 1.340
Cyclic 0.25 40 4.6 28 1.183
Cyclic 0.25 40 4.6 32 1.180
Cyclic 0.25 40 4.6 36 1.178
Cyclic 0.25 40 4.6 40 1.176
Cyclic 0.25 65 12.2 28 1.307
Linear 0.5 40 4.6 12 1.196
Linear 0.5 40 4.6 16 1.187
Linear 0.5 40 4.6 20 1.180
Linear 0.5 40 4.6 24 1.177
Linear 0.5 65 12.2 6 1.369
Linear 0.5 65 12.2 10 1.328
Linear 0.5 65 12.2 12 1.318
Linear 0.5 65 12.2 20 1.301
Linear 0.5 80 16.8 6 1.409
Linear 0.5 80 16.8 10 1.367
Linear 0.5 80 16.8 12 1.356
Linear 0.5 80 16.8 20 1.338
Linear 0.25 40 4.6 20 1.183
Linear 0.25 40 4.6 24 1.178
Linear 0.25 65 12.2 8 1.351
Linear 0.25 65 12.2 12 1.326
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To confirm the validity of using random walk statistics to describe BCPs in DPD simulation, we

calculated the g-factor (Rf,‘cyc/R;lin) for 6 < Nppp < 20 at y = 12.2 and y = 15.3. We found

0.46 < RZ ¢y

/ R;ll-n < 0.53, in good agreement with the random walk theory prediction of 0.50.
This narrow range suggests that our use of random walk principles in developing the revised
scaling law is reasonable.

Table S3: Radii of gyration (R) for cyclic and linear BCPs of
identical Nppp. Standard deviations for all R; measurements are

less than 0.005.

X N Rg,cyc Rg,lin (Rg,cyc/ Rg,lin)2
12.2 6 0.651 0.896 0.528
12.2 8 0.762 1.068 0.509
12.2 10 0.873 1.229 0.505
12.2 12 0.966 1.366 0.500
12.2 20 1.29 1.874 0.474
15.3 6 0.660 0.905 0.532
15.3 8 0.767 1.09 0.495
15.3 10 0.880 1.24 0.504
15.3 12 0.981 1.39 0.498
15.3 18 1.21 1.78 0.462
15.3 20 1.34 1.88 0.508

13



Section 5: Predicting percent reduction in lamellar size from cyclization

The percent reduction in lamellar size that can be achieved by cyclizing a linear BCP of length N
is defined as

% reduction = (dyi, — deye)/diin X 100%, (S16)
which can be calculated from eq. (4) as

(BAZX)1in—(BA%XY) cyc
(BAEXV)1in

% reduction = X 100%. (S17)

Because the cyclic product will have the same fand y as its linear precursor, the § and y terms
cancel to give

(AE) lin™ (AE) cyc

% reduction = 75
lin

x 100%. (S18)

Plugging the definition of A into the equation gives

bap\® 5 In bap\? L]
N—1+(ﬂ) -1 - —+(ﬂ) -1
[ baa 2 \bgg

bag\2 |
N—1+<ﬁ) —1}
baa

% reduction = x 100% (S19)

which simplifies to

N (bap\2 _|°
NL(24B) _
2+<b 1]

2 &

bap

N+(— 2
baa

% reduction = | 1 — X 100%. (S20)

The lines in Figure 5 come from this equation. In the long chain limit, the % reduction plateaus

based on the scaling exponent as

lim (% reduction) = (1 - [2]) x 100%. (S21)

14



We achieve this same limiting result by starting with eq. (1) (Semenov’s Strong Segregation
Theory) and applying Marko’s hypothesis that a cyclic BCP should scale (N/2) 2/ in the long

chain limit. In this approach, the f and y terms cancel to give

2
N2/3

N2/3—(ﬂ)2/3
% reduction =

X 100%. (S22)
which simplifies to

112/

2/3
% reduction = (1 -3 ) x 100% = 37%. (S23)
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