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Abstract: Smart microgrids (SMGs) may face energy rationing due to unavailability of energy
resources. Demand response (DR) in SMGs is useful not only in emergencies, since load cuts might be
planned with a reduction in consumption but also in normal operation. SMG energy resources include
storage systems, dispatchable units, and resources with uncertainty, such as residential demand,
renewable generation, electric vehicle traffic, and electricity markets. An aggregator can optimize the
scheduling of these resources, however, load demand can completely curtail until being neglected to
increase the profits. The DR function (DRF) is developed as a constraint of minimum size to supply
the demand and contributes solving of the 0-1 knapsack problem (KP), which involves a combinatorial
optimization. The 0-1 KP stores limited energy capacity and is successful in disconnecting loads.
Both constraints, the 0-1 KP and DREF, are compared in the ranking index, load reduction percentage,
and execution time. Both functions turn out to be very similar according to the performance of these
indicators, unlike the ranking index, in which the DRF has better performance. The DRF reduces to
25% the minimum demand to avoid non-optimal situations, such as non-supplying the demand and
has potential benefits, such as the elimination of finite combinations and easy implementation.

Keywords: load shedding; optimization of energy demand supply; smart microgrid scheduling;
0-1 knapsack problem

1. Introduction

User participation has become of great value in smart grids management. Cooperation among
users allows decision-making more flexibility, through the use of demand response (DR). Customers can
be included in DR programs either by changing their habits or by implementing load control [1].
DR can be analyzed from two approaches: the first considers the power quality that is affected by
disturbances, such as harmonics, inter-harmonics, phase unbalance, phase jump, and temperature
effects due to overloads [2,3]. The second encompasses demand benefits for reducing operating costs,
improving aggregator profits, and mitigating market power [3,4]. This research falls under the second
group, which saves energy through demand management [5].

Demand management can consider demand forecasts, load curtailment, and combinatorial
optimization with DR [6,7]. This type of combinatorial optimization problem has several applications for
load shedding [8]. Heuristic techniques have been applied to solve this problem with non-deterministic
polynomial times, also called NP-hard problems [8,9]. This type of problem can arise as a subproblem
or a constraint [5,8,9]. The solution was presented as a combination of a series of user decisions [5,8,9].
In microgrids, load shedding was modeled through the 0-1 knapsack problem (KP), which is classified
as an NP-hard problem [8]. In using this technique, the possibilities and solution times are exponentially
increased with 2N [8]. The 0-1 KP problem was solved with heuristic algorithms and Lagrangian

Energies 2020, 13, 4567; doi:10.3390/en13174567 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-8042-1299
https://orcid.org/0000-0003-2188-2498
https://orcid.org/0000-0003-4006-0764
https://orcid.org/0000-0002-2995-1147
http://dx.doi.org/10.3390/en13174567
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/17/4567?type=check_update&version=2

Energies 2020, 13, 4567 20f 18

multipliers. For example, Cuckoo Search and Tabu Search are heuristic algorithms that are applied
efficiently by solving multidimensional 0-1 KP [8,10]. In addition, the method of Lagrangian multipliers
is implemented with integer programming. Results show that execution time is polynomial and is
similar to other findings [11].

Load restoration has been addressed with 0-1 KP in microgrids. Consumer supply is an important
procedure after the smart microgrid (SMG) is out of service [12,13]. For example, failures and blackouts
can deteriorate customer satisfaction and restoration of power supply is essential [12,13]. DR programs
share the objectives of ensuring user welfare and supplying essential loads [14]. Energy must be
supplied at low cost and supplying critical loads [12,13]. The energy supply is optimized through
heuristic techniques [12,13]. Consequently, DR programs are supported by load restoration programs,
in both cases the aim is to ensure the energy supply of a group of users.

Optimization techniques with heuristics have been widely studied [15]. SMGs comprise interacting
elements such as residential loads with DR programs, distributed electric vehicles (EVs), energy storage
systems (ESSs), generation with renewable energies, and dispatchable units [13,14]. SMGs may also
be subject to sources of uncertainty that further complicate operation, such as residential demand,
renewable generation, traffic of EVs, and electricity markets [13,15]. For example, a comparative
analysis is performed between various algorithms for a SMG model [9,16]. The variable neighborhood
search-differential evolutionary particle swarm optimization (VNS-DEEPSO) algorithm turned out
to be better than the chaotic evolutionary particle swarm optimization (PSO), differential evolution
(DE) with stochastic selection, enhanced velocity differential evolutionary PSO, firefly, improved
chaotic DEEPSO, improved DE, PSO with global best perturbation, and unified PSO algorithms [16].
Research on these algorithms suggests implementing constraints for DR [17-19].

1.1. Motivation of This Paper

Operational costs optimization with heuristics alleviates renewable energy disadvantages such as
intermittency and fluctuations that can be addressed with the management of ESSs. Heuristics with
probabilistic analysis provide robust solutions to the uncertainty of renewables [20]. In addition,
the energy supply is considered as an additional objective under criteria of frequency, duration,
and magnitude [4,20]. For example, the reduction of operational costs and energy supply are considered
in multi-objective optimization problems, this approach presents as a drawback of multiple optimal
solutions on the Pareto front [4,20]. However, in the traditional approach the problem is addressed
considering 0-1 KP restrictions, however the polynomial execution times make it difficult to analyze
real microgrids [14]. Solving problems involving polynomial execution times, robust solutions in SMGs
with uncertainty, and addressing multiple criteria in a single objective function motivates the findings
of this research.

1.2. Contribution of This Paper

This article presents an implementation of 0-1 KP constraints for DR. In addition, the DR function
(DRF) is developed as a contribution of this research that solves the 0-1 KP, which indeed involves
combinatorial optimization. Both techniques, DRF and 0-1 KP, are evaluated in a SMG model
considering an aggregator that seeks social welfare and supplies essential loads. The aggregator
schedules resources with or without uncertainty. The uncertainty resources are EVs trips, renewable
generation, loads with DR, and energy market prices [21]. The resources without uncertainty are
distributed generators (DGs) and ESSs. Additionally, this article makes the following contributions:

(1) The implementation of 0-1 KP in a SMG model. 0-1 KP is formulated in two levels. In the first
level the demand is grouped, and in the second level the demand is discretized into hour blocks.
The refinement of the blocks depends on the computing capacity. Results are measured in terms
of the ranking index (RI), load reduction percentage, and execution time. The Rl is calculated as
the sum of the average profits and their standard deviation.
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(2) DRFisdeveloped tosolve the 0-1 KP. DRF is compared with 0-1 KP in terms of the RI, load reduction
percentage, and execution time. The outstanding outcomes of DRF are similar to those of the
0-1 KP. However, DRF stands out for the following characteristics. DRF works with continued
variables, so DRF has no problem of refinement. In addition, DRF needs no additional execution
time for preloading combinations, since the polynomial time in 0-1 KP and its function are easier
to implement than 0-1 KP.

The article presents the following structure: Section 2 summarizes the state of the art, Section 3
presents the SMG model, Section 4 formulates 0-1 KP and DRF, Section 5 contains the results,
and Section 6 presents the main conclusions of the research.

2. State of the Art

Table 1 shows the SMG models with energy resources that are subject to 0-1 KP and DRF
restrictions [18-26]. These models are listed from 1 to 9 and are described in the following. The SMG
model 1 considers a maximum generation capacity at 0-1 KP and is solved by using binary variables.
The SMG model 1 also considers the maximization of the benefits of SMG [14]. The 0-1 KP solution
is successful. However, this model has the problem of polynomial times. Since the SMG model 1
represents a simple microgrid, it lacks elements such as load with DR, market prices, EVs, and ESSs.
Therefore, the implementation of the SMG model 1 is feasible in didactic and short-range scenarios of
actual SMGs [14].

The SMG model 2 gathers elements such as DGs, photovoltaic (PV) generation, external suppliers,
load with DR, market prices, EVs, and ESSs [13,17,27,28]. The SMG model 2 also has sources
of uncertainty such as residential demand, renewable generation, traffic of EVs, and electricity
markets [13,17,27]. The model is based on the operation of a residential microgrid [16]. However,
the residential customer demand is unattended after the optimization process, that is, the load demand
is close to zero. In demand management, this is an unwanted solution [12,16]. The SMG model 2
is improved with a battery swapping station for EVs and sets a DRF as a constraint [22]. However,
DREF is a target rather than a constraint in [4]. Therefore, the new implementation of the DRF lacks
a previous study for the implementation with loads with DR.

Table 1. Review of microgrids energy resources with 0-1 knapsack problem (KP) and demand response

function (DRF).
No. Gen ESS DR EVs 0-1 KP DRF Uncertainty Sources
1 Yes No Yes No Yes No Not reported [14]
2 Yes Yes Yes Yes No Yes EVs, renewable resources, electricity markets, and loads with DR [22]
3 No No Yes No No No Electricity markets and loads with DR [23]
4 Yes Yes No No No No Renewable resources and loads [24]
5 Yes Yes Yes No No No Renewable resources, loads, and market prices [25]
6 Yes Yes No Yes No No Renewable resources, loads, and EVs [26]
7 Yes Yes Yes No No No Renewable resources, loads, and market prices [27]
8 Yes Yes No No No No Not reported [29]
9 Yes No No No No No Not reported [30,31]
10 Yes  Yes Yes Yes Yes Yes EVs, renewable resources, electricity markets, and loads with DR

(this model is implemented in this research)

The residential power system model 3 aims to improve the economic benefits [23]. This model
considers the use of smart meters in SMGs [1] as well as load uncertainty and price volatility in real
time [23]. This model has no restrictions in optimization, which ensures a good state of the demand,
such as 0-1 KP and DRF [23]. The analysis does not consider EVs and ESSs [23]. The power system
model 4 takes into account the predictive forecast but not load shedding [24]. In addition, batteries
and generation with combined heat and power and renewable are considered to increase profits [24].
This model includes neither DR programs nor EVs [24].

The model 5 of distributed resources supplies the demand side with renewable energy [25] and
aims to reduce CO; emissions and energy costs. The technique restricts the energy demand supplying
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and is similar to 0-1 KP, but in this case seven probability scenarios are studied. These seven scenarios
are obtained by using a scenario reduction technique. This model is strictly limited to plausible
scenarios in uncertain environments; therefore, it can find plausible but not optimal solutions [25].

The smart grid model 6 comprises EVs, ESSs, and renewable generation. This model aims to
reduce operating costs and lower CO, emissions from thermal power plants [26]. This model predicts
the load; however, it warns of deviations from the actual load. The model includes no implementation
of load with DR [26]. The small-scale model 7 of smart grid aims to maximize the profits in the grid
and considers a system with DGs, renewable energies, and ESSs [27]. In this model, the loads are
represented by an agent that controls the electric power and exchanges information with other agents
in the network [27]. The major drawback of this formulation is that the model lacks load demand
management strategies and is difficult to reproduce. Nevertheless, it provides viable results despite
having no load restrictions.

The microgrid model 8 reduces operation costs while the dispatchable generation units and the
storage of energy are scheduled. Errors for forecasting demand in the operation are recommended to
be studied in future works. The microgrid model 8 highlights operations to optimize costs, such as
load curtailment and load shifting [29]. Power network models in 9 analyze generation costs, power
losses, emissions, and validate an evolutionary hybrid algorithm. This research has demonstrated the
interest of the scientific community in validating optimization algorithms with multiple tests. However,
the study neglects sources of uncertainty, ESSs, VEs, loads with response to demand, and penalties
for not supplying the demand [32]. Table 2 summarizes the limitations presented in the review of
this section.

The SMG model 10 is implemented in this research and overcomes some drawbacks described
in previous literature. First, this model addresses residential loads with DR programs, EVs, ESSs, DGs,
and renewable resources. An aggregator aims to increase profits and can negotiate the buy/sell energy
in electricity markets. The microgrid considers uncertainty conditions that are more challenging in the
operation, such as renewable generation forecasts, trip planning with EVs, market price volatility,
and load forecast.

Table 2. Limitations of the review of microgrids with 0-1 KP and DRE.

z
e

Limitations of the Review of Microgrids Energy Resources with 0-1 KP and DRF.

The model 1 lacks elements such as load with DR, market prices, EVs, and ESSs [14].

The residential customer demand is unattended after the optimization process. In demand management, this is an
unwanted solution [22].

The model 3 has no restrictions in optimization, which ensures a good state of the demand, such as 0-1 KP and DRF [23].
The model 4 does not include either DR programs or EVs [24].

The model 5 is strictly limited to plausible scenarios in uncertain environments; therefore, it can find feasible but not
optimal solutions [25].

The model 6 includes no implementation of load with DR [26].

The major drawback of this formulation is that the model 7 lacks load demand management strategies and is difficult to
reproduce [27].

Errors for forecasting demand in the operation are recommended to be studied in future works [29].

The study neglects sources of uncertainty, ESSs, VEs, loads with DR, and penalties for not supplying the demand [31].
Model 10 overcomes the above limitations.

O NN N G =W N —_

—_
o

The SMG model 10 overcomes the weaknesses mentioned in previous models, such as ensuring
that the demand is met, integrating DR programs, generating a feasible SMG model for optimization,
and creating a reproducible method. This model includes 0-1 KP and DRF to optimize the loads with
DR. The 0-1 KP implementation consists of discretizing the load for its optimization and guaranteeing
that the demand is satisfied. DRF is a constraint in the objective function to ensure welfare of the
demand. This model is the most complete according to the literature review shown in Table 1 that
includes sources of uncertainty, elements of the SMG, and 0-1 KP and DRF demand restrictions.

Various heuristic algorithms have been studied to solve SMG models. The resulting VNS-DEEPSO
algorithm has the highest performance of the algorithms mentioned above according to [12,16].
The mechanisms implemented in this heuristic are described below.
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2.1. VNS-DEEPSO Algorithm

This technique assembles the VNS algorithm and the DEEPSO algorithm [12,16]. VNS-DEEPSO
algorithm solves an SMG optimization problem with uncertainty, proposed by the GECAD group
in [16]. The VNS-DEEPSO secured the first place in this world competition [16,19], as their algorithm
considerably improved the results obtained with the differential evolution (DE)/rand/1 algorithm
by 279% in a case study with uncertain environments [30]. This study determined an optimal
participation of VNS and DEEPSO of 48.6% and 51.4%, respectively [30]. In the early stages,
VNS searches for neighborhood structures, scans distant neighborhoods, and maintains the most
current solution. The solution is improved with local search method in two steps. In the first step,
the cyclic coordinate method searches for a set of directions to optimize non-differentiable or nonlinear
functions. In the second step, the Fibonacci line search method reduces the uncertainty interval,
as shown in Figure 1a [33]. DEEPSO has the structure of PSO. The new particles are calculated by
calculating (1) the new velocity of the particle, (2) the new position, and (3) the particle mutation
weight, as shown in Figure 1b. Additionally, the particles change their position inspired by DE and
evolutionary algorithms. The improvements include noise to affect the particle positions, thereby
adding positive benefits. Moreover, the movement of memory is replaced by the movement of
perception. This improvement aims to track the direction of the local gradient. These improvements
lead to a solution with remarkable convergence [34]. The pseudocode and link of the complete code
are presented in Figure 1 for the VNS and DEEPSO algorithms [16,19].

2.2. Conceptual Formulation

The conceptual formulation is based on the flow diagram as shown in Figure 2. The SMG model
is defined in Section 3. Demand response constraints ensure the welfare of a group of users and the
essential supply of energy. The 0-1 KP or DRF method is formulated to ensure the aforementioned
restrictiong, an ndare defipedinSggtions 4.1 and 4.2. Finally, the results are verified by ¢comparing the
traditional 0- 1 KP method with the DRE.

( Initialization: Define set of Xpor and Xpin, size
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Initialization: Set of neighborhood structures ( Ny ) cation and search of particles. Randomize the initial po-
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simulations [21]. These simulations are based on historical data [16]. The scenarios are reduced with
the Soares technique, which is based on statistical metrics. Scenarios are reduced from 5000 to 100
feasible for PV generation, load, and market prices [37]. An EVs simulation tool is employed to
generate the travel route forecast [38]. Table 3 shows the specifications of the microgrid.

Table 3. Specifications of SMG [16].

SMG Energy Resources Capacity (kW) Prices (m.u./kW) Units
DCe 10—=100 007—-0 11 5
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and market prices [37]. An EVs simulation tool is employed to generate the travel route forecast [38].
Table 3 shows the specifications of the microgrid.

T Npg T N
tZl )y PDGzt)CDGlt ): Z ext(it)” ext(i,t)+"'
=1 i=1 t=1k=1
Npy-pg

byt Sw| A P PV(]',t,s)‘CPv(j,t,s)+ Z PESS’(e,t,s)'CESS*(e,t,s)~~
OCTotal ZZ = Ny 'H(S) ()
s=1t -t Z Ppy- (v,ts)" CEV (v,t) + Z Pcurt(lts) curt(Lt,s)...
N, NDG
z>;'1 Pimb*(m,t,s)'Cimb*(m,t,s) + Z Pimb*(m,t,s)'Cimbﬂm,t,s)

=1

Table 3. Specifications of SMG [16].

. Prices .
SMG Energy Resources Capacity (kW) (m.u/kW) Units
DGs 10-100 0.07-0.11 5
External supplier 0-150 0.074-0.16 1
Charge/discharge of ESSs 0-16.6 0.03 2
Charge/discharge of EVs 0-111 0.06 34
Loads with DR 4.06-8.95 0.0375 90
Wholesale/local market 0-100/10 0.021-0.039 1
Forecast (kW)
PV generation 0-106.81 - 1 (17 agg.)
Load 35.82-83.39 - 90

The aggregator increases the incomes by selling and buying energy in the wholesale and local
markets, as shown in Equation (3).

an
Day+1
T(?le 2 2 § Pbuy m,t) psell(m,t))'MP(m,t,s) ~7'((S) 3)
=1t=1\m=

The major constraint is to maintain the active power balance, which includes the sum of PV
generation, ESS, DG, external supplier, energy imbalance, load curtailment, buy/sale of energy markets,
and EVs, as shown, respectively, in Equation (4). The generation, ESS, EVs, external supplier, and DR
curtailment are limited for each period ¢, as shown in Equations (5)—(9). Binary variables X represent
the on/off state for each element. Equation (1) is subject to:

Npy-pG Npg Npg

Z Ppy(jus) + Z(PEss e,ts)—PEss+(ets)) Z Ppgis) + Z Poxtkry + Z Pyt (i t.5)
=1

N
ot lzl Pimb‘(lts ) + 2 ( curt(Lt,s) Pload(l,t,s)) + 21<Pbuy(m,t) - Psell(m,t,s)) @)
= m=

s Zl(PEV_(U,t/S) —Pryiue) =0 VteT, Vses,
=

PpGmin(i,) Xpc(it) < Ppacit) < Poemax(inXpc(y YE€ T, Yie Npg %)
Pext(k,t) < Pextmax(k,t)Xext(k,t) VteT, Vke N (6)
Pcur(l,t,s) = Pcurtmux(l,t,s)Xcurt(l,t,s) VteT, VleL,VseS 7)

Pessmin(et,s) XESS(ets) < PESS(ets) < PESSmax(it) XESS(ets) VEET, €€ Ne,VseS (8)
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PEVmin(v,t,s)XEV(v,t,s) < PEV(v,t,s) < PEVmax(v,t,s)XEV(v,t,s) VteT,Yve Ny, ¥seS )
e, i,v,k,1eZ YeeN,, Yie Npg,Vve Ny, Yke Ny, VlelL

The maximum number of evaluations of the objective function in Equation (1) is limited to 50,000,
as shown in Equation (10). This is calculated by multiplying the number of populations, scenarios,
and iterations in Equation (10) [16].

NFEs = NP * Ng * iteration - (10)

The RI is calculated with the average of the sum of the mean and the standard deviation divided
into the number of runs (N;,;s) of the objective function [13].

NVLIYIS

(u(Z) +0(2)) (11)
i=1

1

RI =
N runs

4. Formulation of the 0-1 KP and the DRF

Sections 4.1 and 4.2 present the formulation of 0-1 KP and DRF. Table 4 summarizes the
implementation of the 0-1 KP and DRF formulations that can be carried out using the simulation
general framework in the Matlab R2019b program. The minimum demand is scheduled either using
the step 2a or 2b of Table 4.

Table 4. Simulation general framework.

No. Step Source
1 Download the case study VNS-DEEPSO Data ! [19]
2a Replace 0-1 KP demand groups in search space limits Section 4.1
2b Add DREF in fitness function of VNS2.m and DEEPSO_RE.m Section 4.2
3 Analysis of results using Send2Organizer.mat, benchmark_Fitness.txt, Section 3

benchmark_Summary.txt, and benchmark_Time.txt
L http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/ data from GECAD group.

4.1. Formulation of 0-1 Knapsack Problem 0-1 KP

SMGs are vulnerable to energy shortages; therefore, it is essential to address the problem of power
outages to increase their reliability. 0-1 KP is widely used to solve this problem based on combinatorial
optimization. The loads of customer are discretized [3]. 0-1 KP is represented by the evaluation of
an objective function that is subject to a constraint. Equation (1) is subject to Equation (12).

Ns T Np

Z Z Z Pcurt(l,t,s)'Ccurt(l,t,s)'yﬂ'n(s) 2

s=1t=11=1 12)
Vo (5 (

n
max( Y. Y pcurt(l,t,s)'Ccurt(l,t,s)' 1
s=1t=11=1

VteT,VleL, V¥se€S y,€{0,1} (ne{l,2,...,N})

The problem in Equation (1) is extended by adding a constraint called 0-1 KP. The same analogy for
a knapsack applies to Equation (12). The knapsack has a fixed capacity to carry products. The capacity
of the knapsack is 25% of the maximum demand which is fixed at the convenience of the microgrid,
and the products that fill the knapsack are stochastic scenarios, time periods, and loads. In other
words, a good state of the demand is ensured, given that the reduction of the demand varies from 25%
to 100% of the maximum demand. The off and on state is represented by the variable y, as 0 and 1.
The number of discrete variables is represented by N. The problem is addressed in two stages for better
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capacity of the knapsack is 25% of the maximum demand which is fixed at the convenience of the
microgrid, and the products that fill the knapsack are stochastic scenarios, time periods, and loads.
In other words, a good state of the demand is ensured, given that the reduction of the demand varies
gl(e)rrr}egg(%)or’c%l&%‘;o of the maximum demand. The off and on state is represented by the variable y,
as d; and 1. The number of discrete variables is represented by N. The problem is addressed in two
stages for better compression and is explained in the following subsections. First, the demand is
gooypedsiarcerdingexplsintthin phetéoHowing ssdesautionise Fitestn finel demdisdgs gxentpddiacoortisogete
sianidbigsatterns and, second, the demand is disaggregated into discrete variables.

4:.1.1. Demand GroupinRg

Figure 4 represents the lead forecast with the generated scenarigs which are represented by
demand profiles: Despite uncsriainty i the demand forecast the main trends are presented: In the
afterneen, the maximum leads are expected during the day, and at 11 R at night, Between 1 and 2
B [16]. The demand falls smoothly fom 1 2. 10 6 8./, with a peak over 41 kW ai 4 a.m. The Iead
gradually inereases from 7 a.n. at midday and it progressively decreases fom 4 i 1 7 B
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terms of means. Under this condition, groups 1, 2, and 3 are subdivided into 2, 3, and 4, respectively.
Then, 68 discrete variables are obtained for a 24-h period, as shown in Figure 6.
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Figure 5. Maximum demand: (a) stacked load of 90 users; (b) selection of groups for loading with DR.

4.1.2. Demand Discretization

Energijglmzmegllqg@calculated for groups 1, 2, and 3, shown in Figure 5b. These values are 43.8, 2,013
and 78.31 kW, respectively. The groups are subdivided according to these values. The purpose is to
convert continuous variables into discrete variables. Discrete groups should have similar sizes in
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Figure 6. [L.oad foiecast for 24 h in the SMG.

In the next step, the number of combinations is calculated for a load of 25% which is selected for
demand comvemiene. THeeceddoldaioonisseppessemdedwitith VY ; —6B3aantd my = 17, using Equeatiiom ((13).
The variables comprise an array of binary variables of 68 x 409.29 quintillion. In the Matlab R2019b
program, theemmazidimommwavatdbizeirseiseededdedt doeit radves anrktwithrthisvithtihisineatiive somapiiter
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mible solutlons This matrix is represented by the symbol y;,, as shown in Equation (12).
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Figure 7. Diseretization in 17 loads in the SMG.

4.3. Fermuintion of Demand Response Funetion (DRF)

DRE is fermulated Based on the analegy of actual SMiGs. In other werds, if 2 group of Users Funs
sut of energy, then, the aggregater will teceive a financial penalty. This penalty is received in the
sbjective funetion, as shewn in Equatien (14).

Mininize(GZ -+ J)) (14)

where Z represents the ob]ectlve function and ] represents th enal Thls ensures the welfare of
% Hrelsﬁntsb e ob i€ tiv unct18n ar}d d’ eseJELts t gnsures the welfare oft the
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T L L il Pena izafion’s givertn monetary units
(m.u.) The penahzatron is represented in Equatlon (15).
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This formulation is motivated by the transfer function in the first order systems [39] and yields
results likecthibsespremastotdd HigulregiifeoB The]sybteensystpot isuépudséntedirpdemtedthystibalizhttba
statel{Z4tisnrépresehideid bapthsentedibyuthd oaaxidtismwoath Hasimegothla tnidtenig dhaistlisddallyisdking
by taking fractions of maximum load. In the early phase, there is a steep slope. Next, the slope
gradually falls and finishes with the fixed value of the load, represented in blue; this means that it is
equivalent to the capacity in 0-1 KP.
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'This formulation is motivated by the transfer function in the first order systems [39] and yields
sttt Rkd3ttR%% presented in Figure 8 [39]. The system output is represented by ] ard°thd
stabilization time (T") is represented by the maximum load. It is worth noting that the load is fixed
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Figure 10 shows DR for all consumers. The solution with 0-1 KP and DRF are labelled with (a)
and (b), respectively. The load profile of 0-1 KP reveals the following patterns. The load with
modestly decreases from around 10 to 3 kW in the period between 1 a.m. and 9 a.m. A mild plateau
takes place around 10 kW between 10 and 12 p.m. Load demand is substantially eliminated at 1 p.m.
Between 2 and 3 p.m., there is a slight increase in the load, which does not last long and gradually
increases to a peak of around 68 kW. The profile usmg the DRF presents the followmg trends, as

. -t . - - —
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Figure 9. Load profile with DR: (a) 0-1 knapsack problem; (b) demand response function.
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function.
Figure 11a shows the RI for 20 runs with 1-0 KP, variability in the solutions, and unfavorable

benefits in runs 6, 7, 17, and 18. In contrast, DRF keeps the RI fairly stable. In addition, the average
Rl is better for DRF with 32.8 m.u. than for 0-1 KP with 38.5 m.u. with an average improvement of
5.7 m.u. in the 20 runs. Figure 11b shows reduction percentage of load shedding with DR. 0-1 KP has
three runs with sharp peaks in runs 3, 6, and 18, and a slight spike in run 17. The remaining runs are
stable. In addition, DRF has an outstanding peak in run 16. The remaining runs yield consistent values.
The average percentage of DR shedding is 31%, 2% for 0-1 KP, and 25% for DRF.

Figure 12a shows the execution time. 0-1 KP has favorable execution times, as a result of
preloading files with binary combinations. Slight peaks in the running times occur in runs 11, 15,
and 18. DRF shows uniform stability in the solution, except for run 6. In general, the execution times
are very close for both methods. Figure 12b shows the generation divided into DGs and PV generation.
DGs have reduced participation with 0-1 KP, whereas DGs with DRF actively participate with smooth
fluctuations around 130 kW during the day. The PV generation has a higher participation than in the
DGs with 0-1 KP. The opposite case happens with DRF. In addition, the PV generation with DRF injects
more power into the SMG than 0-1 KP. The crunch point generation is presented for 1 and 4 p.m.
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Figure 12. Results with the 0-1 KP and the DREF. (a) Execution time for 20 runs; (b) power exchanged
D isc”r%sif}fé A Rapgeies (EVs) and the energy storage systems (ESSs).

The optimal solution to reduce operating costs is to disconnect the largest number of users.
This means that the aggregator reduces network costs by disconnecting as many loads as possible.
However, essential and critical loads cannot be disconnected, therefore, this methodology turns out to
be non-viable. On the one hand, the DRF maintains the supply of energy penalizing the non-supply
of essential loads. In other words, the penalty has an objective opposite to the objective function.
This penalty is similar to the criteria for formulating multi-objective optimization problems. On the
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other hand, 0-1 KP does not penalize the objective function, however, it has the disadvantage that
it must calculate the complete number of feasible solutions, this calculation can be obtained from
the combination of feasible solutions, however, because the execution time grows in polynomial
way obtaining optimal solutions in acceptable times is an NP-hard problem. This means that as the
dl%cretlzatign of ¥8E1@.Eéﬁﬁz%£egses the simulation times grow significantly. The 0-1 KP 11m1taft11§)ns

nergzes 2020, 13, x
refer to the high simulation times of NP-hard problems. 0-1 KP can be approached with two methods.
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stabilization time for different percentages of load shedding. However, the percentage of energy
supply is satisfied satisfactorily for the optimization problem addressed in this study.
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6. Conclusions

Demand management has benefits for SMGs that include load curtailment and shedding.
Ontimal narticination relieves critical conoestion periode Theece particination strateciec are carried
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0-1 KP. Finally, some trends are identified for suboptimal planning of DGs, PV generation, EVs, ESSs,
and electricity markets.

In future research, the 0-1 KP can be explored in optimization problems whose loads can be
grouped and the loads can be represented by discrete variables. Additionally, for future applications,
DRF can be further explored for optimization problems without adding loads. That is, the loads are
analyzed individually, and a penalty ensures the power supply. In the future, the DRF should be
analyzed with other percentages of load reduction and in real SMGs that host residential loads.
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Nomenclature

Index

i DG units

j PV units

k External suppliers

e ESSs

v EVs

1 Loads

m Markets

s Scenarios

t Periods

Subscript

DG Distribution generation
PV Photovoltaic

P Populations

K External suppliers

e ESSs

v EVs

L Loads

m Markets

s Scenarios

ext External supplied (kW)
ESS- Discharge ESS (kW)

EV- Discharge EV (kW)
ESS+ Charge ESS (kW)

EV+ Charge EV (kW)

curt Reduction of load (kW)
Imb- Non-supplied for load (kW)
Imb+ Exceeded of DG unit (kW)
buy Buy from the market (kW)
sell Sell to the market (kW)
min Minimum

max Maximum

Variables with Greek letters

7(s) Probability of scenario s
w(Z) Mean of fitness function

a(Z) Deviation standard of fitness function
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Parameters

C Cost

T Periods

Pioad Forecasted load

MP Electricity market price (m.u./kWh)
N Number

Variables

P Power

Nc Number of combinations

Ng Number of discrete variables

ng Fraction defined as rounding (Ng/4)
] Constraint of DR

X Binary variable

Yn Binary variable

Z Fitness function

Acronyms

DEEPSO Differential evolutionary PSO

DE Differential evolution

DG Distributed generator

DR Demand response

DRF DR function

ESS Energy storage systems

EV Electric vehicles

In Income

KP Knapsack problem

m.u. Monetary units

NFE Number of evaluated functions

PSO Particle swarm optimization

PV Photovoltaic

RI Ranking index

ocC Operational cost

SMG Smart microgrid

VNS Variable neighborhood search
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