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A new power grid PV-based generation technology presentes engineering challenges in regards to the control and
operation of energy storage. Because the utility grid has bidirectional power-flow and further intelligent pro-
tection for intentional and unintentional islanding is required. Further, the high penetration of photovoltaics
may increase active power losses, and reconfiguration studies must be conducted to analyze such losses and thus
optimize system operation. Model based solutions become intractable considering the size of the search space. In
this work a Binary Particle Swarm Optimization based solution is presented aiming distribution systems tech-

nical power losses reduction though system reconfiguration. Solution validation is carried on the IEEE 37 buses
test feeder. A feasibility test is also addressed, and the results show that the BPSO and the use of energy storage
systems are efficiently merged resulting in an electric distribution network reconfiguration optimized for PV
distributed generation and energy storage, that can retrofit into existing power systems.

1. Introduction

Distribution networks have been design and operate passive ele-
ments, i.e., designed for unidirectional power flow from the source to
the end-user. Therefore, the massive grid built in the last century is
mostly not made to support the insertion of distributed generation
(DG).

The connection of photovoltaic (PV) DGs to power systems does not
respond to variations in the conditions of the electrical system in the
same way as a conventional synchronous generator; the solar source has
unique features, such as high-velocity response (low inertia) and high
slew-rate for power ramps. Several studies, such as [1-3]. deal with the
concerns associated with high penetration of distributed generation in
distribution systems; such as consequences of voltage variations, fre-
quency variations and the reduction of technical losses are highlighted.
In regards to technical power losses minimization, a Particle Swarm
Optimization (PSO) base solution is presented in this paper, showing
efficiency and simplicity in its implementation [4].

Technical power losses minimization through distribution network
reconfiguration is showing promising results. For example, in [5]. the
authors introduced an ant colony search algorithm to solve the opti-
mized network reconfiguration problem for power losses reduction.
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Such an ant colony algorithm has been compared to other two methods:
a genetic algorithm optimization and a simulated annealing algorithm.
The comparison showed that ant colony solution presented better re-
sults. To mitigate power quality disturbances, in [6]. a solution was
presented to deal with harmonics, voltage sags and power losses
minimization by network reconfiguration based on differential evolu-
tion algorithm. The reconfigured network showed the effectiveness of
the proposed solution allowing the improvement of power quality in-
dicators and decreasing of losses.

In [7]. an intelligent system for automatic reconfiguration of a
distribution network based on branch exchange adaptation is used to
solve real-time problems like losses reduction, load balance and the
improvement of quality indicators. The authors tested the proposed
methodology in a real grid, and the results showed an improvement in
the network performance indicators. In [8]. the authors present a net-
work reconfiguration strategy through the use of the binary group
search algorithm. The optimization objective was the reduction of grid
losses. According to the authors, the simulation of different test cases
validated the proposed solution. Optimized distribution network re-
configuration with genetic algorithms was presented in [9]. for power
quality and reliability improvement. The authors in [10]. proposed an
evolutionary algorithm based on NSGA-II to tackle a multi-objective
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problem on a distributed network reconfiguration. The conclusions
showed that the proposed method is capable of dealing with the un-
certainties found in the analysis.

In [11]. an optimized distribution network reconfiguration for
power loss minimization and voltage profile improvement is achieved
through the cuckoo search algorithm. The simplicity of the algorithm
showed that it could be an efficient method for distribution network
reconfiguration problems. A robust reconfiguration for active losses
minimization using the Most Probable Scenario (MPS) technique is
presented by [12]. The authors use the receding horizon control con-
cept, concluding that both techniques are suitable to handle the pre-
sented minimization problem. In [13]. the reconfiguration problem for
power losses minimization is solved using a novel dynamic fuzzy c-
means clustering based Artificial Neural Network (ANN). A very short
processing time, simple structure, and high accuracy are claimed as the
benefits of the proposed method. The power of the Binary Particle
Swarm Optimization (BPSO) can be seen in [14]. The authors showed
this algorithm is a powerful tool for losses reduction by performing
distribution network reconfiguration while it can achieve global opti-
mization.

Unlike the previous works, in this paper energy storage systems
(EES) and artificial intelligence (AI) are used for optimized re-
configuration of electric energy distribution networks with photovoltaic
penetration. For this purpose, a modified an IEEE 37-buses model test
feeder is used as the application scenario. Such modifications were new
paths introduced to the original test feeder so one can have alternative
routes for the power flow.

The main contributions of the present work are:

e The design of a BPSO for the optimal topology for the distribution
network regarding the minimization of technical power losses;

e The use of an ANN to estimate PV generation and perform of ESS for
performance improvement of the reconfigured grid;

® The presented solution contributes to losses reduction by optimal
reconfiguration of the distribution grid, not done before, as by the
current state of art and literature.

The next sections are organized as follows: Section II presentes a
summary of the BPSO. Section III presents the assumptions made in
regards to feasibility features of the grid. Section IV brings the meth-
odology used to achieve the results presented and discussed in section
V.

2. Materials and methods

This section brings the tools and the methodology used to achieve
the results presented in this work.

2.1. Binary PSO (BPSO)

The classic Particle Swarm Optimization (PSO) is designed for
continuous optimization functions and not for discrete optimization
functions. Hence, [15,16,28,29]. proposed a binary version for the PSO
denominated as Binary Particle Swarm Optimization.

In electrical energy distribution systems, the reconfiguration of
feeders is accomplished using the opening and closing of switching
devices. The change in the position of these switches can reduce the
losses on the lines or operate the system with greater security, as
through the use of contingency methods. The structure that results from
this switching should automatically obey the radial structure of a dis-
tribution system. For this configuration, the PSO can be used so that
optimal topologies are found for the systems under study.

The primary objective of the distribution system reconfiguration is
to minimize total technical losses on the lines during its normal op-
eration. This problem can be formulated through (1):
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Fig. 1. [1,2] Initial configuration of the system used as an example (fd —
feeder).

n
Liosses = Z Iiz' R;
i=1 (@]

where Ly, are the total technical losses of the distribution system, n is
the total number of line stretches on the system, I; is the electrical
current value of the i th zone and R; is the resistance of the i th line
stretch.

To solve this problem, [16]. proposes a modified BPSO, which is the
method used in this study. This method defines the Shift Operator (SO)
and the Shift Operator Set (SOS). The reconfiguration problem of a
distribution system can be treated as a combinatorial permutation op-
timization of '1” and '0’, where a normally closed switch (NC) corre-
sponds to '1” and one that is normally open (NO) to '0".

2.1.1. Shift operator (SO)

Let us suppose that a distribution system has a given quantity of NC
and NO switches. The status of the switch combination NC + NO is
[S1,S2, ..., Sp] and will be called Sequence Switch States (SSS). As an
example, a particle or individual can be represented by a sequence of
zeros and ones. In this example, a particle is a binary vector with a set of
NC + NO line stretches. For a system that contains in its configuration
9 switches, as shown in Fig. 1, the SSS then becomes:

S1, 82, 83, 84, S5, S, S758S9
[1-1-0-1-1-1-0-1-1] 2)

k
58§ = x— =
i

The SO is defined as a vector of three dimensions, which stores the
following information:

1 Which solution bit will be shifted;

2 In which direction this bit will be shifted (right (R) or left (L));

3 How many positions the bit will be shifted according to the attrib-
uted direction.

The new SSS permutation is defined by SSS' = SSS <+)> SO. The
symbol <+) indicates that the shift operator was applied to the SSS
vector.

For example, Fig. 2 illustrates the application of the SO on the SSS,
resulting in SSS'. The new set of zeros and ones for the given particle or

SSS -+ 110111011 ————» 111011011 — SSS’
SOG,R, 1)

Fig. 2. Application of the shift operator SO.
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individual after the shift operator has been applied. As one can see, the
shift operator moved the third bit (0), one position to the right direction
(3,R, 1).

2.1.2. Shift operator set (SOS)

The shift operator (SO) can contain more than one operation, i.e., a
set of operations can be performed over the same step. An example
would be to imagine two operators SO; and SO,. Through the fusion
between the two operators, it is obtained the resulting shift operator
SOS, such that SOS = {SOy, -SO,} = SSS5;-6-SSS, Where SSS; and SSS,
are two particles or solutions (different switching sequences NO and
NC). The SOS is in fact found by comparing,the switch positions one by
one. The operator © is used to indicate the generation of the shift op-
erators SSS; and SSS,.

2.1.3. Modified BPSO

With the definition of the necessary operators given by the modified
algorithm, the BPSO can be defined for solving reconfiguration pro-
blems of electric energy distribution system topologies by applying (3)
into (4).

Xk = x4 v 3)

where,

x}*1 is the position of one particle at instant time k + 1;

X; is the position at instant time k;

vF*1 is the new and adjusted velocity the will be applied to the
particle.

Vit = w ® V)®(rand()( x )(pbestex))@(rand ()( x ) (ghest©x:))
4
where,

w is the inertia operator;

V; is the velocity at time k;

pbest is the best personal position of the particle;

ghest is the best global position among all particles;

X; is the actual position of particle i.

The function of the operator w is maintained in this process for
adjustments to the search areas. The approach of the BPSO model
adopted consists of increasing or decreasing the step to be taken by the
shift operator at each iteration. Thereby, ® it applies the value from w
calculated to the size of the operator that consists of the shift step.

The composition of the coefficient rand() with the symbol X
executes an operation, for which the action is to randomly choose a
shift operator from among the operators grouped in (pbest©x;y) and
(gbestox;q)-

In the previous example Fig. 2), according to the resulting SO, bit 3
was shifted to the right, represented by the letter R, position 1. In this
operation, for the system radiality to be maintained, only 2 switches
could remain open. Thus, the switch that corresponds to 3 (S3) went
from the NO (0) state to the NC (1) state. Therefore, the new config-
uration of the system is presented in Fig. 3.

The procedure for the implementation of the PSO algorithm follows
the steps as laid out in [16].

1 Choose the size of the population (different binary vectors that
contain combinations of NO and NC switches), as well as the max-
imum number of desired iterations;

2 Initiate the SSS and the shift operators SO randomly for applying to
the particles;

3 For each particle evaluate the desired optimization fitness function;

4 Compare the evaluation from step 2 with the pbest from each par-
ticle. If the current value is better than the previous value, then
update the current pbest as the new pbest, including the SSS and the
value of the fitness for pbest;

5 Compare the evaluation of each pbest with the previous best eva-
luation value of the population. If the actual value is better than the

Electric Power Systems Research 184 (2020) 106319

¥ 4]
~
M
L I

s: @
®

S

fd
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previous gbest, then update the value of gbest, including the SSS and
the value of the gbest fitness;

6 Update the shift operator SO and generate a new state of operation
for the switches (SSS) and the fitness value for the gbest;

7 Repeat the process from step 3 until a stop criterion is satisfied; this
generally means a maximum number of iterations, in a manner that
this number is adequate for guaranteeing a good quality fitness
function.

Fig. 4. shows the flow chart for the algorithm used.

2.2. A technique for verifying isolated busses in the distribution system (DS)

Several different system topologies can be represented using dia-
grams composed of a set of points and lines that link together. For
example, the points can be the corners of a city and the lines the streets;
also the points can be cities and the lines flight paths taken by planes; or
even, the points can be buses on an electrical system and the lines, its
transmission or distribution lines. The mathematical abstraction of si-
tuations of this type gives rise to the graph concept.

The most practical means for representing the connectivity between
busses in the DS is using chain graphs. An energy distribution system, in
light of its radiality, can be represented by a graph forest. In this sec-
tion, an introduction to the graph theory is presented, along with a
simple method to represent a radial system.

By taking as an example the graph in Fig. 5. and considering each
vertex as a bus and each edge as a line of a distribution system, the first
step is to obtain the charting of the lines relating its bus terminals and
their origins. To conclude such, numbers substituted the nomenclature
of the vertexes and edges to facilitate the understanding of the method
used, which resulted in Fig. 5.

Table 1 is used to determine the connectivity of each bus.

As of this point, the concept of the adjacency matrix and Laplacian
matrix is used [17]. and we will call the graph represented in Fig. 5. as
G.

Given graph G = (V,E) with n vertexes, the adjacency matrix of
matrix G is the matrix of order n given by A(G) = [ayl, here a; = 1 if
vy; € E, being E the energy of the graph, and a; = 0 in the remaining
inputs.

The Laplacian matrix of G is the matrix of order n given by L
(G) = [ly], where l; = —1ifvy; € E, I =d() and [; = 0 in the
remaining inputs. The Laplacian matrix and the adjacency matrix are
related in the following manner (5):
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Fig. 5. Representation of an electric matrix system.

Table 1
Connectivity of the buses of the system represented in Fig. 5.
Line Initial bus End bus
1 1 2
2 2 3
3 2 4
4 4 5
5 5 6
6 6 7
7 3 7
8 2 6
9 5 10
10 6 9
11 7 8
12 10 9
13 9 8
L=D-A ()

Where D is the diagonal matrix with the degrees of the vertexes. In a
manner to exemplify this theory, the following example is given.

Matrix a is formed in a way that its lines and columns correspond to
the number of buses on the system, thus obtaining a square matrix. In
this specific case, one has a matrix of 10X 10. The value —1 is attrib-
uted to indicate the connectivity between buses. The buses that do not
possess connectivity between one another receive the value 0. For ex-
ample, to the element a,, 3 of matrix a it is attributed the value —1,

indicating the connectivity between the buses 2 and 3. However, in a,,
10, the value O is attributed, since bus 2 does not possess connectivity
with bus 10. This process is performed over all buses, and finally, the
values attributed to each column of matrix a are summed together and
stored on the main diagonal that corresponds to each bus. To provide a
better understanding of this concept, another example is given.

If we consider that, no line is open, matrix a would have the com-
position shown in Fig. 6.

It is verified that the sums for the values stored on the columns
corresponding to each bus were added together and attributed to the
main diagonal line of the matrix. Now, consider that line 2, and line 6 of
the system represented in Fig. 6. are removed from the configuration.
Matrix a will change its composition, as shown in Fig. 7.

Using Fig. 7, one can see on the highlighted elements that the values
attributed to the main diagonals, which correspond to buses that the
removed lines were connected to, in fact, received a reduction in their
values. This way, the summation results on the diagonals corresponding
to buses 2, 3, 6, and 7 (Fig. 5), is lower than those in Fig. 6.

The feasibility thus consists of detecting which configurations from
matrix a are permitted and which are not, so that the system is solvable
or feasible. Therefore, it can be checked by the elements of the main
diagonal that present the value 0. This would mean that the bus which
corresponds to that column is isolated. Hence, the system would isolate

-1-1 0 0 0 O 0o 0 0
-1 4 -1 -1 0 -1 0 0 0 O
o -1 -2 0 0 0 -1 0 0 O
o -1 0 -2 -1 o 0 O
o o0 o0 -1 -3 -1 0 0 0 -1
a= o -1 -1 0 -1 4 -1 0 -1 0
o o0 o0 o0 o0 -1 -3 -1 0 O
o o0 o0 o0 o0 o0 -1 -2 -1 0
o o o0 o0 o0 -1 0 -1 -3 -1
o o0 o0 o0 -1 0 O O -1 -2

Fig. 6. Matrix a for the case where all lines are active.
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-1 3 0 -1 0 -1 0 0 O

o o0 -1 0 O O -1 0 O

0o -1 0 -2 -1 0 0

o o0 0 -1 -3 -1 0 0 -1
a= o -1 -1 0 -1 -3 0 -1

o o0 o0 o0 o0 o0 -2 -1 0

o o0 o0 o0 o0 o0 -1 -2 -1

o o o0 o0 o0 -1 0 -1 -3 -1

o o0 o o0 -1 0o O 0 -1 -2

Fig. 7. Matrix a for the case of lines 2 and 6 as inactive or open.

one bus, and as such, a solution with this type of configuration would
not be feasible. The higher the complexity of the system, the higher will
be the number of analyses and cases for observation, thus arriving at
the possibility of iterative methods.

2.3. Methodology

To validate the performance of the BPSO optimization algorithm,
three case studies were performed, and the modified IEEE 37 bus test
feeder was considered, as shown in Fig. 8. The modification is the ad-
dition of distributed generators on the buses 710, 711 and 741. The
distributed generators were placed in these sites because they are fur-
ther from the principal source (bus 799), which allows them to have a
greater effect in the whole system. It should be emphasized that the
system losses without the topology change and addition of energy
storage system were of 0.03921 p.u.

For this study, static analysis was made, i.e., variable demand
(multi-intervals optimization) was not considered. Therefore, the power
flow of loads and power injections are related to the period when the
maximum PV generation occurs. An ANN estimates the PV generation,
and its data were used in cases 2 and 3. This information can be found
in the next section (2.3.1). Moreover, the power flow, the BPSO, and the
feasibility test algorithms were developed in MatLab script.

0724
722
712 -_——— — — — — — o>—9707
—_® 701
742 T 713 704
[ L 2 L ° L 3 720
705 702
714
® 706
729 744 727 -
y 03— 787>
~ 725
78
: 730
“
|
732 708
[ 2 709 9731
| sk \
786 \
733 775 \

/710— b 734

Fig. 8. Modified IEEE 37 bus system.
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As the system is purely radial without distributed resources (dis-
tributed generators), the addition of alternative routes becomes ne-
cessary, thus creating a looped system. Moreover, the extra cost
through the addition of new sections should not be taken into con-
sideration. Therefore, one should treat the system as though it already
exists in the manner proposed and illustrated in Fig. 8.

Notice from Fig. 8. that the following sections were activated:

® 712-701;
® 701-722;
* 703-718;
® 718-725;
o 728-708;
o 732-736;
o 730-741.

All the added sections were attributed with the same line para-
meters as those from section 701-702, as a greater part of the power
flow is originally found in this section. However, the condition that is
not enough for a topology to be radial is found in (6) [18].

Lines = buses — 1 (6)

With,

Lines — the number of lines from the system;

Buses — the number of buses from the system.

The number of switches that can be open for the reconfiguration can
be determined by (7):

Switches = Lines,, — Lines, (2]

Where,

Lines,, — is the number of lines from the looped system;

Lines, — is the number of lines from the radial system.

Therefore, for the case under analysis, a total of 5 switches should
be open for reconfiguration, since the system possesses 42 lines after the
modifications.

The search space for the problem can be obtained through combi-
natory analysis, where the number of combinations for NB elements
taken N to N is defined as (8) [19].

NB!

CI\]}]B = ham N
N!(NB — N)! (8)

According to (8), the search space results in 850,668 possibilities,
thus justifying the use of an optimization algorithm for solving this
problem.

The objective optimization function is given by (9):

Min ) (R. I?) ©)

Where,

(R.I?)P — Active losses in phases a, b and c;

p — Phases a, band c.

The set of restrictions used for this problem are related to the power
flow calculation by the Newton-Raphson algorithm. As discussed in [3].
these restrictions may be given by (10), (11), and (12).

Subject to:

vﬁ'zin < ViF,’k < anax (1 0)
PIf — PDf — )" Pf, =0 (11)
QIf —QDf — >, Qf =0 12)
where,

Vfn is the minimum voltage magnitude of the three phases;

V£ & is the maximum voltage magnitude of the three phases;

PI? is the active power injected onto node i for the three phases;
PD? is the active power drained onto node i for the three phases;
QIf is the reactive power injected onto node i for the three phases;
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Table 2
ANN structure.

Electric Power Systems Research 184 (2020) 106319

Architecture  Technique No. of layers  Hidden neuron  Tapped delay-time  Activation function / Hidden layer ~ Activation function / output layer
NARX Bayesian Regularization (BR) 2 10 2 Tangent-Sigmoid Linear
Table 3
1500 —=— Measured Power (W) Power system parameters.
—— Estimated Power (W)
Quantity kw kWh
7~
3 1000 System Peak Demand 2457 -
: M . PV Peak Generation 1269 -
; Energy Storage Capacity 110 54.000
=]
A
L 500 ‘ Residential Demand
= ——— Photovoltaic Generation
3] 2500 T T
0 2000

0 10 20 60 70 80

30 40 50
Time (h)

Fig. 9. Measured power (W) and estimated power (W) for 72 h.

QDY is the reactive power drained onto node i for the three phases;

P?, is the active power flow that goes from node i to node k from the
three phases;

Qf is the reactive power flow that goes from node i to node k for the
three phases.

2.3.1. Prediction of photovoltaic generation

An ANN estimated the photovoltaic generation according to the
procedure described in [20]. The ANN structure is given in Table 2. The
prediction is performed based on meteorological data collected from
the Brazilian National Institute for Space Research (INPE) of Uberlandia
city (MG) in Brazil. Fig. 9. shows a comparison between the measured
data and the estimated data. Therefore, the resulting PV peak genera-
tion determined by the ANN was 1269 kW.

As can be seen in Fig. 9, the forecast horizon is 72 h. Initially, the
ANN was trained to estimate PV generation just depending on how
much of irradiation, environment and solar panels temperature data
information the user has. As an example, a 72 h forecast has been
computed and shown in the aforementioned figure.

A real system to collect the ANN training data and then scaled the
PV system to simulate it on the 37 bus test feeder was used. The power
inverter used in the real system is the PHB3000-NS which rated power
is 3000 W. The minimum MPPT (Maximum Power Point Tracking)
voltage is 80 V. Due to its low DC voltage this inverter is able to operate
in low irradiance conditions generating low output power in the AC
side.

2.3.2. Electrical energy storage (ESS) scaling

The methods used to determine the size of the ESS have been shown
in [21]. From the analyses developed in the previous section, the system
peak demand was defined as 2457 kW and the PV peak generation on
1269 kW. Similarly to [22]. the EES was limied to 10% of the difference
between the nominal values of photovoltaic generation and maximum
demand. Otherwise, the sized values would be difficult to achieve.

For better comprehension, Table 3 shows a summary from the
system considered.

The system's demand and photovoltaic (estimated) profiles are
shown in Fig. 10.

[ /
SO\
ST ST
Jo\ )\

0 5 10 15 20 25 30 35 40 45
Time (h)

Active Power (kW)

Fig. 10. Power demand versus photovoltaic generation.

3. Results and discussion

To demonstrate the effectiveness of the BPSO algorithm, the opti-
mization process was done for three different situations:

e Case I: BPSO performance was evaluated with the nominal load,
without considering DG;

e Case II: the second case takes into account the maximum PV gen-
eration on buses 710, 711, 741; and the nominal demand load level;

® Case III: the third case considers the situation for the highest PV
generation (buses 710, 711 and 741) and the real system demand at
the considered day time (this scenario is close to a real case);

Firstly, except for the case III, all the cases were simulated con-
sidering ESS injection at bus 738 and, then no considering ESS injection
in all cases. As for the batteries modelling, in the power flow calculation
they were inserted as load with unitary power factor when charging,
and as a generator, i.e. injecting active power, with unitary power
factor when discharging.

As the information concerning to the optimal value for this opti-
mization was not available, the option was made for testing the number
of particles until achieving 100 particles. Each of the particles quan-
tities was tested with 100 iterations. The first case was used for this
task. Fig. 11. presents the best results reached for the particles quan-
tities. The computer used for these simulations was an iMac with a
processor of 4 GHz Intel Core i78 and 32 GB of RAM.

By analyzing Fig. 11, one finds that the algorithm converges. The
tests with 60 particles for 100 iterations, the algorithm reached its best
result overall remaining quantities, except for the optimization with 80
particles, which obtained the same result. However, as intended to
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Losses (pu)
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Fig. 11. BPSO convergence.

Table 4

Several particles, open stretches, and losses in pu — Spase = 1 MVAL
Number of particles Topology Losses (pu) Average
10 5, 10, 19, 21, 28 0.03354 0.032775
20 10, 11, 12, 21, 42 0.03257 0.03245
30 5,10, 11, 12, 20 0.03243 0.032515
40 5, 10, 11, 28, 42 0.0322 0.032235
50 5, 10, 11, 28, 42 0.0322 0.03223
60 5,10, 12, 29, 42 0.03209 0.0322
70 5, 10, 15, 25, 28 0.03226 0.032345
80 5, 10, 15, 28, 37 0.03216 0.032205
920 5,10, 11, 28, 42 0.0322 0.032235
100 10, 11, 25, 28, 37 0.03227 0.03222

Table 5

Stretches and assigned numbering.
Stretches  Assigned Numbering  Stretches  Assigned Numbering
799 701 1 709 731 22
701 702 2 709 708 23
701 712 3 710 735 24
701 722 4 710 736 25
702 705 5 711 741 26
702 713 6 711 740 27
702 703 7 713 704 28
703 727 8 714 718 29
703 730 9 720 707 30
703 718 10 720 706 31
704 714 11 727 744 32
704 720 12 730 709 33
705 742 13 733 734 34
705 712 14 734 737 35
706 725 15 734 710 36
718 725 16 737 738 37
707 724 17 738 711 38
707 722 18 744 728 39
708 733 19 744 729 40
708 732 20 740 731 41
728 708 21 732 736 42

Active Power (kW)

10 15 20 25 30
Operation of ESS (h)

0.0322

0.0289

0.0256

0.0225

0.0193

0.0161

0.0128
7 0.0005
7 0.0062

0.0030
45

I~ Losses w/ESS
= %~ Losses Wo/ESS
[~ ESS day cycle

pu values

Fig. 12. EES day cycle, losses profile with and without EES.
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optimize, it should be taken into consideration that the more particles
one uses, greater will be the computational time spent. Thus, it is re-
commended that for this case, 60 particles are used for 100 iterations.
In this way, these quantities were used for the other three cases as well.

By Table 4 shown below, one notes that the algorithm converges at
the value of 0.032 p.u, since the average of the 10 results obtained from
the simulations for each quantity of particles presents this convergence.

Table 5 presents the enumeration given to the stretches of line,
while Table 4 shows for each quantity of particles, the sequence of open
sections that presented the best results over the optimization process.
On Table 5, the sections in red are the additional sections.

The second case is a situation in which the system is with its highest
demand load level, highest PV generation, and ESS, according to
Table 3.

For the third case, a simulation closest to a real case was performed,
and here is where the ANN prediction is justified. For this case, ac-
cording to Fig. 10, one can see that the highest DG penetration occurs at
hour 14:00 (2:00 pm), corresponding to a 42.49% lower than the
nominal load level observed in [23]. However, for comparison pur-
poses, a 50% lower load level was considered. Once the DG generation
is higher than the load demand, in this case, study, the use of ESS was
not necessary.

Four tests were performed to evaluate the best ESS position on the
system, taking into account concentrated and distributed locations. For
the concentrated topology, in the first test, the EES was placed on bus
730. In the second test, the ESS is placed on bus 738. Regarding the
distributed topology, the third test is carried out with the placement of
EES on buses 701, 730, 738 and, in the fourth test, buses 724, 729 and
738 are chosen to receive the ESS. According to [23] the best topology
was found in the second case, or be it, the lower losses experienced by
the test feeder had the EES housed on bus 738. Table 7 shows the
comparison between the losses with and without EES for the sequence
of open stretches encountered by the BPSO optimization with 60 par-
ticles and 100 iterations.

Fig. 12. shows the ESS operating during 5 days. Highlight that only
the time in which ESS is charging or discharging is considered, i.e., the
hours in which the ESS is not used in the charge-discharge mode were
removed. Thus, notice that, in this interval, 5 cycles of charging/dis-
charging are performed showing the losses with and without ESS. Each
cycle represents one complete charge-discharge cycle per day. Fol-
lowing the process outlined in Fig. 2, a positive value (“y” left axis)
means that the ESS is discharging power, and a negative value means
that the ESS is in charging mode. For example, between 6 and 10 h,
shows the ESS operating in the charging mode, i.e., when the grid de-
mand is growing and gets to its peak, and the PV generation is de-
creasing. The values on the right “y” axis show the losses performance
with and without ESS.

Table 6 summarizes the results of the three case studies.

The results in Table 6 show that a considered loss reduction was
achieved by the BPSO algorithm. For case 1, compared with the base
case, an 18.15% losses reduction has been achieved, and when con-
sidering ESS, the reduction increased to 26.57%. Case study 2 resulted
in a high reduction of 76.43% and 77.50% when considering ESS. Fi-
nally, case study 3 got a 47.64% of losses reduction.

Once one has a 72 h PV generation estimation, the proposed algo-
rithm could be used between these hours. However, for a smaller error
result, a 24 h usage is recommended, once meteorological conditions
are too volatile.

It is not an easy task to compare these results with other results in
the literature. However, one can do this with systems with more than
30 buses. The results of the BPSO algorithm presented in this paper are
compared according to the same case studies investigated by the re-
ferenced papers in the last column. As one can see in Table 7, the tested
approach had a response better than other approaches. The camparison
made takes into account two multi-intervals optimizations, refs. [24].
and [25].



R.V.A. Monteiro, et al.

Table 6
The performance of the BPSO for all the case studies — Sbase = 1 MVA.
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Base Parameters Case study 1 Case study 2 Case study 3
No Reconfiguration Losses (p.u) 0.03921 0.03921 0.0085
With Reconfiguration Losses (p.u) 0.03209 0.00924 0.00445
Switches 5, 10, 12, 29, 42 12, 28, 31, 39, 42 3,4,11,12, 23
Losses with ESS (p.u) 0.02879 0.00882 -
Switches 5, 6, 10, 20, 29 11, 12, 15, 39, 42
Table 7
Literature comparison.
Algorithm CLONALG Copt-aiNet Copt-aiNet / Opt-aiNet IEPSO BPSO without energy storage BPSO with energy Storage
Buses 87 87 84 33 37 37
Compared case 1 1 1 13 13 1
Reduction 10.05 10.05 11.66 23.26 17.98 18.15 47.64 26.57
Reference [24] [25] [26] [27] Here Here

4. Conclusion

The BPSO algorithm demonstrated high efficiency for the optimi-
zation of an electric energy distribution system, approaching at mini-
mizing losses. There is a big data analytics scenario, with 850,668 to-
pological possibilities, that makes the task of finding a good topology
difficult through iterative brute-force methods, and only AI can handle
such a problem.

The convergence of the BPSO for this case returned a value of 0.032
p-u., following the average retrieved from the simulations performed
for the number of particles and the number of iterations presented. The
best topology encountered needed 60 particles and 100 iterations to be
discovered. Three case studies have been simulated to show the ad-
vantage of the BPSO algorithm.

Finally, it was concluded that for optimization processes, the use of
the BPSO in the reconfiguration of electric energy systems had shown
itself to be a viable and functional tool.
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