
Journal of Parallel and Distributed Computing 143 (2020) 47–66

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Hybrid-DCA: A double asynchronous approach for stochastic dual
coordinate ascent
Soumitra Pal a,1, Tingyang Xu b,1, Tianbao Yang c, Sanguthevar Rajasekaran d, Jinbo Bi d,∗
a National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
b Tencent AI Lab, Shenzhen, Guangzhou, 518000, China
c Department of Computer Science, University of Iowa, Iowa City, IW 52242, USA
d Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA

a r t i c l e i n f o

Article history:
Received 4 May 2017
Received in revised form 17 February 2020
Accepted 3 April 2020
Available online 13 April 2020

Keywords:
Dual coordinate descent
Distributed computing
Optimization

a b s t r a c t

In prior works, stochastic dual coordinate ascent (SDCA) has been parallelized in a multi-core envi-
ronment where the cores communicate through shared memory, or in a multi-processor distributed
memory environment where the processors communicate through message passing. In this paper,
we propose a hybrid SDCA framework for multi-core clusters, the most common high performance
computing environment that consists of multiple nodes each having multiple cores and its own shared
memory. We distribute data across nodes where each node solves a local problem in an asynchronous
parallel fashion on its cores, and then the local updates are aggregated via an asynchronous across-node
update scheme. The proposed double asynchronous method converges to a global solution for L-
Lipschitz continuous loss functions, and at a linear convergence rate if a smooth convex loss function is
used. Extensive empirical comparison has shown that our algorithm scales better than the best known
shared-memory methods and runs faster than previous distributed-memory methods. Big datasets,
such as one of 280 GB from the LIBSVM repository, cannot be accommodated on a single node and
hence cannot be solved by a parallel algorithm. For such a dataset, our hybrid algorithm takes less
than 30 s to achieve a duality gap of 10−5 on 16 nodes each using 12 cores, which is significantly
faster than the best known distributed algorithms, such as CoCoA+, that take more than 160 s on 16
nodes.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The immense growth of data has made it important to effi-
ciently solve large scale machine learning problems. It is neces-
sary to take advantage of modern high performance computing
(HPC) environments such as multi-core settings where the cores
communicate through shared memory, or multi-processor dis-
tributed memory settings where the processors communicate
by passing messages. In particular, a large class of supervised
learning formulations, including support vector machines (SVMs),
logistic regression, ridge regression and many others, solve the
following generic regularized risk minimization (RRM) problem:
given a set of instance-label pairs of data points (xi, yi), i =

∗ Corresponding author.
E-mail addresses: soumitra.pal@nih.gov (S. Pal), tingyangxu@tencent.com

(T. Xu), tianbao-yang@uiowa.edu (T. Yang), rajasekaran.sanguthevar@uconn.edu
(S. Rajasekaran), jinbo.bi@uconn.edu (J. Bi).
1 The first author S. Pal and the second author T. Xu contributed to this work

when they were with the Department of Computer Science and Engineering,
University of Connecticut, Storrs, CT.

1, . . . , n,

min
w∈Rd

P(w) :=
1
n

n∑
i=1

φ(x⊤i w; yi)+
λ

2
g(w), (1)

where yi∈R is the label for the data point xi ∈ Rd, w ∈ Rd is the
linear predictor to be optimized, φ is a loss function that is convex
with respect to its first argument, λ is a regularization parameter
that balances between the loss and a regularizer g(w), which for
instance can take the squared ℓ2-norm ∥w∥22.

Many efficient sequential algorithms have been developed
in the past decades to solve (1), e.g., stochastic gradient de-
scent (SGD) [25], or alternating direction method of multipli-
ers (ADMM) [2]. Especially, (stochastic) dual coordinate ascent
(DCA) algorithm [18] has been one of the most widely used
algorithms for solving (1). It efficiently optimizes the following
dual formulation (2)

max
α∈Rn

D(α) := −
1
n

n∑
i=1

φ∗(−αi)−
λ

2
g∗
(

1
λn

Xα

)
, (2)

https://doi.org/10.1016/j.jpdc.2020.04.002
0743-7315/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://doi.org/10.1016/j.jpdc.2020.04.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.04.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:soumitra.pal@nih.gov
mailto:tingyangxu@tencent.com
mailto:tianbao-yang@uiowa.edu
mailto:rajasekaran.sanguthevar@uconn.edu
mailto:jinbo.bi@uconn.edu
https://doi.org/10.1016/j.jpdc.2020.04.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

48 S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66

where X = [x1, x2, . . . , xn] ∈ Rd×n, φ∗(u) and g∗(v) are the
convex conjugates of φ(z; y) (or in short φ(z) where the scalar z =
xTw) and g(w), respectively. The conjugate of the loss function
φ(z) is defined as φ∗(u) = maxz(zu − φ(z)). Let ∇g∗(v) be the
gradient of g∗ with respect to v where v(α) = 1

λnXα. We have

w(α) = ∇g∗ (v) . (3)

It is known from duality theory that if α∗ is an optimal dual
solution, then the vector w∗ = w(α∗) is an optimal primal
solution and P(w∗) = D(α∗). The dual objective has a sepa-
rate dual variable αi associated with each training data point xi.
The stochastic DCA updates dual variables, one at a time, while
maintaining the primal variables by calculating (3) from the dual
variables.

Recently, much effort has been undertaken to solve Prob-
lem (1) in a distributed or parallel framework. It has been shown
that distributed DCA algorithms have comparable and sometimes
even better convergence than SGD-based or ADMM-based dis-
tributed algorithms [23]. The distributed DCA algorithms can
be grouped into two sets. The first set contains synchronous
algorithms in which a random dual variable is updated by each
processor and the primal variables are synchronized across the
processors in every iteration [8,11,23]. This approach incurs a
large communication overhead. The second set of algorithms
avoids communication overhead by exploiting the shared mem-
ory in a multi-core setting [7] where the primal variables are
stored in a primary memory shared across all the processors.
Further speedups have been obtained by using (asynchronous)
atomic memory operations instead of costly locks for shared
memory updates [7,16]. Nevertheless, this approach is difficult to
scale up for big datasets that cannot be fully accommodated in
the shared memory. This leads to a challenging question: how do
we scale up the asynchronous shared memory approach for big
data while maintaining the speed up?

We address this challenge by proposing and implementing a
hybrid strategy. The modern HPC platforms can be viewed as a
collection of K nodes interconnected through a network as shown
in Fig. 1(a). Each node contains a memory shared among R pro-
cessing cores. Our strategy exploits this architecture by equally
distributing the data across the local shared memory of the K
nodes. Each of the R cores within a node runs a computing thread
that asynchronously updates a random dual variable from those
associated with the data allocated to the node. Each node also
runs a communicating thread. One of the communicating threads
is designated as a master and the rest are workers. After every
round of H local iterations in each computing thread, each worker
thread sends the local update to the master. After accumulating
the local updates from S of the K workers, the master broadcasts
the global update to the contributing workers. However, to avoid
a slower worker falling back too far, the master ensures that in
every Γ consecutive global updates there is at least one local
update from each worker. Fig. 1(b) shows how our scheme is a
generalization of the existing approaches: for K = 1, our setup
coincides with the shared memory multi-core setting [7] and
for R = 1, S = K our setup coincides with the synchronous
algorithms in distributed memory setting [8,11,23]. With a proper
adjustment of the parameters H, S, Γ our strategy could balance
the computation time of the first setting with the communication
time of the second one, while ensuring scalability in big data
applications.

Thus, our contributions are (1) we propose and analyze a hy-
brid asynchronous shared memory and asynchronous distributed
memory implementation (Hybrid-DCA) of the mostly used DCA
algorithm to solve (1); (2) we prove a strong guarantee of conver-
gence for L-Lipschitz continuous loss functions, and further linear
convergence when a smooth convex loss function is used; and

(3) the experimental results using our light-weight OpenMP+MPI
implementation show that our algorithms are much faster than
existing distributed memory algorithms [8,11], and easily scale up
with the volume of data in comparison with the shared memory
based algorithms [7] as the shared memory size is limited.

2. Related work

Sequential Algorithms. SGD is the oldest and simplest method
for solving problem (1). Though SGD is easy to implement and
converges to modest accuracy quickly, it requires a long tail of
iterations to reach ‘good’ solutions and also requires adjusting
a step-size parameter. On the other hand, SDCA methods are
free of learning-rate parameters and have faster convergence
rate around the end [14,15]. A modified SGD has also been pro-
posed with faster convergence by switching to SDCA after quickly
reaching a modest solution [18]. Recently, ‘variance reduced’
modifications to the original SGD have also caught attention.
These modifications estimate stochastic gradients with correc-
tions to reduce the estimation variance. Mini-batch algorithms
are also proposed to update several dual variables (data points)
in a batch rather than a single data point per iteration [22].
Mini-batch versions of both SGD and SDCA have slower conver-
gence when the batch size increases [17,19]. These sequential
algorithms become ineffective when the datasets get bigger.

Distributed Algorithms. In the early single communication
scheme [5,12,13], a dataset is ‘decomposed’ into smaller parts
that can be solved independently. The final solution is reached
by ‘accumulating’ the partial solutions using a single round of
communications. This method has limited utility because most
datasets cannot be decomposed in such a way. Using the primal–
dual relationship (3), fully distributed algorithms of DCA are later
developed where each processor updates a separate αi which is
then used to update w(α), and synchronizes w across all proces-
sors (e.g., CoCoA [8]). To trade off communications vs computa-
tions, a processor can solve its subproblem with H dual updates
before synchronizing the primal variable (e.g., CoCoA+ [11], Dis-
DCA [23]). In [11,23], a more general framework is proposed
in which the subproblem can be solved using not only SDCA
but also any other sequential solver that can guarantee a Θ-
approximation of the local solution at a processor for some Θ ∈

(0, 1]. Nevertheless, the synchronized update to the primal vari-
ables has the inherent drawback that the overall algorithm runs
at a speed of the slowest processor even when there are fast
processors [1].

Parallel Algorithms. Multi-core shared memory systems have
also been exploited, where the primal variables are maintained in
a shared memory, removing the communication cost. However,
updates to shared memory requires synchronization primitives,
such as locks, which again slows down computation. Recent
methods [7,10] avoid locks by exploiting (asynchronous) atomic
memory updates in modern memory systems. There is even a
wild version in [7] that takes arbitrarily one of the simultaneous
updates. Though the shared memory algorithms are faster than
the distributed versions, they have an inherent drawback of being
not scalable, as there can be only a few cores in a processor board.

Other Distributed Methods for RRM. Besides distributed DCA
methods, there are several recent distributed versions of other al-
gorithms with faster convergence, including distributed Newton-
type methods (DISCO [28], DANE [20]) and distributed stochastic
variance reduced gradient method (DSVRG [9]). It has been shown
that they can achieve the same accurate solution using fewer
rounds of communication, however, with additional computa-
tional overhead. In particular, DISCO and DANE need to solve
a linear system in each round, which could be very expensive
for higher dimensions. DSVRG requires each machine to load

S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66 49

Fig. 1. (a) A simplified view of the modern HPC system and (b) Algorithms on this architecture.

and store a second subset of the data sampled from the original
training data, which also increases its running time.

The ADMM [2] and quasi-Newton methods such as L-BFGS also
have distributed solutions. These methods have low communi-
cation cost, however, their inherent drawback of computing the
full batch gradient does not give computation vs communications
trade-off. In the context of consensus optimization, [27] gives
an asynchronous distributed ADMM algorithm but that does not
directly apply to solving (1).

To the best of our knowledge, this paper is the first to propose,
implement and analyze a hybrid approach exploiting modern
HPC architecture. Our approach is the amalgamation of three
different ideas – (1) CoCoA+/DisDCA distributed framework, (2)
asynchronous multi-core shared-memory solver [7] and (3) asyn-
chronous distributed approach [27] – taking the best of each of
them. In a sense ours is the first algorithm which asynchronously
uses updates which themselves have been computed using asyn-
chronous methods.

3. The proposed algorithm

At the core of our algorithm, the data are distributed across
K nodes and each node, called a worker, repeatedly solves a
perturbed dual formulation on its data partition and sends the
local update to one of the workers additionally designated as
the master which merges the local updates and sends back the
accumulated global update to the workers to solve the subprob-
lem once again, unless a global convergence is reached. Let Ik ⊆

{1, 2, . . . , n}, k = 1, . . . , K denote the indices of the data and the
dual variables residing on node k and nk = |Ik|. For any α ∈ Rn

let α[k] denote the vector in Rn defined in such a way that the ith
component (α[k])i = αi if i ∈ Ik, 0 otherwise, so that α =

∑
k α[k].

Let X[k] ∈ Rd×n denote the matrix consisting of the columns of
the X ∈ Rd×n indexed by Ik and replaced with zeros in all other
columns, so that X =

∑
k X[k].

Ideally, the dual problem solved by node k is (2) with X, α
replaced by X[k], α[k], respectively, and hence is independent of
other nodes. However, following the efficient practical implemen-
tation in [11,23], we let the workers communicate among them
a vector v ∈ Rd, an estimate of w(α) = 1

λnXα that summarizes
the last known global solution α. Also following [11,23] for faster
convergence, each worker in our algorithm solves the follow-
ing perturbed local dual problem, which we henceforth call the
subproblem:

max
δ[k]∈Rn

Dk(δ[k];v, α[k]) := −
1
nk

∑
i∈Ik

φ∗(−αi−δi)−
λ

2S
g∗(v)

− ⟨
1
n
X⊤
[k]∇g

∗(v), δ[k]⟩ −
λσ

2

 1
λn

X[k]δ[k]

2 (4)

where δ[k] denotes the local (incremental) update to the dual
variable α[k], the bounding barrier parameter S denotes the num-
ber of workers from which the updates would be merged by the
master in a global iteration and the scaling parameter σ measures
the difficulty of solving the given data partition (see [11,23]) and
must be chosen such that

σ ≥ σmin := ν max
α∈Rn

∥Xα∥2∑K
k=1

X[k]α[k]2 (5)

where the aggregation parameter ν ∈ [1S , 1] is the weight given by
the master to each of local updates from the contributing workers
while computing the global update. Unlike the synchronous all
reduce approach in [11], our asynchronous method merges the
local updates from only S out of K nodes in each global update
and the second term in the objective of our subproblem (4) has
denominator S instead of K . By Lemma 3.2 in [11], σ := νS is a
safe choice to hold condition (5).

3.1. Asynchronous updates by cores in a worker node

In each communication round, each worker k solves its sub-
problem using a parallel asynchronous DCA method [7] on the R
cores. Let the data partition Ik stored in the shared memory be
logically divided into R subparts where subpart Ik,r ⊆ Ik, r =
1, . . . , R, is exclusively used by core r . In each of the H iterations,
core r chooses a random coordinate i ∈ Ik,r and updates δ[k] in
the ith unit direction by a step size ε computed using a single
variable optimization problem:

ε = argmax
ε∈R

Dk(εei; v, α[k] + δ[k]) (6)

which has a closed form solution for SVM problems [4], and a
solution using an iterative solver for logistic regression prob-
lems [24]. The local updates to v are also maintained appro-
priately. Because the coordinates used by any two cores are
randomly chosen in parallel, the corresponding updates to δ[k]
are independent of each other. Thus, there might be conflicts
in the updates to v if the corresponding columns (the allocated
examples in different cores) in X have nonzero values in the
same row (resulting in different updates at the same element
position of v). We use lock-free atomic memory updates to handle
such conflicts. When all cores complete H iterations, worker k
sends the accumulated update ∆v from the current round to the
master; waits until it receives the globally updated v from the
master; and repeats for another round unless the master indicates
termination.

50 S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66

Algorithm 1: Hybrid-DCA: Worker k

Input: Initial α[k] ∈ Rn, data partition Ik, initial v = 1
λnX¸,

scaling parameter σ , aggregation parameter ν,
barrier bound parameter S

1 for t ← 0, 1, . . . do
2 δ[k] ← 0, vold ← v;
3 for core r ← 1, . . . , R in parallel do
4 for h← 0, 1, . . . ,H − 1 do
5 Randomly pick i from Ik,r ;
6 ε← argmaxε Dk(εei; v, α[k] + δ[k]);
7 ‹[k] ← ‹[k] + εei;

8 v atomic
←−−− v+∇g∗

(1
λnX[k]εei

)
where ei is a unit

vector whose ith entry is 1;

9 send ∆v← v− vold to the master;
10 receive v from the master;
11 α[k] ← α[k] + νδ[k];

Algorithm 2: Hybrid-DCA: Master

Input: Initial v(0) = 1
λnX¸, aggregation parameter ν, barrier

bound parameter S, delay bound parameter Γ ,
initial P = ∅, initial delay counts T = 0

1 for t ← 0, 1, . . . do
2 while |P|< S or maxk Tk > Γ do
3 receive update ∆vk from some worker k;
4 P ← P ∪ {k}; Tk ← 1;

5 P (t)
S ← S workers in P with oldest updates;

6 v(t+1) ← v(t) + ν
∑

k∈P(t)
S

∆vk; P ← P \ P (t)
S ;

7 foreach k /∈ P (t)
S do Tk ← Tk + 1;

8 broadcast v(t+1) to all workers in P (t)
S ;

3.2. Merging updates from workers by master

If the master had to wait for the updates from all the workers,
it could compute the global updates only after the slowest worker
finished. To avoid this problem, we use bounded barrier: in each
round t , the master waits for updates from only a subset PS
of workers of size S ≤ K , and sends them back the global
update v(t+1) = v(t) + ν

∑
k∈P(t)

S
∆v(t)k . However, due to this

relaxation, there might be some slow workers with out-of-date
v. When updates from such workers are merged by the master,
it may degrade the quality of the global solution and hence may
cause slow convergence or even divergence. We ensure sufficient
freshness of the updates using bounded delay: the master makes
sure that no worker has a stale update older than Γ rounds.
This asynchronous approach has two benefits: (1) the overall
progress is no more bottlenecked by the slowest processor, and
(2) the total number of communications is reduced. On the flip
side, convergence may get slowed down for very small S or very
large Γ .

Example. Fig. 2 shows a possible sequence of important events
in a run of our algorithm on a dataset having n = 12 data
points in d = 3 dimensions using K = 3 nodes each having
R = 2 cores such that each core works with only |Ik,r | = 2 data
points. The activities in solving the subproblem using H = 1 local
iterations in a round are shown in a rectangular box. For the first
subproblem, core 1 and core 2 in worker 1 randomly select dual
coordinates such that the corresponding data points have nonzero

entries in the dimensions {1, 3} and {1, 2, 3}, respectively. Each
core first reads the entries of v corresponding to these nonzero
data dimensions, and then computes the updates [0.1, 0, 0.7] and
[0.15, 0.5, 0.4], respectively, and finally applies these updates to
v (where v1 is first updated to be 0.1 + 0.15 = 0.25 from both
of the cores, then v2 is updated to 0.5 from core 2 while v3 is
updated to 0.7 from core 1, and then v3 is augmented by 0.4 from
core 2 to reach 0.7 + 0.4 = 1.1). The atomic memory updates
ensure that all the conflicting writes to v, such as v1 in the first
write-cycle, happen completely. At the end of H local iterations
by each core, worker 1 sends ∆v = [0.25, 0.5, 1.1] to the master,
the responsibility of which is shared by one of the 3 nodes, but
shown separately in the figure. By this time, the faster workers 2
and 3 already complete 3 rounds. As S = 2, the master takes first
2 updates from P (1)

S = P (2)
S = {2, 3} and computes the global

updates using ν = 1. However, as Γ = 2, the master holds back
the third updates from workers 2, 3 until the first update from
worker 1 reaches the master. The subsequent events in the run
are omitted in the figure.

3.3. Communication cost analysis

In each communication round, the algorithms based on syn-
chronous updates on all K nodes require 2K transmissions, each
consisting of all values of v or ∆v. Half of these transmissions are
from the workers to the master and the rest are from the mas-
ter to the workers. Whereas, our asynchronous update scheme
requires 2S transmissions in each round.

4. Convergence analysis

In this section we prove the convergence of the global solution
computed by our hybrid algorithm. We prove for the case of
regularizer g(w) = ∥w∥2 as an example; the proof can be
similarly extended to other regularizers g(w). For this special
case, g∗(v) = ∥v∥2, ∇g∗(v) = 2v, the simplified dual formulation
is the following

max
α∈Rn

D(α) := −
1
n

n∑
i=1

φ∗(−αi)−
λ

2

(1
λn

Xα

)2 , (7)

and the corresponding subproblem formulation is the following

max
δ[k]∈Rn

Dk(δ[k]; v, α[k]) :=−
1
nk

∑
i∈Ik

φ∗(−αi−δi)−
λ

2S
∥v∥2

− ⟨
1
2n

X⊤
[k]v, δ[k]⟩ −

λσ

2

 1
λn

X[k]δ[k]

2 .

(8)

The analysis is divided into two parts. First we show that the
solution of the subproblem computed by each node locally is
indeed not far from the optimum of the subproblem. Using this
result on the subproblem, we next show the convergence of the
global solution. Though our proofs for the two parts are based
on the works [7] and [11], respectively, we need to make signif-
icant adjustments in the proofs due to our modified framework
handling two cascaded levels of asynchronous updates.

In our analysis we focus on all the events that are important
for the local updates that are merged by the master in global
update t . Fig. 3 shows an example where the master merges local
updates from S = 2 workers.

S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66 51

Fig. 2. Sequence of important events in an example run of Hybrid-DCA where n = 12, d = 3, K = 3, R = 2, S = 2, Γ = 2, ν = 1.

Fig. 3. Timeline of important events for the local updates from two workers that are merged by master at global update t .

4.1. Near optimality of the solution to the local subproblem

In this section we prove that the solution returned by the
parallel asynchronous stochastic DCA solver used by each worker
k in Algorithm 1 is not far from the optimal solution for the
subproblem (4).

Definition 1 (Θ-approximate). For given v, α[k], a solution δ[k] to
the subproblem (4) is said to be Θ-approximate, Θ ∈ [0, 1), if

E
[
Dk(δ∗[k]; v, α[k])− Dk(δ[k]; v, α[k])

]
≤ Θ

(
Dk(δ∗[k]; v, α[k])− Dk(0; v, α[k])

) (9)

where δ∗
[k] is an optimum solution to (4).

Though our proof is based on the results in [7], the main
challenge here is to tackle the following two modifications in
our approach: (1) the solver here solves only a part of the dual
problem and (2) the subproblem is now perturbed (Section 3).
While the first modification is simply handled by considering the
updates by the cores in worker k only, the second modification
needs changes in each step of the proof in [7]. We give below the
complete details of each of the steps.

Worker k solves subproblem (4) by applying total R × H
updates, each of its R cores makes H updates. To show Θ-
approximate, we need to show that sufficient progress is made
between any two successive updates. However, each of the cores
makes multiple atomic memory writes in an update, the updates

52 S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66

made by different cores are interleaved and hence it is difficult to
demarcate two successive updates. Nevertheless, depending upon
the order cores select a data point ∈ Ik as in step 6 of Algorithm
1 we assign a node-level counter j for each of the total R × H
updates in node k and let the index i(j) denote the data point
selected for update j ∈ {1, . . . , RH}. Fig. 3 shows an example of
local updates i(j).

In each update, a worker core computes step size ε using line
6 of Algorithm 1 and then applies ε in i(j)th axis to α[k]. However,
there are a few subtle points to notice that happen due to the
atomic updates. Firstly, when a core computes ε it starts with a v

but by the time it reads a coordinate of v some other core might
have already modified some other coordinates. So the effective
v that a core uses to compute the increment ε might not be the
actual v at the memory, and in fact it might not exist at all in the
memory at any time. Let v̄ denote the effective v that a core uses
to compute ε, and let v̂ denote the actual v value in the memory.
Fig. 4 helps readers connect the different notation and updates
used in the proofs in this section.

For all i ∈ Ik, we have the following definitions:

hi(u) :=
φ∗i (−u)
n ∥xi∥2

+
λ

2

(
1
S
−

1
σ

)
∥w∥2

∥xi∥2

proxi(s) := argmin
u

1
2
(u− s)2 + hi(u)

Ti(w, s) := argmax
u
−

1
σ

λ

2
∥w∥2 −

1
n
w⊤xi(u− s)

−
λ

2
σ (

1
λn

xi(u− s))2

−
1
n
φ∗i (−u)−

λ

2

(
1
K
∥w∥2 −

1
σ
∥w∥2

)
= argmax

u
−

λ

2

 w
√

σ
+

√
σ

λn
(u− s)xi

2 − ∥xi∥2 hi(u)

= argmin
u

1
2

(
u−

(
s−

λnw⊤xi
σ ∥xi∥2

))2

+ hi(u),

where w ∈ Rd denotes any fixed vector, s ∈ R, and prox(s)
denotes the proximal operator. We can see the connection of the
above operator to the proximal operator: Ti(w, s) = proxi (s−
w⊤xi

σ∥xi∥2

)
. Here both hi(u) and Ti(w, s) were revised from [7] to

satisfy the subproblem (4).
Let X̄ denote the normalized data matrix at kth local atomic

solver with omitted notation [k] where each row is
x̄⊤i = x⊤i /∥xi∥, i ∈ Ik. Define M[k],i = maxD⊆[d] ∥

∑
t∈D X̄(:,t)X(i,t)∥,

M = maxk maxi M[k],i over all the local atomic solvers, where [d]
is the set of all the feature indices, and X̄(:,t) is the tth column of
X̄. Moreover, Rmin is defined as the minimum value of global data
matrix, i.e., Rmin = mini=1,...,n ∥xi∥2. Then, we define that:

Definition 2 (Local Atomic Dual Variables). Here we omit [k] in the
proofs of the local atomic solver.

β l+1
t =

{
Tt
(
ŵl, β l

c

)
if c = i(l),

β l
c if c ̸= i(l),

εl
=β l+1

i(l) − β l
i(l),

β̃ l+1
=T

(
ŵl, βl) , β̄ l+1

=T
(
w̄l, βl) ,

where βl
= α[k] + νδl

[k] denotes the lth sequence generated by
a specific kth local atomic solver, ŵl denotes the actual values
of w maintained at update l in the local atomic solver; i(l) in-
dicates the index selected at lth update; and w̄l refers to the
‘‘accurate’’ w if all cores are synchronously updated at iteration
l. Note that, β̃ l+1

i(l) = β l+1
i(l) and β̃ l+1

= prox
(
βl
−

λn
σ
X̄ŵl

)
. Since v

and α[k] will not be changed when solving the local subproblem

Dk(δ[k]; v, α[k]), we denote Q σ (βl) as the objective value of the
dual subproblem at lth update and omit the subscripts [k].

Assumption 1 (Lipschitz Continuous). The global problem ob-
jective (2) is Lmax-Lipschitz continuous and therefore, its local
subproblems objective (4) are at most Lmax-Lipschitz continuous.

The following propositions are cited from [7], and we use these
results in our proof.

Proposition 1 (Expectation of Dual Variables).

Ei(l)

(βl+1
− βl

2) = 1
n

β̃l+1
− βl

2 , (10)

Proposition 2 (Boundary of Asynchronous Variables).X̄w̄l
− X̄ŵl

 ≤ 1
λn

M
l∑

c=l−γ

|εc
|, (11)

Proposition 3.

|Ti (w1, s1)− Ti (w2, s2) | ≤
⏐⏐⏐⏐s1 − s2+

(w1 −w2)
⊤ xi

∥xi∥2

⏐⏐⏐⏐ , (12)

Proposition 4. Let M ≥ 1, q = 6(γ+1)eM
√
n , ρ = (1 + q)2, and

θ =
∑γ

t=1 ρ l/2. If q(γ + 1) ≤ 1 and σ ≥ 1, then ρ(γ+1)/2
≤ e, and

ρ−1 ≤ 1−
4
√
n
−

4M + 4Mθ
√
n

≤ 1−
4
√
n
−

4M + 4Mθ

σ
√
n

, (13)

Proposition 5 (Properties of Dual Concave Function). For all j > 0,
we have

Q σ
(
βl)
≤Q σ

(
β̄
l+1
)
−

σ
xi(l)2
2

βl
− β̄

l+1
2 , (14)

Q σ
(
βl)
≥Q σ

(
β̄
l+1
)
−

Lmax

2

βl
− β̄

l+1
2 (15)

Proof. Two properties of dual concave function are stated as
follows.

• the strong convexity of Q σ (βl): as all conjugate functions are
convex, it is clear that Q σ (βl) is σ

xi(l)2-strongly convex.
• the Lipschitz continuous gradient of Q σ (βl): refer to

Assumption 1. □

Because of the atomic updates, the step size computation may
not include all the latest updates, but we assume all the updates
before the (l− γ)-th update have already been written into v.

Assumption 2 (Bounded Delay of Local Updates, γ).

(γ + 1)2 ≤
√
nk

6eM
, where e is the Euler’s number. (16)

This assumption restricts the maximum allowed local delay γ
by M and nk.

Lemma 6. Under Assumption 2, Definition 2, and

ρ =

(
1+ 6(γ+1)eM

√
nk

)2
. Then, the local subproblem satisfies:

E
[βl−1

[k] − β̃
l
[k]

2] ≤ ρE
[βl

[k] − β̃
l+1
[k]

2] . (17)

Not that l ̸= h, represents the lth update to ω in a local solver but
not the hth iteration of one core.

S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66 53

Fig. 4. Relationship among different approximations of α.

Proof. We omit the subscript [k] in the notations, which spec-
ifies the kth data partition, in the proof. We prove Eq. (17) by
induction. As shown in [7], we haveβl−1

− β̃
l
2 − βl

− β̃
l+1
2

≤ 2
βl−1

− β̃
l
 βl

− β̃
l+1
− βl−1

+ β̃
l
 .

(18)

The second factor on the r.h.s. of Eq. (18) is bounded as follows
with the revisions:βl

− β̃
l+1
− βl−1

+ β̃
l


≤
βl
− βl−1


+

prox(βl
−

λn
σ

X̄ŵl
)
− prox

(
βl−1
−

λn
σ

X̄ŵl−1
)

≤
βl
− βl−1

+ (βl
−

λn
σ

X̄ŵl
)
−

(
βl−1
−

λn
σ

X̄ŵl−1
)

≤2
βl
− βl−1

+ λn
σ

X̄ŵl
− X̄ŵl−1


=2

βl
− βl−1


+

λn
σ

X̄ŵl
− X̄w̄l

+ X̄w̄l
− X̄w̄l−1

+ X̄w̄l−1
− X̄ŵl−1


≤2

βl
− βl−1

+ λn
σ

(X̄w̄l
− X̄w̄l−1

+ X̄ŵl
− X̄w̄l


+
X̄w̄l−1

− X̄ŵl−1
)

≤

(
2+ 2

λn
σ

M
λn

)βl
− βl−1


+ 2

λn
σ

M
λn

l−2∑
c=l−γ−1

|εc
| (Proposition 2) (19)

≤

(
2+ 2

M
σ

)βl
− βl−1

+ 2
M
σ

l−2∑
c=l−γ−1

|εc
| (20)

Now we start the induction. Although some steps may be the
same as the steps in [7], we still keep them here to make the
proof self-contained.

Induction Hypothesis. We prove the following equivalent
statement. For all j,

E
(βl−1

− β̃
l
2) ≤ ρE

(βl
− β̃

l+1
2) ,

Induction Basis. When l = 1,

E
(β0

− β̃
1
2)− E

(β1
− β̃

2
2)

≤ 2E
(β0

− β̃
1
 β1

− β̃
2
− β0

+ β̃
1
)

≤

(
4+ 4

M
2

)
E(
β0
− β̃

1
 β0

− β1
).

By Proposition 1 and AM–GM inequality, which for any b1, b2 > 0
and any c > 0, we have

b1b2 ≤
1
2

(
cb21 + c−1b22

)
(21)

Therefore, we have

E
(β0

− β̃
1
 β0

− β1
)

≤
1
2
E
(
√
n
β0
− β1

2 + 1
√
n

β0
− β̃

1
2)

=
1
2
E
(

1
√
n

β0
− β̃

1
2 + 1

√
n

β0
− β̃

1
2) (Proposition 1)

=
1
√
n
E
(β0

− β̃
1
2)

Therefore,

E
(β0

− β̃
1
2)− E

(β1
− β̃

2
2)

≤

(
4
√
n
+

4M
σ
√
n

)
E
(β0

− β̃
1
2) ,

54 S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66

which implies

E
(β0

− β̃
1
2) ≤ (1− 4

√
n
−

4M
σ
√
n

)−1
E
(β1

− β̃
2
2)

≤ ρE
(β1

− β̃
2
2) ,

where the last inequality is based on Proposition 4 and the fact
θM ≥ 1.

Induction Step. By the induction hypothesis, we assume

E
(βh−1

− β̃
h
2) ≤ ρE

(βh
− β̃

h+1
2) ∀h ≤ l− 1. (22)

To show

E
(βl−1

− β̃
l
2) ≤ ρE

(βl
− β̃

l+1
2) ,

we firstly show that for all h < l,

E
(βh

− βh+1
 βl−1

− β̃
l
)

≤
1
2
E
(√

nρ(h+1−l)/2
βh
− βh+1

2
+

1
√
n
ρ(l−1−h)/2

βl−1
− β̃

l
2) (Eq. (21))

=
1
2
E
(√

nρ(h+1−l)/2E
(βh

− βh+1
2)

+
1
√
n
ρ(l−1−h)/2

βl−1
− β̃

l
2)

=
1
2
E
(

1
√
n
ρ(h+1−l)/2

βh
− β̃

h+1
2

+
1
√
n
ρ(l−1−h)/2

βl−1
− β̃

l
2) (Proposition 1)

≤
1
2
E
(

1
√
n
ρ(h+1−l)/2ρ l−c−1

βl−1
− β̃

l
2

+
1
√
n
ρ(l−1−h)/2

βl−1
− β̃

l
2) (Eq. (22))

≤
ρ(l−1−h)/2

√
n

E
(βl−1

− β̃
l
2) . (23)

Let θ =
∑γ

h=1 ρh/2. We have

E
(βl−1

− β̃
l
2)− E

(βl
− β̃

l+1
)

≤E
(
2
βl−1

− β̃
l
((2+ 2

M
σ

)βl−1
− βl


+ 2

M
σ

βh−1
− βh

)) (Eqs. (18), (19))

=

(
4+ 4

M
σ

)
E
(βl−1

− β̃
l
 βl−1

− βl
)

+ 4
M
σ

l−1∑
c=l−γ−1

E
(βl−1

− β̃
l
 βc−1

− βc
)

≤
4σ + 4M

σ
√
n

E
(βl−1

− β̃
l
2)

+
4M
σ
√
n
E
(βl−1

− β̃
l
) l−2∑

c=l−γ−1

ρ(l−1−c)/2 (Eq. (23))

≤
4σ + 4M

σ
√
n

E
(βl−1

− β̃
l
2)+ 4M

σ
√
n
θE
(βl−1

− β̃
l
)

≤

(
4
√
n
+

4M + 4Mθ

σ
√
n

)
E
(βl−1

− β̃
l
2)

which implies that

E
(βl−1

− β̃
l
2) ≤ 1

1− 4
√
n −

4M+4Mθ

σ
√
n

E
(βl

− β̃
l+1
2)

≤ ρE
(βl−1

− β̃
l
2)

by Proposition 4. □

Lemma 6 implies that the asynchronous updates will not pull
the solution away from the optimal solution too much even if the
directions of the updates are wrong.

Definition 3 (Global Error Bound). For a convex function f : Rn
→

R, the optimization problem: minβ f (β) admits a global error
bound if there is a constant κ such that

∥β − PS(β)∥ ≤ κ ∥T (β)− β∥ , (24)

where PS(·) is the Euclidean projection to the set of optimal
solutions, and T : Rn

→ Rn is the operator defined as

Ti(β) = argmin
u

f (β + (u− βi)eh) ∀i ∈ [n].

The optimization problem admits a relaxed condition called global
error bound from the beginning if (24) holds for any β satisfying
f (β) ≤ F for some constant F .

Assumption 3. The local subproblem formulation (4) admits the
global error bound from the beginning for F = Q (δ(j)

[k]; v
(j), α

(j)
[k])

and any update j.

The global error bound in the local subproblem helps prove
that our subproblem solver achieves significant improvement
after each update. It has been shown that when the loss functions
are hinge loss or squared hinge loss, the global problem formula-
tion (2) does indeed satisfy the global error bound condition [7].
Then, for the local subproblem (4), it still satisfies the global error
bound within the subset α[k].

Assumption 4 (Bounded M, Lmax).

2Lmax

(
1+

e2γ 2M2

σ 2nk

)(
e2γ 2M2

σ 2nk

)
≤ 1

Lemma 7 (Convergence for Subproblem). When Assumptions 2–4
hold, the solutions computed in two successive updates by the local
subproblem solver have a linear convergence rate in expectation, i.e.,

E
[
Dk(δ∗[k])− Dk(δ

(j)
[k])
]
≤ Θ

[
Dk(δ∗[k])− Dk(δ

(j−1)
[k])

]
where δ

(j)
[k] = δ

(j)
[k] +

∑H
h=1

∑R
r=1 β

h,r
[k] is the δ[k] after the jth update,

η = 1−
κRmin

2nLmax

(
1−

2Lmax

Rmin

(
1+

e2γ 2M2

σ 2ñ

)(
e2γ 2M2

σ 2ñ

))
,

ñ = maxk nk is the size of the largest data part, and

Θ = ηRH . (25)

Proof. We also omit the subscript [k] of the notations in the proof.

We can bound the expected distance E
(β̄j+1

− β̃
l+1
2) by the

S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66 55

following derivation.

E
(β̄l+1

− β̃
l+1
2)

= E

(
n∑

t=1

(
Tt (w̄l, β l

t)− Tt (ŵl, β l
t)
)2)

≤ E

⎛⎝ n∑
t=1

(
λn
(
w̄l
− ŵl

)⊤ xt
σ ∥xt∥2

)2
⎞⎠ (Proposition 3)

=
λ2n2

σ 2 E
(X̄ (w̄l

− ŵl)2)
≤

M2

λ2n2

λ2n2

σ 2 E

⎛⎜⎝
⎛⎝ l−1∑

t=l−γ

βt
− βt+1

⎞⎠2
⎞⎟⎠ (Proposition 2)

≤
M2

σ 2 E

⎛⎝γ

⎛⎝ l−1∑
t=l−γ

βt
− βt+1

2⎞⎠⎞⎠ (Cauchy Schwarz Inequality)

≤
γM2

σ 2 E

(
γ

(
γ∑

t=1

ρt
βl
− βl+1

2)) (Lemma 6)

≤
γM2

σ 2n

(
γ∑

t=1

ρt

)
E
(βl

− β̃
l+1
2) (Proposition 1)

≤
γ 2M2

σ 2n
ργE

(βl
− β̃

l+1
2)

≤
γ 2M2e2

σ 2n
E
(βl

− β̃
l+1
2) . (Proposition 4) (26)

Moreover,

E
(β̄l

− βl+1
2)

= E
(β̄l+1

− β̃
l+1
+ β̃

l+1
− βl

2)
≤ E

(
2
(β̄l+1

− β̃
l+1
2

+

β̃l+1
− βl

2)) (Cauchy–Schwarz)

≤ 2
(
1+

γ 2M2e2

σ 2n

)
E
(β̃l+1

− βl
2) (27)

The bound of the increase of local objective function value by

E
(
Q σ

(
βl+1))

− E
(
Q σ

(
βl))

=E
(
−

(
Q σ

(
βl)
− Q σ

(
β̄
l+1
)))

− E
((

Q σ
(
β̄
l+1
)
− Q σ

(
βl+1)))

≥E

(
σ
xi(l)2
2

βl
− β̄

l+1
2)

− E
(
Lmax

2

βl+1
− β̄

l+1
2) (Proposition 5)

≥
Rmin

2n
E
(βl

− β̄
l+1
2)− Lmax

2n
E
(β̃l+1

− β̄
l+1
2)

≥
Rmin

2n
E
(βl

− β̄
l+1
2)

−
Lmax

2n
γ 2M2e2

σ 2n
E
(β̃l+1

− βl
2) (Eq. (26))

≥
Rmin

2n
E
(βl

− β̄
l+1
2)

−
2Lmax

2n
γ 2M2e2

σ 2n

(
1+

γ 2M2e2

σ 2n

)
E
(β̄l+1

− βl
2) (Eq. (27))

≥
Rmin

2n

(
1−

2Lmax

2n

(
1+

γ 2M2e2

σ 2n

)(
γ 2M2e2

σ 2n

))
× E

(β̄l+1
− βl

2)
≥

κRmin

2n

(
1−

2Lmax

2n

(
1+

γ 2M2e2

σ 2n

)(
γ 2M2e2

σ 2n

))
× E

(PS (βl)
− βl

2)
≥

κRmin

2nLmax

(
1−

2Lmax

2n

(
1+

γ 2M2e2

σ 2n

)(
γ 2M2e2

σ 2n

))
× E

(
Q σ∗
− Q σ

(
βl))

Therefore,

Q σ∗
− E

(
Q σ

(
βl+1))

= Q σ∗
− E

(
Q σ

(
βl))
−
(
E
(
Q σ

(
βl+1)

− E
(
Q σ

(
βl))))

≤ η
(
Q σ∗
− E

(
Q σ

(
βl)))

Let us assume that β∗
[k] is the optimal solution of the subprob-

lem (4) denoted as:

β∗
[k] = arg max

β[k]∈Rnk
Q σ (β[k]; w̄). (28)

According to above proof of Lemma 7, the local atomic solver has
a linear convergence rate in expectation, that is,

Q σ (β∗
[k]; w̄)− E

(
Q σ (β j+1

[k] ; w̄)
)

≤ η

(
E
(
Q σ (β∗

[k]; w̄)− Q σ (β j
[k]; w̄)

))
It is obvious that Θ = ηRH . Thus, we can easily get the induction
as

Q σ (β∗
[k]; w̄)− E

(
Q σ (βRH

[k] ; w̄)
)

≤ η
(
Q σ (β∗

[k]; w̄)− E
(
Q σ (βRH−1

[k] ; w̄)
))

≤ η2 (E (Q σ (β∗
[k]; w̄)− Q σ (βRH−2

[k] ; w̄)
))

≤ · · · ≤ Θ
(
Q σ (β∗

[k]; w̄)− E
(
Q σ (β0

[k]; w̄)
))

.

Notice that β0
[k] are the starting points of the local atomic solver

and β
R,H
[k] are the final results of β[k] of the local atomic solver. So

the following equations hold for the global problem:

β0
[k] = α[k]

β
R,H
[k] − β0

[k] = δ[k]

β∗
[k] − β0

[k] = δ∗
[k]

Therefore, we have:

E
[
Dk(δ∗[k]; v, α[k])− Dk(δ[k]; v, α[k])

]
≤ Θ

[
Dk(δ∗[k]; v, α[k])− Dk(0; v, α[k])

]
with Θ = ηRH . □

4.2. Convergence of global solution

Although we have shown that the local subproblem solver
outputs a Θ-approximate solution, we cannot directly apply the
results of [11] for the global solution because our algorithm uses
updates from only a subset S ≤ K of workers which is unlike
the synchronous all-reduce of the updates from all workers used

56 S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66

in [11]. We need to handle this asynchronous nature of the global
updates, just like we handled asynchronous updates for the local
subproblem.

Let us consider the global updates in the order the master
computed them (at global time t in Fig. 3). To prove convergence,
it is customary to show that the global objective progresses suf-
ficiently in each round, i.e., there is sufficient change from D(α(t))
to D(α(t+1)) where α(t) denotes the value of the dual variable α

distributed as α
(t)
[k] across all the workers k at the time master

computed tth global update v(t). For simplicity we assume that
each worker updates α

(t)
[k] in step 11 of Algorithm 1 as soon as it

receives global update from the master. Thus, α(t+1)
= α(t)

+ νδ(t)

where δ(t) =
∑

k δ
(t)
[k] and δ

(t)
[k] denotes the increment to α

(t)
[k]

computed by worker k if k ∈ P (t)
S , 0 otherwise.

If k ∈ P (t)
S then the update δ

(t)
[k] has already been included in

v(t). However, if k /∈ P (t)
S then it may not be included. Let ξ be

such that for all l ≤ ξ and for all k, δ
(l)
[k] has been included in

v(t). By the design of our algorithm, t − Γ < ξ ≤ t . Let α̂
(t) be

defined as follows: α̂
(t)
[k] = α

(t)
[k],∀k ∈ P (t)

S and = α
(ξ−1)
[k] for the

latest (ξ−1) for which the update is already included in global v,
∀k /∈ P (t)

S . Let w(t), ŵ(t) be w(α(t)) and w(α̂(t)) respectively. Note
that w(t)

= ŵ(t)
+

ν
λn

∑t
l=ξ Xδ(l). For a vector expression (x), let

(x)i represent the ith element of the vector resulting from the
expression (x).

Lemma 8. For any dual α(t), δ(t) ∈ Rn, primal ŵ(t)
= w(α̂(t)) and

real values ν and σ satisfying (5), it holds that

D
(
α(t+1))

=D

⎛⎜⎝α(t)
+ ν

∑
k∈P(t)

S

δ
(t)
[k]

⎞⎟⎠
≥(1− ν)D(α̂)+ ν

∑
k∈P(t)

S

Dk(δ
(t)
[k];α[k], ŵ)

−
λ

2

⎛⎜⎝2ν
λn

∑
k̸∈P(t)

S

w(α̂)⊤X

⎛⎝ t∑
l=ξ

δ
(l)
[k]

⎞⎠

+

(ν

λn

)2 
∑

k̸∈P(t)
S

t∑
c=ξ

Xδ
(c)
[k]


2⎞⎟⎠

−
2ν2

λn2

⎛⎜⎝∑
k̸∈P(t)

S

t∑
l=ξ

δ
(l)
[k]

⎞⎟⎠
⊤

X⊤X
∑
k∈PS

δ
(t)
[k]

−
1
n

∑
k̸∈P(t)

S

⎛⎝∑
i∈Ik

φ∗i ((−α̂− ν

t∑
c=ξ

δ
(c)
[k])i)

⎞⎠ . (29)

Proof. Assume that I =
⋃

k∈PS
Ik. Then, we have

D

⎛⎜⎝α(t)
+ ν

∑
k∈P(t)

S

δ
(t)
[k]

⎞⎟⎠
= −

1
n

n∑
i=1

φ∗i

⎛⎜⎝−α̂i − ν

⎛⎜⎝∑
k̸∈P(t)

S

t∑
c=ξ

δ
(c)
[k] +

∑
k∈P(t)

S

δ
(t)
[k]

⎞⎟⎠
i

⎞⎟⎠

−
λ

2


1
λn

X

⎛⎜⎝α̂+ ν
∑
k̸∈P(t)

S

t∑
c=ξ

δ
(c)
[k] + ν

∑
k∈P(t)

S

δ
(t)
[k]

⎞⎟⎠

2

=−
1
n

∑
k∈P(t)

S

⎛⎝∑
i∈Ik

φ∗i (−(1− ν)α̂i − ν(α̂+ δ
(t)
[k])i)

⎞⎠
−

1
n

∑
k̸∈P(t)

S

⎛⎝∑
i∈Ik

φ∗i ((−α̂− ν

t∑
c=ξ

δ
(c)
[k])i)

⎞⎠

−
λ

2

⎛⎜⎝w(α̂)
2 + 2ν

λn

∑
k∈P(t)

S

w(α̂)⊤Xδ
(t)
[k] +

(ν

λn

)2 
∑
k∈P(t)

S

Xδ
(t)
[k]


2⎞⎟⎠

−
λ

2

⎛⎜⎝2ν
λn

∑
k̸∈P(t)

S

w(α̂)⊤X

⎛⎝ t∑
l=ξ

δ
(l)
[k]

⎞⎠+ (ν

λn

)2 
∑
k̸∈P(t)

S

t∑
c=ξ

Xδ
(c)
[k]


2⎞⎟⎠

−
2ν2

λn2

⎛⎜⎝∑
k̸∈P(t)

S

t∑
l=ξ

δ
(l)
[k]

⎞⎟⎠
⊤

X⊤X
∑
k∈PS

δ
(t)
[k]

≥−
1
n

∑
k∈P(t)

S

⎛⎝∑
i∈Ik

((1− ν)φ∗i (−α̂i)+ νφ∗i (−(α̂+ δ
(t)
[k])i))

⎞⎠

−
λ

2

⎛⎜⎝ŵ2 + 2ν
λn

∑
k∈P(t)

S

ŵ⊤Xδ
(t)
[k] +

(ν

λn

)2 
∑
k∈P(t)

S

Xδ
(t)
[k]


2⎞⎟⎠

−
λ

2

⎛⎜⎝2ν
λn

∑
k̸∈P(t)

S

w(α̂)⊤X

⎛⎝ t∑
l=ξ

δ
(l)
[k]

⎞⎠+ (ν

λn

)2 
∑
k̸∈P(t)

S

t∑
c=ξ

Xδ
(c)
[k]


2⎞⎟⎠

−
2ν2

λn2

⎛⎜⎝∑
k̸∈P(t)

S

t∑
l=ξ

δ
(l)
[k]

⎞⎟⎠
⊤

X⊤X
∑
k∈P(t)

S

δ
(t)
[k]

−
1
n

∑
k̸∈P(t)

S

⎛⎝∑
i∈Ik

φ∗i ((−α̂− ν

t∑
c=ξ

δ
(c)
[k])i)

⎞⎠
(mean value theorem, concave)

=−
1
n

n∑
k=1

⎛⎝∑
i∈Ik

(1− ν)φ∗i (−α̂i)

⎞⎠− (1− ν)
λ

2

w(α̂)
2

  
(1−ν)D(α̂)

+
1
n

∑
k̸∈P(t)

S

⎛⎝∑
i∈Ik

(1− ν)φ∗i (−α̂i)

⎞⎠
+ ν

∑
k∈P(t)

S

⎛⎝−1
n

∑
i∈Ik

φ∗i (−(α̂+ δ
(t)
[k])i)

−
1
S

λ

2

w(α̂)
2 − 1

n
w(α̂)⊤Xδ

(t)
[k] −

λ

2
σ

 1
λn

Xδ
(t)
[k]

2
⎞⎠

−
λ

2

⎛⎜⎝2ν
λn

∑
k̸∈P(t)

S

w(α̂)⊤X

⎛⎝ t∑
l=ξ

δ
(l)
[k]

⎞⎠+ (ν

λn

)2 
∑
k̸∈P(t)

S

t∑
c=ξ

Xδ
(c)
[k]


2⎞⎟⎠

−
2ν2

λn2

⎛⎜⎝∑
k̸∈P(t)

S

t∑
l=ξ

δ
(l)
[k]

⎞⎟⎠
⊤

X⊤X
∑
k∈P(t)

S

δ
(t)
[k]

S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66 57

−
1
n

∑
k̸∈P(t)

S

⎛⎝∑
i∈Ik

φ∗i ((−α̂− ν

t∑
c=ξ

δ
(c)
[k])i)

⎞⎠
=(1− ν)D(α̂)+ ν

∑
k∈P(t)

S

Dk(δ
(t)
[k];α[k], ŵ)+

1− ν

n

∑
k̸∈P(t)

S

⎛⎝∑
i∈Ik

φ∗i (−α̂i)

⎞⎠

−
λ

2

⎛⎜⎝2ν
λn

∑
k̸∈P(t)

S

w(α̂)⊤X

⎛⎝ t∑
l=ξ

δ
(l)
[k]

⎞⎠+ (ν

λn

)2 
∑
k̸∈P(t)

S

t∑
c=ξ

Xδ
(c)
[k]


2⎞⎟⎠

−
2ν2

λn2

⎛⎜⎝∑
k̸∈P(t)

S

t∑
l=ξ

δ
(l)
[k]

⎞⎟⎠
⊤

X⊤X
∑
k∈P(t)

S

δ
(t)
[k]

−
1
n

∑
k̸∈P(t)

S

⎛⎝∑
i∈Ik

φ∗i ((−α̂− ν

t∑
c=ξ

δ
(c)
[k])i)

⎞⎠ □

Assumption 5 (Bounded Delay of Global Updates, Γ). There exists
a ϱ < e

2
Γ+1 such thatδ(t−1)2 ≤ ϱ

δ(t)2 . (30)

Lemma 9 (Global Convergence at Each Iteration). If φ∗i are all
(1/µ)-strongly convex and Assumptions 2–5 are satisfied then for
any s ∈ [0, 1], any round t of Algorithm 2 satisfies

E[D(α(t+1))− D(α(t))] ≥ Ψ (1−Θ)
(
sG(α̂)−

σ

2λ

(s
n

)2
R̂
)

(31)

where

Ψ :=ν

(
1−

(Γ + 1)e2MLmax

λn
+

SΓ MLmax

Kλn

)
≤ 1, and (32)

R̂ := −
λµn(1− s)

σ s

û− α̂
2 + K∑

k=1

X(û− α̂)[k]
2 , (33)

for û ∈ Rn with −ûi ∈ ∂φi(w(α̂)⊤xi).

Proof. For the sake of notation, we will write α instead of αt , w
instead of w(αt), ŵ instead of w(α̂), and δ instead of δt .

Now, the expected change of the dual objective is

E[D(αt)− D(α(t+1))] =E[D(αt)− D(α̂)+ D(α̂)− D(α(t+1))]

=E[D(αt)− D(α̂)] + E[D(α̂)− D(α(t+1))]

Thus, it is a summation of two parts. Let us estimate both parts
as follows,

E[D(αt)− D(α̂)]

= E

⎡⎣−1
n

∑
i̸∈I

φ∗i (−α̂i − ν

t∑
c=ξ

δ(c))

−
1
n

∑
k∈PS

⎛⎝∑
i∈Ik

φ∗i (−α̂i)

⎞⎠
−

λ

2

 1
λn

∑
k̸∈PS

X

⎛⎝α̂[k] + ν

t∑
c=ξ

δ
(c)
[k]

⎞⎠
2

+
1
n

n∑
k=1

φ∗(−α̂[k])+
λ

2

ŵ2]

= E

⎡⎣−1
n

∑
i̸∈I

φ∗i (−α̂i − ν

t∑
c=ξ

δ(c))+
1
n

∑
k̸∈PS

⎛⎝∑
i∈Ik

φ∗i (−α̂i)

⎞⎠⎤⎦
−

λ

2
E

⎡⎢⎣2ν
λn

∑
k̸∈PS

w(α̂)⊤X

⎛⎝ t∑
c=ξ

δ
(c)
[k]

⎞⎠

+

(ν

λn

)2 
∑
k̸∈PS

t∑
c=ξ

Xδ
(c)
[k]


2
⎤⎥⎦

E[D(α̂)− D(α(t+1))] = E

⎡⎣D(α̂)− D(α+ ν
∑
k∈PS

δ
(t)
[k])

⎤⎦
≤E

⎡⎣D(α̂)− (1− ν)D(α̂)− ν
∑
k∈PS

Dk(δ
(t)
[k];α[k], ŵ)

+
ν

n

∑
k̸∈PS

⎛⎝∑
i∈Ik

φ∗i (−α̂i)

⎞⎠⎤⎦
− E

⎡⎣−1
n

∑
k̸∈PS

⎛⎝∑
i∈Ik

φ∗i ((−α̂− ν

t∑
c=ξ

δ
(c)
[k])i)

⎞⎠
+

1
n

∑
k̸∈PS

⎛⎝∑
i∈Ik

φ∗i (−α̂i)

⎞⎠⎤⎦
+

λ

2
E

⎡⎢⎣2ν
λn

∑
k̸∈PS

w(α̂)⊤X

⎛⎝ t∑
c=ξ

δ
(c)
[k]

⎞⎠

+

(ν

λn

)2 
∑
k̸∈PS

t∑
c=ξ

Xδ
(c)
[k]


2
⎤⎥⎦

+ E

⎡⎣2ν2

λn2

⎛⎝∑
k̸∈PS

t∑
c=ξ

δ
(c)
[k]

⎞⎠⊤ X⊤X
∑
k∈PS

δ
(t)
[k]

⎤⎦ (Lemma 8)

Therefore,

E[D(αt)− D(α(t+1))] = E[D(αt)− D(α̂)] + E[D(α̂)− D(α(t+1))]

≤E

⎡⎣D(α̂)− (1− ν)D(α̂)− ν
∑
k∈PS

Dk(δ
(t)
[k];α[k], ŵ)

ν

n

∑
k̸∈PS

⎛⎝∑
i∈Ik

φ∗i (−α̂i)

⎞⎠⎤⎦
+ E

⎡⎣2ν2

λn2

⎛⎝∑
k̸∈PS

t∑
c=ξ

δ
(c)
[k]

⎞⎠⊤ X⊤X
∑
k∈PS

δ
(t)
[k]

⎤⎦
(sum of previous two inequalities)

=νE

[
D(α̂)−

K∑
k=1

Dk(δ∗[k];α[k], ŵ)+
K∑

k=1

Dk(δ∗[k];α[k], ŵ)

−

K∑
k=1

Dk(0; α̂[k], ŵ)

]

+ E

⎡⎣2ν2

λn2

⎛⎝∑
k̸∈PS

t∑
c=ξ

δ
(c)
[k]

⎞⎠⊤ X⊤X
∑
k∈PS

δ
(t)
[k]

⎤⎦

58 S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66

≤ν

⎛⎜⎜⎜⎜⎝Θ

⎛⎜⎜⎜⎜⎝
K∑

k=1

Dk(δ∗[k];α[k], ŵ)−
K∑

k=1

Dk(0; α̂[k], ŵ)  
D(α̂)

⎞⎟⎟⎟⎟⎠+ D(α̂)

−

K∑
k=1

Dk(δ∗[k];α[k], ŵ)

⎞⎟⎟⎟⎟⎠
+ E

⎡⎣ ν2

λn2

⎛⎝ t∑
c=ξ

δ
(c)
[k]

⎞⎠⊤ X⊤X
∑
k∈PS

δ
(t)
[k]

⎤⎦ (Lemma 7)

=ν(1−Θ)

(
D(α̂)−

K∑
k=1

Dk(δ∗[k];α[k], ŵ)

)

+ E

⎡⎣2ν2

λn2

⎛⎝∑
k̸∈PS

t∑
c=ξ

δ
(c)
[k]

⎞⎠⊤ X⊤X
∑
k∈PS

δ
(t)
[k]

⎤⎦
≤ν(1−Θ)

⎛⎝D(α̂)−
∑
k∈PS

Dk(δ∗[k];α[k], ŵ)

⎞⎠
+

ν

λn

⎛⎜⎝E

⎡⎢⎣

∑
k̸∈PS

X

⎛⎝ t∑
c=ξ

δ
(c)
[k]

⎞⎠
2
⎤⎥⎦+ E

⎡⎢⎣

∑
k∈PS

Xδ
(t)
[k]


2
⎤⎥⎦
⎞⎟⎠

  
A

(a2 + b2 ≥ 2ab)

Before bounding the term A, we need the following proposition:

Proposition 10.

E
[Xδ

(t)
[k]

2] = 1
S
E

⎡⎣∑
k∈PS

Xδ
(t)
[k]

2
⎤⎦

=
1
K
E

[
K∑

k=1

Xδ
(t)
[k]

2] ∀k ∈ {1, . . . , K }.
Now, let us bound the term A. We have

A =E

⎡⎢⎣

∑
k̸∈PS

X

⎛⎝ t∑
c=ξ

δ
(c)
[k]

⎞⎠
2
⎤⎥⎦+ E

⎡⎢⎣

∑
k∈PS

Xδ
(t)
[k]


2
⎤⎥⎦

≤E

⎡⎢⎣(Γ + 1)
t∑

c=t−Γ


∑
k̸∈PS

Xδc
[k]


2
⎤⎥⎦

+ E

⎡⎣S
∑
k∈PS

Xδ
(t)
[k]

2
⎤⎦ (Cauchy Schwarz Inequality)

≤E

[
(K − S)(Γ + 1)M

K

K∑
k=1

t−1∑
c=t−Γ

δc
[k]

2]

+ E

[
SM
K

K∑
k=1

δ(t)[k]2
]

(Propositions 2&10)

≤E

[
(K − S)(Γ + 1)M

K

(
t∑

c=t−Γ

ϱc

)
K∑

k=1

δ(t)[k]2
]

+ E

[
SM
K

K∑
k=1

δ(t)[k]2
]

(By (30))

≤
(K − S)(Γ + 1)MLmax

K

t∑
c=t−Γ

ϱc

(
D(α̂)−

K∑
k=1

Dk(δ
(t)
[k];α[k], ŵ)

)

+
SMLmax

K

K∑
k=1

(
D(α̂)− Dk(δ

(t)
[k];α

(t)
[k], ŵ)

)
(Proposition 5)

where D(α̂) = Dk(0;α[k], ŵ). Thus, Eq. (9) can be rewritten as,

E
[
Dk(δ∗[k];α[k], ŵ)− Dk(δ

(t)
[k];α[k], ŵ)

]
≤ Θ

(
Dk(δ∗[k];α[k], ŵ)− D(α̂)

)
+ D(α̂)− D(α̂)

D(α̂)− Dk(δ
(t)
[k];α[k], ŵ)

≤ (1−Θ)D(α̂)− (1−Θ)Dk(δ∗[k];α[k], ŵ)

D(α̂)− Dk(δ
(t)
[k];α[k], ŵ)

≤ −(1−Θ)
(
Dk(δ∗[k];α[k], ŵ)− D(α̂)

)
(34)

Then, A can be bounded as,

A ≤−
(K − S)(Γ + 1)MLmax

K
ϱΓ+1(1−Θ)

K∑
k=1

(
D(α̂)

−Dk(δ∗[k];α[k], ŵ)
)

−
SMLmax

K
(1−Θ)

K∑
k=1

(
D(α̂)− Dk(δ∗[k];α[k], ŵ)

)
(By (34))

≤−
(K − S)(Γ + 1)e2MLmax

K
(1−Θ)

K∑
k=1

(
D(α̂)

−Dk(δ∗[k];α[k], ŵ)
)

−
SMLmax

K
(1−Θ)

K∑
k=1

(
D(α̂)

−Dk(δ∗[k];α[k], ŵ)
)

(Assumption 5)

By substituting A, we have

E[D(αt)− D(α(t+1))] ≤ν

(
1−

(Γ + 1)e2MLmax

λn
+

SΓ MLmax

Kλn

)
(1−Θ)

K∑
k=1

(
D(α̂)− Dk(δ∗[k])

)
E[D(αt)− D(α(t+1))] ≤Ψ (1−Θ)

K∑
k=1

(
D(α̂)− Dk(δ∗[k])

)
Using Eq. C in the proof of Lemma 5 in [11], we can show that

E[D(αt)− D(α(t+1))]

≤Ψ (1−Θ)

(
−sG(α̂)−

1
2µ

(1− s)s
1
n

û− α̂
2

+
σ

2λ

(s
n

)2 K∑
k=1

X(û− α̂)[k]
)

=Ψ (1−Θ)
(
−sG(α̂)+

σ

2λ

(s
n

)2
R̂
)

□

Remark. When S (the minimal number of workers required to
update before a global update is communicated) is fixed in (32),
Ψ will approach 0 when Γ (the maximal delay allowed for the
slowest worker) becomes larger and larger since (Γ + 1)e2 >

S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66 59

Γ . In other words, the improvement from D(α(t)) to D(α(t+1)) at
iteration t becomes smaller when a larger delay is allowed among
the workers.

When Γ is fixed in (32), Ψ will be larger when S is set
larger. The improvement from D(α(t)) to D(α(t+1)) at iteration
t will be more significant when more updates from different
workers are taken into account. However, when Γ = 0, Ψ will
be independent from S because all updates have to be gathered
by the master.

Using the main results in [11] and combining Lemma 7 with
Lemma 9 we get the following two convergence results for two
types of loss functions: (i) smooth and (ii) Lipschitz continuous.
The theorems use the following quantities: σmax = maxk σk, and
σsum =

∑
k σknk where ∀k, σk = maxα[k]∈Rn

Xα[k]
2 /

α[k]2.
Theorem 11 (Global Convergence for (1/µ)-Smooth Functions). If
the loss functions φi are all (1/µ)-smooth, then in T1 iterations
Algorithm 2 finds a solution with objective at most ϵD from the
optimal, i.e., E[D(α∗) − D(α(T1))] ≤ ϵD whenever T1 ≥ C1 log 1

ϵD
where C1 =

1
Ψ (1−Θ) (1+

σmaxσ
νλn) and Θ is given by (25). Furthermore,

in T2 iterations, it finds a solution with duality gap at most ϵgap, i.e.,
E[P(w(α(T2)))− D(α(T2))] ≤ ϵgap whenever T2 ≥ C1 log

C1
ϵD
.

Theorem 12 (Global Convergence for L-Lipschitz Functions). If the
loss functions φi are all L-Lipschitz, then in T1 iterations Algorithm
2 finds a solution with duality gap at most ϵgap, i.e., E[P(w(ᾱ)) −
D(ᾱ)] ≤ ϵgap for the average iterate ᾱ = 1

T1−T0

∑T1−1
t=T0+1

α(t)

whenever T1 ≥ T0 + max{⌈ 1
Ψ (1−Θ)⌉,

4L2σsumσ

λn2ϵgapΨ (1−Θ)
}, and T0 ≥

max{0, ⌈ 1
Ψ (1−Θ) log

2λn2(D(α∗))−D(α(0))
4L2σsumσ

⌉} +max{0, 2
Ψ (1−Θ) (

8L2σsumσ

λn2ϵgap
−

1)} and Θ is given by (25).

Theorem 12 establishes the convergence for L-Lipschitz con-
tinuous loss functions, and Theorem 11 proves a linear conver-
gence rate for smooth convex loss functions.

5. Experimental results

We implemented our algorithm in C++ using Open MPI and
OpenMP. All our experiments were conducted on the Biowulf
cluster at the National Institutes of Health, USA, using up to
K = 16 nodes where each node has 58 GB main memory and
R = 16 cores each with a 2.6 GHz Xeon E5-2650v2 processor
and 20 MB secondary cache. Though the cores in the cluster are
hyperthreading enabled, we did not use hyperthreading mode
for our experiments. Each node in the cluster runs exactly one
MPI task corresponding to a worker which in turn runs one
OpenMP thread on each core available within the node. The
main thread in a worker handles the inter-node communica-
tion and the root MPI task works as the master. For MPI node
scheduling we used the slurm task scheduler with the settings
--ntasks-per-node=1 and --threads-per-core=1 whereas
for OpenMP thread scheduling we used a simple CPU affinity
scheduler that always assigned thread i to physical core i where
i ∈ {1, . . . , 16}.

5.1. Datasets

We evaluated our algorithm against three other algorithms
on four binary classification datasets, rcv1, webspam, kddb and
splicesite from the LIBSVM [3] website (https://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html) as shown in
Table 1. For datasets rcv1 and kddb we used separate training
and test data files downloaded directly from the website. As there
was no separate test data file for webspam, we divided the data

file into two parts and used the first part containing 80% of the
datapoints as the training set and the remaining as the test set.
For splicesite we used the test file on the website as our
training set (to better test the scalability of our algorithm as the
test file was bigger). We chose the datasets in such a way that we
had representatives of several scenarios: data sample-heavy rcv1
where n≫ d, feature-heavy webspam where n≪ d, both sample
and feature heavy kddb where both n ≈ d are high, and the big
dataset splicesite which was more dense in both ways.

5.2. Comparison of algorithms

We experimented with the following four algorithms:

• Baseline: a sequential implementation of stochastic dual co-
ordinate ascent (DCA) [6] which runs on a single core of a
single node
• CoCoA+: a MPI based distributed implementation of stochas-

tic DCA [11] which runs on multiple nodes, however, each
node uses a single core
• PassCoDe: an OpenMP based parallel implementation of

stochastic DCA [7] which runs on a single node, however,
the node uses multiple cores
• Hybrid-DCA: an OpenMP + MPI implementation of our hy-

brid parallel distributed approach for stochastic DCA which
runs on multiple nodes and each node uses multiple cores.

5.3. Parameter settings

We evaluated all the four algorithms for the hinge loss, though
other loss functions could be tested too, with the regulariza-
tion parameter λ. In our experiments with three values λ ∈

{10−3, 10−4, 10−5}, we observed similar patterns of results and
we reported the results for λ = 10−4 only. All the three paral-
lel/distributed algorithms, namely PassCoDe, CoCoA+, Hybrid-DCA,
have a global parameter G denoting the number of basic updates
to the dual variable α that are made in each global round. The
parameter G acts as a tradeoff between the progress on the dual
objective and the time taken in each global round. In the original
implementation in [7] PassCoDe sets G equal to the number of
datapoints n in the dataset whereas CoCoA implementation in [11]
uses a smaller G than n.

We experimented with different values of G and found G =
40000, 30000, 2000000 for the datasets rcv1, webspam, kddb,
respectively, gave the best results in our empirical study. In our
implementation, for PassCoDe on t cores each thread made about
H = G/t local updates, for PassCoDe on p nodes, each MPI
task made H = G/p local updates and for Hybrid-DCA on p
nodes each with t cores, each thread within an MPI task made
H = G/(p × t) local updates so that all the three algorithms
made total G updates in a global round. Though the sequential
algorithm Baseline did not have any local iteration parameter,
for better comparison we computed performance metrics such
as time taken after every G update and treated such G updates
as a global round. We set aggregation parameters ν = 1, and
the scaling parameter σ = K for both CoCoA+, Hybrid-DCA as
recommended in [11].

Our Hybrid-DCA algorithm has additional parameters, the
bounded barrier S and bounded delay Γ so that updates from
only S out of p workers are incorporated in each global round
with a maximum delay of Γ rounds for any update from the
workers. In our implementation of Hybrid-DCA, we treated the
two cases slightly differently: synchronous Hybrid-DCA with S =
p where the updates from the workers were merged using the
collective operation MPI_Allreduce, and asynchronous Hybrid-
DCA with S < p where the updates from a subset of S out of p

60 S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66

Table 1
Datasets.
Dataset details rcv1 webspam kddb splicesite

Training set rcv1_train.binary webspam_*_trigram kddb splice_site.t
File size 1.2 GB 20 GB 5.1 GB 280 GB
Training size n 677,399 280,000 19,264,097 4,627,840
Number of features d 47,236 16,609,143 29,890,095 11,725,480
Non-zero entries nnz 49,556,258 1,045,051,224 566,345,888 15,383,587,858

Test set rcv1_test.binary webspam_*_trigram kddb.t –
Test size 677,399 69,632 748,401 –

workers were merged and distributed using basic MPI ‘‘send and
receive’’ commands. For all our experiments, we ran algorithms
10 times for each setting and reported the average of measured
values.

5.4. Optimization performance

Fig. 5 shows the progress of duality gap achieved by the
four algorithms on the three relatively smaller datasets rcv1,
webspam and kddb. We chose the number of nodes (p ≤ K) and
the number of cores (t ≤ R) per node such that the total number
of worker cores (p×t) was the same (16) for all algorithms except
Baseline. For Hybrid-DCA we set the parameters as the bounding
barrier S = p and the delay Γ = 1 so that updates from all
workers were incorporated in each global round. However, for
p = t = 4 we also experimented with S = 3 and Γ = 4
to compare how Hybrid-DCA performed when updates from only
3 out of 4 workers were incorporated in each round with a
maximum delay of 4 rounds for any update from the workers.
The duality gap was measured as P(w) − D(α) where the primal
estimate w was computed as (w = v) w = w(α) at the end of
each global round. However, when S < K it was not possible
for the master in Hybrid-DCA to gather the parts of P(w) from
all workers at the end of each global round. To workaround in
such a case, we let the master temporarily store w in disk after
each round and at the end of all stipulated rounds, the workers
computed the respective parts of P(w) from the stored w and the
master computed the duality gap using a series of synchronous
all-reduce computations from all the workers.

The bottom row of Fig. 5 shows the progress of the duality
gap over time, while the top row shows the progress after each
global round. In terms of progress across global rounds, the al-
gorithms performed somewhat equally except for S < p where
Hybrid-DCA had slightly slower progress on duality gap as the
updates from one of the workers was missing in each round.
In terms of time, there was no clear winner of the three par-
allel/distributed algorithms. CoCoA+ showed an advantage over
PassCoDe on datasets with a smaller number of datapoints n, such
as rcv1 and webspam, because the costly inter-node communica-
tion complexity was O(n) per round. For kddb where the dataset
had more non-zero data elements, PassCoDe performed better.
For all the three datasets the performance of Hybrid-DCA came in
between CoCoA+ and PassCoDe by balancing inter-core and inter-
node communications. Since the asynchronous Hybrid-DCA with
S < p missed updates from some of the workers, took longer time
as expected than synchronous Hybrid-DCA with S = p.

5.5. Test accuracy

To compare the quality of the solution obtained by each algo-
rithm we used test datasets from LIBSVM binary repository the
details of which are given in Table 1 and in Section 5.1. Note
that the webspam dataset in LIBSVM did not have a separate test
dataset. We divided it into two parts and took the first 280,000
datapoints in training and the remaining 69,632 datapoints for

test. For each of the empirical datatsets, we computed the ac-
curacy, i.e., the fraction of test datapoints that were classified
correctly by each of the algorithms and plotted the results in
Fig. 6. In terms of the progress on accuracy across rounds, all
the algorithms performed somewhat equally except for Hybrid-
DCA with S < p which missed updates from one of the workers.
Though, CoCoA+ apparently worked better on kddb, the mar-
gin was about 0.0005. However, in the long run all algorithms
reached the same accuracy level. The progress on accuracy across
time can be explained by the progress on duality gap across time
as explained in Section 5.4.

5.6. Speedup

Speedup evaluates the improvement in performance of an
algorithm as a function of the number of cores used. However, the
exact definition of speedup varies in the literature. For example,
PassCoDe computes speedup as the improvement in runtime to
execute a fixed number of rounds, whereas CoCoA+ uses a more
refined notion of speedup for an optimization problem like RRM
defined in Eq. (1) and computes speedup as the improvement
in runtime to achieve a fixed level of duality gap. In our ex-
periments, we evaluated the algorithms using both notions of
speedup. Let TRA(p, t, r) and TDA(p, t, ϵ) denote the time taken
by an algorithm A using p nodes each with t cores to complete
r rounds and to achieve duality gap ϵ, respectively. We formally
define the two notions of speedup as follows2:

SpeedupA(p, t, r) =
TRA(p, t, r)

TRBaseline(1, 1, r)
, and

ProficiencyA(p, t, ϵ) =
TDA(p, t, ϵ)

TDBaseline(1, 1, ϵ)
We ran sufficient rounds (≥ 100) of each of the four algo-

rithms and computed SpeedupA(p, t, 100) and ProficiencyA(p, t,
10−3) for all algorithms A except Baseline, as shown in the top two
rows of Fig. 7. PassCoDe can be run only on a single node; so we
varied only the number of cores. Because CoCoA+ could use only
1 core per node. We ran CoCoA+ and Hybrid-DCAwith t = 1 cores
on p ∈ {1, 2, 4, 8, 12, 16, 20, 24, 28, 31} nodes and plotted the
results separately. We also ran synchronous Hybrid-DCA on p ∈
{2, 4, 8} nodes each with t ∈ {2, 4, 6, 8, 10, 12, 13, 14, 15, 16}
cores, S = p, γ = 1 and plotted the results separately for each
p fixed and varying t . For p = 8 nodes and the same set of
possible number of cores, we additionally plotted the results for
asynchronous Hybrid-DCA with S = 6, Γ = 4.

Our first observation on the results of speedup experiments
was that though proficiency and speedup were computed differ-
ently, they turned out to follow a similar trend. In fact, speedup
was slightly higher than proficiency as the merging of paral-
lel/distributed updates in every global round reduced the quality
of the merged update in comparison with the pure updates of
Baseline. We also observed that the speedup and proficiency of

2 We use the term ‘proficiency’ to differentiate with a related term ‘efficiency’
widely used in the literature.

S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66 61

Fig. 5. Performance of different solvers on three datasets, rcv1 (left column), webspam (middle column), and kddb (right column), in terms of the progress of the
duality gap across the number of rounds (top row) and across the wall time taken (bottom row).

Fig. 6. Performance of different solvers on three datasets, rcv1 (left column), webspam (middle column), and kddb (right column), in terms of the progress of the
duality gap across the number of rounds (top row) and across the wall time taken (bottom row).

the algorithms followed a trend similar to the performance seen
in Section 5.4, i.e.,CoCoA+ performed better on datasets that were
either sample-heavy or feature heavy but not both, PassCoDe
performed better on dataset that was both sample-heavy and
feature heavy, and Hybrid-DCA performed in between. Further-
more, asynchronous Hybrid-DCA ran slower than synchronous
Hybrid-DCA.

While investigating why Hybrid-DCA was slower than our
expectation, we observed that the overhead of OpenMP in main-
taining the parallel threads was significant on the datasets rcv1
and webspam as evident from the performance of CoCoA.t1 and
Hybrid-DCA.t1 where their only difference was the overhead of
maintaining a single OpenMP thread. However, this overhead was
relatively small in comparison with the overall computation in
the sample and feature heavy kddb dataset. However, we also

62 S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66

Fig. 7. Speedup of different parallel or distributed solvers with respect to the sequential implementation Baseline.

noticed that CoCoA+ and PassCoDe did not scale well beyond 20
nodes and 14 cores, respectively.

Further investigation revealed two drawbacks of our imple-
mentation of MPI based inter-node communication. Firstly, MPI
was inherently single threaded. Even for t > 1, for the whole
duration when the workers in Hybrid-DCA sent their local updates
to the master and received back the merged global update from
the master, only the main thread in the workers was active and
all other threads were idle. Though there has been academic
research such as [21] on making MPI communications multi-
threaded taking advantage of OpenMP threads available within
the same task, the research has not been incorporated in the
standard MPI implementations. This inherent drawback hindered
Hybrid-DCA to take full advantage of all the cores available. The
second drawback was the way we implemented asynchronous
inter-node data transfers in Hybrid-DCA for S < p. In the absence
of a collective operation for receiving updates from only a subset
of all workers in the standard MPI implementation, we imple-
mented such a collective operation using primitive MPI ‘‘send and

receive" operations that lacked the performance improvement
of CoCoA+ that utilized the optimized MPI collectives such as
MPI_Allreduce.

To mask the effect of the two drawbacks in the MPI, we
drew the plots for speedup and proficiency, as shown in the
bottom two rows of Fig. 7, after ignoring the time involved in MPI
communications. Though CoCoA+ also received the advantage of
ignoring MPI time and showed better performance for datasets
rcv1 and webspam, it became totally outperformed by Hybrid-
DCA on the sample-heavy kddb dataset. We also observed bet-
ter performance of asynchronous Hybrid-DCA than synchronous
Hybrid-DCA. In summary, as expected theoretically, we see almost
the same speedup for a fixed number of total p× t cores irrespec-
tive of individual values of p and t . The drop in performance of
Hybrid-DCA on t > 14 cores could be due to (1) the increase of
time taken in an atomic memory update as the number of threads
increase, and (2) for higher number of threads the delay bound of
local updates may violate the assumption in (16). Both the aspects
of atomic memory writes for higher number of threads have

S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66 63

Fig. 8. Effect of varying S on p = 8 worker nodes, with Γ fixed at 10.

been investigated and worked around in a follow-up paper [26]
of original PassCoDe paper [7], however, the incorporation of a
similar fix in our implementation is out of scope for this paper.

We ignored MPI time for the computation of speedup and
proficiency only for the experiments described in the section,
for the experiments elsewhere we do include MPI time while
measuring the wall time.

5.7. Effects of the parameter S

Fig. 8 shows the results of varying S ∈ {2, 3, 4, 6, 8} with
fixed Γ = 10 on p = 8 nodes each with t = 8 cores.
When S < p/2, only a minority of the workers contributed in
a round and the duality gap did not progress smoothly below
some certain level. On the other hand, when at least half of the
workers contributed in each round, it was possible to achieve
the same duality level obtained using all the workers. However,
the reduction in time per round was eventually eaten by the
larger number of rounds required to achieve the same duality
gap. Nevertheless, we will see in a later section that the approach
was useful for HPC platforms with heterogeneous nodes, unlike
ours, where the waiting for updates from all workers had larger
penalty per round, or for the case, where the need was to run for
a specified number of rounds and quickly achieved a reasonably
good duality gap.

5.8. Effects of the parameter Γ

Fig. 9 shows the results of varying Γ ∈ {1, 2, 3, 4, 10} with
fixed S = 6 on p = 8 nodes each with t = 8 cores. We did not see
much effect of Γ as the HPC platform used for our experiments
had homogeneous nodes. Our experimentation showed that even
if we used Γ = 10, the stale value at any worker was for at most
4 rounds. We expect to see a larger variance of staleness in case
of heterogeneous nodes.

5.9. Effects of workload and processing power

When the HPC system had homogeneous nodes, our exper-
imental results showed that asynchronous Hybrid-DCA did not
change much when varying S and Γ . To show usefulness of
asynchronous Hybrid-DCA on heterogeneous systems, we intro-
duced imbalance in the setup for an experiment on p = 4 nodes
each with t = 4 cores in two different ways: (1) by varying
workload and (2) independently varying processing power. To
vary workload, instead of distributing the datapoints equally on
all 4 nodes, we loaded one of the nodes heavily by distributing
the datapoints in the ratios 1:1:1:10. Similarly, to see the effect
of heterogeneous processing speed, we introduced 10 s of delay
in one of the nodes.

We compared the performance of synchronous Hybrid-DCA
(S = 4) and asynchronous Hybrid-DCA (S = 3, Γ = 10) in
the two imbalanced scenarios as well as on the usual balanced-
load, homogeneous-speed scenario by plotting the progress on
duality gap across rounds and wall time as shown in Fig. 10. For
both scenarios of imbalanced load and heterogeneous speed the
performance of synchronous Hybrid-DCA degraded significantly
in terms of both across round and across time. However, the
asynchronous Hybrid-DCA was able to mitigate the effects of im-
balance completely in terms of performance across rounds in both
scenarios and across wall time in heterogeneous speed scenario.
For imbalanced load, asynchronous Hybrid-DCA was not able to
improve performance as the time taken by the heavily loaded
node dominated the overall time.

5.10. Performance on a big dataset

We experimented our hybrid algorithm on the big dataset
splicesite of size about 280 GB and compared with the pre-
vious best algorithm CoCoA+. Because of the enormous size, the
dataset could not be accommodated on a single node and hence
PassCoDe could not be run on this dataset. In this experiment,
we used the number of global iterations G = 1000, 000. The
results are shown in Fig. 11 where the progress of duality gap

64 S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66

Fig. 9. Effect of varying Γ on p = 8 worker nodes, with S fixed at 8.

Fig. 10. Effect of varying workload and processing power on p = 4 worker nodes.

across the rounds of communication is shown on the left and
across the wall time on the right. To achieve a duality gap of at
least 10−5 on 16 nodes, CoCoA+ took about 165 s. On the other
hand Hybrid-DCA on 16 nodes each using 12 cores took about 29
seconds to achieve the same duality gap giving approximately 6-
fold improvement, showing enough evidence about the scalability
of our algorithm. One could also argue that CoCoA+ can be run

on all these 16 × 12 = 192 cores, treating each core as a dis-
tributed node. However, when we experimented with this mode
of CoCoA+, we found that CoCoA+ did not reach the duality gap
10−5 in a stipulated 100 rounds. We also experimented CoCoA+
on 16 × 8 = 128 cores treating each core as a node and found
out that though it performed better than 16 × 1 cores in the
initial few rounds but worse in the later rounds. Moreover, it

S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66 65

Fig. 11. Performance of Hybrid-DCA on big dataset splicesite.

was outperformed by Hybrid-DCA in terms of both the number of
rounds and the time taken even on 16 nodes each using 8 cores.

6. Conclusions

In this paper, we have presented a hybrid parallel and dis-
tributed asynchronous stochastic dual coordinate ascent algo-
rithm utilizing modern HPC platforms with many nodes of multi-
core shared-memory systems. We analyze the convergence prop-
erties of this novel algorithm which uses asynchronous updates at
two cascading levels: inter-cores and inter-nodes. Experimental
results show that our algorithm is faster than the state-of-the-art
distributed algorithms and scales better than the state-of-the-art
parallel algorithms. The effectiveness of our approach in practical
implementations can be increased further by a combination of (1)
optimizing overhead of OpenMP threads, (2) incorporating multi-
threaded implementation [21] of MPI operation, and (3) fixing the
issues of larger delays in atomic memory writes for larger number
of threads as given in [26].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work was partially supported by a National Science Foun-
dation grant CCF-1514357, and a grant from National Institutes of
Health 5K02DA043063-04 to J. Bi and two National Science Foun-
dation grants NSF-1743418 and NSF-1843025 to S. Rajasekaran.
This work utilized the computational resources of the NIH HPC
Biowulf cluster (http://hpc.nih.gov).

References

[1] Alekh Agarwal, Olivier Chapelle, Miroslav Dudík, John Langford, A reliable
effective terascale linear learning system, J. Mach. Learn. Res. 15 (1) (2014)
1111–1133.

[2] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, Dis-
tributed optimization and statistical learning via the alternating direction
method of multipliers, Found. Trends Mach. Learn. 3 (1) (2011) 1–122.

[3] Chih-Chung Chang, Chih-Jen Lin, LIBSVM: A library for support vector
machines, ACM Trans. Intell. Syst. Technol. (TIST) 2 (3) (2011) 27.

[4] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, Chih-Jen Lin,
LIBLINEAR: A library for large linear classification, J. Mach. Learn. Res. 9
(2008) 1871–1874.

[5] Christina Heinze, Brian McWilliams, Nicolai Meinshausen, DUAL-LOCO:
Distributing statistical estimation using random projections, in: Arthur
Gretton, Christian C. Robert (Eds.), Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, in: Proceedings of
Machine Learning Research, vol. 51, PMLR, Cadiz, Spain, 2016, pp. 875–883.

[6] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, Sellaman-
ickam Sundararajan, A dual coordinate descent method for large-scale
linear SVM, in: Proceedings of the 25th International Conference on
Machine Learning, ICML, 2008, pp. 408–415.

[7] Cho-Jui Hsieh, Hsiang-Fu Yu, Inderjit S. Dhillon, PASSCoDe: Parallel asyn-
chronous stochastic dual co-ordinate descent, in: Proceedings of the 32nd
International Conference on Machine Learning, ICML, 2015.

[8] Martin Jaggi, Virginia Smith, Martin Takáč, Jonathan Terhorst, Sanjay
Krishnan, Thomas Hofmann, Michael I Jordan, Communication-efficient
distributed dual coordinate ascent, in: Advances in Neural Information
Processing Systems, NIPS, 2014, pp. 3068–3076.

[9] Jason D. Lee, Qihang Lin, Tengyu Ma, Tianbao Yang, Distributed stochastic
variance reduced gradient methods by sampling extra data with replace-
ment, J. Mach. Learn. Res. 18 (122) (2017) 1–43, URL http://jmlr.org/papers/
v18/16-640.html.

[10] Ji Liu, Stephen J. Wright, Christopher Ré, Victor Bittorf, Srikrishna Sridhar,
An asynchronous parallel stochastic coordinate descent algorithm, J. Mach.
Learn. Res. 16 (2015) 285–322.

[11] Chenxin Ma, Jakub Konečný, Martin Jaggi, Virginia Smith, Michael I. Jordan,
Peter Richtárik, Martin Takáč, Distributed optimization with arbitrary local
solvers, Optim. Methods Softw. 32 (4) (2017) 813–848, http://dx.doi.org/
10.1080/10556788.2016.1278445.

[12] Ryan Mcdonald, Mehryar Mohri, Nathan Silberman, Dan Walker, Gideon S.
Mann, Efficient large-scale distributed training of conditional maximum
entropy models, in: Advances in Neural Information Processing Systems,
2009, pp. 1231–1239.

[13] Brian McWilliams, Christina Heinze, Nicolai Meinshausen, Gabriel Krum-
menacher, Hastagiri P. Vanchinathan, LOCO: Distributing ridge regression
with random projections, 2014, arXiv preprint arXiv:1406.3469.

[14] Eric Moulines, Francis R. Bach, Non-asymptotic analysis of stochastic
approximation algorithms for machine learning, in: Advances in Neural
Information Processing Systems, 2011, pp. 451–459.

[15] Deanna Needell, Rachel Ward, Nati Srebro, Stochastic gradient descent,
weighted sampling, and the randomized kaczmarz algorithm, in: Advances
in Neural Information Processing Systems, 2014, pp. 1017–1025.

[16] Zhimin Peng, Yangyang Xu, Ming Yan, Wotao Yin, ARock: An algo-
rithmic framework for asynchronous parallel coordinate updates, SIAM
J. Sci. Comput. 38 (5) (2016) A2851–A2879, http://dx.doi.org/10.1137/
15M1024950.

[17] Peter Richtárik, Martin Takáč, Distributed coordinate descent method for
learning with big data, J. Mach. Learn. Res. 17 (1) (2016) 2657–2681, URL
http://dl.acm.org/citation.cfm?id=2946645.3007028.

66 S. Pal, T. Xu, T. Yang et al. / Journal of Parallel and Distributed Computing 143 (2020) 47–66

[18] Shai Shalev-Shwartz, Tong Zhang, Stochastic dual coordinate ascent meth-
ods for regularized loss minimization, J. Mach. Learn. Res. 14 (1) (2013)
567–599.

[19] Shai Shalev-Shwartz, Tong Zhang, Accelerated proximal stochastic dual
coordinate ascent for regularized loss minimization, Math. Program. 1
(155) (2016) 105–145.

[20] Ohad Shamir, Nathan Srebro, Tong Zhang, Communication-Efficient Dis-
tributed Optimization using an Approximate Newton-type Method, in:
Proceedings of the 31th International Conference on Machine Learning,
ICML, Beijing, China, 21-26 June 2014, 2014, pp. 1000–1008.

[21] Min Si, Antonio J. Peña, Pavan Balaji, Masamichi Takagi, Yutaka Ishikawa,
MT-MPI: Multithreaded MPI for many-core environments, in: Proceedings
of the 28th ACM International Conference on Supercomputing, ACM, 2014,
pp. 125–134.

[22] Martin Takáč, Avleen Bijral, Peter Richtarik, Nati Srebro, Mini-Batch primal
and dual methods for SVMs, in: Proceedings of the 30th International
Conference on Machine Learning, ICML-13, 2013, pp. 1022–1030.

[23] Tianbao Yang, Trading computation for communication: Distributed
stochastic dual coordinate ascent, in: Advances in Neural Information
Processing Systems, 2013, pp. 629–637.

[24] Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin, Dual coordinate descent
methods for logistic regression and maximum entropy models, Mach.
Learn. 85 (1) (2011) 41–75.

[25] Tong Zhang, Solving large scale linear prediction problems using stochas-
tic gradient descent algorithms, in: Proceedings of the Twenty-First
International Conference on Machine Learning, ACM, 2004, p. 116.

[26] Huan Zhang, Cho-Jui Hsieh, Fixing the convergence problems in parallel
asynchronous dual coordinate descent, in: Sixteenth IEEE International
Conference on Data Mining, ICDM, IEEE, 2016, pp. 619–628.

[27] Ruiliang Zhang, James Kwok, Asynchronous distributed ADMM for consen-
sus optimization, in: Proceedings of the 31st International Conference on
Machine Learning, ICML, 2014, pp. 1701–1709.

[28] Yuchen Zhang, Lin Xiao, Communication-efficient distributed optimiza-
tion of self-concordant empirical loss, in: Large-Scale and Distributed
Optimization, Springer, 2018, pp. 289–341.

Soumitra Pal received a B.E.degree in Computer Sci-
ence and Technology from Bengal Engineering and
Science University, Howrah, India in 2000 and M.Tech.
and Ph.D. degrees in Computer Science and Engineering
from IIT Bombay in 2007 and 2013, respectively. He
was a postdoctoral research fellow at the University of
Connecticut, USA during 2014–6. He also worked with
Texas Instruments, India as a Software Design Engineer
during 2000–5. His research interests are in algorithm
design, optimization, bioinformatics and parallel and
distributed systems.

Tingyang Xu is a Ph.D. student in the Department of
Computer Science and Engineering, the University of
Connecticut. Since 2011, he is a member of the Labora-
tory of Machine Learning and Health Informatics led by
Professor Jinbo Bi. His main areas of research interests
are machine learning in longitudinal and time series
data and high performance computing for optimization
problems. He is also a student member of the Institute
of Electrical and Electronics Engineers (IEEE).

Tianbao Yang is an Assistant Professor of the Com-
puter Science Department at the University of Iowa.
He received the Ph.D. degree in Computer Science
from Michigan State University in 2012. He worked
as a researcher in GE Global Research from 2012 to
2013 and in NEC Laboratories America, Inc. from 2013
to 2014. He has board interests in machine learning
and has focused on several research topics, including
social network analysis and large scale optimization
in machine learning. He has won the Mark Fulk Best
student paper award at 25th Conference on Learning

Theory (COLT) in 2012. He also served as program committee for several
conferences, including AAAI’15, AAAI’12, CIKM’12, ’13, IJCAI’13, ACML’12.

Sanguthevar Rajasekaran received his M.E. degree
in Automation from the Indian Institute of Science
(Bangalore) in 1983, and his Ph.D. degree in Computer
Science from Harvard University in 1988. Currently
he is the UTC Chair Professor of Computer Science
and Engineering at the University of Connecticut and
the Director of Booth Engineering Center for Advanced
Technologies (BECAT). Before joining UConn, he has
served as a faculty member in the CISE Department of
the University of Florida and in the CIS Department of
the University of Pennsylvania. During 2000–2002 he

was the Chief Scientist for Arcot Systems. His research interests include Parallel
Algorithms, Bioinformatics, Data Mining, Randomized Computing, Computer
Simulations and Combinatorial Optimization. He has published over 150 articles
in journals and conferences. He has co-authored two texts on algorithms and
co-edited four books on algorithms and related topics. He is an IEEE Fellow and
an elected member of the Connecticut Academy of Science and Engineering.

Jinbo Bi received a Ph.D. degree in mathematics from
Rensselaer Polytechnic Institute, USA, and a master
degree in Electrical Engineering and Automatic Control
from Beijing Institute of Technology, China. She is
an associate professor of Computer Science and Engi-
neering at the University of Connecticut. Prior to her
current appointment, she worked with Siemens Medi-
cal Solutions on computer aided diagnosis research and
Partners Healthcare on clinical decision support sys-
tems. Her research interests include machine learning,
data mining, bioinformatics and biomedical informatics.

	Hybrid-DCA: A double asynchronous approach for stochastic dual coordinate ascent
	Introduction
	Related work
	The proposed algorithm
	Asynchronous updates by cores in a worker node
	Merging updates from workers by master
	Communication cost analysis

	Convergence analysis
	Near optimality of the solution to the local subproblem
	Convergence of global solution

	Experimental results
	Datasets
	Comparison of algorithms
	Parameter settings
	Optimization performance
	Test accuracy
	Speedup
	Effects of the parameter S
	Effects of the parameter
	Effects of workload and processing power
	Performance on a big dataset

	Conclusions
	Declaration of competing interest
	Acknowledgment
	References

