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ABSTRACT
Widespread availability of next-generation sequencing (NGS) tech-
nologies has prompted a recent surge in interest in the microbiome.
As a consequence, metagenomics is a fast growing field in bioinfor-
matics and computational biology. An important problem in analyz-
ing metagenomic sequenced data is to identify the microbes present
in the sample and figure out their relative abundances. Genome
databases such as RefSeq and GenBank provide a growing resource
to characterize metagenomic sequenced datasets. However, both the
size of these databases and the high degree of sequence homology
that can exist between related genomes mean that accurate analysis
of metagenomic reads is computationally challenging. In this article
we propose a highly efficient algorithm dubbed as “Hybrid Metage-
nomic Sequence Classifier" (HMSC) to accurately detect microbes
and their relative abundances in a metagenomic sample. The algo-
rithmic approach is fundamentally different from other state-of-the-
art algorithms currently existing in this domain. HMSC judiciously
exploits both alignment-free and alignment-based approaches to
accurately characterize metagenomic sequenced data. Rigorous ex-
perimental evaluations on both real and synthetic datasets show
that HMSC is indeed an effective, scalable, and efficient algorithm
compared to the other state-of-the-art methods in terms of accuracy,
memory, and runtime.
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1 INTRODUCTION
Although we are normally unable to see microbes, they run the
world. Microbes are indispensable for every part of our human life
- truly speaking - all life on Earth! They influence our daily life in
a myriad ways. For an example, the microbes living in the human
gut and mouth enable us to extract energy from food. We could
not be able to digest food without them. Microbes also insulate us
against disease-causing agents. Metagenomics is a strong tool that
can be used to decipher microbial communities by directly sam-
pling genetic materials from their natural habitats. It can be directly
applicable a wide variety of domains to solve practical challenges
such as biofuels, food safety, agriculture, medications, etc. Metage-
nomic sequencing shows promise as a sensitive and rapid method to
diagnose infectious diseases by comparing genetic material found
in a patient’s sample to a database of thousands of bacteria, viruses,
and other pathogens. There is also strong evidence that microbes
may contribute to many non–infectious chronic diseases such as
some forms of cancer, coronary heart disease, and diabetes.

Classifying metagenomic sequences in the metagenomic sample
is a very challenging task due to these facts: (1) researchers have
sequenced complete genomes of thousands of microbes. The total
size of the genomes is hundreds of gigabytes. Again, metagenomic
sample can contain millions to billions of biological sequencing
reads and their total size can range from gigabytes to terabytes. To
detect the microbes, we must align the metagenomic reads onto
the known reference genomes. Processing is difficult to accomplish
as we have time and memory bound; and (2) different microbes
can contain similar genomic regions in their genomes. Reads in the
given metagenomic sample may refer to different microbes that are
not present in the sample. Consequently, there might be a lot of false
identification if we just align the reads onto the references. There
are several subsequence-based approaches in this domain. These
methods suffer from low classification accuracy, high execution
time, and high memory usage. The users also need to post-process
the output. Thus, we need efficient and effective computational
technique to quickly and accurately identify microbes present in
metagenomic sample. To address the issues stated above we have
developed a highly efficient method to correctly identify and es-
timate the abundances of microbes in the metagenomic sample.

2 RELATEDWORKS
The traditional approach to solve the metagenomic sequence clas-
sification is to align each input read onto a large collection of
reference genomes using alignment software, such as BLAST [3]
or MegaBlast [15]. However, aligning the reads onto the reference

https://doi.org/10.1145/3388440.3412468
https://doi.org/10.1145/3388440.3412468
https://doi.org/10.1145/3388440.3412468


BCB’20, September 21–24, 2020, Virtual Event, USA Subrata Saha, Zigeng Wang, and Sanguthevar Rajasekaran

sequences requires a huge computing time. One way of salvaging
execution time could be to align the reads onto a select marker
genes in the reference genome instead of the whole genome. This
approach is followed in Metaphan [23], Metaphyler [11], Motu [21]
and Megan [8]. However, this approach also becomes infeasible
when there are more and more of reference genomes and the total
number of reads grows more and more.

Researchers have tried several alignment free methods. The most
popular among such methods is based on 𝑘-mer spectrum analysis
which uses a database of distinct subsequences of length 𝑘 , or in
short 𝑘-mers, from the reference sequence to classify the reads. If a
read has distinct 𝑘-mers from multiple reference genomes then it is
assumed to be from their lowest common taxonomic ancestor (see,
e.g. [24]). The algorithms using this broad approach differ in the
way the database is built and queried. LMAT [1] is one of the first
such algorithms. Subsequent improvements are: Kraken [24] which
improves the speed andmemory usage by employing a classification
tree. CLARK [18] improves memory usage further by storing only
a reduced set of target specific 𝑘-mers. CLARK-S [17] improves
the specificity of CLARK by sacrificing a little speed and memory.
Metacache [16] improves the memory usage further by a novel
application of minhashing technique on a subset of the context
aware 𝑘-mers to reduce memory usage. MetaOthello [12] uses a
probabilistic hashing classifier and improves the memory usage
and k-mer query efficiency with a novel I -Othello data structure.
LiveKraken [22] classifies reads in realtime from raw data streams
from Illumina sequencers. KrakenUniq [2] efficiently assesses the
coverage of unique k-mers and gives better recall and precision.

Kaiju [14] uses the same𝑘-mer based approach, however, exploits
the fact that microbial and viral genomes are typically densely
packed with protein-coding genes which are more conserved and
more tolerant to sequencing errors because of the degeneracy of
the genetic code. Some applications require an estimate of the
relative abundance of constituent species. Using a probabilistic
method based on Byesian likelihood, Braken [13] augments the
output of Kraken with estimated abundance. There have been few
alignment free methods other than the 𝑘-mer spectrum analysis
as well. MetaKallisto [20] uses pseudo alignments. WGSQuikr [10]
and Metapallette [9] use a compressed sensing approach where the
abundance is estimated by solving a linear system of equations on
the 𝑘-mer spectrum profile of input reads and that of the reference
sequences. TaxMap [4] uses a compression algorithm to store the
LCA information and achieves better precision and sensitivity.

Recently, deep learning models [6], such as convolutional neural
network (CNN) and deep belief network (DBN), have been tested
on a small subset of bacteria taxonomic classification, but it is still
challenging for the classification for the entire bacteria domain.

3 METHODS
3.1 Our Algorithms
There are 3 major steps in our proposed algorithm HMSC. The first
step involves collecting a set of unique 𝑘-mers from each of the
genomic sequences of interest. This step is different from the 𝑘-mer
counting problem. In 𝑘-mer counting we compile all the distinct
𝑘-mers present in the input sequences together with the frequency
of each 𝑘-mer. A 𝑘-mer can be found in more than one genomic

sequence. Conversely, each unique 𝑘-mer can be found in one and
only one genome sequence. The second step involves finding a
set of discriminating regions from each genome. We then build a
model sequence for each genome by adopting the discriminating
regions. Instead of using the full genome sequences, these pre-built
model sequences are then employed to accurately profile all the
8 taxonomic ranks. We also estimate approximate abundances of
all the 8 taxonomic ranks residing in a given metagenomic sample.
Experimental evaluations show that HMSC is highly efficient in
terms of accuracy, execution time, and memory footprint. Next, we
describe the algorithmic steps of HMSC in detail.

3.1.1 Unique k-mer mining. At the beginning, we identify a
set of unique 𝑘-mers from the given set of target genomes 𝐺 =

{𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑛}. A 𝑘-mer is said to be unique if it (and its reverse
complement) occurs in only one of the genomes 𝑔𝑖 ∈ 𝐺 where
1 ≤ 𝑖 ≤ 𝑛. However, if we want to search for unique 𝑘-mers from
the set of all such 𝑘-mers in one single pass, it will be a very mem-
ory intensive and time consuming procedure. For instance, In our
proposed algorithm we employ around 6𝑘 bacterial genomes and
each genome contains nearly 4.5𝑀 nucleotides on an average! To
reduce the memory footprint we partition𝐺 into 𝑃 non-overlapping
parts. In each such part 𝑝 𝑗 (where 1 ≤ 𝑗 ≤ 𝑃 ) we search for 𝑘-mers
that are unique across all the genomes. To reduce the search space
we randomly select a subset of all the 𝑘-mers present in sequences.

For each partition 𝑝 𝑗 ∈ 𝑃 we maintain two data structures to
find the unique 𝑘-mers in each genome. Hash table 𝐻 is used to
record unique 𝑘-mers. Each key of the hash table 𝐻 represents a 𝑘-
mer and its corresponding value refers to the associated genome id
and start index. Hash set 𝑆 contains the non-unique 𝑘-mers found
in more than one genome. In both data structures the expected
time complexity to search, update, or delete operations is 𝑂 (1).
After collecting locally unique 𝑘-mers by utilizing 𝐻 and 𝑆 for each
genome in one part, we collect the unique set of 𝑘-mers from the
reduced set of locally unique 𝑘-mers found in the previous step
by checking if it occurs in the other genomes. We save the unique
𝑘-mers picked from each part with the associated genome ids and
start indices in the disk. Next we describe the method in detail.

For each genome 𝑔 in a part 𝑝 𝑗 , 1 ≤ 𝑗 ≤ 𝑃 , we process it as
follows. We pick a random subset of 𝑘-mers in 𝑔. Let 𝑥 ′ and 𝑥 ′′ be
any such 𝑘-mer and its reverse complement, respectively. Suppose
𝑥 is the lexicographically smallest of 𝑥 ′ and 𝑥 ′′. We first check
if 𝑥 is already declared as non-unique by searching for it in the
hash set 𝑆 . If 𝑆 already contains 𝑥 , it is non-unique. Otherwise, we
search for 𝑥 in the hash table 𝐻 . There are two possibilities: there
is an entry for 𝑥 in 𝐻 or there is no entry for 𝑥 in 𝐻 . If there is
an entry for 𝑥 in 𝐻 , there are two possibilities: (1) The 𝑘-mer in
the entry corresponds to another genome or (2) It corresponds to
the same genome (as that of 𝑥 ). In the former case we declare 𝑥 as
non-unique by recording 𝑥 in 𝑆 and delete the entry from 𝐻 . If the
later is the case, we do not do anything. If we do not find any entry
for 𝑥 in𝐻 , we create an entry for 𝑥 in𝐻 associated with its genome
id and position. At the end of processing all the randomly picked
𝑘-mers in all the genomes in 𝑝 𝑗 , in the above manner, 𝐻 has all the
locally unique 𝑘-mers in 𝑝 𝑗 . Please, note that these locally unique
𝑘-mers are only unique with respect to the randomly picked 𝑘-mers
from the genomes in 𝑝 𝑗 . From out of these locally unique 𝑘-mers,
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we identify globally unique 𝑘-mers. To find the globally unique 𝑘-
mers, we iteratively retrieve each genome 𝑔′ ∈ 𝐺 from the disk. To
check the duplicity efficiently we build a hash set 𝑆 ′ containing the
lexicographically smallest 𝑘-mers of 𝑔′. I.e., for each 𝑘-mer in the
retrieved genome𝑔′, we insert into 𝑆 ′ the lexicographically smallest
one between it and its reverse complement. Now the locally unique
set of 𝑘-mers are checked for duplicity against 𝑆 ′. Note that the
genomes are retrieved from the disk into the main memory one at
a time. The locally unique 𝑘-mers will also be checked for duplicity
with respect to the genomes in 𝑝 𝑗 . Once we identify the globally
unique 𝑘-mers in 𝑝 𝑗 , we save them together with their positions
and genome ids in the disk.

As noted earlier, we partition 𝐺 into 𝑃 parts (for some suitable
value of 𝑃 ) to reduce the memory footprint. For each of the 𝑃 parts
we follow the same procedure as described above. We save the
globally unique 𝑘-mers along with their genome ids and positions
in the disk for each part. In the experiments we set 𝑘 = 31.

3.1.2 Model sequence formation. In this step we build a model
sequence for each genome 𝑔 ∈ 𝐺 . Let the set of unique 𝑘-mers in 𝑔
(found in the previous step) be 𝑢. At first we sort 𝑢 in increasing
order with respect to the starting coordinates of the 𝑘-mers. Next
we cluster the sorted 𝑘-mers in such a way that in any cluster the
distance between any pair of consecutive 𝑘-mers is ≤ a threshold
𝑡1. Let a pair of consecutive 𝑘-mers be 𝑘 ′ and 𝑘 ′′. Then the distance
between the end position of 𝑘 ′ and the start position of 𝑘 ′′ will
be no more than 𝑡1. We linearly search through the sorted list of
𝑘-mers and build a new cluster when the distance between any
pair of consecutive 𝑘-mers is > 𝑡1. Let the set of clusters be 𝐶 .
Clearly, each cluster 𝑐 ∈ 𝐶 contains a set of consecutive 𝑘-mers
where the distance between any two consecutive 𝑘-mers is ≤ 𝑡1.
Consequently, each cluster 𝑐 ∈ 𝐶 contains a discriminating region
of the genome 𝑔. We extract a region from 𝑔 by using the start
index of the first 𝑘-mer and the end index of the last 𝑘-mer in 𝑐 . We
call such a region discriminating since if any read 𝑟 having length
≥ 𝑡1 + 2𝑘 is aligned onto such a region, then 𝑟 will fully contain at
least 1 unique 𝑘-mer. In our experiments we set 𝑡1 = 40.

We sort all such regions from all the clusters 𝑐 based on decreas-
ing order of their lengths. We discard some regions having length
≤ 𝑡2, a user defined threshold. We append a special string of length
4 containing a special character “#” at the end of each region. We
concatenate all such regions of a genome 𝑔 to build a model se-
quence. Because of this special string no aligned read will contain
the junction of any 2 regions given that the mismatch threshold
𝑑 < 4. Let these model sequences are𝑚1,𝑚2, . . . ,𝑚𝑛 where𝑚𝑖 is
the model sequence of 𝑔𝑖 , 1 ≤ 𝑖 ≤ 𝑛. In our experiments we set
𝑡2 = 300.

3.1.3 Taxonomic ranks identification. In this step we are in-
ferring all the 8 taxonomic ranks (e.g., subspecies, species, genus,
family, order, class, phylum, and kingdom) and their corresponding
relative abundances from a given metagenomic sample 𝑉 . Metage-
nomic sequencing reads contained in𝑉 are aligned onto each of the
model sequences𝑚𝑖 built in the previous step. Suppose a read 𝑟 ∈ 𝑉

is aligned onto a model sequence 𝑚𝑖 within a certain mismatch
threshold 𝑑 (we set 𝑑 = 0 in our experiments). We can say that the
read 𝑟 belongs to the genome 𝑔𝑖 with a high level of confidence.
This is referred to as a hit.

If a read 𝑟 is aligned onto multiple model sequences 𝑚𝑖 from
multiple genomes 𝑔𝑖 ∈ 𝐺 , then the read 𝑟 is assigned to all of those
genomes 𝑔𝑖 . Since the taxonomic profiling of HMSC is based on
the model sequences of the genomes, not all the reads 𝑟 from the
metagenomic sample𝑉 will be classified. This is due to the fact that
themodel sequencesmay not contain all the stretches of the original
genomes. We estimate the abundance of a specific taxonomic rank
using the number of hits. Consider a specific genome 𝑔𝑖 . Let the
taxonomic rank of 𝑔𝑖 be 𝑡𝑖 . We estimate 𝑡𝑖 by taking the ratio of the
hits in𝑚𝑖 with respect to that taxonomic rank to the total number
of hits (across all the model sequences).

The accuracy of our algorithm has been measured using the
ground truth. For instance, if we employ synthetic data, then we
will know what species are represented in the sample 𝑉 and also
the number of reads in 𝑉 corresponding to each of the species.

4 EXPERIMENT RESULTS
4.1 Mock Microbial Metagenomes
A mock community of 36 bacterial species prevalent in the human
microbiome [19] was created as described by [5]. Sequencing li-
braries were created using the Illumina TruSeq Nano DNA HT kit
and sequenced on the Illumina HiSeq 2000 platform to generate
2 × 150 bp paired-end reads. Prior to analysis reads were processed
with Trimmomatic to remove sequencing adapters. Following the
same procedure we also generated another mock community hav-
ing 11 bacterial species.

4.2 In Silico Microbial Metagenomes
We simulated 6 metagenomic paired-end in silico datasets by em-
ploying various Illumina platforms. Reads are produced by engaging
a shotgun sequence simulator named InSilicoSeq [7]. At first, we
randomly selected 200 genomes from around 6k “complet” genomes
from GeneBank. Please, note that all the randomly selected genomes
also appeared in the databases of CLARK and Kraken. We generated
simulated paired-end reads D1-D6 containing randomly chosen 50
and 100 bacterial species from the set of 200 genomes as stated
above by employing 3 popular Illumina error models (e.g. HiSeq,
MiSeq, and NovaSeq) with realistic abundance distribution. The
details of the datasets can be found in Table 1.

Table 1: Dataset Information.

Data Model Genomes Paired-end reads Read length

D1 HiSeq 50 3M 125
D2 HiSeq 100 5M 125
D3 MiSeq 50 3M 300
D4 MiSeq 100 5M 300
D5 NovaSeq 50 3M 150
D6 NovaSeq 100 5M 150
D7 HiSeq 11 4.4M 150
D8 HiSeq 36 6.1M 150



BCB’20, September 21–24, 2020, Virtual Event, USA Subrata Saha, Zigeng Wang, and Sanguthevar Rajasekaran

4.3 Performance Metrics
To demonstrate the utility of unique 𝑘-mer based model sequences
for taxonomic profiling we compared the performance of HMSC
with two widely used, 𝑘-mer-based tools, CLARK and Kraken, se-
lected for their high accuracy and low execution time.We computed
the following four performance metrics to demonstrate the efficacy
of our algorithm HMSC:

• Recall: In information retrieval, recall is the fraction of the taxa
level (e.g. genus, species, etc.) in the metagenomic sample that
are successfully detected. It is defined as: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . Here
TP stands for the number of true positives, i.e. the number of taxa
present in the sample and correctly identified by an algorithm.
FN stands for the number of false negatives, i.e. the number of
taxa present in the sample and not identified by an algorithm.

• Precision: It is the fraction of retrieved taxa levels that are resid-
ing in the sample. The definition is: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 . Here FP
is the number of false positives, i.e. the number of taxa identified
by an algorithm that are not in the sample.

• Fmeasure: It is the harmonicmean of precision and recall, the tra-
ditional F-measure or balanced F-score: 𝐹 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 .
• Pearson’s Moment Correlation Coefficient
(PMCC):We use PMCC to measure how much estimated relative
abundances of taxonomic ranks are correlated with respect to
ground truths. In statistics, the Pearson moment correlation coef-
ficient (PCC), also referred to as Pearson’s 𝑟 , is a measure of the
linear correlation between two variables 𝑋 and 𝑌 . We can think
of 𝑋 and 𝑌 as 2 vectors each having 𝑁 entries. The mathematical
formulation is: 𝑟 = 𝑁

∑
𝑋𝑌−(∑𝑋

∑
𝑌 )√

[𝑁 ∑
𝑥2−(∑𝑥)2 ] [𝑁 ∑

𝑦2−(∑ 𝑦)2 ]

We know the unique taxonomic id of each microbe residing in
the simulated datasets a priori. From a taxonomic id we can retrieve
all the taxonomic ranks of a microbe by traversing the taxonomy
tree of life. From these ground truths (i.e, taxonomic ids) of all
the datasets we identify each taxonomic rank 𝑡 of all the microbes.
Suppose 𝐴 that belongs to a specific taxonomic rank 𝑡 (such as,
genus). For each algorithm we also identify the same taxonomic
rank 𝑡 predicted, 𝐵. We compute recall and precision as |𝐴 ∩ 𝐵 |/|𝐴|
and |𝐴 ∩ 𝐵 |/|𝐵 |, respectively. For each algorithm we compute the
performance metrics for running each taxonomic profiler on the
mock and in silico communities.

4.4 Precision, Recall, and F Measure
The performance of a classification algorithm depends on both pre-
cision and recall. An algorithm can have a high recall but a small
precision due to the fact that the algorithm with a low precision
suffers from high false positives. To logically fix the issue the clas-
sification performance of an algorithm is measured by taking the
harmonic mean of recall and precision (known as F measure). It is
observed that the existing algorithms for classifying metagenomic
sequences suffer from very high false positives, i.e. they inaccu-
rately identifies a large number of microbes that does not belong
to the metagenomic sample.

At first, consider the in silico datasets. As noted earlier our in
silico datasets consist of 6 metagenomic samples (please, see D1-D6
in Table 1). HMSC possesses perfect recall of 1.0 for every in silico

datasets i.e., it was able to identify all the microbes (and their asso-
ciated taxonomic ranks) prevalent in the samples. Although HMSC
detects microbes that are not in the samples (i.e., false positives),
the numbers are far smaller than CLARK or Kraken. It is evident
from precision and F measure - HMSC’s precisions and F measures
are higher than CLARK and Kraken for all taxonomic ranks in every
datasets. Please, note that we only show 6 taxonomic ranks (e.g.,
subspecies, species, genus, family, order, and class) in Table 2 and
4 taxonomic ranks (e.g., subspecies, species, genus, and family) in
Figure 1 because of space constraints.

Now consider mock datasets (D7-D8). In D7 dataset HMSC’s
recall of species-level taxonomy is better than that of CLARK and
Kraken. In all other cases recall measures are identical for all 3
algorithms. On the contrary precision and F measures are higher
than that of CLARK and Kraken in both of D7 and D8 datasets. It
is evident from Table 3 that both of the algorithms erroneously
identify a lot of microbes that are not residing in the sample.

4.5 Relative Abundances
Our algorithm HMSC deals with the model sequences of the refer-
ence genomes. Each model sequence comprises a set of discrimi-
nating regions of a genome. Therefore, all the reads coming from
a specific genome will not be aligned onto the model sequence
designated for that genome. Only the discriminating reads will be
aligned onto a specific model sequence. As model sequences con-
tains discriminating stretches of genome sequences, it estimates ap-
proximate relative abundances instead of true relative abundances.
Although in theory the approximation may be over-represented
or under-represented, HMSC mimics, in practice, the true relative
abundances in most of cases. Since we do not know the true relative
abundances of the 2 mock communities (e.g., D7-D8), we could not
be able to compute Pearson’s correlations. Please, see Figure 1[b]
for visual comparisons of different methods employed including
HMSC. It is to be noted that the abundance estimations of HMSC
in MiSeq datasets are poor with respect to CLARK and Kraken. It
might be due to the fact that we are aligning reads onto model
sequences without any mismatches for every datasets to preserve
uniformity. Since the length of MiSeq reads is 300bp long, many of
them might not be aligned onto the model sequences within the
mismatch threshold we used (i.e., 𝑑 = 0).

4.6 Execution Time and Memory Consumption
HMSC has a very low memory footprint. On average, HMSC uses
3.70× and 1.43× less memory than that of CLARK and Kraken,
respectively. The execution times of HMSC are also comparable
with the state-of-the-art algorithms. In general, HMSC is faster
than CLARK on real datasets D7 and D8. Comparing to Kraken,
HMSC’s running time is in the same order of magnitude. Please,
see Figure 1[c] for visual comparisons.

5 CONCLUSION
In this article we propose HMSC that can accurately detect microbes
and their relative abundances in a metagenomic sample. The algo-
rithm judiciously exploits both alignment-free and alignment-based
approaches and our rigorous experimental evaluations show that it
is indeed an effective, scalable, and efficient algorithm compared to
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Table 2: Performance Evaluations on in silico Datasets.

HMSC CLARK Kraken

Recall Precision F-score PMCC Recall Precision F-score PMCC Recall Precision F-score PMCC

D1

Subspecies 1.0000 0.3636 0.5333 0.9924 NA NA NA NA 1.0000 0.0935 0.1709 0.9884
Species 1.0000 0.2816 0.4395 0.9860 0.9796 0.1627 0.2791 0.9998 0.9796 0.0673 0.1260 0.9998
Genus 1.0000 0.4737 0.6429 0.9839 1.0000 0.2500 0.4000 1.0000 1.0000 0.1402 0.2459 0.9999
Family 1.0000 0.7647 0.8667 0.9896 1.0000 0.3391 0.5065 1.0000 1.0000 0.2308 0.3750 1.0000

D2

Subspecies 1.0000 0.4390 0.6102 0.9892 NA NA NA NA 0.9722 0.0508 0.0966 0.9776
Species 1.0000 0.4091 0.5806 0.9897 0.9697 0.0695 0.1297 0.9835 0.9798 0.0470 0.0897 0.9846
Genus 1.0000 0.6385 0.7793 0.9895 0.9880 0.1312 0.2316 0.9861 0.9880 0.1004 0.1822 0.9870
Family 1.0000 0.8571 0.9231 0.9903 1.0000 0.2661 0.4204 0.9979 1.0000 0.2185 0.3587 0.9985

D3

Subspecies 1.0000 0.2899 0.4494 0.5898 NA NA NA NA 1.0000 0.1047 0.1896 0.8758
Species 1.0000 0.2450 0.3936 0.6536 0.9796 0.0779 0.1444 96.11 0.9796 0.1064 0.1920 0.9670
Genus 1.0000 0.5056 0.6716 0.6697 1.0000 0.1393 0.2446 0.9682 1.0000 0.2206 0.3614 0.9995
Family 1.0000 0.8667 0.9286 0.5844 1.0000 0.2167 0.3562 0.9995 1.0000 0.3362 0.5032 0.9996

D4

Subspecies 1.0000 0.4615 0.6316 0.5287 NA NA NA NA 0.9722 0.0461 0.0879 0.9902
Species 1.0000 0.3722 0.5425 0.5698 0.9697 0.0515 0.0979 0.9823 0.9798 0.0450 0.0861 0.9835
Genus 1.0000 0.7757 0.8737 0.5672 0.9880 0.1026 0.1859 0.9918 0.9880 0.0976 0.1777 0.9926
Family 1.0000 0.9041 0.9496 0.5936 1.0000 0.2245 0.3667 0.9932 1.0000 0.2178 0.3577 0.9938

D5

Subspecies 1.0000 0.3846 0.5556 0.9661 NA NA NA NA 1.0000 0.0881 0.1619 0.9251
Species 1.0000 0.3684 0.5385 0.9761 0.9796 0.1330 0.2341 0.9813 0.9796 0.0777 0.1439 0.9810
Genus 1.0000 0.5844 0.7377 0.9754 1.0000 0.2356 0.3814 0.9993 1.0000 0.1613 0.2778 0.9995
Family 1.0000 0.8298 0.9070 0.9728 1.0000 0.3023 0.4643 0.9994 1.0000 0.2583 0.4105 0.9996

D6

Subspecies 1.0000 0.4500 0.6207 0.9948 NA NA NA NA 0.9722 0.0507 0.0963 0.9966
Species 1.0000 0.3822 0.5531 0.9624 0.9697 0.0659 0.1235 0.9807 0.9798 0.0469 0.0896 0.9809
Genus 1.0000 0.6975 0.8218 0.9551 0.9880 0.1252 0.2222 0.9967 0.9880 0.1006 0.1826 0.9968
Family 1.0000 0.9167 0.9565 0.9751 1.0000 0.2472 0.3964 0.9854 1.0000 0.2222 0.3636 0.9855

Table 3: Performance Evaluations onmock Datasets.

HMSC CLARK Kraken

Recall Precision F1 score Recall Precision F1 sore Recall Precision F1 score

D7
Species 0.8182 0.2250 0.3529 0.7273 0.0069 0.0138 0.7273 0.0040 0.0080
Genus 1.0000 0.6250 0.7692 1.0000 0.0181 0.0357 1.0000 0.0129 0.0254
Family 1.0000 0.7143 0.8333 1.0000 0.0394 0.0758 1.0000 0.0322 0.0623

D8
Species 0.6667 0.1678 0.2682 0.6944 0.0126 0.0248 0.7222 0.0100 0.0198
Genus 0.9130 0.5250 0.6667 0.9565 0.0288 0.0558 0.9565 0.0238 0.0464
Family 0.9091 0.8000 0.8511 1.0000 0.0806 0.1492 1.0000 0.0690 0.1290

the other state-of-the-art methods in terms of accuracy, memory,
and runtime.
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(a) F1 score of different algorithms.

D1 D2 D3 D4 D5 D6 D7 D8
0.5

0.6

0.7

0.8

0.9

1.0

Su
bs
pe
cie

s

PMCC

D1 D2 D3 D4 D5 D6 D7 D8
0.5

0.6

0.7

0.8

0.9

1.0

Sp
eci

es

PMCC

D1 D2 D3 D4 D5 D6 D7 D8
0.5

0.6

0.7

0.8

0.9

1.0

Ge
nu

s

PMCC

D1 D2 D3 D4 D5 D6 D7 D8
0.5

0.6

0.7

0.8

0.9

1.0

Fa
mi
ly

PMCC

Algorithms: HMSC Clark Kraken

(b) Pearson’s coefficient of different algorithms.
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(c) Execution time and memory consumption.
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