2019 Fifth Indian Control Conference (ICC)
IIT Delhi, India, January 9-11, 2019

Zap Q-Learning —

A User’s Guide

Adithya M. Devraj!, Ana Bugi¢?, and Sean Meyn'

Abstract— There are two well known Stochastic Approxi-
mation techniques that are known to have optimal rate of
convergence (measured in terms of asymptotic variance): the
Stochastic Newton-Raphson (SNR) algorithm (a matrix gain
algorithm that resembles the deterministic Newton-Raphson
method), and the Ruppert-Polyak averaging technique. This
paper surveys new applications of these concepts for Q-
learning:

(i) The Zap Q-Learning algorithm was introduced by the
authors in a NIPS 2017 paper. It is based on a variant of

SNR, designed to more closely mimic its deterministic cousin.

The algorithm has optimal rate of convergence under general

assumptions, and showed astonishingly quick convergence

in numerical examples. These algorithms are surveyed and
illustrated with numerical examples. A potential difficulty
in implementation of the Zap-Q-Learning algorithm is the
matrix inversion required in each iteration.

(ii) Remedies are proposed based on stochastic approximation
variants of two general deterministic techniques: Polyak’s
momentum algorithms and Nesterov’s acceleration tech-
nique. Provided the hyper-parameters are chosen with care,
the performance of these algorithms can be comparable
to the Zap algorithm, while computational complexity per
iteration is far lower.

I. INTRODUCTION

The goal of this paper is to survey new techniques for
approximating the value function that arises in Markov
Decision Process models (MDPs). To ease exposition it is
assumed that the state and action spaces are finite, and time
is discrete. Of particular interest are on-line algorithms that
require only input-output measurements for implementation.
The celebrated Q-Learning algorithm of Watkins [1] is an
important example.

Consider the discounted-cost control problem with state-
action process denoted (X,U) = {(X,,,U,) : n > 0}
evolving on the finite set X x U, cost function c: XxU — R,
and discount factor 0 < § < 1. The Q-function solves the
Bellman equation:

Q" (z,u) = c(z,u) + BE, u[Q"(X1)] (1

where the subscript in the expectation indicates condition that
(Xo,Up) = (z,u), and the underbar denotes the minimum:
Q(z) := min, Q(z,v’) for any function @ on X x U. The
optimal policy can be obtained as the minimizer:

¢*(z) = argmin Q*(x, u) 2)

Funding from the National Science Foundation award EPCN 1609131.

IDepartment of Electrical and Computer Engineering, University of
Florida, Gainesville, FL 32611

2Inria and the Computer Science Department of FEcole Normale
Supérieure, 75005 Paris, France

978-1-5386-6246-5/19/$31.00 ©2019 IEEE

The paper will focus on approximation within a finite-
dimensional linear function class. Given d basis functions
{p + 1 < k < d}, with each ¢ : X x U — R, and
a parameter vector §# € R, the corresponding Q-function
estimate is defined by

Q”(w,u) = Oktoi ().
P

The Bellman error is denoted

Be(‘rvu) = —QO(CC,U) + C(‘Tvu) + 6EI,M[Q9(X1)] (3)

If this is identically zero for some 6* and all (z,u), then we
have solved the dynamic programming equation (1).

A Galerkin relaxation is adopted as a quality of fit
in most formulations of reinforcement learning. In the Q-
learning problem considered here, it is assumed that U is
obtained as a stationary randomized policy, defined so that
(X,U) is an irreducible Markov chain. A d-dimensional
stochastic process z = {z, : n > 0} is constructed that
is adapted to (X,U). This is known as the sequence of
eligibility vectors in the reinforcement learning literature. For
a stationary realization of the triple (X, U, z), a relaxation
of the Bellman error is denoted

E(@) = E[BG(Xann)Zn} 4

A solution to the Galerkin relaxation is defined as any vector
0* € R solving B(0*) = 0 € R4,

The solution to the Galerkin relaxation can be obtained
through the techniques of stochastic approximation (SA).
In this approach, a recursive algorithm to compute 6* is
constructed based on an approximation of the ODE

ra(t) = GB(x(t)) (5)

where G € R?*9 is a matrix gain.

Watkins’ Q-learning algorithm can be constructed in this
way — details are provided in the next section. This algorithm
is designed to compute Q* exactly [2], [1]. The basis is taken
to be the set of indicator variables:

il)k(l’,u) - H{(SC,’LL) = (xkauk)}7 (6)

where {(z*,u*) : 1 < k < d}, are ordered state-action pairs,
with d = |Xx U|. The sequence of eligibility vectors is taken
to be 2z, = ¥(X,,U,) € R? for n > 0.

The rich theory of SA can give enormous insight on
algorithm design, such as the optimal choice of the matrix
G appearing in (5).

The literature on SA provides conditions under which the
Central Limit Theorem and Law of the Iterated Logarithm
hold for the error sequence {én =0, — 0" : n > 0}; these

Authorized licensed use limited to: University of Florida. Downloaded on January 29,2021 at 15:07:04 UTC from IEEE Xplore. Restrictions apply.

limit theorems will serve as a guide to algorithm design in
the present paper. The asymptotic covariance appearing in
these results can be expressed as the limit

2% := lim %% := lim nE[0,0"]. (7)
n—oo n— oo
The LIL is most interesting in terms of bounds:
5o . 2loglog(n
.01 < (o) +0(1)) 2EB g

where 0(1) — 0 as n — oo, and o2 (i) = ¥9(i,).

An approach to algorithm design is to minimize o (i) for
each i. This optimization problem has an attractive solution:
denote the matrix defining the linearized dynamics by

A= 0yB(07)

Under general conditions, the optimal gain is obtained as
G* := —A~%; it is optimal in the sense that the difference
EOG — X* is positive semi-definite for any G [3], [4], [5].
This observation is the starting point of the Zap algorithm
introduced in [6], [7].

This paper provides a user’s guide for these new al-
gorithms, as well as more recent algorithms based on a
synthesis of techniques from classical SA theory, combined
with variants of momentum algorithms pioneered by Polyak
[8], [9], and Nesterov’s acceleration methods [10], [11].

Literature survey: This paper is built on a vast literature
on optimization [10], [8], [9], [11] and stochastic approxi-
mation [13], [4], [5], [14], [15], [16].

An emphasis in much of the literature is computation
of finite-time PAC (probably almost correct) bounds as a
metric for performance. Explicit bounds were obtained in
[17] for Watkins’ algorithm, and in [18] for the “speedy”
Q-learning algorithm. A general theory is presented in [19]
for stochastic approximation algorithms. The assumption in
prior work that the noise terms appearing in SA recursions
form a martingale-difference sequence does not hold for the
algorithms considered in this paper. Hence it is unlikely that
the techniques used in this prior work can be extended to
the algorithms considered in this paper.

Empirical value iteration is the topic of the recent work
[20], [21] in the context of off-line (simulation based)
value function approximation. The numerical results in this
work are impressive. It will be of interest to investigate
rates of convergence and computation complexity for these
algorithms.

The most relevant related research concerns ERM (em-
pirical risk minimization) [22], [23], [24] rather than Q-
learning. Under general conditions it can be shown that
the sequence of ERM optimizers {6%} is convergent, and
has optimal asymptotic covariance (a survey and further
discussion is presented in [24]). The papers [19], [25], [26],
[27], [24] establish the optimal convergence rate of O(1/+/n)
for various algorithms.

The recent paper [24] is most closely related to this survey,
considering the shared goal of optimization of the asymptotic
covariance, along with rapidly vanishing transients through

1

algorithm design. The paper restricts to nonlinear optimiza-
tion; it is not yet clear if the techniques can be extended to
reinforcement learning.

II. ZAP Q-LEARNING

It is first necessary to explain how to construct an SA
algorithm based on the ODE (5). The crucial step is to
remove the conditional expectation arising in the definition
of the Bellman error. The smoothing property of conditional
expectation gives

B(0) = E[B) 1 2] 9)

where for each n > 0,
Byt = Q" (X0, Un) + c(Xn, Un) + 8Q"(Xn11) (10)

and the expectation is with respect to the steady state
distribution of the Markov chain (X,U). The stochastic
approximation for the ODE (5) is defined by the recursion

(1)

where the fixed matrix gain is replaced with a sequence G =
{G.}, and the “temporal difference” is

0n+1 = en + anGn+1dn+lzn y N > 07

120
dnt1 = Byi1 lo=o, -

Throughout this paper it is assumed that o, = 1/(n + 1).
In the standard version of Watkins’ algorithm, the gain
sequence is diagonal, with

G (i,1) o) (12)
where p,, (i) denotes the fraction of times that the pair
(x%, u?) is visited up to time n; Gy, (4, 1) is set to zero up until
the first time the corresponding state-action pair is visited.
The algorithm is typically described differently, but it is
useful to have a common representation for the algorithms
discussed in this paper. We will denote this special diagonal
matrix gain sequence with {D,,}.
Proposition 2.1: For Watkins’ algorithm:
(i) The asymptotic covariance is not finite if 5 > 1/2.

(ii) The asymptotic covariance is finite for any 5 € (0,1)
if the gain is increased to:

Gli,i) = Dy (iyi) :

13)
O

Part (i) is established in [6], [7]; a similar proof can be
used to establish (ii). The algorithm with matrix gain (13)
works well in some cases, but we do not know of any
example for which the resulting variance is optimal.

A particular gain choice based on stochastic Newton-
Raphson, and a particular choice of eligibility vectors, results
in the Zap-Q()\) algorithm:

9n+1 = 977, - anA\;}lenJrlzn
dny1 = gfﬁi—l (14
Zn4+1 =)\an + w(Xna Un)a

Authorized licensed use limited to: University of Florida. Downloaded on January 29,2021 at 15:07:04 UTC from IEEE Xplore. Restrictions apply.

where {A4,,} is calculated using the recursion:
Apy1=An + 7 [An+1 - An]

A7L+1 = Zn [/gw(Xn-‘rla ¢n (Xn-i-l)) - w(X’ru Un)] !
and

5)

bn(x) € argmin Q% (z,u), =€ X. (16)

The step-size sequence {~, } must satisfy:

In experiments the gain sequences are assumed to be of the
following form: for some p € (1,1),

1 1

m7 ’Yn:(i

)P n>1.

a, = a7n
This algorithm is of thg form (11) with G,, = 7;1;1_ Itis
argued in [6], [7] that {A,,} are approximations of the ma-

trices used in the deterministic Newton-Raphson algorithm:
A, ~ 8B (6,,)

Properties of this algorithm are summarized in the next
result in the special case of tabular Q-learning, in which the
basis functions coincide with Watkins’ algorithm, so we can
identify Q% = 6.

First a few preliminaries: Given any function ¢: X x U —
R, let Q*(s) denote the corresponding solution to the fixed
point equation (1), with ¢ replaced by ¢. That is, the function
g = Q*(<) is the solution to the fixed point equation,

q(z,u) = ¢(z,u) + B Z Py(z,2") Hzltl,n gz’ u'). (18)

The following result implies that Q% ~ Q*(én) with
an _H_lA\nQQn)

n>1, (19)

where II is the d x d diagonal matrix with entries w (the
steady-state distribution of (X, U)).
The proof of Theorem 2.2 can be found in [6], [7].
Theorem 2.2: Suppose the following assumptions hold for
the Zap Q-learning algorithm with basis (6):
(i) (X,U) is an irreducible Markov chain
(i) The optimal policy ¢* defined in (2) is unique
(iii) The step-size sequences {ay,} and {~,} satisfy (17)
(iv) The sequence of policies {¢,} satisfy

Z%H{¢n+1 #¢p} <0, a.s.
n=1

Then,

(i) The sequence {Q%} obtained using the Zap-Q algo-
rithm converges to Q* a.s..

(i) The resulting asymptotic covariance is optimal: the
matrix inequality ¥%% > 3 holds for any other consistent
algorithm with finite asymptotic covariance ..

(iii) An_ODE approximation holds for the sequence
{Q%,C,,}, by continuous functions (g, s) satisfying

q = Q(st) %Ct =—G+c (20)

12

This ODE approximation is exponentially asymptotically
stable, with tlim q = Q. a
—00

III. MOMENTUM AND ACCELERATION

In this section, we survey the momentum based techniques
that are introduced in [12], with applications to Q-learning.

To simplify discussion it is helpful to consider first an
abstract setting. Let {f,(-) : n > 0} be a sequence of
random functions from R? to itself. It is assumed that there
is a well defined average: for each § € R?,

B) 1 n—1 .
ﬂ@ﬁzg&;Z;hWFﬂg&H%WH- Q1)

where the first limit is in the a.s. sense. The goal of SA: find
the vector #* solving f(6*) = 0.

Each of the algorithms described here is defined in terms
of the difference sequence A6, :=6,, — 0,1, n > 0, with
given initial condition 6y = #_;. The matrix gain algorithm
of Robbins and Monro is expressed as follows:

A971+1 = OénGn+1fn+l(0n) ’

The Q-learning recursion (11) is thus a special case. The Zap
stochastic approximation algorithm is obtained with

-1
Gn = _An

n>0. (22)

(23)

where {A,} are estimates of Jyf(6,), obtained as in Zap
Q-learning.

The two new algorithms surveyed here fall outside of the
class of SA recursions [12]:

Matrix Heavy-Ball Stochastic approximation (PolSA): For
a sequence of matrices {M,, : n > 1}, and a fixed scalar
¢>0,

A911+1 - Mn+1A9n + aann+l(9n)

Nesterov Stochastic approximation (NeSA): For a fixed
scalar ¢ > 0,

Aen-‘,-l = Aen + C[fn—i—l(an) - fn+1(9n—1>]
+ Catn fry1(0n)

The PolSA algorithm coincides with Polyak’s heavy-ball
method when {M,} is a sequence of scalars [8], [9], [28].
The recursion (25) is inspired by Nesterov’s acceleration
method. Motivation is provided through the following ar-
guments.

Gain selection: Assume that for an effective algorithm,
the difference sequence {A#d,} vanishes at a rate much
faster than the error sequence {én} This is true for standard
SA algorithms provided the asymptotic covariance is finite.
Replacing M,,+1A0,, by M, 11268, in (24) results in the
recursion

(24)

(25)

Abpi1 = oI — My 1] frg1(6n)

This recursion coincides with Zap SA, provided the matrix
gain sequence {M,} is chosen to solve

~

C[I - Mn+1]71 = _AT_Hl—l

Authorized licensed use limited to: University of Florida. Downloaded on January 29,2021 at 15:07:04 UTC from IEEE Xplore. Restrictions apply.

Watkins 1/(1 — 3) PolSA

HeSA [Experimental
0 1 8 =10* 4 2 0 2 4 B x10°

Fig. 1. Histograms for entry 18 of {/m#,} for the 6 node example at iteration 109,

and therefore, a solution is

Mpyy =1+ CAnp (26)

This “Zap” momentum gain will be used in the PolSA
recursion in the numerical results that follow, resulting in

Abnir = [+ (Ani1]An + anl fas1(fn) 27

The special form (25) is motivated by a Taylor series
approximation:

.fﬂ+1|:'9n] - .fn.+1|:'9n—l} = Aﬂ+lﬁﬂﬂ-

where Any1 = 8 frny1(fn). Hence the NeSA algorithm is
approximated by the following “noisy” version of (27):

ﬂl1'3":1+1 = [I + CA'H-+1]MH + ﬂnc.fn+1 {Hn] (28)

Theoretical analysis of these algorithms is currently under
study. It is shown in [12] that the asymptotic covariance
is finite for linear recursions (such as applications to TD-
learning), under suitable conditions on the model. The anal-
ysis requires replacing the estimates of A in (23) and (26)
with its limit, resulting in

Gp=—-A""1
M,=I+¢A

(29)
(30)

Under these conditions, the PolSA algorithm is shown to
couple with the Zap SA algorithm, and therefore have
optimal asymptotic covariance [12]:

Proposition 3.1: Consider the linear model of the form

fe(f) = A(f — 6%) + Ag

where A is a bounded martingale difference sequence. Let
{6} denote the iterates using the Zap SA algorithm ((22),
with gain (29)), and {f,} the iterates obtained using the
PolSA algorithm (24) with gain (30). Assume moreover that
A is Hurwitz, and the eigenvalues of (A lie within the open
unit disc_ in C. Then, there is a square-integrable random
variable b such that

16n — 6l <bn™", n>1. (31)
Consequently, the PolSA algorithm has optimal asymptotic
covariance.]

13

IV. NUMERICAL EXAMPLES

A User’s guide

The following is a sampling of warnings to be kept in
mind in application of any of these methods:

(i) Avoid inversion of matrices. In Matlab, replace the
operation A—'b by A\b.

(ii) Batch updates can reduce complexity substantially. For
example, with batch length N, for each &,

. kN-1
Buesyv = Okev — Apry Y ondniizn.
n=kN
and Ay oy = Bpy foreach 1 < i < N. The choice N =d
reduces overall complexity by a factor of 1/d, and does
not appear to impact performance.

(iii) The following approximation of the Moore—Penrose
pseudo inverse may be used as a substitute for A ! during
the transient phase of the algorithm (though this has not
been needed in our own applications):

AL = '+ BA A,

(iv) Re-consider the use of a randomized policy in off-line

applications (using simulated data). There is no reason to
introduce randomness which will increase variance. The
simplest deterministic scheme is clock sampling, in which
state-action pairs (z', u) are chosen sequentially. At stage
n, if (z,u) is the current pair, a random variable X[,
is chosen according to the distribution Fy(x, -), and the
(x,u) entry of the Q-function is updated according to the
particular algorithm using the triple (z,u, X}).
A significant change to Watkins' iteration is that the matrix
gain (12) is replaced by d—'I in this case. This combined
with deterministic sampling results in significant reduction
in variance in many cases.

B. Comparing the algorithms

The algorithms compared here are all in the setting of
tabular ()-learning, in which the basis functions coincide
with Watkins" algorithm. Zap (-learning has been tested in
the general linear function approximation setting, with some
results summarized in [6], [7].

The performance of several algorithms are compared here:
Watkins' algorithm, the Zap-Q(A) algorithm defined in (14,
15), along with PolSA (24) and the linear approximation of
NeSA (28):

POISA: Abnyy = [I +(Any1]Afn + Candnyi2zn
NeSA: Abfps1 = [I + ’CAn+1]Mn + Capdns12n

(32)

(33)

Authorized licensed use limited o University of Flonda. Downloaded on January 28,2021 at 15:07:04 UTC from IEEE Xplore. Restrictions apply.

d=19

- - — Watkins
Watkins:1/(1—73)

Max Belman Error

———PolSA
---- NeSA

L L L
4 5 6 7
10 10 n 10 ’ \ 10

10
s
= 10*
.
% : 10°
£
o |l ,
M o~y 10
x
©
s 10t

100 Il Il Il

10° 10 10° n 10 10 10°
Fig. 2. Bellman error for n < 107 in the shortest path problem. The first row corresponds to a graph with N = 10 nodes, and 19 state-action pairs; the

second N = 20 nodes, and 117 state-action pairs. Coupling of PolSA and Zap is evident in each of the four experiments. Deterministic exploration leads

to much faster convergence for the larger graph.

The matrices A\nﬂ and A, are defined in (15), and the
pair (dy11,2,) is defined in (14). As in the classical setting,
we let A = 0 (performance for non-zero A has not yet been
explored).

The linearized NeSA algorithm is adopted here mainly to
remind the reader that the recursion is very similar to the
PolSA algorithm. Algorithms (25) and (28) nearly coincide
in Q-learning: the updates differ only when ¢,, # ¢, —1.

The synchronous speedy Q-learning recursion of [18]
appears similar to the NeSA algorithm with clock sampling,
following the heuristic swapping argument used to motivate
the PolSA algorithm in the form (33).

The 6-node example of [6], [7] was revisited to investigate
the rate of convergence in the CLT. The value (= 1 was
chosen in each of the two algorithms displayed in (33).
Fig. 1 shows histograms for {\/nf,}, n = 10°, based on
independent repeated experiments for four algorithms. Those
for PolSA and Zap nearly coincide. Watkins’ Q-learning
algorithm has excellent performance in this small example,
when the gain (13) is used. The histogram for NeSA shows
much higher variance.

Experiments were repeated for larger examples. It was
useful to reduce the gain slightly in the new algorithms:
¢ = 0.8 for PolSA and ¢ = 0.9 for NeSA.

As in the 6-node example, the MDP model is a stochastic
shortest path problem. The model construction was based
on the creation of a graph with N nodes, in which the
probability of an edge between a pair of nodes is i.i.d. with
probability p. Additional edges (¢,7+ 1) are added, for each
1 < N, to ensure the resulting graph is strongly connected.

The state space X coincides with the set of nodes, and the
action space U the set of edges.

The transition law is similar to the 6-state example: with
probability 0.8 the agent moves in the desired direction
(indicated by the input), and with remaining probability
any of the neighboring nodes is arrived at with uniform
probability, for each state ¢ < N. From state IV, the chain

14

regenerates with uniform distribution over {1,..., N — 1}.

Two exploration rules were considered: the “online” (or
asynchronous) version that has been the focus of this paper,
and the offline “clock sampling” (or synchronous) approach
in which state-action pairs (z%,u’) are chosen sequentially.
The cost function was chosen to be independent of u, with
c(i) = 10 for all nodes except the terminal node, for which
¢(N)=1.

A metric for success is the maximal Bellman error,
Ep(0) = max, ,, |B?(z,u)|. A plot of £5(6,) vs. n is shown
in Fig. 2 for several algorithms, and two different models. In
each case, Zap and PolSA are quickest to converge, by far,
but the other two algorithms require much lower computation
per iteration. While Theorem 2.2 has been proven only for
a special linear setting, the coupling of the Zap and PolSA
trajectories is evident in these experiments.

V. CONCLUSIONS

It is fascinating to see how the asymptotic theory of
stochastic approximation can be used to obtain new op-
timized reinforcement-learning algorithms with super-fast
convergence rate. Moreover, in experiments we observe that
the asymptotic theory holds in practice after a reasonable
number of iterations.

It is important to recall the crucial role of the constants
multiplying the step-size sequence {a,}. It is common to
ignore this because they are diminishing, but using a constant
multiplier $(1—3)~! instead of (1—/3)~" in (13) can make
a difference between infinite and finite asymptotic variance
in Watkins’ Q-Learning. How these constants can be found
for a general stochastic approximation algorithm is a work-
in-progress.

It is also exciting to see how the intuitive transformation
from stochastic Newton-Raphson to the momentum based
methods of PolSA and NeSA can be justified theoreti-
cally and in simulations. Other than the known algorithms
of Ruppert-Polyak averaging and SNR/Zap, PolSA is the

Authorized licensed use limited to: University of Florida. Downloaded on January 29,2021 at 15:07:04 UTC from IEEE Xplore. Restrictions apply.

third algorithm that achieves optimal asymptotic variance
[12]. Moreover, its transient performance is far better than
Ruppert-Polyak averaging, and computational complexity
much lower compared to Zap, since there is no matrix
inversion step.

While the covariance of NeSA is not optimal, it is ex-
tremely simple to implement with low computational cost,
and it also performs great in most of our experiments. Its
transient performance was found to be much better than
Polyak-Ruppert averaging. Why the averaging technique has
such bad transients is an open question. The answer may
lie in the analysis of rates of convergence of CLT for the
algorithm.

An important next step is to formulate adaptive techniques
to ensure fast convergence in terms of both asymptotics
and transient response. One option is to optimize the gain
¢ appearing in in (24) and (25), and then formulating
algorithms to estimate this value on-line. It is possible that
techniques in [24] may be adapted. We do not have a natural
notion of expected loss in the general root finding problem,
but it will be of interest to pursue analysis in the special case
of nonlinear optimization.

REFERENCES

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279-292, 1992.

C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disser-
tation, King’s College, Cambridge, Cambridge, UK, 1989.

A. Benveniste, M. Métivier, and P. Priouret, Adaptive algorithms and
stochastic approximations, ser. Applications of Mathematics (New
York). Berlin: Springer-Verlag, 1990, vol. 22, translated from the
French by Stephen S. Wilson.

H. J. Kushner and G. G. Yin, Stochastic approximation algorithms
and applications, ser. Applications of Mathematics (New York). New
York: Springer-Verlag, 1997, vol. 35.

V. S. Borkar, Stochastic Approximation: A Dynamical Systems View-
point. Delhi, India and Cambridge, UK: Hindustan Book Agency
and Cambridge University Press (jointly), 2008.

A. M. Devraj and S. P. Meyn, “Fastest convergence for Q-learning,”
ArXiv e-prints, Jul. 2017.

A. M. Devraj and S. Meyn, “Zap Q-Learning,” in Advances in
Neural Information Processing Systems 30, 1. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 2235-2244.

B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1-17, 1964.

, Introduction to Optimization. New York: Optimization Software
Inc, 1987.

Y. Nesterov, “A method of solving a convex programming problem
with convergence rate O(1/k?),” in Soviet Mathematics Doklady,
1983.

[1]
[2]
[3]

[5]

[6]

[8

[t}

[9]

[10]

15

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

——, “Efficiency of coordinate descent methods on huge-scale opti-
mization problems,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341-362, 2012.

A. M. Devraj, A. Busi¢, and S. Meyn, “Zap meets momentum:
Stochastic approximation algorithms with optimal convergence rate,”
arXiv preprint arXiv:1809.06277, 2018.

V. R. Konda and J. N. Tsitsiklis, “Convergence rate of linear two-time-
scale stochastic approximation,” Ann. Appl. Probab., vol. 14, no. 2, pp.
796-819, 2004.

D. Ruppert, “A Newton-Raphson version of the multivariate Robbins-
Monro procedure,” The Annals of Statistics, vol. 13, no. 1, pp. 236—
245, 1985.

B. T. Polyak, “A new method of stochastic approximation type,” Av-
tomatika i telemekhanika (in Russian). translated in Automat. Remote
Control, 51 (1991), pp. 98-107, 1990.

B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approx-
imation by averaging,” SIAM J. Control Optim., vol. 30, no. 4, pp.
838-855, 1992.

C. Szepesviri, “The asymptotic convergence-rate of Q-learning,” in
Proceedings of the 10th International Conference on Neural Informa-
tion Processing Systems. MIT Press, 1997, pp. 1064-1070.

M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen, “Speedy
Q-learning,” in Advances in Neural Information Processing Systems,
2011.

E. Moulines and F. R. Bach, “Non-asymptotic analysis of stochastic
approximation algorithms for machine learning,” in Advances in
Neural Information Processing Systems 24. Curran Associates, Inc.,
2011, pp. 451-459.

D. Kalathil, V. S. Borkar, and R. Jain, “Empirical g-value iteration,”
arXiv preprint arXiv:1412.0180, 2014.

W. B. Haskell, R. Jain, and D. Kalathil, “Empirical dynamic pro-
gramming,” Mathematics of Operations Research, vol. 41, no. 2, pp.
402-429, 2016.

Z. Allen-Zhu, “Katyusha: The first direct acceleration of stochastic
gradient methods,” ArXiv e-prints, Mar. 2016.

A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental
gradient method with support for non-strongly convex composite
objectives,” in Advances in neural information processing systems,
2014, pp. 1646-1654.

P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and A. Sidford,
“Accelerating Stochastic Gradient Descent,” ArXiv e-prints (and to
appear, COLT 2018), Apr. 2017.

F. Bach and E. Moulines, “Non-strongly-convex smooth stochastic
approximation with convergence rate o(1/n),” in Advances in Neural
Information Processing Systems 26. Curran Associates, Inc., 2013,
pp. 773-781.

S. Gadat, F. Panloup, and S. Saadane, “Stochastic heavy ball,” Elec-
tron. J. Statist., vol. 12, no. 1, pp. 461-529, 2018.

J. Duchi, “Introductory lectures on stochastic optimization,” Stanford
Lecture Series, 2016.

N. Loizou and P. Richtdrik, “Momentum and Stochastic Momentum
for Stochastic Gradient, Newton, Proximal Point and Subspace De-
scent Methods,” ArXiv e-prints, Dec. 2017.

Authorized licensed use limited to: University of Florida. Downloaded on January 29,2021 at 15:07:04 UTC from IEEE Xplore. Restrictions apply.

