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Abstract— Stochastic approximation (SA) algorithms
are recursive techniques used to obtain the roots of
functions that can be expressed as expectations of a noisy
parameterized family of functions. In this paper two new
SA algorithms are introduced: 1) PolSA, an extension of

Ana Busié?,

and Sean Meyn'

machine learning. As in much of the related literature,
it is assumed in this paper that there is a sequence of
random functions {f,}, f. : R? — R?, satisfying for
each 6 € R4,

Polyak’s momentum technique with a specially designed B 13
matrix momentum, and 2) NeSA, which can either be f(@)= lim — Z () 2)
regarded as a variant of Nesterov’s acceleration method, or noeen

a simplification of PolSA. The rates of convergence of SA
algorithms is well understood. Under special conditions, the
mean square error of the parameter estimates is bounded
by o2 /n+0(1/n), where ¢ > 0 is an identifiable constant.
If these conditions fail, the rate is typically sub-linear.
There are two well known SA algorithms that ensure
a linear rate, with minimal value of variance, o2: the
Ruppert-Polyak averaging technique, and the stochastic
Newton-Raphson (SNR) algorithm. It is demonstrated
here that under mild technical assumptions, the PolSA
algorithm also achieves this optimality criteria. This result
is established via novel coupling arguments: It is shown
that the parameter estimates obtained from the PolSA
algorithm couple with those of the optimal variance (but
computationally more expensive) SNR algorithm, at a rate
O(1/n?). The newly proposed algorithms are extended to
a reinforcement learning setting to obtain new Q-learning
algorithms, and numerical results confirm the coupling of
PolSA and SNR.

where the limit is in the a.s. sense.

The SA literature contains a large collection of tools
to construct algorithms that solve (1), and obtain bounds
on their convergence rate. In this paper we show how
new algorithms with optimal rate of convergence can
be constructed based on a synthesis of techniques
from classical SA theory combined with variants of
momentum algorithms pioneered by Polyak [27], [28].

Three general classes of algorithms are investigated
in this work. Each is defined with respect to a non-
negative scalar gain sequence {«,}, and two include
d x d matrix gain sequences {Gp},{M,}. For each
algorithm, with initialization 8y = 6_;, the difference
sequence is denoted: AG,, : =0, — 0,1 , n > 0.

I. Matrix gain stochastic approximation:

I. INTRODUCTION +1 = ant1Gnp1 frt1(On) 3)
The general goal of stochastic approximation (SA) II. Matrix momentum stochastic approximation:
is the efficient computation of the root of a vector Abpy1 = My 100, + g1 Gt fas (0n) )

valued function: obtain the solution 6* € R? to the d-
dimensional equation:

f(0%) =0, (1)

where the function f: R — R is an expectation:

II1. Nesterov stochastic approximation (NeSA): For a
fixed scalar ( > 0,

Abny1 = A0p + ([ frnr1(0n) = fry1(0n-1)]

5
+ Cang1 frg1(0n) ©)

f(®) = E[f(6,X)], f: RT x R™ — R, and X . ‘

is an R™-valued random variable. The function [ is > cOmmon assumption on the step-size sequence {an}
not necessarily equal to a gradient, so the setting 5 o -

of this paper goes beyond optimization. Specifically, D1 O = 00, Don1 O < 00 (6)

the algorithms and analysis contained in this work
admit application to both stochastic optimization and
reinforcement learning (RL), among other areas of
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We take «,, = 1/n throughout.

If G, = I, then (3) is the classical algorithm of
Robbins and Monro [31]. In Stochastic Newton Raphson
(SNR) and the more recent Zap-SNR algorithm [12], [13]
(also see [32]), the matrix sequence {G,, } is chosen to be
an approximation of the Jacobian: G,, ~ —[9f(0,)] 7"
Stability of the algorithm has been demonstrated in
application to Q-learning [12], [13], but general theory
for such an algorithm is still open.
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The matrix momentum algorithm (4) coincides with
the heavy-ball method of Polyak when {M,} is a
sequence of scalars and G,, = I [27], [28], [21].
Justification for the special form (5) in NeSA is provided
in the following section.

Problem Setting: As in many previous works in the
context of high-dimensional optimization [21] and SA
[19], [20], [9], parameter error analysis in this paper is
restricted to a linear setting:

f71,+1(9n) = An—i—lgn - bn+1: A(én) + A71,-‘,—1 (7)

in which {A,} is a d x d matrix valued stochastic
process, {b,} is d-dimensional vector valued stochastic
processes, with respective means A:=E[A,], b:=E[b,],
and for n > 1,

Apir = Ani10, + A%, (8)
where,
AL = far1(07) = Ap10” — by
and the tilde always denotes deviation: 0, =0, — 0%,

An+1 = An+1 — A.

Rates of Convergence: The main contribution of the
paper is convergence analysis of the matrix momentum
stochastic approximation algorithm (4), and the NeSA
algorithm (5).

Rates of convergence are well understood for the SA
recursion (3). It is known that the Central Limit Theorem
(CLT) and Law of the Iterated Logarithm (LIL) hold
under general conditions, and the asymptotic covariance
appearing in these results can be expressed as the limit
[51, [20], [9]:

9

The CLT implies: v/nf, 2% A(0, 2°).

A necessary condition for quick convergence is that
the CLT or LIL hold with small asymptotic covariance
(9). Again, for the SA recursion (3), optimization of
this quantity is well-understood [5], [20], [9]; Denote
by ©¢ the asymptotic covariance for (3) with a fixed
matrix gain G,, = G. When X is finite, it is given
by the solution to the following Lyapunov equation [5],
(201, [91:

<§1+ GA)ZG + ZG(%I + GA)T +34=0 (10)

where ¥4 is the asymptotic covariance of the noise
sequence {AX}:

1
YA = lim —E

n—oo N

Y

5) (X 0) ]

k=1

n
k=1
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The choice G = G* := —A~! results in the SNR
algorithm, for which asymptotic covariance admits an
explicit form:

Y= ATIRA (AT (12)

This is optimal: the difference ¥ —X* is positive semi-
definite for any G [5], [20], [9].

However, in general, the asymptotic covariance of a
recursion of the form (3) need not be finite. A sufficient
condition for finite asymptotic variance is that the real
parts of all the eigenvalues of the matrix GA are
strictly smaller than —%; The condition is necessary and
sufficient if ©4 is positive definite [13, Proposition A.1].

Infinite asymptotic variance implies a rate of
convergence that is slower than O(1/y/n).

What about computational complexity? In realistic
applications of SNR, the matrix gain sequence appearing
in (3) will be of the form G,, = —A; !, where {A,}
are Monte-Carlo estimates of the mean A. The resulting
computational complexity of inverting such a matrix at
each iteration (which could be as bad as O(d?)) is a
barrier to application in higher dimension. Steps towards
resolving this obstacle are presented in this paper:

(i) The hyper-parameters appearing in the matrix
momentum SA algorithm (4) can be designed so that
the error sequence enjoys all the attractive properties
of SNR, but without the need for matrix inversion;
Since the recursion in (4) only involves matrix-vector
products, this would result in an overall per iteration
complexity of O(d?).

(i) NeSA defined in (5) is often simpler than the
matrix momentum method in applications to RL. A
formula for the asymptotic covariance of a variant of
NeSA is obtained in this paper; While not equal to
3*, the reduced O(d) complexity makes it a valuable
option.

These conclusions are established in
Propositions 3.2, 4.1, and 4.2 for a linear setting
of the form (7), and illustrated in numerical examples
for new Q-learning algorithms that are discussed in
Section V. The assumptions of the main results are
violated in application to -learning since the particular
root finding problem is non-linear. Nevertheless,
coupling is seen between PolSA and Zap SNR versions
of Q-learning in all of the numerical experiments
conducted.

Unifying algorithms: An additional contribution of
the paper is establishing strong theoretical connections
between existing popular algorithms. Nesterov’s
acceleration and the heavy-ball method both are known
to have second order dynamics, but their relationship
has not been very clear. In this paper we propose a new
understanding of the relationship, which is only possible
through introducing the concept of matrix momentum.
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We show that the matrix momentum algorithm PolSA
can be interpreted as a linearization of a particular
formulation of Nesterov’s method. We further show that
PolSA approximates (stochastic) Newton Raphson, thus
establishing connections between the three algorithms:
Nesterov’s accleration, PolSA, and SNR. This not
only helps in explaining the success of Nesterov’s
acceleration, but may also lead to new algorithms in
other application domains.

Literature survey: The present paper is built on
a vast literature on optimization [25], [27], [28], [26]
and stochastic approximation [19], [20], [9], [32], [29],
[30]. The work of Polyak is central to both thrusts: the
introduction of momentum, and techniques to minimize
variance in SA algorithms. The reader is referred to [13]
for a survey on SNR and the more recent Zap SNR
algorithms, which are also designed to achieve minimum
asymptotic variance.

In the stochastic optimization literature, the goal is
to minimize an expectation of a function. In connection
to (2), each f,, can be viewed as an unbiased estimator
of the gradient of the objective. The works [24], [15],
[17] obtain conditions for optimal convergence rate of
O(1/+/n) for various algorithms.

In ERM literature, the sample path limit in (2) is
replaced by a finite average [2], [11], [17]: f.(6)
n~tS°0_, fx(0). Denoting 0, = argmin, f,,(0), under
general conditions it can be shown that the sequence
of ERM optimizers {6} } is convergent to 6*, and has
optimal asymptotic covariance (a survey and further
discussion is presented in [17]).

The recent paper [17] is most closely related to the
present work, considering the shared goal of optimizing
the asymptotic covariance, along with rapidly vanishing
transients through algorithm design. The paper restricts
to “least squares regression” rather than the general
root finding problems considered here, thus ruling out
application to many RL algorithms such as TD- and Q-
learning [36], [37], [19].

The algorithms presented in this work achieve the
optimal asymptotic covariance, are not restricted to
optimization, and we believe that in many applications
they will be simpler to implement.

II. MOTIVATION & INSIGHTS

Consider first the deterministic root-finding problem.
The notation f : R* — R? is used in place of f in this
deterministic setting, and the goal remains the same: find
the vector 6* € R such that f(6*) = 0. The objective
in this section is to bring insight into the relationship
between the three algorithms (3-5) discussed in the
introduction.

Deterministic variants of (3—5) commonly considered
in the literature are, respectively,
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Successive approximation:

Aon—i—l = af(ovz) (13)
Polyak’s heavy ball:
A1 = pAb, + af(0,) (14)

Nesterov’s acceleration:
Aan—i—l = ,UAan + C[f(en) - f(07L—1)] + af(aTL) (15)

where a, u, ¢ are positive scalars. Nesterov’s algorithm

was designed for extremal seeking, which is the special

case f = —V.J for a real-valued function J : R? — R.

The recursion (15) is the natural extension to the root-

finding problem considered here.

The questions asked in this paper are posed in a
stochastic setting, but analogous questions are:

(a) Why restrict to a scalar momentum term p, rather
than a matrix M?

(b) Can online algorithms be designed to approximate
the optimal matrix momentum? If so, we require
tools to investigate the performance of a given
matrix sequence {M, }:

A971—0—1 = M71,+1A9n + Oéf(on) (16)

Potential answers are obtained by establishing
relationships  between  (13-15). The heuristic
relationships presented here are justified for the
stochastic models considered later in the paper.

Consider the successive approximation algorithm (13)
under the assumption of global convergence: 6,, — 6* as
n — oco. Assume moreover that f € C' and Lipschitz,
so that,

Abpy1 — Al = (X[f (en) - f (‘gn—l)]
W aaf (6,06,
szaf (0n)f(0n-1)

where (a) follows from the assumption that f is
Lipschitz and C, and (b) follows from (13). It follows
that ||Af,n — A0,|| = O(min{a?, a||Ab,|}). This
suggests a heuristic: swap Af,11 and A#, in a
given “convergent” algorithm to obtain a new algorithm
that is hopefully simpler, and has desirable properties.
Applying this heuristic to (16) (replacing A6, with
A0,,;1 on the right hand side), we obtain

AGn—‘rl ~ 7L+1A0n+1 + O‘f(an)
Assuming that an inverse exists, this becomes

A0n+1 ~ Oé[[ - Mn—‘,—l]ilf(e”)

a7

—~
=

(18)

We thus arrive at a possible answer to the question
of optimal matrix momentum in (16): For the matrix
sequence M, 1 = [ +adf (6,), the algorithm (16) can
be expressed

Abpi1 = 1[I+ adf (0,)]A0,, + af(6,) (19)
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The foregoing approximation in (18) suggest that this
is an approximation of Newton-Raphson (which is
(13), with the scalar « replaced by the Jacobian
—[0F (02)]71): Abpyr = —=[0f (0n)] " f(On).

Further  approximations lead to
interpretations: A Taylor series argument
that the recursion (19) is approximated by

Abpi1 = A6, + oz[f(@n) - f(enfl)] + O‘f(en) (20)

This is the special case of Nesterov’s algorithm (15) with
pw=1and { = a.

A complete justification for the stochastic analog
of (19) is provided through a coupling bound in
Proposition 3.2. It is found that similar transformations
lead to new algorithms for RL and other applications.

different
shows

III. OPTIMAL MATRIX MOMENTUM AND POLSA

Returning to the stochastic setting, the PolSA
algorithm considered in this paper is a special case of
matrix momentum SA (4), and an analog of (19):

PolSA Algorithm:
Aen-‘rl = [I + <A\n+1]A9n + Oén-i—lc.fn—i-l(an)

where ¢ > 0, and {A,} are estimates of A(6,,), with
A(0) :=E[0f, (0)] (assumed independent of n).

The choice G,, = (I in (4) is imposed to
simplify exposition; in numerical examples it is observed
that a particular diagonal matrix gives much better
performance in applications to Q-learning (details are
contained in Section V).

The main technical results are obtained for a linear
model defined in (7) - (8). In this case we have A(f) =
A, and its estimates are obtained recursively:

~ 1

2

Apir = 4, Api1 — A, 22
1= An+ o 1( +1 ) (22)
The SNR algorithm is (3) in which G, = Al (the
Moore-Penrose pseudo inverse):

SNR:  Abyyy = —anpi Al fui1(0,)  (23)

Additional simplifying assumptions are imposed to
ease analysis:

(A1) The stochastic process (A, b,,) is wide-sense
stationary, with common mean (A4, b).

(A2) {An,b } are bounded martingale difference
sequences, adapted to the filtration F,, := o { Ay, by, :
k<n}

(A3) For any eigenvalue A\ of A,

Real(A\) <0 and |1+¢A <1

It is assumed without loss of generality that { = 1.
Under Assumptions Al and A2, the covariance matrix
in (11) can be expressed

= E[AL1(An11)]

(24)

(25)

Even in the linear setting, full stability and coupling
arguments are not yet available because the assumptions
do not ensure that A I 5 A-! in Ls. The main
theoretical result of thls section is therefore restricted
to establishing the relationship between the following
idealized versions of the SNR and PolSA algorithms,
wherein we replace the estimates A with the exact
value A:

SNR* : A0, |
PoISA* : Af,4;

= _an+1A_1fn+1 (9:)
= [l + AJAO, + any1 fria (0

(26)
n) (27)

Proposition 3.1 establishes optimality of the
asymptotic variance of the SNR algorithm (23); the
proof is contained in Appendix A of [1].

Proposition 3.1: Suppose assumptions (A1)—(A3)
hold. Then, the following holds for the estimates {62}
obtained using SNR algorithm (23) and {6} obtained
using ideal SNR algorithm (26):

(1) The following representations hold for the error
sequences:

- PO ~
6 = — A;lﬁ Z A} (whenever A ' exists) (28)

k=1
=-—A1= ZAk (29)
Consequently, each converges to zero with

probability one. o
(i) The scaled covariances X, :=nE[0} ()] and

22 .= n2E[A0r (A7) satisfy
lim X,

n—0o0

= lim »?? =%* (30)

n—oo

with X* the optimal covariance defined in (12). [

A drawback with SNR is the matrix inversion.
The PolSA algorithm is simpler and enjoys the same
attractive properties. This is established through the
following coupling result. The proof of Proposition 3.2,
contained in Appendix B of [1], is a rigorous justification
of the heuristic used to construct the deterministic
recursion (19).

Proposition 3.2: Suppose assumptions (A1)—(A3)
hold. Let {6} denote the iterates obtained using (26)
and {0, } the iterates obtained using (27), with identical
initial conditions. Then,

sup n2E[||6, — 0%]]?] < oo @31)
n>0

Consequently, the limits (30) hold for the PolSA
algorithm (27):
lim nE[0,(0,)"] = lim n2E[A0,(AF,)] = =*

n— oo n— oo
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150 »*(1,1) = 1.3585 x 10°

——SNR  PolSA ¢

50l

0 7 .10
Fig. 1.

Other than the classical algorithms SNR and Polyak-
Ruppert averaging technique, PolSA is the only other
known algorithm that achieves optimal asymptotic
variance. The fact that it is a momentum based
technique, and that it does not fit into the class of
standard SA algorithms makes the result quite special.

An illustration of the coupling is provided in Fig. 1
for the linear model f,,(0) = A0 + A,, in which —A is
symmetric and positive definite with Apax(—A) = 1, and
{A,} is ii.d. and Gaussian. Shown are the trajectories
of {0,(1) : n < 105} (note that ¥*(1,1) is over one
million).

Optimality of PolSA: It is conjectured that
Proposition 3.2 on coupling of parameter estimates
obtained from (26) and (27) can be extended to show that
the coupling result will hold even when we replace A
with any other d x d matrix M in both these recursions,
as long as each eigenvalue )\ of M satisfies (24).

The extended coupling result would then imply
that the parameter estimates obtained using a matrix
momentum algorithm of the form (27), with momentum
M, will have asymptotic variance X¢ that is obtained
as a solution to the Lyapunov equation (10), with G =
—M 1, assuming invertibility.

Recall that ¥* defined in (12) is the optimal solution
to this Lyapunov equation, and is achieved when
G = —A~1. Assuming that the conjectures hold, the
arugments above conclude that the matrix momentum
[I + A] in (27) is optimal: No other matrix momentum
can achieve lower asymptotic variance.

Applications:

e Reinforcement learning: Section V describes
application to Q-learning, and includes numerical
examples. Appendix D of [1] contains a full account
of TD-learning.

e Stochastic optimization: A common application
of SA is convex optimization. In this setting, f(6) =
VE[J,(0)] for a sequence of smooth functions {.J,},
and then f, = —VJ,. The theory developed in this
paper is directly applicable to this class of problems,
except in degenerate cases. For comparison, consider
the quadratic optimization problem in which f,(0) =
Af—b+ A, with —A > 0. The stability condition (24)

Coupling for larger values of ¢

Coupling between PolSA and SNR occurs quickly for 0.5 < ¢ < 1.9.

holds provided we choose ¢ < 1/Amax(—A): a condition
familiar in the optimization literature.

IV. VARIANCE ANALYSIS OF NESA

The NeSA algorithm (5) has a finite asymptotic
covariance that can be expressed as the solution to
a Lyapunov equation. We again restrict to the linear
model, so that the recursion (5) (with ¢ = 1, without
loss of generality) becomes

A9n+1 = [I+An+1]A9n + an+1[An+19n_bn+1] (32)

Stability of the recursion requires a strengthening of
assumption (24). Define the linear operator £: R?*4 —

R?*4 as follows: For any matrix @ € R?*4,
L(Q):=E[(I + A)Q(I + Ay)] (33)

Define the 2d-dimensional vector processes ®,, :=

(v/nb,,nAb,,)", and

, 211 212
2, = E[®,®!] = {231 2721’2:| (34)

The following assumptions are imposed throughout this
section:

(N1) {fln,gn} are bounded martingale difference
sequences, adapted to the filtration F,, := o { Ay, by, :
k < n}. Moreover, for any matrix @,

E[(I+A)QU + Ay | Fuei] = L(Q)

(N2) The bounds in (24) hold for all eigenvalues A
of A, and the spectral radius of L is strictly bounded
by unity.

(N3) The covariance sequence {X,} defined in
(34) is bounded.

In of [1, Appendix C] we discuss how (N3) can be
relaxed.

Proposition 4.1: Suppose that (N1) and (N2) hold.
Then,

lim 5, — [ (35)

n— oo

o0 }
0 %z
in which the second limit is the solution to the Lyapunov

equation

»2 = (x4 xn4 (36)
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(see [1, Appendix C.3] for an explicit expression), and

211 — _222 _ A71222 _ 2221471 (37)

The following result is a corollary to Proposition 4.1,

with an independent proof provided in [1, Appendix C].

Proposition 4.2: Under (N1)-(N3) the limit (35) of

Proposition 4.1 holds for the PolSA recursion (27). In

this case the solution to the Lyapunov equation is the
optimal covariance:

DU =nr=A4718%47Y (38)

and 22 > 0 is the unique solution to the Lyapunov

equation

2 = (I+ASB(I+A)"+54 (39)
The main step in the proof of Proposition 4.1 involves
a finer look at the off-diagonal blocks of the covariance
matrix X,. The proofs of the following are contained in
Appendix C of [1].
Lemma 4.3: The following approximations hold, with
p = /n¥2: Forn > 1,

2, =L(SP)+ 22 +0(1)
P = -5 = ATISZ 4 0(1)
The second iteration is used together with the
following result to obtain (37).
Lemma 4.4: The following approximation holds:

(40)

B = S e (SRS
UL IHAY + (T+A), + £(52) +0(1))

Proof of Proposition 4.1:

The first approximation in (40) combined with (N2)

implies that the sequence {322} is convergent, and the

limit is the solution to the fixed point equation (36)

(details are provided in Appendix C.2 of [1]).
Substituting the approximation (40) for v, into (41)

and simplifying gives

i =0 4 anga ( -5
_E2 oAt w2g-ly 0(1))
This can be regarded as a Euler approximation to the

ODE:

d
—rp = —xy — N2 — A2 - 2RAT!

dt

SA theory can then be applied to establish that the limits
of {311} and {x;} coincide with the stationary point,

which is (37) [9]. 0

V. APPLICATION TO Q-LEARNING

Consider a discounted cost MDP model with state
space X, action space U, cost function ¢: X x U — R,
and discount factor 8 € (0,1). It is assumed that the
state and action space are finite: denote ¢ = |X|, £, =
|[U|, and P, the ¢ x ¢ controlled transition probability
matrix.

The Q-function is the solution to the Bellman
equation:

Q" (z, u)=c(z, uHFE[Q

"(Xnt1) [ Xn=2,Un=u] (42)

where, for any function @ : X x U — R Q(x) :=
min Q(z,u). The goal of Q-learning is to learn an
af;proximation to Q*. Given d basis functions {¢; :
1 <4 < d}, with each ¢; : X x U — R, and a
parameter vector 6 € RY, the Q-function estimate is
denoted Q(z,u) = 6"¢(x, ).

Watkins’ Q-learning algorithm is designed to compute
the exact Q-function that solves the Bellman equation
(42) ([381, [39]). In this setting, the basis is taken to be
the set of indicator functions: ¢;(z,u) = [{x = 2%, u =
u'}, 1 <4 < d, with d = |X x U|. The goal is to find
6* € R such that f(6*) = 0, where, for any § € R?,

F(0) = E[¢(X0n, Un) (c(Xn, Un) + BQ%(Xr41)
- QG(XTH Un))]

and the expectation is with respect to the steady state
distribution of the Markov chain.

The basic algorithm of Watkins can be written as [13]
A971-‘,—1 = O471—|—1B’n—i-1 [An—i-len - bn-i—l} (43)

in which the matrix gain ﬁn+1 is diagonal, with

BuGii)™ = L 3100, 0 = (@8 ),
k=0

and with 7, () := arg min Q" (z, u),

An+1 = ¢(X7m Un) [ﬂd)(Xn—&-la Wn(Xn—&-l)) - ¢(Xna Un)]T
bn+1 = C(Xna Un)¢(Xn7 Un)

Among the other algorithms compared are

SNR: Abyir = —np1 Ayt [An10p — bogd]
PoISA: Aby iy = [I + Ani1]AG,

+ i1 [An+19n — bn+1}
PoISA-D:  Ab,.1 = [ + Dpi14A,1]A0,

+ an,+1ﬁn,+1 [An,+10n - bn+1}
NeSA: A1 =1+ Api1]AG,

+ Qnt1 [An+10n - bn+1}

In each ofA these algorithms, (22) is used to recursively
estimate A,, with A, .1 defined above. We have taken
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Bellman Error

b

?

o

"

1o 14 1" n

Fig 2.
state-action pairs d = 117.

¢ 1 in PolSA. The variant PolSA-D is (1) with
Gpy1 = ﬁ,_.,.l, and My, 4 chosen so that coupling with
SNR can be expected.

The SNR algorithm considered coincides with the
Zap (J)-learning algorithm of [12], [13]. A simple 6-
state MDP model was considered in this prior work,
with the objective of finding the stochastic shortest path.
Fig. 3 contains histograms of {,/mf,} obtained from
1000 parallel simulations of PolSA-D, SNR and NeSA
algorithms for this problem. It is observed that the
histograms of PolSA-D and SNR nearly coincide after
n = 10 iterations (performance for PolSA is similar).
The histogram for NeSA shows a much higher variance,
but the algorithm requires by-far the least computation
per iteration. This is specifically true for Watkins" Q-
learning since Ay is a sparse matrix, with just 2 non-
ZETo entries.

B Experimental |
— Thearetical
2 3 ] 1 20,45
Fig 3.  Histograms for entry 18 of {,/mf.} for three

algorithms at iteration 10°,

Experiments were also performed for larger examples.
Results from two such experiments are shown in Fig. 2.
The MDP model is once again a stochastic shortest
path problem. The model construction was based on
the creation of a graph with N nodes, in which the
probability of an edge between a pair of nodes is i.id.
with probability p. Additional edges (i,i+1) are added,
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for each i < N, to ensure the resulting graph is strongly
connected.

The transition law is similar to that used in the
finite state-action example of [12]: with probability
0.8 the agent moves in the desired direction, and
with remaining probability it ends up in one of the
neighboring nodes, chosen uniformly. Two exploration
rules were considered: the “online™ version wherein
at each iteration the agent randomly selects a feasible
action (also known as asynchronous (}-leaming), and
the offline “clock sampling” approach in which state-
action pairs (', u') are chosen sequentially (also known
as synchronous (Q-learning). In the latter, at stage n,
if (r,u) is the current state-action pair, a random
variable X7, is chosen according to the distribution
Fy(x, -), and the (r,u) entry of the Q-function is
updated according to the particular algorithm using the
triple (r,u, X] ;). A significant change to Watkins’
iteration (43) in the synchronous setting is that ﬁ,_ is
replaced by d—'T (since each state is visited the same
number of times after each cycle). This combined with
deterministic sampling is observed to result in significant
variance reduction. The synchronous speedy (-learning
recursion of [3] appears similar to the NeSA algorithm
with clock sampling.

Using the above described method, a random graph
was generated resulting in an MDP with 4 = 117
state-action pairs. The plots in Fig. 2 show Bellman
error as a function of iteration n (for definitions see
[71, [13]). Comparison of the performance of algorithms
in a deterministic exploration setting versus the online
setting is also shown. The coupling of PolSA and the
Zap algorithms are easily observed in the clock sampling
case.

V1. CONCLUSIONS

It is exciting to see how the intuitive transformation
from SNR to PolSA and NeSA can be justified
theoretically and in simulations. In Fig. 2, it is
particularly exciting to see the coupling of PolSA and
Zap (SNR) algorithms, even in the non-linear setting
of Q-learning. While the covariance of NeSA is not
optimal, it is the simplest of the three alporithms and
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is observed to perform well in applications.

An important next step is to create adaptive techniques
to ensure fast coupling or other ways to ensure fast
forgetting of the initial condition. It is possible that
techniques in [17] may be adapted to achieve this. The
work can be extended in several ways:

(1) It will be of great interest to pursue analysis

of the proposed algorithms in the special case
of nonlinear optimization. It is possible that the
structure of the problem such as convexity of the
objective and smoothness of the gradients could help

us derive bounds on the transients.

(i1) In [12] we suggest that the SNR algorithm can

be extended to obtain theory for the convergence

of Q-learning with function approximation.
would be

It
interesting to see how the PolSA

and NeSA algorithms can be extended to this
setting. Applications to TD-learning with function
approximation is discussed in [1, Appendix B].
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