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ABSTRACT

Real-time model updating of active structures subject to un-
modeled high-rate dynamic events require structural model up-
dates on the timescale of 2 ms or less. Examples of active struc-
tures subjected to unmodeled high-rate dynamic events include
hypersonic vehicles, active blast mitigation, and orbital infras-
tructure. Due to the unmodeled nature of the events of inter-
est, the real-time model updating algorithm should circumvent
any model pre-calculations. In this work, we present a method-
ology that updates the finite element analysis (FEA) model of
a structure experiencing varying dynamics through online mea-
surements. The algorithm is demonstrated for a testbed, com-
prised of a cantilever beam and a roller that serves as movable
support. The structure’s state is updated (i.e. the position of
the moving roller) by continuously updating the associated FEA
model through an online adaptive meshing and search algorithm.
The structure’s state is continuously estimated by comparing the
measured signals with FEA models. New FEA models are built
based on the enhanced estimate of the structure’s state through
adaptive meshing for modal analysis and adaptive search space
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for the FEA model selection. The proposed methodology is ver-
ified experimentally in real-time using the testbed. It is demon-
strated that the adaptive features can achieve accurate state es-
timations within the required 2 ms timescale.

INTRODUCTION

High-rate dynamics are defined as the dynamic response of a
system due to a high-rate (<100 ms) and high-amplitude (accel-
eration > 100 gn) event such as a blast or impact [1]. Examples
of structures that undergo high-rate dynamic events include hy-
personic vehicles, active blast mitigation systems, and ballistic
packages. These high-rate events are characterized by sudden
and unknown changes in the magnitude and location of external
loading conditions which pose a challenge when attempting to
track the state of a structure. For example, active blast mitigation
systems operate in order to minimize the impact of a blast or to
counter the effects of the blast after impact. Because a majority
of impact blasts originate from short-range threats, the response
time for mitigation systems is limited. Active blast mitigation
systems must be capable of detecting the presence of a blast
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threat, determining the location of an incoming threat and deploy
countermeasures on a millisecond timescale [2]. One approach
to tracking the state of such structures is to utilize structural
model updating techniques to update a digitized representation
of the system state in real-time. The challenges associated with
tracking the structure’s state through high-rate dynamic events
dictate that the model updating technique must: (1) be flexible
in order to adapt and learn the changing external load conditions
without relying on pre-trained data, and; (2) be capable of updat-
ing within a 2ms timescale in order to allow for decisions based
on real-time data.

Real-time model updating allows for the tracking of com-
plex structures experiencing high rate dynamics such as in-flight
monitoring of manned and unmanned aerial vehicles as well as
space crafts. In the case of an unmanned vehicle, a pilot is not
present to monitor the aircraft and operators on the ground may
not have the ability or bandwidth to process sensor readings to
determine the condition of the system. Real-time model updating
would allow for the almost instantaneous understanding of the
structural system following an impact or other high-rate event,
allowing the system to autonomously make mission-critical de-
cisions in real-time [3]. In the case of manned vehicles and space
crafts, the main goal is to protect the vehicle’s occupants. How-
ever, if the system experiences damage the amount of sensor data
would be overwhelming to a pilot and their reaction time would
not be sufficient for making decisions. Digitized real-time mod-
els build the ground work to develop real-time decision-making
software that will respond to a changing environment faster than
its human occupants can [3].

Real-time online model updating has been used with non-
Finite Element in order to test and simulate the response of civil
structures in the past. Song et al. developed an approach utiliz-
ing the Bouc-Wen hysteresis model unscented Kalman filter to
update a structure model in real-time [4]. Their approach suc-
cessfully describes the non-linear state of structures experienc-
ing loading and estimates their cyclic response for the purpose of
structural health monitoring. However, real-time model updat-
ing of Finite Element Analysis (FEA) models has seen limited
use due to the large computational cost associated with FEA and
the difficulty of developing a mathematical model that is capa-
ble of updating on a millisecond timescale. The development of
real-time model updating techniques developed for FEA models
will enable further advancements in the monitoring and control
of structures that experience high-rate dynamic events. Of inter-
est to this paper, Downey et al. developed and experimentally
validated a millisecond error minimization technique for FEA
models that updated structures model by minimizing the error be-
tween the structure’s measured state and a set of potential models
calculated in real-time as the structure moved through the high-
rate dynamic event [5].

Adaptive FEA is a method by which the error of a solution
is calculated, and refinements are made to the mesh in order to

minimize the errors. Traditionally, meshes can be refined using
h-refinement or p-refinement [6]. H-refinement adjusts the size
of elements within the mesh based on their location, applying
smaller elements near areas of interest or where large gradients
are presents, thereby increasing the number of nodes and ele-
ments. P-refinement adjusts the polynomial degree that is used
to describe the structure by adding additional notes to the cur-
rent number of elements. Another form of mesh refinement is
r-refinement which relocates the nodes within a mesh while hold-
ing the number of nodes and elements constant and is the method
of mesh refinement employed in this work [7]. R-adaptive FEA
has found use mainly in 1-D fluid dynamics applications [8]. Past
applications include the study of fluid through a porous medium
including diffusion and filtration properties [9]. Additional appli-
cations aim to model the behavior of fluids including waves and
flow past objects [10]. More recent applications include model-
ing shock reflection as well as objects subject to the supersonic
flow through wind tunnels [11]

This paper presents and numerically validates a modified
version of the ms error minimization algorithm developed by
Downey et al. [5], but extended to consider an adaptive FEA
formulation. As in the previous work, the algorithm seeks to
update the FE models by minimizing the error between the sys-
tem’s measured frequency and the frequency of a series of mod-
els that are calculated in parallel and in real-time as the structure
moves through the high-rate dynamic event. This paper builds
on the previous work through the utilization of an adaptive FEA
model that uses r- refinement which relocates the nodes withing
the FEA mesh. This decreases the required computational time
by reducing the complexity of the REA required to track a high-
rate dynamic event in the testbed.

BACKGROUND
DROPBEAR Experimental Test Bed

This work numerically validates the proposed algorithm us-
ing a ground-truth FEA model based on the Dynamic Reproduc-
tion of Projectiles in Ballistic Environments for Advanced Re-
search (DROPBEAR) testbed. This testbed was initially devel-
oped by Joyce et al. [12]. The motivation behind its construc-
tion was the creation of an experimental structure that was capa-
ble of repeatably altering test parameters quickly during a test.
The DROPBEAR can be configured with two programmable
changes, both intended to simulate damage to a structure. The
first of these is a detachable mass that is attached to the structure
with an electromagnet, the second of these is a movable roller
boundary condition attached to a linear actuator. These pro-
grammable changes allow the DROPBEAR’s cantilever beam to
represent a structure experiencing a high-rate dynamic event. In
this work, only the movable roller position is utilized. The con-
figuration of the DROPBEAR considered in this work is shown
in Fig. 1.
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FIGURE 1. MODIFIED DROPBEAR TESTBED USED IN THIS
WORK.

The DROPBEAR'’s current configuration features an ac-
celerometer (PCB Piezotronics- model 393B04) mounted at the
free end of a 51 x 6 x 350 mm steel cantilever beam with Density
of 7800 kg/m?, Young’s Modulus of 2e11 N/m? and Poisson’s
Ratio of .26. The design also features a sliding roller cart on a
linear actuator that constrains the beam between 48-175mm from
the fixed end of the beam as well as a magnetic displacement
sensor that measures the roller displacement throughout the test.
Varying the roller location during testing can simulate damage
to the system by producing a user-defined change to the testing
parameters resulting in a change to the system dynamics. The
use of rollers ensures the repeatability of each test, as there is no
damage occurring to the beam itself, merely simulated damage.
The change to the system dynamics is measured using the change
in natural frequency of the beam which is obtained by taking the
Fast Fourier Transform (FFT) of the data recorded by the ac-
celerometer mounted on the free end of the beam. Before the
FFT is calculated, a sliding Hann window is applied to the accel-
eration data to reduce the transients at the edge of the time-series
data and prepare it for further processing. The data collected
using DROPBEAR allows for the testing and evaluation of al-
gorithms that model systems experiencing high-rate dynamics in
real-time including the ability to detect and quantify damage that
occurs to a structure using natural frequency estimation. The test
profile used to define the roller location for this procedure can be
seen in Fig. 2.

METHODOLOGY

This work presents a methodology that updates the FEA
model of a structure in motion experiencing varying dynamics
in real-time. This is done using online acquired measurements
and by applying the adaptive search method to estimate the posi-
tion of the moving roller. The flowchart of the proposed real-time
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FIGURE 2. ROLLER TESTING PARAMETERS USED IN THIS
WORK.

model updating scheme is displayed in Fig. 3.

The key idea is to use the FEA model to represent the high-
rate dynamic system. First, we sample z roller locations follow-
ing a normal probability density function (PDF) of mean, y and
standard deviation, o. With these roller locations, n FEA models
are constructed, followed by the modal analysis of all the mod-
els in parallel, yielding the first (or leading) natural frequencies
of the n models (@, ..., @,). The measured frequency (@meas)
of the actual system, obtained using the FFT of the accelerom-
eter signals, is then compared with (@, ..., @,) to estimate the
roller location. Then the PDF function utilized to sample the lo-
cations is updated based on the estimated roller location and fre-
quency comparisons. Thus, the determination of the roller posi-
tion can be continuously narrowed down by comparing the natu-
ral frequencies obtained from the experiments and from the FEA
models and building new FEA models based on the enhanced
estimate of the position. The entire model updating process is
undertaken in real-time to monitor and track the structure as it
moves through high-rate dynamic events.

FEA Model

The 1-D FEA model used to represent the system is shown
in Fig. 4. As it is for the actual DROPBEAR testbed, the left end
of the model is fixed and a movable support exists to represent
the roller. Each element of the model adopts the Euler-Bernoulli
beam theory and mesh is applied to create N elements of the
beam. Consequently, there will be N + 1 number of nodes on the
beam. Two end nodes (in black) are fixed to their positions, a
roller node (in green) is fixed to the roller but able to move along
the beam, and all other nodes (in blue) are freely assigned. Every
element is exposed to two forces and two moments as indicated
from the right side of the figure. The mass (M;) and stiffness
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FIGURE 4. SCHEMATIC OF THE FEA MODEL USED IN THIS
WORK.

(K;) matrices of the element i due to these forces and moments
are defined in Eqn. 1 and Eqn. 2 respectively.
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where p is the density, A is the cross-sectional area, [ is the
length, E is the young’s modulus, and / is the moment of inertia

of the beam element. These element matrices are stacked diag-
onally in an order to construct the global mass (M) and stiffness
(K) matrices, which are then used for modal analysis to compute
natural frequencies of the structure. The boundary conditions at
the fixity and the roller are implemented by decimating the cor-
responding rows and columns of M and K matrices. As our main
purpose is to update the structure experiencing high-rate dynamic
events in real-time, the computation time to acquire natural fre-
quencies of the FEA model needs to be minimized. The key idea
here is to assign the smallest number of nodes while still pre-
serving comparable accuracy with respect to a large number of
nodes for the natural frequencies. In order to find the appropri-
ate number of elements for the FEA model, convergence test has
been performed when the roller is positioned at 10%, 50% (cen-
ter), and 90% of the beam. At each of these locations, natural
frequencies of the structure have been computed starting with 6
to 100 elements in increments of 2. The free nodes are assigned
depending on the position of the roller such that the number of
nodes on the left and right sides of the roller are close to evenly
distributed. In other words, this is equivalent to applying adap-
tive mesh on the FEA model depending on the roller position.
The solutions found with 1000 elements are considered as true
frequencies, which are used to compute relative percentage er-
rors of the first two natural frequencies as depicted in Fig. 5. Ac-
cording to the figure, for the second frequency, the discrepancy
decreases as the number of elements increases. However, for the
first frequency, changes are too small to be visible with bare eyes.
Furthermore, we can infer that for the second frequency, the er-
ror reduction of utilizing 100 elements versus 10 elements is less
than 0.1%. Therefore, 10 elements are selected to minimize the
computation load. The time taken to solve for the natural fre-
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FIGURE 5. CONVERGENCES FOR THE FIRST (a) AND SEC-
OND (b) NATURAL FREQUENCIES OF THE BEAM IN RELATIVE
PERCENTAGE ERROR.

quencies of the FEA model with different number of elements is
shown in Fig. 6. For the computation, a personal computer with
Intel Core i17-8700 CPU @ 3.2 GHz has been utilized. From the
figure, we can infer that in order to meet the 2 ms requirement of
the real-time model updating of structures experiencing high-rate
dynamics, the number of elements should be strictly less than 16.
Before, it was confirmed that 10 elements are enough to provide
the required accuracy for the fundamental frequencies, therefore,
a 10 element FEA is selected for the remainder of this work. The
computation time for 10 elements is found to be approximately
1.2 ms, which provides enough time to approximate the roller
location based on the found frequencies.

Estimation of Roller Location

Estimating the roller location is accomplished in two steps:
(1) sampling the roller locations of the aforementioned FEA
model and performing modal analysis to find natural frequen-

computation time (ms)

10 15 20 25 30
number of elements

FIGURE 6. COMPUTATION TIME FOR FEA MODEL MODAL
ANALYSIS.

cies, and (2) estimating the roller location by comparing these
natural frequencies of FEA models and the measured resonant
frequency from the accelerometer readings. Therefore, sampling
the roller locations to create corresponding FEA models and se-
lecting the method to estimate the roller location from the natural
frequencies and a resonant frequency are vital importance in our
proposed method.

In the present effort, a Gaussian distribution is utilized to
sample the roller locations. The mean of the distribution func-
tion is selected to be the current estimated roller location. The
initial estimated location is set to be at the center of the beam
since we assume that the true initial state of the structure is un-
known, which makes the center as the best guess. Selecting the
appropriate standard deviation (STD) value is a big challenge
since there is a trade-off between exploring and exploiting by
varying the size of the search space. Here, we implement both
static and dynamic STD values referred to as fixed and adaptive
sampling, respectively. For fixed sampling, different STD values
will be applied to illustrate the effects of the search space. On
the other hand, adaptive sampling uses information to adjust the
search space. For example, when the nearest sampled frequency
is very different from the measured frequency, the search space
needs to be expanded, that is, the roller positions used in the FEM
model are distant from the actual roller position. On the contrary,
it shrinks the search space when the measured frequency is close
to one of the FEM-computed modal frequencies since this sug-
gests that the sampled positions are close to the actual position,
thus reducing the variance of the prediction. However, it is diffi-
cult to come up with a general rule for adaptive sampling, espe-
cially since we measure frequencies but need to supply the STD
with respect to the roller position. For this reason, we decided to
set an STD equal to the percentage error found in the frequency
domain as shown in Eqn. 3.
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Here, o is an STD of a Gaussian distribution for location sam-
pling, ®yeqs is a measured resonant frequency, and e, is the
closest frequency to the @,,.,s among the fundamental frequen-
cies. The superscripts previous and current are included in Eqn.
3 to strictly show that the samples are selected based on the esti-
mate found from the previously measured frequency. Therefore,
adaptive sampling depends on the current frequency measure-
ment, as well as the modal frequencies selected relative to the
frequency measured in the previous time step. Moreover, it is
worth noting that, Eqn. 3 assumes that the frequency percentage
error is equivalent to the position percentage error, but in reality,
the two cannot be equal since position scale increments linearly
whereas frequency scale does not.

The number of location samples can be assigned based on
parallel computing capability. Assuming parallel computing is
applicable, modal analysis on the FEA models can be performed
on a single CPU or GPU thread. Therefore, with a large par-
allel computing resources, many location samples can be pro-
cessed, possibly allowing better estimating performance even
with a large STD. However, for this work 6 location samples are
applied, assuming they can be computed in parallel.

Two different methods are implemented to estimate the cur-
rent roller location, these are nearest neighbor and bounded re-
gression. The nearest neighbor approach simply compares all
natural frequencies with the measured frequency to find the clos-
est one and selects the corresponding location as the current
roller location. The bounded regression method finds a linear re-
gression model that best represents the relation between the roller
location and the frequency difference between the fundamental
and resonant frequencies. Equation 4 gives the linear model fit
by least-squares [13].

W] — Wmeas xp 1
{Z] = (X"™X)"'xTY, and Y = : X=|::]@®
Wn — Omeas Xn 1

where ® is a fundamental frequency, Wme,s is @ measured res-
onant frequency, x is a sampled location, n is a total num-
ber of samples, and (a, b) are regression parameters such that
® — Wmeas = ax+ b. Since our goal is to find x when ® = Wpeqs,
the current roller location (x) is predicted as:
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FIGURE 7. REGRESSION FOR ROLLER POSITION ESTIMA-
TION.
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where, xin and xpax are minimum and maximum roller locations
of the samples. This indicates that the prediction is bounded
within the range of samples, thus naming this algorithm as a
bounded regression. The estimate is restricted to be within the
sample range because errors in the regression model propagates
more as we move further away from the samples. This way we
can avoid the error by extending the regression model further
away from the sample range. Fig. 7 displays how the bounded
regression method works given 6 number of samples. From the
figure, the asterisks and the circle represent the samples and the
position estimate. The position estimate is simply the horizontal
component of the point where the regression line crosses the zero
frequency error.

In sum, the nearest neighbor method is a more robust ap-
proach, whereas the bounded regression method allows for more
freedom in estimating the roller location since the roller location
does not need to be equal to one of the sampled locations and
consequently allows for smooth predictions.

RESULTS AND DISCUSSION

The experiment on the testbed has been performed with the
proposed real-time updating scheme. Results of fixed and adap-
tive sampling are presented in separate sections. Within each
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FIGURE 8. NEAREST NEIGHBOR ESTIMATIONS OF ROLLER LOCATION WITH DIFFERENT STANDARD DEVIATIONS: 0.1% (a), 1.0%

(b), 10.0% (c).

section, STDs and roller position are presented in percentage in-
stead of length. For instance, 1% refers to 1% of the total length
of the beam. For fixed sampling, 0.1%, 1.0%, and 10.0% STDs
are applied. For both sampling methods, nearest neighbor and
bounded regression estimation approaches are compared.

Fixed Sampling

Figure 8 and Fig. 9 show the results of roller position es-
timations by fixed sampling with nearest neighbor and bounded
regression approaches, respectively. Note that the offset in the
estimated roller position at the start of each trial is due to setting

the initial conditions as the center of the beam (175mm). From
both set of graphs, we can readily observe the effects of vary-
ing STD. As the STD increases, the search space (or sampling
space) becomes larger so the samples are selected with larger
variations. This causes the estimates to fluctuate more severely
but allows faster convergence. For instance, 0.1% STD case re-
veals smooth solutions but manifests large delays. This delay
prevents estimation during the high-rate dynamic interval shown
in Fig. 8 and Fig. 9 between 32 and 45 seconds, such that the
estimations cannot keep up with the actual changes in the sys-
tem. This is because the range of selected samples is small so the
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estimates, which are within the sampled range, remain far from
the actual roller position until the roller moves back to within
the sampled range. On the other hand, 10% STD allows to con-
verge faster but produces excessive fluctuations according to the
graphs. As expected, bounded regression does not help the con-
vergence rate since the estimates are limited to be made within
the sampled range. However, by comparing the two figures, we
can visualize that the fluctuations of estimations decrease for 1%
and 10% STD cases since by applying regression, the estimates
are not necessarily equal to one of the sampled locations. The ab-
solute mean error (AME) for each case of fixed sampling is pre-

sented in Table 1. Surprisingly, the solution for 10% STD is not
very different from 1% STD. In fact, for the bounded regression
algorithm, the solution for 10% STD is found to be more accu-
rate than 1% STD. The only explanation for this is that, although
not visible, since the convergence rate is faster for larger STD,
the instantaneous error near the large slopes are much smaller
such that the entire AME becomes smaller. Nevertheless, con-
sidering the smoothness and accuracy of the estimates bounded
regression approach with 1% STD seems to be the best option.
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TABLE 1. ABSOLUTE MEAN ERROR OF ROLLER ESTIMA-
TIONS FOR FIXED SAMPLING (mm).

Standard Deviation

0.1% 1.0% 10.0%
Nearest Neighbor 24.41 7.50 9.62
Bounded Regression  20.42 7.28 7.78

Adaptive Sampling

The results of roller position estimates using adaptive search
space are displayed in Fig. 10. Compared to fixed sampling re-
sults shown in Fig. 8 and Fig. 9 the estimates are smooth without
apparent delays. For the nearest neighbor approach, sharp tran-
sient errors are visible near the rising and falling instances. This
is the result of increasing the search space when large variations
are applied, such that, although the nearest sample is selected, the
sample still exhibits comparably large error. This phenomenon
disappears when the bounded regression is applied along with
the adaptive sampling. Although the variance increases due to
a large difference in frequencies, estimates are found anywhere

TABLE 2. ABSOLUTE MEAN ERROR OF ROLLER ESTIMA-
TIONS FOR ADAPTIVE SAMPLING (mm).

Nearest Neighbor
6.91 6.90

Bounded Regression

within the sampled range through the regression, thus allowing
fewer fluctuations even for a large STD. In other words, even if
the search space increases, the regression reduces the fluctuation,
allowing smooth and accurate predictions. The AME for the two
estimating approaches using adaptive search space are shown in
Table 2. Numerically, the accuracy of the two approaches are
almost identical. However, from the figure, we can clearly infer
that the bounded regression delivers a better solution with adap-
tive sampling.

CONCLUSION

Roller estimations were calculated by fixed and adaptive
sampling using both nearest neighbor and bounded regression
approaches. Fixed sampling using the nearest neighbor approach
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yields a direct relationship between STD and fluctuation as well
as the rate of convergence. With low STD values yielding accu-
rate values but lagging estimations and high STD values yielding
real-time estimations with greater fluctuation in estimated values.
Fixed sampling using bounded regression increases the accuracy
of estimations by decreasing the fluctuation at all STD values
compared to the nearest neighbor approach. The adaptive search
space yields smoother results with fewer delays when compared
to fixed sampling as a whole. Adaptive sampling using the near-
est neighbor approach results in sharp transient errors directly
after roller movement occurs, but the phenomenon disappears
when the bounded regression is applied by decreasing the fluc-
tuation of estimated values. From this work, it can be inferred
that adaptive search spaces using bounded regression provides a
viable method for updating FEA models in real-time.
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