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Highlight
• Planted area derived from CDL maps is highly consistent with NASS area statistic
data

• Annual GPP  had strong linear relationships with maize and soybean grain
production.

• The Harvest Index calculated from grain production and GPP  have small
interannual variation.

• The cumulative GPP  accounted for ~90% of variance in grain production by the
end of July.

Abstract
The United States of America ranked first in maize export and second in soybean export in the world. Accurate and timely data
and information on maize and soybean production in the Contiguous United States (CONUS) are important for food security at
the regional and global scales. In this study, we firstly compare the maize and soybean planted area from cropland data layer
(CDL) with NASS area statistics over the CONUS during 2008-2018, and evaluate the interannual changes of planted and
harvested area based on the two datasets. Secondly, we investigate the relationship between grain production and gross primary
production (GPP) simulated by Vegetation Photosynthesis Model (VPM) at national and county scales. Finally, we evaluate the
linear regression models between grain production and cumulated GPP  over time at 8-day resolution. We found strong
spatial-temporal consistency between CDL and NASS datasets in maize and soybean planted areas. Maize and soybean planted
areas increased by mid-2010s, largely driven by markets and international trade. Severe summer drought in 2012 had little
impact on soybean planted and harvested area and maize planted area, but substantially reduced maize harvested area. and grain
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production. Annual county-level GPP  had strong linear relationship with NASS grain production for maize and soybean.
The Harvest Index, defined as the ratio between grain production and GPP  (HI ), ranged from 0.25 (2012) to 0.36 for
maize and from 0.13 to 0.15 for soybean. The linear regression models between grain production and cumulated GPP
(GPP ) over time at 8-day resolution showed that by the end of July, GPP  accounted for ~90% of variance in
maize and soybean grain production, which was approximately two months before farmers started to harvest. This study clearly
shows that VPM and GPP  data are useful for monitoring and in-season forecasting of maize and soybean grain production
in the CONUS.

Keywords

Crop production; Gross primary production; Vegetation Photosynthesis Model; Planted area; Harvest Index; in-
season forecasting

1. Introduction
Crop production and food security is one of fundamental challenges in our society due to the rising global population, dietary
change, climate change, and increasing biofuel production that uses crops as feedstock (Ray et al. 2013). Maize (Zea maize, L) and
soybean (Glycine max) are two of the major sources of caloric energy for human and are critical for world food supply. The
United States of America (USA) is the largest maize and soybean producer in the world (Meade et al. 2016) and ranked first in
maize export and second in soybean export in the world. Inter-annual change of maize and soybean area and grain production
in the USA affect the world grain trade market (Gardiner 2016). Therefore, accurate and timely information and knowledge on
planted area, harvested area, grain production and grain yield of maize and soybean in the USA is crucial for agriculture, food
security, and international trade (Iizumi and Ramankutty 2015; Tilman et al. 2011).

Crop grain production, the amount of grains from crop produced in one calendar year in an area of interest (e.g., farm, county,
state, country), is the product of crop harvested area and crop grain yield. For crop production estimation, it is essential to have
the information of both harvested area and grain yield. The National Agricultural Statistics Service (NASS) of the United States
Department of Agriculture (USDA) provide annual crop reports for planted area, harvested area, grain yield, and grain
production in a year at various administration levels (e.g., national, state and county). The data collection through sample-based
agricultural surveys is not only time consuming and costly but also have long time lags and data gaps (Doraiswamy et al. 2003).

Satellite-based remote sensing has been used to monitor cropping area, grain yield, and grain production since the early 1970s
(Atzberger 2013; Fritz et al. 2019; Lobell 2013). Notable progress has been made in satellite-based mapping of cropland areas
(planted area and/or harvested areas) at various spatial scales (Cai et al. 2018; Massey et al. 2017; Wang et al. 2019; Wardlow and
Egbert 2008; Zhong et al. 2014). A number of studies reported annual maps of maize and soybean area for a few states or counties
in the corn-belt region (Cai et al. 2018; Wang et al. 2019; Wardlow and Egbert 2008; Zhong et al. 2014), using 30-m Landsat data
(Cai et al. 2018; Wang et al. 2019; Zhong et al. 2014), 500-m MODIS data (Massey et al. 2017; Wardlow and Egbert 2008) and/or 10-
m Sentinel-2 data (Belgiu and Csillik 2018). One study generated annual maps of croplands over the contiguous United States
(CONUS) with MODIS images at 250-m spatial resolution during 2001-2014 (Massey et al. 2017). The overall accuracy of those
crop maps ranged from 60 to 96% (Cai et al. 2018; Massey et al. 2017; Wang et al. 2019; Wardlow and Egbert 2008;
Zhong et al. 2014). The USDA-NASS also generated the Cropland Data Layer (CDL) product (Boryan et al. 2011), which includes
all major crop types in CONUS. The CDL dataset that covers all the states in CONUS at 30-m spatial resolution started in 2008,
and it is widely used in the studies of crop yield in various states or region (Guan et al. 2016; He et al. 2018; Marshall et al. 2018).
However, only a few studies have reported the accuracy of CDL-derived planted area in a specific year (Boryan et al. 2011) or in a
few states (He et al. 2018). There is a need to investigate the spatial-temporal consistency between CDL-derived planted area and
NASS area statistics and to better understand the spatial-temporal dynamics of maize and soybean planted area, harvested area
over the entire CONUS during 2008-2018 based on the two datasets..
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Grain yield (metric ton/ha) and grain production (metric ton) of maize and soybean crops are a function of aboveground
biomass (AGB), gross and net primary production (GPP, NPP), which can be estimated by satellite images and models
(Guan et al. 2016; He et al. 2018; Marshall et al. 2018; Sakamoto et al. 2014; Xin et al. 2013). Harvest Index (HI) is calculated as the
ratio between crop grain yield and crop aboveground biomass (HI ), or NPP (HI ) or GPP (HI ). Several studies evaluated
the relationship between vegetation indices and grain yields of maize and soybean at county scale from the NASS crop statistics
(Becker-Reshef et al. 2010; Burke and Lobell 2017; Johnson 2016). Some studies used vegetation indices to estimate crop
aboveground biomass and used the AGB-based harvest index (HI ) to estimate grain yield, and the resultant yield estimates
were compared with the yield data from the NASS crop statistics at county scale (Guan et al. 2016; Lobell et al. 2002). GPP can be
estimated by using a light use efficiency (LUE) model driven by remote sensing images and climate data, and the regional and
global GPP data products are available to the public (Running et al. 2004; Wu et al. 2018; Zhang et al. 2017). Some studies used
the model-based GPP to estimate NPP, AGB and grain yield, and then compared the resultant yield estimates with the yield data
from the NASS crop statistics at the county scale, for example, croplands in the Midwest during 2009-2012 (Xin et al. 2013), and
croplands in the CONUS during 2010-2015 (Marshall et al. 2018). These studies reported moderate relationships between the
model-based yield estimates and the yield data from NASS crop statistics, with a range of R  values from 0.5 to 0.7. The resultant
moderate relationships in these studies may be explained in part by large variation of the AGB-based harvest index (HI )
among crop types and environment (Hay 1995; Lobell et al. 2002) and by the sampling approach in the NASS crop statistics. The
NASS crop yield data in a county are based on the sample crop fields in a county, thus the number and spatial distribution of
these sample crop fields would affect the yield estimates. Recently, one study used model-based GPP and harvest index (HI )
to estimate grain yields of several crops and compare them with the yield/production data from the NASS statistics reports for
Montana during 2008-2015 (He et al. 2018). There is a need to evaluate the relationship between GPP and grain production at
county and state scales in CONUS during 2008-2018, and how this relationship will change over the crop growing season to
facilitate in-season grain production estimation.

In this study we addressed the above-mentioned three research needs on maize and soybean croplands in the CONUS. Our first
objective is to evaluate the consistency between CDL-derived planted area and NASS area statistic data and to quantify the
spatial-temporal dynamics of maize and soybean planted area and harvested area in the CONUS during 2008-2018. We analyzed
the agricultural statistical data of maize and soybean (planted area, harvested area) from the USDA NASS and satellite-based
planted area of maize and soybean from the USDA Cropland Data Layer (CDL) dataset during 2008-2018. Our second objective is
to better understand the relationships between GPP and grain production at county scale during 2008-2018. We analyzed the
GPP data from the satellite-based Vegetation Photosynthesis Model (VPM) (Wu et al. 2018) and MOD17 algorithm
(Running et al. 2004), and grain production data from the NASS. The analysis will quantify the relationships between maize and
soybean GPP and grain production from NASS crop statistics at county and national scale under varying climate conditions
(drought year versus normal years). During the period of 2008-2018, severe drought and heatwave events occurred in various
regions of CONUS, for example, the 2012 summer drought, which was reported as one of the worst droughts since 1988. Our
third objective is to explore the potential of using cumulated GPP over time to estimate grain production in a year. We
calculated cumulated GPP  over the maize and soybean growing season and analyze the relationship between cumulated
GPP  and grain production of maize and soybean in CONUS at county scale. The analysis will develop a simple linear
regression model that can do in-season forecasting (early prediction) of grain production of maize and soybean croplands in
CONUS before farmers start to harvest maize and soybean crops.

2. Materials and methods

2.1. Study area

The study area is the contiguous United States (CONUS). It covers 48 states and 3,233 counties. Climate in the CONUS ranges
from subtropical climate in the southern region (e.g., Florida) to temperate climate in the northern region. Crop cultivation is
dominated by a single crop per year, and major crop types include maize (~35%), soybean (~33%), winter wheat (~22%), and
sorghum (~3%). There are noticeable geographical patterns of major crop types in CONUS, for example, the Great Plains region
is dominated with wheat, maize, soybean, and the regions around the Great Lakes are dominated with maize and soybean,
known as the Corn-Belt.

2.2. USDA-NASS statistical data – crop planted area, harvested area, and grain production during 2008-2018
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The annual county and national statistics data of crop planted area (acre), harvested area (acre), grain production (bushel) and
grain yield (bushel/acre) for maize and soybean from 2008 to 2018 were downloaded from the USDA-NASS Quick Stats Database
(https://quickstats.nass.usda.gov/). For summer crops, the NASS planted and harvested area were mostly based on the June
Agricultural Survey (JAS) data. During the first two weeks of June, producers in the designated sample farms are asked by
investigators about the acreage and other information by crop, including planted and/or intend-to-plant areas, and the acreage
they intend to harvest (USDA, 2018). The yield statistics were based on two large panel surveys that are annually conducted
throughout the growing season. One is the Agricultural Yield Survey (AYS), which is based on farmers’ reported yield
information for most crops. Each year, a subsample of farmers who responded to the list portion of the JAS, are contacted
monthly by phone during the growing season (August to November) and asked to provide expected crop yield. The other is the
Objective Yield Survey (OYS), which provides independent yield estimates by aggregating field biophysical crop measurements
into a model (USDA, 2018). These biophysical crop measurements, such as plant counts per unit area, grain size, were sampled
in the fields across the major crop growing areas. The OYS is very costly and is conducted only in the top crop production states.
Ultimately, the results from both the AYS and OYS surveys are analyzed by the NASS Agricultural Statistics Board (ASB) to
establish the yield estimates. The NASS crop grain production (bushel) is estimated from the expected harvested area and grain
yield at the survey date and predicted assuming normal conditions for the remainder of the crop growing season. For grain
production of maize and soybean, we converted bushel to metric ton by using the conversion factors of 0.0254 ton/bu (maize)
and 0.0272 ton/bu (soybean), respectively (Guan et al. 2016).

2.3. USDA-NASS Cropland Data Layers (CDL) – crop planted area during 2008-2018

The annual CDL dataset at 30-m spatial resolution is a remote sensing-based land cover product. The CDL product utilizes both
in-situ ground reference data and multiple satellite imagery to identify and map field crops. The major sources of agricultural
and non-agricultural ground reference data, which were used as training data in the supervised classification, includes the
USDA's Farm Service Agency (FSA) Common Land Unit (CLU) data and the National Land Cover Database 2001 (NLCD2001). The
CLU-based data were collected in every growing season when producers reported crop types and crop acreage in their fields to
the FSA county offices. The major remote sensing images used by the CDL classifier include AWiFS, Landsat TM and ETM+,
Deimos-1 and UK-DMC-2 and MODIS satellite data. Before 2009, the 56-m AWiFS data was the primary source of imagery and
the 30-m Landsat data were used as supplementary source because AWiFS has a higher temporal resolution of 5-day than
Landsat (16-day), which provides the opportunity for having more cloud-free observations throughout the crop growing season.
The resultant CDL data in 2008-2009 had a spatial resolution of 56-m. During the growing season of 2009, some technical issues
happened in AWiFS and the increased competition from international customers disrupted the continuing use of AWiFS data.
As a result, Landsat became a primary source of images after 2009 (Boryan et al. 2011). The CDL data in 2010-2018 has a spatial
resolution of 30 meter. In 2018, the CDL data from 2008-2009 were reproduced to 30 meters to match the spatial resolution
since 2010. In this study, we used the 30-m CDL data throughout 2008-2018 to keep our analysis in a consistent spatial
resolution.

The CDL dataset includes more than 100 crop types, with classification accuracy higher than 90% for major crops (maize,
soybean and winter wheat) (Boryan et al. 2011). It has been widely used in applications related to land use and land cover change,
agricultural sustainability, and agricultural production decision-making. To make use of the dataset more effective and efficient,
CropScape, an interactive Web-based CDL data portal, was developed to visualize, query, and analyze CDL data through standard
geospatial web services in a publicly accessible online environment (Han et al. 2012). In this study, the CropScape was used to
calculate the annual planted areas of maize and soybean at the county scale during 2008-2018. The planted area of maize
(soybean) in each county is a sum of all the pixels which are classified as maize (soybean) within the county. The annual planted
areas of maize and soybean at the national scales were calculated by adding the areas of all the counties in the nation for each
year.

2.4. The input datasets for regional simulation of the Vegetation Photosynthesis Model

The input datasets for simulations of the VPM model include climate (air temperature and radiation), vegetation indices (VIs),
and land cover data. The NCEP climate dataset was used for simulations of VPM at the global scale (Zhang et al. 2017) and the
NCEP/NARR climate dataset was used for regional simulation of VPM in the North America and the CONUS (Wu et al. 2018;
Zhang et al. 2016). In this study, we continued to use the NCEP/NARR data for VPM simulation in the CONUS. The original 3-
hourly NARR data with a spatial resolution of 32 km were first aggregated into daily maximum/minimum/mean air
temperature, daily daytime mean air temperature, and daily shortwave radiation. The resultant daily data were further

https://quickstats.nass.usda.gov/
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aggregated to 8-day intervals to match the MODIS data by calculating the averages for air temperature and the sum for
downward shortwave radiation in each 8-day period. The 8-day climate data with a coarse resolution of 32 km were then
interpolated to 500-m by applying a weighted distance factor to the nearest four grid cells (Wu et al. 2018; Zhang et al. 2017).

The MOD09A1 surface reflectance data product (Collection 6) at 500-m spatial resolution and 8-day temporal resolution during
2008-2018 was used to calculate Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) (Zhang et al. 2017). We
identified those observations affected by cloud, cloud shadow and aerosol as bad-quality observations, based on the quality
assurance layer (QA) in the MOD09A1 dataset (Zhang et al. 2016). The bad-quality observations in the EVI time series data were
gap-filled by applying the “Best Index Extraction Algorithm” (BISE) (Zhang et al. 2017). In this algorithm, a standard seasonal
pattern for each pixel was first generated by extracting the median values of all the good-quality observations for each day of
year (DOY) over 19 years (2000-2018). The data gaps were then filled with a linear interpolation and smoothed using a Savitzky-
Golay filter (Zhang et al. 2017).

The MOD12Q1 land cover data product at 500-m spatial resolution during 2008-2018 was used in this study. The International
Geosphere-Biosphere Programme (IGBP) land cover classification scheme in the MOD12Q1 data product includes croplands,
forests, grasslands, and other land cover types. We aggregated the CDL dataset at 30-m spatial resolution to 500-m MODIS
pixels and calculate the area percentages of all individual crop types (e.g., maize and soybean) within individual 500-m MODIS
pixels. We further re-classify individual crop types by plant function types (C  and C  plant function types) and calculate the area
percentages of C  and C  plant function types within each 500-m MODIS pixel.

2.5. GPP data from the Vegetation Photosynthesis Model

The VPM model is a light use efficiency (LUE) model and estimates daily GPP as a product of LUE and the amount of
photosynthetically active radiation (PAR) absorbed by chlorophyll in the canopy (APAR ). The detailed description of the VPM
model can be found in previous publications (Xiao et al. 2004a; Xiao et al. 2004b; Zhang et al. 2017). We used the improved VPM
model (2.0), which considers both C  and C  crops and their areas within individual pixels (Wu et al. 2018; Zhang et al. 2017) .

where FPAR  is the fraction of PAR absorbed by chlorophyll in the canopy; LUE  is the maximum light use efficiency under
optimal environmental condition; T  and W  are the air temperature- and water- limitation scalar; AF  and AF  are the
area fractions of C  and C  plants within a pixel (range from 0 - 1.0); LUE  and LUE  are the maximum LUE values for C
and C  plants, respectively.

A number of publications have reported the evaluation of GPP  with GPP  estimates from the eddy flux tower sites,
including maize (Dong et al. 2015; Kalfas et al. 2011), soybean (Jin et al. 2015; Wagle et al. 2015), winter wheat
(Doughty et al. 2018; Yan et al. 2009) and paddy rice (Xin et al. 2017). All these publications reported strong agreement between
GPP  and GPP , with a range of R  values from 0.70 to 0.98. We also ran VPM simulations with NCEP/NARR climate data,
MODIS images and the CDL data to estimate 8-day GPP in the CONUS during 2008-2014 (Wu et al. 2018). We compared the
resultant GPP  with GPP simulated from the MOD17 algorithm (GPP ), CASA model (GPP ), and SiBCASA model
(GPP ) (Wu et al. 2018), and the results showed that GPP  had the stronger relationships with GOME-2 solar-induced
chlorophyll fluorescence (SIF) data in both normal years and drought year (2012) than do the other three GPP datasets.

In this study, we ran the VPM with NCEP/NARR climate data, MODIS images and the CDL data during 2008-2018 to estimate 8-
day GPP (g C m  day ) at 500-m spatial resolution. For each pixel, it has 46 estimates of GPP  in a year and we calculated
annual sums of GPP  for individual pixels. We also aggregated annual sums by crop types and their planted areas at county
and national scales. The average annual GPP (GPP ) values of individual crop types (maize, soybean) in a county were
calculated by the area fraction of specific crop type from the CDL datasets in each 500-m pixel. The total annual GPP
(GPP ) (January - December) for a crop type for each county was calculated by multiplying GPP  with the total area
of all those pixels with a specific crop located in the county.
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2.6. MOD17 GPP dataset

The MOD17 GPP product (Running et al. 2004) is the most widely used global GPP data product. In this study we used
MOD17A2H Collection 6 (GPP ) at the 500-m spatial resolution and 8-day temporal resolution. In the MOD17 data
product, GPP is estimated as the product of LUE and the amount of PAR absorbed by the canopy (APAR )
(Running et al. 2004). The land cover data product used in the model for MOD17A2H does not have information on C  and C
croplands, and the model parameter look-up table has applied only one LUE  (~1.04 g C MJ ) for crop GPP simulations
(Wu et al. 2018). For simple comparison purpose, we also calculated the average annual MOD17 GPP (GPP ) values of
individual crop types (maize, soybean) and the total annual GPP (GPP ) (January - December) by county and state, based
on the CDL crop type data.

2.7. Statistical analyses

Simple linear regression models were used to characterize the relationship between grain production and GPP, and between
grain production and cropping areas at county and national scales, at a minimum 0.05 significance threshold (p-value). Model
performance was evaluated using the coefficient of determination (R ), bias and root mean square error (RMSE).

A number of studies have used the vegetation indices over time to predict grain yields of crops in a field or a county
(Peng et al. 2018; Zhao and Lobell 2017). In this study, we used the cumulative GPP over time to predict grain production in a
county. A simple linear regression model was used to assess the relationship between grain production and cumulative GPP
over time at 8-day temporal resolution at county-scale (see Equation 5). The model was run at 8-day time step over a year across
all the counties in the CONUS during 2008-2018. We calculated the averaged R  value among all the counties at each time step,
and then plot the R  values as a function of time. Based on the time course of R  value in a year, we assess the performance of
using cumulative GPP  to predict grain production over time at county scale. This will address the research questions related
to in-season grain production forecasting: (1) at what day in a year the model start to predict grain production at county scale
with reasonable accuracy, and (2) to what degree weather and climate (e.g., drought, flood) affect the model prediction over years.

where t is the number of time steps in a year, which ranges from 1 to 46, as time series GPP has 46 data points in a year; k is the
number of days in each time step, k is equal to 8 days when t ranges from 1 to 45, and k is 5 (non-leap year) or 6 (leap year) when
t is 46.

3. Results

3.1. Spatial-temporal changes of maize and soybean planted area and harvested area during 2008-2018

At the national scale, Fig. 1a,b shows the interannual variation of maize and soybean planted area from both CDL and NASS data
and NASS harvested area in the CONUS from 2008 to 2018. Between the planted area estimates from the CDL and NASS
datasets, there are very small differences for maize (0.4 - 6.5%) and for soybean (0.1 - 5.8%) (Fig. 1a, b), which supports the use of
the CDL dataset as input data for model simulations. The differences between NASS planted area and harvested areas are also
small, except 2012 for maize crop (Fig. 1a, b). We calculated the mean values of planted area and harvested area over years
(excluding the drought year 2012) and the deviation (anomalies) to the mean values for individual years (Fig. 1c, d, e). The
normalized anomalies of maize planted area from both CDL and NASS datasets have similar dynamics during 2008-2018
(Fig. 1c,d). The maize planted area gradually increased between 2008 and 2012 and varied moderately over 2013-2018 (Fig. 1c).
Maize harvested area had a similar temporal dynamics as maize planted area (Fig. 1e). The normalized anomalies of soybean
planted area from both CDL and NASS also have similar dynamics during 2008-2018 (Fig. 1c,d), varied slightly during 2008-2013
but started to have an increase since 2014 (Fig. 1d). The anomaly of soybean harvested area agreed well with that of soybean
planted area with a smaller magnitude of variation.
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Figure 1. Interannual changes of planted area derived from CDL maps (plt_CDL), planted area from NASS statistics (plt_NASS),
and harvested area from NASS statistics (harv_NASS) for a) maize and b) soybean; (c) normalized anomaly of planted area derived
from CDL and NASS for maize; (d) normalized anomaly of planted area derived from CDL and NASS for soybean; (e)normalized
anomaly of harvested area from NASS for maize and soybean.

At the county scale, Fig. 2 shows the spatial distributions of planted area and harvested area of maize and soybean crops in 2010
across all counties of the CONUS. There were strong spatial consistencies in planted areas between the CDL and NASS datasets
in CONUS for both maize and soybean (Fig. 2), The CDL planted area estimates were highly consistent (only ~1% to 3%
discrepancy) with NASS planted and harvested area estimates for both maize and soybean crops during 2008-2018 at the county
and state scales (Fig. 3). The relationships between CDL planted area and NASS planted areas in individual years were relatively
stable at the county scales (Table 1), with moderate differences in 2008 and 2009. These results further support the use of the
CDL dataset as input data for model simulations.
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Figure 2. Spatial distribution of CDL planted area, NASS planted area, NASS harvested area, and NASS production over CONUS
in 2010
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Figure 3. Relationship between NASS planted area, NASS harvested area and CDL planted area at the county scale from 2008-
2018

Table 1. The summary statistics of simple linear regression models between the CDL planted area and the NASS planted area and
harvested area of maize and soybean in the CONUS during 2008-2018 at the county scale. We used a simple linear regression
model y = a * x. All the regression models have p-value < 0.001.

Maize

plt_CDL vs plt_NASS plt_CDL vs harv_NASS

slope R bias (ha) RMSE (10  ha) slope R bias (ha) RMSE (10  ha)

0.94 0.977 -1362.9 32.72 0.98 0.967 179.7 32.30

0.93 0.984 -1349.7 32.63 0.97 0.975 -26.6 32.24

0.98 0.990 -232.6 32.55 1.02 0.980 1034.6 32.16

1.00 0.992 -62.2 34.59 1.04 0.977 1551.3 34.22

0.98 0.990 -383.8 35.41 1.04 0.966 1660.2 34.64

0.99 0.991 -361.0 35.67 1.03 0.977 1223.4 35.13

0.97 0.990 -735.3 33.90 1.02 0.980 683.1 33.36

0.99 0.992 -85.3 34.35 1.04 0.977 1426.7 33.88

1.00 0.992 52.5 34.79 1.04 0.978 1548.5 34.37

1.01 0.990 320.1 33.62 1.05 0.973 1813.9 33.19

1.00 0.990 321.8 33.96 1.04 0.971 1819.5 33.55

Soybean

plt_CDL vs plt_NASS plt_CDL vs harv_NASS

slope R bias (ha) RMSE (10  ha) slope R bias (ha) RMSE (10  ha)

0.96 0.977 -1126.7 29.68 0.96 0.977 -1126.7 29.68

0.98 0.980 -673.5 30.29 0.98 0.980 -673.5 30.29

1.00 0.986 36.2 29.94 1.00 0.986 36.2 29.94

1.03 0.986 193.4 29.88 1.03 0.986 193.4 29.88

0.99 0.992 -490.5 29.70 0.99 0.992 -490.5 29.70

1.01 0.988 12.8 30.73 1.01 0.988 12.8 30.73

1.02 0.986 113.5 33.08 1.02 0.986 113.5 33.08

1.02 0.985 666.5 33.04 1.02 0.985 666.5 33.04

1.02 0.987 592.8 32.69 1.02 0.987 592.8 32.69

1.03 0.982 1053.7 35.73 1.03 0.982 1053.7 35.73

1.05 0.984 1573.8 35.77 1.05 0.984 1573.8 35.77
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We further calculated the interannual trends of maize and soybean planted areas from the CDL and NASS datasets during 2008-
2018 at the county scale (Fig. 4). A large number of counties in the NASS dataset do not have data for all the 11 years, and they
were thus not included in the analysis of interannual trends of planted area. For those counties with continuous 11 years of
maize and soybean planted area data, the spatial pattern of the interannual trends (slope values) from the NASS dataset has some
similarity with that from CDL dataset (Fig. 4a,b,c,d). Based on the CDL dataset, interannual trends (slope values) of soybean
planted area differed substantially from those of maize planted area (Fig. 4e,f ). Out of 3107 counties with data in the CONUS,
2151 counties had an increasing trend of soybean planted area during 2008-2018, and 1857 counties had an increasing trend of
maize planted area (Fig. 4e,f ). In Illinois, maize planted area decreased while soybean planted area increased during 2008-2018.
In the northern Great Plains, both maize and soybean planted areas increased in recent years (Fig. 4a,c).
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Figure 4. Interannual trend of (a) CDL planted area for maize; (b) NASS planted area for maize; (c) CDL planted area for soybean;
(d) NASS planted area for soybean. (e) relationship between maize and soybean changing trend of CDL planted area (f )
relationship between maize and soybean changing trend of NASS planted area

Fig. 5 shows the relationships among maize and soybean planted area, harvested area and grain production during 2008-2018 at
the county scale. The slope values in the simple linear regression models represents the average yields (ton ha ) of maize and
soybean in the CONUS during 2008-2018, which were calculated by either planted area or harvested area, and they have very
small variations (Fig. 5). For maize, the average yields at the county scale (Table 2) among individual years had a small variation (<
10%), except for 2012. Because of heatwaves and drought in 2012, the average yield of maize in 2012 was 8.24 ton ha  at the
county scale (Table 2), which is substantially (more than 20%) lower than multi-year average yields (10.7 ton ha  or 10.6 ton
ha ). For soybean, the average yields at the county scale (Table 3) among individual years also had a small variation, and the 2012
drought resulted in ~10% drop in comparison to multi-year average yields. The results indicate that soybean crop was more
resistant than maize crop in the 2012 severe drought.

Download : Download high-res image (544KB) Download : Download full-size image

Figure 5. Relationship between NASS grain production, CDL planted area, NASS planted area, and NASS harvested area for
maize and soybean at the county scale during 2008-2018

Table 2. The summary statistics of simple linear regression models between NASS grain production and crop planted and
harvested areas for maize during 2008-2018 at the county scale. All the regression models have p-value < 0.001.

Maize

prod_NASS vs plt_CDL prod_NASS vs plt_NASS prod_NASS vs harv_NASS

slope R bias (10  ton) RMSE (10  ton) slope R bias (10  ton) RMSE (10  ton) slope R bias (10  ton) RMSE (10  ton)

10.34 0.931 -14.11 344.52 9.83 0.950 -17.56 344.27 10.36 0.969 -12.77 348.85

11.05 0.945 -12.45 362.17 10.43 0.963 -14.21 362.77 10.92 0.978 -10.10 366.68
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9.81 0.949 -14.31 329.46 9.71 0.961 -14.52 330.46 10.14 0.970 -10.42 333.61

9.34 0.930 -16.05 339.13 9.37 0.942 -17.26 339.57 9.87 0.963 -12.17 344.40

7.73 0.864 -12.24 290.68 7.63 0.867 -12.98 290.50 8.24 0.897 -9.82 294.77

9.80 0.925 -7.39 359.88 9.73 0.940 -9.41 360.14 10.28 0.959 -5.56 364.24

10.81 0.940 -7.16 373.26 10.57 0.952 -9.99 372.73 11.16 0.970 -6.67 376.55

10.66 0.937 -14.20 379.85 10.64 0.952 -14.89 381.03 11.21 0.967 -10.32 385.29

11.18 0.939 -18.98 406.71 11.22 0.953 -19.16 408.20 11.78 0.970 -14.43 412.94

11.08 0.929 -15.84 390.59 11.23 0.946 -15.63 392.59 11.82 0.964 -11.15 397.27

11.16 0.920 -16.33 397.86 11.31 0.943 -16.08 400.57 11.90 0.963 -11.52 405.55

Table 3. The summary statistics of simple linear regression models between NASS grain production and crop planted and
harvested areas for soybean during 2008-2018 at the county scale. All the regression models have p-value < 0.001.

Soybean

prod_NASS vs plt_CDL prod_NASS vs plt_NASS prod_NASS vs harv_NASS

slope R bias (ton) RMSE (10  ton) slope R bias (ton) RMSE (10  ton) slope R bias (ton) RMSE (10  ton)

2.76 0.894 828.19 82.71 2.68 0.926 -570.07 82.39 2.71 0.928 -491.39 82.50

2.92 0.883 2260.98 89.25 2.89 0.921 807.65 89.09 2.93 0.925 853.93 89.20

2.90 0.895 22.98 89.77 2.94 0.924 -794.78 89.93 2.97 0.926 -754.80 90.00

2.68 0.843 1872.97 84.23 2.80 0.891 -59.08 83.99 2.83 0.898 37.05 84.20

2.72 0.907 216.27 82.62 2.69 0.909 -422.19 82.24 2.72 0.914 -311.26 82.43

2.88 0.894 1730.69 90.79 2.94 0.921 567.62 90.62 2.95 0.922 644.31 90.70

3.10 0.901 1824.62 105.62 3.19 0.931 255.89 105.38 3.21 0.931 347.42 105.46

3.16 0.896 -258.61 108.45 3.25 0.920 -323.39 109.11 3.28 0.923 -155.46 109.30

3.40 0.919 110.10 114.83 3.51 0.948 -457.77 115.32 3.54 0.949 -373.80 115.41

3.13 0.885 1413.64 116.07 3.27 0.910 1161.90 116.66 3.28 0.911 1235.02 116.73

3.28 0.877 63.52 124.04 3.48 0.904 29.68 124.89 3.51 0.906 260.35 125.12

3.2. The relationship between GPP  and NASS grain production during 2008-2018

At the CONUS scale, Fig. 6a,b shows the interannual variations of grain production from the NASS data and annual total GPP
from the VPM model (GPP ). We calculated the deviation (anomaly) of annual grain production and GPP  to the mean
values during the study period except 2012 (Fig. 6c,d). The normalized anomaly of grain production show that maize grain
production started to increase in 2013 (Fig. 6c) and soybean grain production started to increase in 2014 (Fig. 6d). In 2012, maize
planted area (Fig. 1c) and harvested area (Fig. 1e) were higher than the multi-year mean values, but maize grain production in
2012 was substantially lower than the multi-year mean value, which highlights the substantial impacts of drought and heatwaves
in 2012 on maize grain yield.
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Figure 6. Annual national grain production and total GPP  for a) maize and b) soybean; (c) normalized anomaly of grain
production and total GPP  for maize (d) normalized anomaly of grain production and total GPP  for soybean

Fig. 7a,b shows the spatial distributions of GPP  and grain production at 500-m and county scales in the CONUS in 2010. At
the county scale, the spatial distribution of GPP  was highly consistent with the spatial distributions of NASS grain
production (Fig. 7c,d,e,f ), planted area and harvested areas (Fig. 2). For maize croplands, the regions with the high GPP
occurred in the Midwest. For soybean croplands, the regions with high GPP  occurred in the Midwest region and along
the Mississippi delta area.
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Figure 7. Spatial distributions of annual maize and soybean GPP simulated by VPM in 2010 at county scale. upper panel—mean
annual GPP at a spatial resolution of 500-m; middle panels—annual total GPP at county scale; lower panels—NASS production
at county scale. Annual total GPP at the county scale is calculated as the product of the mean GPP and CDL planted areas of
maize and soybean in a county in 2010.

Fig 8 showed the interannual trends of maize and soybean grain production and GPP  at individual counties in the
CONUS during 2008-2018. Among those counties that have 11-years of data from both the NASS statistics data and GPP
estimates, there are good agreements in their spatial distributions (Fig 8a,b,c,d). For maize, the hot-spots of grain production
and GPP  increases over years occurred mostly in the Mid-west region. For soybean croplands, the hot-spots of grain
production and GPP  increases over years occurred in the Mid-west region and the Northern Great Plains. Note that a
large number of counties in the CONUS had experienced decreasing trends of maize grain production during 2008-2018.
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Figure 8. Interannual trend of (a) NASS production for maize; (b) annual total GPP  for maize; (c) NASS production for
soybean; (d) annual total GPP  for soybean. (e) relationship between maize and soybean changing trend of NASS production
(f ) relationship between maize and soybean changing trend of annual total GPP

Fig. 9 shows the relationship between NASS grain production and GPP  (and GPP ) for maize and soybean in the
CONUS during 2008-2018 at the county scale. The slope values in the simple linear regression models represent the average
harvest index (HI ) of maize and soybean in the CONUS during 2008-2018 at the county scale. For maize crop, GPP
during 2008-2018 explained the 93% variation of NASS grain production at the county scale, with an average HI  of 0.31
(Fig. 9a). Because of severe drought in 2012, HI  in 2012 (0.25) was substantially (19%) lower than the average HI
(0.31), but R  value was still relatively high (R  = 0.89, p-value <0.001) (Table 4). For soybean crop, GPP  during 2008-2018
explained the 91% variation of NASS grain production at the county scale with an average HI  of 0.13 (Fig. 9b). The HI

 in 2012 (0.12) was similar to 2011 but slightly lower than other years (0.12 - 0.14) (Table 4). In comparison, GPP
also had strong relationships with NASS grain production at the county scale (Fig. 9c,d). For soybean crop (C  plant), HI
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 (~0.18) values are moderately larger than HI  (0.14)  However, for maize crop (C  plant), HI  values (0.60)
are substantially larger than HI  (0.31) at the county scale (Fig. 9).

Download : Download high-res image (336KB) Download : Download full-size image

Figure 9. Relationships between NASS grain production and annual total GPP from VPM and MOD17 datasets in the CONUS
during 2008-2018 at the county scale. Annual total GPP is calculated as the product of the mean GPP and CDL planted areas of
maize and soybean in a county. The black solid line is the linear regression line for all the data during 2008-2018. All statistics
with p < 0.001.

Table 4. The summary statistics of simple linear regression models between NASS grain production and annual total GPP from
VPM and MOD17 datasets for maize and soybean during 2008-2018 at the county scale. All regression models have p-value <
0.001.

VPM

Maize Soybean

slope R bias (10  ton) RMSE (10  ton) slope R bias (10  ton) RMSE (10  ton)

0.33 0.926 -14.60 350.79 0.14 0.898 -1.00 82.22

0.36 0.955 -13.42 362.46 0.15 0.920 -1.00 87.74

0.29 0.943 -14.09 329.04 0.14 0.930 -3.05 88.48

0.28 0.950 -15.84 341.11 0.13 0.919 -2.19 83.09

0.25 0.891 -16.03 290.61 0.13 0.921 -2.23 81.25

0.31 0.954 -12.26 359.62 0.14 0.934 -1.84 89.23

0.32 0.965 -9.79 374.19 0.15 0.949 -2.94 103.68

0.31 0.950 -15.65 380.38 0.15 0.914 -4.07 106.25

0.32 0.945 -19.88 406.84 0.15 0.928 -3.72 112.72
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0.33 0.933 -19.56 388.70 0.15 0.914 -3.79 113.11

0.33 0.948 -20.02 398.62 0.15 0.922 -4.34 122.18

MOD17

Maize Soybean

slope R bias (10  ton) RMSE (10  ton) slope R bias (10  ton) RMSE (10  ton)

0.59 0.907 -18.98 339.18 0.15 0.878 -2.45 74.54

0.62 0.921 -16.83 357.01 0.16 0.877 -1.22 80.78

0.55 0.919 -14.40 326.75 0.16 0.914 -2.56 82.46

0.57 0.918 -14.46 338.97 0.16 0.862 -0.51 77.51

0.53 0.820 -16.08 284.75 0.17 0.879 -1.95 75.10

0.60 0.916 -10.58 357.09 0.17 0.904 -1.18 83.05

0.65 0.932 -10.92 370.25 0.18 0.903 -1.57 96.47

0.62 0.911 -16.75 375.58 0.18 0.889 -3.91 98.46

0.60 0.925 -21.20 403.72 0.18 0.912 -3.40 104.84

0.62 0.909 -21.68 384.69 0.17 0.879 -2.73 105.24

0.66 0.910 -22.43 392.83 0.18 0.882 -4.08 112.80

3.3. In-season relationships between cumulative GPP and NASS grain production over time in a year during 2008-
2018

In the CONUS, both maize and soybean are cultivated as single crop in a year at individual crop fields. Maize crops are usually
planted in April through June and harvested in October and November. Soybean crops are usually planted in late April through
June and harvested in September through November. For simplicity, we calculated cumulative GPP  values (GPP ) of
maize and soybean in a county from January 1  at 8-day interval, and then we established the simple linear regression models
that used NASS grain production (Y, dependent variable) and GPP  (X, independent variable) over time (8-day interval)
within a year (NASS grain production = a * GPP  + b). We calculated average R  value of all counties for each time step
and reported the R  values over each time step in a year (Fig. 10). According to the R  curve, the model prediction skill increases
over time and reaches 90% by the end of July (Fig. 10), which is approximately one to two months before the start of harvesting
time for soybean and maize crops. The model prediction skill showed slight differences among individual years. For maize, the
prediction skill was slightly lower in 2008, 2009, and 2012 than in other years, which could be explained by the warm spring and
summer drought in 2012 and the underestimation of planted areas in 2008 and 2009 from the CDL dataset. Similarly, for
soybean, the prediction skill was slightly lower in 2008 and 2009 than in other years, but it was relatively stable in the drought
2012. In comparison, GPP  also showed very good prediction skills in most years for both maize and soybean, except
for maize in 2012 (Fig. 10).
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Figure 10. The performance or skill (R  values) of simple linear regression models between NASS grain production and
cumulated GPP of maize and soybean from VPM and MOD17 datasets over time (8-day temporal resolution) in a year during
2008-2018 over the CONUS.

4. Discussion

4.1. Maize and soybean planted and harvested areas from the CDL and NASS datasets

Satellite remote sensing has been widely used to identify and map cropland planted area in the CONUS (Cai et al. 2018;
Massey et al. 2017; Wang et al. 2019; Zhong et al. 2014). The annual CDL datasets have high producer and user accuracies (~97%)
for maize and soybean over CONUS. Such high classification accuracy was achieved by the machine learning image classification
algorithm and large amounts of ground reference data used to train the algorithms. The training and validation ground
reference data were sampled from USDA Farm Service Agency (FSA) Common Land Unit (CLU) database and its associated
attributes reported by famers. Note that several global GPP data products, e.g., MOD17A2 (Running et al. 2004), have not
considered the different photosynthetic capability of C  and C  crops and not incorporated the CDL dataset that contains
information on individual crop types, which can partly explain that they underestimate GPP of maize and other C  crops
(Guanter et al. 2014; Xin et al. 2013). Our previous study in the CONUS clearly show that the use the CDL dataset is essential for
simulations of VPM and other data-driven models (Wu et al. 2018).

The spatial-temporal consistency of crop planted areas between the remote sensing approach (e.g., CDL) and the agricultural
statistical approach (e.g., NASS) at administrative levels (e.g., county, state, nation) has been an important research topic among
both agricultural and remote sensing communities (Cai et al. 2018; Wang et al. 2019). Previous studies reported good agreement
between the CDL and NASS planted area data in 2009 (Boryan et al. 2011; USDA, 2018). Our study also shows that the CDL crop
planted area estimates had good spatial-temporal consistency with the NASS planted area estimates at county and national
scales during 2008-2018. The NASS agricultural statistics uses stratification methods to classify land into different agricultural
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intensity groups or strata based on percent cultivation in a given land parcel, which provides the area sampling frames
(Boryan and Yang 2017). In 2010, an automatic stratification method based on the CDL dataset was developed and used in several
states (Boryan et al. 2014), which significantly improved stratification accuracies in intensively cropped areas and performed less
well in non-agricultural areas as compared with the land cover map method. Recently, an integrated automated stratification
and traditional manual hybrid stratification process was implemented in NASS area frame operations (Boryan and Yang 2017),
which may further improve the NASS dataset in the near future.

Our study demonstrates the potential of the CDL and NASS statistic datasets in understanding the changes of planted area,
harvested area, and grain production of maize and soybean in the CONUS during 2008-2018. Over these years, maize and
soybean planted areas in the CONUS were not affected by summer drought but did increase in response to international
demand and grain price in late 2010s. However, maize harvested area and grain production in the CONUS was substantially
reduced in 2012 with severe summer drought, particularly in the Midwest states. As the climate models predict larger climate
variation and more frequent and severe drought in the years to come (Dai 2012; IPCC 2013; Trenberth et al. 2013), how to
improve the resilience of maize and soybean crops to climate variation and change would be a major challenge for the farmers
and the society.

4.2. Harvest Index – The relationships between GPP, AGB and NASS grain production of maize and soybean

Gross primary production (GPP), net primary production (NPP) and aboveground biomass (AGB) are related to grain yield (ton
ha ) and production (ton). The “Harvest Index” (HI) is widely used term (Hay 1995) and often defined across various scales from
plants to fields, and county as the ratio between crop grain yield (ton ha ) and aboveground biomass (AGB), namely HI .
Grain yield of individual plants is affected by two processes: (1) flowering and pollination, which affects grain number, and (2)
grain-filling, which determines individual grain sizes. Many studies have shown that these two processes are highly sensitive to
heat and drought stresses (Guan et al. 2016; Liu et al. 2008; Lobell et al. 2014). Many studies reported that HI  values often vary
substantially among individual crop types, for example, 0.25 – 0.58 for maize (Guan et al. 2016), and 0.30 – 0.44 for soybean
(Johnson and Major 1979; Krisnawati and Adie 2015; Lobell et al. 2002; Monfreda et al. 2008), which could be attributed to large
degree how and when maize and soybean plants were harvested and AGB was measured.

Harvest Index can also be defined as the ratio between NASS crop grain production and gross primary production, namely
HI . In a study on croplands in Montana (He et al. 2018), GPP data from the data-driven model during 2008-2015 and
calibrated HI  (0.44) were used to estimate maize grain production, and resultant GPP-derived grain production had a
strong linear relationship with NASS grain production for maize at the county scale (R  = 0.82). Our study shows that
GPP  data during 2008-2018 were strongly correlated with NASS grain production (GP) data for maize (GP = 0.31 *
GPP , R  = 0.93) and soybean (GP= 0.14 * GPP , R  = 0.91) at the county scale over the CONUS (Fig. 9). HI  of
maize, which is the slope of the simple linear regression model between GP and GPP  of maize at the county scale in
individual years, varied from 0.25 in the severe drought year (2012) to 0.36 in the wet year (2009) (Table 4). HI  of soybean
varied from 0.12 in the drought year (2012) to 0.14 in the wet year (2009) (Table 4). The interannual variations of HI  in this
study at the CONUS scale could come from multiple sources. Many studies have discussed the effects of environment,
management and crop genetics (variety) (Erickson et al. 2017; Licht et al. 2019; Lobell and Azzari 2017). In this study, the
environmental factors, for example, severe drought in 2012, have strong effect on GPP and maize grain production. Cropland
management factors have affected planted and harvested area, for example, the differences of planted area between CDL and
NASS datasets were larger in 2008 and 2009 than in other years (Table 1), which could lead to moderate variations of annual
HI  in those two years. It is well known that crop genetics (e.g., crop variety) affect crop grain yield and production, as some
crop types and genotypes are more tolerance to drought and pathogens, and more sensitive to changing crop management, like
narrow row spacing and application of more modern managing technique. However, as HI  values of maize and soybean have
relatively moderate interannual variations during “normal” years, it clearly indicates the potential of using HI  and GPP
data to estimate maize and soybean grain production over those “normal” years at the county scale. Additional efforts are
needed to elucidate the relationships between GPP and NASS grain production at those individual farms used in the NASS crop
surveys, which could further reduce the spatial-temporal variations of harvest index (HI ) for maize and soybean crops.

4.3. Prediction of maize and soybean grain production by GPP at the county scale

Numerous studies have used vegetation indices to predict crop grain yields (Bolton and Friedl 2013; Zhao et al. 2015). A number
of LUE models estimate daily GPP of croplands (He et al. 2018; Yuan et al. 2007; Zhang et al. 2017). Several studies have used
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GPP data to estimate crop grain yields by assuming that yield is a function of GPP, autotrophic respiration, HI  and the root
to shoot ratio (Guan et al. 2016; Marshall et al. 2018; Yuan et al. 2016). These studies compared the resultant yield estimate with
the yield data from the flux tower sites (Yuan et al. 2016), and NASS yield data in the Midwest Corn-Belt (Guan et al. 2016) and
the CONUS (Marshall et al. 2018). These studies include maize, soybean, and winter wheat, and reported moderate relationships
between NASS grain yield data and modeled yield estimates (R  ranging from 0.5 to 0.7) at the county and state scales
(Guan et al. 2016; Marshall et al. 2018). As NASS crop grain yield data at the county scale were derived from the survey and
sampling approach, more studies are needed to compare yield data at individual farms or fields used in the NASS crop surveys.

In our study, we focused on the relationship between GPP and NASS grain production of maize and soybean in the CONUS at
the county scale. In an initial effort to explore the potential of in-season forecasting, we calculated the simple linear regression
model between cumulative GPP  over time at 8-day interval and annual NASS grain production at the county scale, and
the simple linear regression model was able to account for more than 80% of variation of NASS grain production of maize and
soybean among all the counties in the CONUS by the end of June, and more than 90% by the end of July (Fig. 10).
Peng et al. (2018) incorporated satellite derived EVI and climate forecast data in a crop model to forecast U.S. maize yield, they
also found EVI improved the forecasting significantly in July and August. Therefore, the satellite-based information can play an
important role in early crop yield and production forecast.

The capacity of in-season forecasting of grain production can be further improved in several aspects. First, the GPP
simulation in this study was carried out at a moderate spatial resolution (500-m), and it could be improved by using high spatial
resolution images (e.g., 30-m Landsat, and 10-m Sentinel-2 and Sentinel-1). Second, in this study we used the annual maps of
crop types and planted areas from the CDL dataset at 30-m spatial resolution. Note that the CDL dataset took time to generate
and was often released in the spring of next year (one-year delay). Although it is okay to assume relatively small changes of maize
and soybean planted areas between two years and use previous-year CDL dataset for initial simulation of VPM model,
simulations of VPM and in-season forecasting of crop grain production could be certainly improved if in-season maps of crop
type (e.g., maize, soybean), planted area and harvested area at high spatial resolutions (e.g., 30-m or 10-m) are also generated and
available to the public. Numerous studies have been done for identifying and mapping individual crop types in the growing
season using single image (Van Niel and McVicar 2004; Yang et al. 2011) or multiple images (Chang et al. 2007;
Foerster et al. 2012). Recently, a few studies reported their efforts for in-season crop mapping at high spatial resolutions
(Cai et al. 2018; Wang et al. 2020; Wang et al. 2019). It remains to be a major challenge for the remote sensing community to
develop in-season maps of crop types, planted areas and harvested areas in the CONUS.

5. Conclusion
Our study thoroughly reported the spatial-temporal dynamics of NASS crop statistical data (crop planted area, harvested area,
grain production), satellite-based CDL crop planted area, and GPP estimates from the VPM model at the county and national
scale during 2008-2018. There are strong spatial-temporal consistencies between the planted area from the CDL dataset and
NASS crop statistics during 2008–2018 at the county scale, which supports the use of the CDL dataset by models. For maize and
soybean crops, the HI  values, which is calculated as the ratio between NASS grain production and GPP at the county scale,
have relatively small variations over years during 2008-2018, except the extreme drought year (2012). Cumulative GPP  and
GPP  over time at 8-day interval within the maize and soybean growing season, together with HI , were able to explain
and predict grain production of maize and soybean at the county scale about 1-2 month ahead of crop harvest. The strong and
robust linear relationships between cumulative GPP  and NASS grain production of maize and soybean in the CONUS at the
county scale highlight the potential of GPP  in monitoring maize and soybean grain production in the CONUS.
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