Session: Short - Theory

CIKM ’19, November 3-7, 2019, Beijing, China
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ABSTRACT

In recent years, convolutional neural networks (CNN) have
been successfully employed for performing various tasks due
to their high capacity. However, just like a double-edged
sword, high capacity results from millions of parameters,
which also brings a huge amount of redundancy and dra-
matically increases the computational complexity. The task of
pruning a pretrained network to make it thinner and easier to
deploy on resource-limited devices is still challenging. In this
paper, we employ the idea of adversarial examples to sparsify
a CNN. Adversarial examples were originally designed to fool
a network. Rather than adjusting the input image, we view
any layer as an input to the layers afterwards. By performing
an adversarial attack algorithm, the sensitivity information
of the network components could be observed. With this in-
formation, we perform pruning in a structured manner to
retain only the most critical channels. Empirical evaluations
show that our proposed approach obtains the state-of-the-art
structured pruning performance.
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1 INTRODUCTION

In the past decade, deep neural networks (DNNs) have made
remarkable achievements in different AI domains, such as
ImageNet challenge, Go game, machine translation, etc. How-
ever, the complexity of a DNN has also increased, in order to
provide the required capacity for those sophisticated tasks. An
over-parameterized network not only requires more and more
computation power in both training and inference phases, but
also sometimes even hurts the performance of the DNN. In
fact, Dropout is the best example to show that a dense network
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performs much worse than its sparse counterpart, in terms
of generalization ability. Exploiting the benefits from sparsity
and capacity, researchers are finally able to achieve a better
performance compared to a directly trained dense network.

It is well known that a significant fraction of a modern
DNN’s parameters are redundant. To identify the redundancy
in a network, an exhaustive search in the structure space is
believed to be not practical, thus researchers have brought up
many ideas to eliminate redundancy without loosing capac-
ity. One typical attempt is knowledge distilling, which could
entirely change the original network architecture. The others
generally fall into the category of network pruning, where the
original model skeleton is kept, but the less significant compo-
nents are carefully removed. Weight level pruning is typically
performed on smaller sized networks such as LeNet, while
structured or channel-wise pruning is performed on larger
CNN s such as VGG and ResNet. Both distilling and pruning
could lead to a better interpretability and hence have attracted
growing research interests in recent years. In this paper, we ad-
dress the sparsification problem via structured pruning, and
provide an efficient solution obtaining state-of-the-art results.

Related Work

Observing that the network parameters (weights) can be ex-
pressed in a matrix form, matrix approximation techniques
have been adopted to achieve sparsity. For example, [4] pro-
posed a low-rank matrix factorization to sparsify weights
and provide feature predictions. As an extension, tensor de-
composition is also utilized in [5] to speed up the training of
convolutional neural networks.

Other than factorization approaches, pruning methods have
been shown to be more efficient. In [7], the authors pruned the
parameters that have smaller values, and found it can largely
sparsify the network while keeping the same classification
accuracy. Later in [6], the authors combined pruning with the
idea of low-precision representation, to achieve higher com-
pression ratios in terms of storage. Following a Bayesian learn-
ing framework, [17] offered a mixture of Gaussians as priors
to optimize the loss function and achieved simultaneous prun-
ing and training. In [13], the authors use variational dropout
to provide a method called SparseVD that achieves the best
known weight sparsification performance, in several network
structures. Quantization approaches such as SqueezeNet [9],
use a 6-bit representation to obtain 510x reduction of model
size of AlexNet. [10] even observed that an extreme 2 or 3 dig-
its representation could be enough to achieve a high accuracy.

To obtain interpretable results, structured pruning attracts
more and more attention recently. Typically, structured prun-
ing directly operates on CNN channels or blocks, rather than
individual weights. The benefit of preserving the channel
structure is to take advantage of modern algebra libraries
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Figure 1: Adversarial Structured Pruning Diagram

that apply fast matrix operations. Adding or removing entire
channels rather than individual weights could achieve much
faster computation in practice. In [18], the authors propose
a method called Structured Sparsity Learning (SSL) to reg-
ularize the filters in DNNs. A Bayesian approach to prune
channels is proposed in [14]. Similarly, [11] uses hierarchical
priors and achieve very compact networks compared to previ-
ous methods. In [12], the authors adopt an ¢j regularization
to effectively remove redundant neurons or channels. To take
advantage of convexity, the authors of [8] put masks on the
network sub-blocks, and apply ¢; penalty on those masks. To
question the common practice that smaller values mean less
importance, the authors in [19] proposed a channel pruning
approach that does not rely on this belief, and showed it to be
also effective in their experiments.

Adpversarial example [16] is a small perturbation (usually in-
distinguishable by human) in the input that leads to erroneous
DNN outputs. It has been shown that DNNs have nearly zero
defense against adversarial attacks [1]. To generate adversarial
samples, many optimization based techniques are proposed
such as Carlini & Wagner Attack [2], Elastic-Net Attack [3],
etc. The general idea is to apply gradient based approaches
to minimize a constraint adversarial loss function, which is
designed to fool the network, e.g., output the wrong label. The
constraint guarantees that the perturbed input is very close
to the original, due to the fact that the larger the perturbation,
the easier will it be to find adversarial examples. In [15], ad-
versarial loss is used to construct a novel dropout scheme, and
achieve very good accuracies in several models.

Overview of the Proposed Approach

In this paper, we address the problem of structured sparsi-
fication (channel-wise pruning) given a pretrained network.
Inspired by adversarial attacks, we employ this idea to iden-
tify network components that are sensitive to the adversarial
loss. Unlike a defense method that wants to eliminate such
sensitivity, we instead would like to keep them and remove
the insensitive parts to achieve sparisity. In contrast to the
other pruning methods that do random perturbations on the
output, or simply prune small values, the adversarial loss
points us to the "best direction", which guides us to preserve
the channels that contribute most to the final network output.
It is worth noting that Adversarial Dropout [15] shares
similar spirits, by applying masks trained on adversarial loss.
However, the main difference between our work and Adv-
dropout is that: 1) the detailed method is entirely different
(illustrated in the next section); 2) we are solving a different
problem. Since the storage size is out of interest, quantization
methods are not adopted or compared in this paper.
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The key contributions of this paper include: We propose
a sparsification method that alternates between a regular train-
ing step and an adversarial pruning step, in a layer-wise man-
ner. To the best of the authors” knowledge, this is the first at-
tempt to sparsify a network via solving a constrained adversar-
ial optimization problem. We adaptively adjust the constraint
hyper-parameters in the adversarial pruning phase for differ-
ent layers, to achieve the best layer sparsity. We achieve state-
of-the-art results in popular models like VGG and ResNet. We
empirically analyze the sparsity-accuracy trade-off, and the
impact on the adversarial robustness of the pruned network.

2 ADVERSARIAL STRUCTURED PRUNING

2.1 Notations and Definitions

Let F : RP — R be the network model of interest, where p
and g are the input and output dimensions. Without loss of
generality, we narrow the model for classification tasks, thus
g could be the number of categories. F is parameterized by
60, and 6 consists of all trainable parameters like weights and
bias. We denote x € R as the input, associated with a label
y €{1,...,q9}. (x,y) are pairs from the training set X

Assume that F has a total of K structured layers, e.g., Con-
volution + Batch-Norm + ReLU. Let w = {w;},i € [0,K — 1]
represent the output of each structured layer. For example,
in a convolutional layer, wi; € R4%4 could be the chan-
nel j’s output, which is a feature map of size d x d. We ap-
pend a mask to each channel to switch on or off the en-
tire channel. Formally speaking, for each wjj, we associate
a mask m;; € {0,1}. Then the masked output for layer i’s
channel j (assuming in total n channels) is written as 0;; =
w;; ® broadcast(m;;), i € [0,K—1], j € [0,n], where © is
the Hadamard (element-wise) product, and broadcast() du-
plicates scalar m; ; to a matrix shaped d x d. The final output
of the model can be denoted as F(x|6). Since layer (i — 1)’s
masked output is layer i’s input, we can write the layer-wise
relationship as: w; = F;(0;_1/x,0), i € [0,K — 1]. This is illus-
trated in Figure 1.

2.2 Regular Training Step

The method alternates between a regular training phase and
an adversarial pruning phase. For the regular training, just as
a standard DNN training over the training set X', we solve

0= argmeinIE(xly)eX[,C,gg(y,]-'(x\ﬂ))] + aR(0) 1)

where L;eq is the regular training loss, typically being a cross
entropy loss for classification tasks. R is the regularizer with a
factor of a. This is done via standard techniques like SGD.

2.3 Adversarial Pruning Step
Constructing Adversarial Loss. For an input x, we solve a
following problem to get an adversarial sample x 4 J:

min IE(x,y)eél’[ﬁadv(xf €,9]0)]
’ @
st (L—e)||x[| < [lx+ 0[] < (1+e)]x]|

where § is the perturbation on the input, € is the allowable
deviation from x’s original norm, and typically less than 0.1.
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Conventionally, it is often the £« norm that is used to ensure
that each pixel will not be significantly modified, but ¢; is also
used to promote sparsity. £, is the adversarial loss that tries
to fool the network deviating from the correct label. In this
paper, we adopt a simple form: L4, = —Lreg (y, F (x +516)),
which means that we simply want to maximize the regular loss
to the correct label, but are not concerned with the distribution
of the final softmax output.

Minimizing Adversarial Loss. In the adversarial pruning phase,
for layer i, we fix all the other parameters (6, m; for j # i), but
only optimize m;. In particular, we solve

r{lrllércll —Ey)ex [Lreg(y, F (i1, x|6)] (©)
where C; is the constraint set parameterized by €;, i.e., C; =
{rir = (1= e)f|willo < [[1it; © willoo < (14 €)[[wi|eo}. To
solve Equation 3, we use the projected gradient descent (PGD)
method. Initializing all m; = 1, the PGD’s update step is:
i < Proje (M — 7V, E[Lyg,]), where 77 is the step size.
Proj, operator ensures projection onto the C;. Due to e norm,
the projection is simplified to be a hard thresholding function
applied on each element 1 ;:

i’f’ll‘/]', 1—-€e< 717[1'/]' <l+e
1+ sign(r;; — 1)e, otherwise

Proje (1i1;) = { 4)
Sparsification. After obtaining the updated soft-mask 1;, we
then perform pruning based on 7f;. There will be two cases.

Case 1 happens when the solution of Equation 3 hits C;’s
boundaries. More precisely, 1, ; = 1 +¢€, for some j € [0, [1;| —
1]. Note that this can always happen as long as we set € small
enough, meaning that we can shrink the constraint set to let
the unconstrained solution of Equation 3 be outside of C;. Thus
the Proj. operator would clamp some elements to project back
to C;. In this case, we simply keep the elements that are hitting
or very close to the boundaries, and remove the others. So the
clipping functions would be

m; = Clip(#;) = 1if [fi; ;| > 1+ 7€; 0, otherwise  (5)

where 7 is a threshold parameter. In our experiments we set
T = 0.9. By performing such clipping, we are removing com-
ponents that are not sensitive to the adversarial loss.

Case 2 is that the Proj, operator does not actually perform
clamping, so the unconstrained solution is already inside C;.
Thus we need to change the strategy, and only remove the
smallest s elements, in a greedy way. For example, in the
previous iteration, layer i already removed s; components, so
at this iteration we just try to remove s; + k; smallest elements,
where k; is dynamically adjusted starting from 1. The dynamic
adjusting of k; can be described as: k; < 2k; if performance
(test accuracy) did not drop in last iteration, otherwise k; <
k;/2.So in case 2, the clipping function is defined as:

m; = Clip(i#i;, s) = 0if |1#1; ;| is within s smallest; 1, otherwise

2.4 Putting Together ©

After obtaining m; by clipping, to alleviate the problem of
accuracy drop due to sparsity, for each layer i, we need to
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perform a regular training (Equation 1) to adjust 6 correspond-
ingly, using Adam method. If regular training could not yield
a satisfactory performance within T iterations, we reverse the
mask to be previous m;. Usually we adopt a learning rate de-
caying schedule, e.g., every I (I < T) iterations reduce the
learning rate to 1/10, for the regular training. Note that the
adversarial phase does not need to have any scheduling in
practice. Starting from the layer 0 (closest to the input), we
perform both training for each layer. After iterating all the
layers, we loop back. If all the layers are no longer able to be
sparsified, we terminate the entire process.

3 EXPERIMENTAL EVALUATION

Following the recent papers [14], [19], we experiment on VGG-
like and ResNet20. The structured pruning is performed on
the channel level. We report the each layer’s sparsity, the error
rate, the pruning ratio p and FLOPs saving ratio . p is the
dense model’s parameter number, divided by the pruned
model’s parameter number, i.e., p = |90rig| /|@sparse|, and B is
dense model’s FLOPs divided by the pruned model’s.

We run VGG-like and ResNet20 experiments 5 times each,
then report the averaged results. The hyper parameters in-
clude: T = 10,7 = 0.9; adv learning rate 77,4, = le —2;
reg learning rate #reg = le — 2 for VGG-like and le — 4 for
ResNet20; starting € = 1le — 3 for VGG-like and 0.1 for ResNet20.
Note that most of them are simply set by default, but € for
VGG-like is obtained after several tests. This is because the
behavior for earlier and later layers of VGG are very different,
where the default € = 0.1 is not suitable for later layers. Such
phenomenon of VGG is also reported in [8].

VGG-like on CIFAR10 Dataset

VGGs are known to have a large redundancy, and we follow
the literature to test on the 16-layer VGG-like model on CI-
FAR10 dataset. VGG-like has two linear layers, and takes a
parameter k as a factor to control the number of neurons or
channels in each layer, where in standard case k = 1.0. We
evaluate the VGG-like model with k = 1.0 and k = 1.5 (same
as in [14]). The sparsification results are shown in Table 1.

From the table we can easily see that the proposed scheme
performs much better than the other methods. Especially for
the later layers that have a large number of channels (512 or
768), the adversarial sparsification method can significantly
eliminate redundancy. This is due to the smaller value of
adversarial boundary € = 1073 applied on this model. In our
experiments, we also tested a default € = 0.1 and found it does
not perform very well. The default € = 0.1 works normally in
the early layers, however, we observe that no elements hit the
€ boundary from the beginning for the later layers. Thus these
layers start clipping with Equation 6 instead of Equation 5,
and lose most of the benefit of adversarial pruning. This is
why we need to set € to be smaller than the default value, and
found 1073 could work well for these later layers.

ResNet20 on CIFAR10 Dataset

In this subsection, we tested on another popular network
model ResNet20, on CIFAR10 dataset. We adopt the same
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Table 1: Sparsity and FLOPs in VGG-like, k = 1.0 and k = 1.5

k Algorithm Layer Sparsity Error % | p (Params) | B (FLOPs)
1.0 Original 64 64 128 128 256 256 256 512 512 512 512 512 512 512 7.2 1.0 1.0
SparseVD [13] 64 62 128 126 234 155 31 81 76 9 138 101 413 373 7.2 3.168 1.946
StructuredBP [14] | 64 62 128 126 234 155 31 79 73 9 59 73 56 27 7.5 6.255 2.061
StructuredBPa[14] | 44 54 92 115 234 155 31 76 55 9 34 35 21 280 9.0 7.705 2.319
ours 1 32 38 8 8 155 149 100 150 3 2 2 2 18 12 79 10.571 2.692
ours 2 24 48 91 96 193 179 82 40 4 2 3 3 4 7 8.9 12.464 2.485
15 Original 9 96 192 192 384 384 384 768 768 768 768 768 768 768 6.8 1.0 1.0
SparseVD[13] 9% 78 191 146 254 126 27 79 74 9 137 100 416 479 7.0 4.691 2.575
StructuredBP[14] | 96 77 190 146 254 126 26 79 70 9 71 8 79 49 7.2 8.616 2.711
StructuredBPa[14] | 77 74 161 146 254 125 26 78 66 9 47 55 54 237 79 9.719 2.845
ours 37 56 117 136 274 192 40 3 1 2 1 2 8 4 7.83 18.747 3.199

model as in [19] and compare the sparsity with their reported
results. The ResNet20 includes 3 ResNet groups, where each
group consists of 3 blocks, and each block has 2 convolutional
layers. The sparsification result is shown in Table 2.

Table 2: Sparsity and FLOPs in ResNet20

Alg Orig [19] ours
Group 1 16x6 12-12-6-6-11-11 1-2-1-1-12-10
Group 2 32x6 32-32-28-28-28-28 | 11-16-20-16-14-15
Group 3 64x6 47-47-34-34-25-25 | 52-56-47-35-51-18

Err %, p, [ 80, 1.0, 1.0 | 9.1, 1.593, 1.451 | 9.0, 1.613, 2.055

Sparsity-Accuracy Trade-off

It is well known that the lower the accuracy, the more elements
could be safely removed from the network. We preset the
accuracy level that the network needs to maintain during the
sparsification process, then try to prune as much as possible.
Figure 2 (a) (b) show the sparsity-accuracy trade-off for VGG-
like and ResNet20 networks.

Impact on Adversarial Robustness

Since we employ adversarial attack methods to prune the
network and preserve the sensitive channels, it is interesting to
evaluate the adversarial robustness of the pruned network. We
perform 3 commonly-used attack techniques, FGSM, PGD and
DeepFool (from Foolbox package), on the VGG-like (k = 1.0)
network, to see how attack success rate » changes when the
compression ratio p increases. The empirical study reveals
no significant robustness decay on the pruned network. The
attack success rate r remains similar when p changes from 4
to 13. Details can be found from Figure 2 (c).

4 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel Adversarial Structured Prun-
ing method. This approach leverages an iterative process that
alternates between a regular training and an adversarial prun-
ing step, in a layer-wise manner. The adversarial pruning step
solves a constrained optimization problem where the results
are used as a guideline for channel pruning. The components
that are insensitive to the adversarial loss, would be removed

VGG-like ResNet20
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without sacrificing the model capacity. The experiments re-
veal that this method achieves the state-of-the-art structured
pruning performance. The accuracy-sparsity trade-off is em-
pirically studied, which can be used as a guideline in practice.
We also carry out a preliminary study on the adversarial ro-
bustness of the pruned network, and the initial results do
not show any robustness decay after pruning. In future, we
can adopt the quantization techniques to further improve the
compression rate.
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