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ABSTRACT

The objective of this study is to empirically assess household susceptibility to the power
disruptions during disasters. In this study, a service gap model is utilized to characterize
household susceptibility to infrastructure service disruptions. The empirical household survey
data collected from Harris County, Texas, in the aftermath of Hurricane Harvey was employed in
developing an appropriate empirical model to specify the significance of various factors
influencing household susceptibility. Various factors influencing households’ susceptibility were
implemented in developing the models. The step-wise algorithm was used to choose the best
subset of variables, and availability of substitutes, previous hazards experience, level of need,
access to reliable information, race, service expectations, social capital, and residence duration
were selected to be included in the models. Among three classes of models, accelerated failure
time (AFT)-loglogistic model yielded the best model fitness for estimating households’
susceptibility to disaster-induced power disruption. The model showed that having a substitute,
households’ need for the service, race, and access to reliable information are the most significant
factors influencing household susceptibility to the power disruptions. Understanding households’
susceptibility to infrastructure service disruptions provides useful insights for prioritizing
infrastructure resilience improvements in order to reduce societal impacts.

INTRODUCTION

Infrastructure service disruptions are one of the impacts of natural disasters that threaten the
communities’ well-being. Electricity, water, communication, and transportation are among the
critical services that households rely on prior, during, and after the hazards. In the infrastructure
resilience literature, many research studies have been focusing on assessing physical
performance and systems’ exposure to the disaster-induced service disruption (Dong et al. 2019a,
b; Rasoulkhani and Mostafavi 2018). These studies, however, assume the sub-populations of a
community are equally susceptible and experience equal hardship in the face of natural hazards-
induced service disruptions. Different households experience different levels of hardship under
the same exposure due to their different level of susceptibility. This is because people do not
hold equal needs and expectations of the infrastructure services (Tabandeh et al. 2018). Previous
research (Coleman et al. 2019) has shown that there is a societal inequity in the experienced risks
of households within an affected community. The socially vulnerable population is shown to
suffer more hardship from infrastructure service disruptions. Hence, it is important to understand
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the determinants of social susceptibility and incorporate it into the assessment of societal risks
due to infrastructure service disruptions.

Determining the social susceptibility to the service disruptions during natural disasters is
challenging as households do not encounter prolonged service losses in their day-to-day lives. As
a result, households do not have a clear perception of the potential threats and their ability to
tolerate these disruptions before they actually experience one. Recognizing this, recent reports by
the National Institute of Standards and Technology (Applied Technology Council 2016), and the
National Infrastructure Advisory Council (Berkeley IIT and Wallace 2010) concluded that the
current body of knowledge lacks fundamental empirical information about societal susceptibility
and risks due to infrastructure disruptions in disasters. Addressing this important gap, we
developed an empirical model to determine the household susceptibility to disaster-induced
power outages based on survey data.

THEORETICAL BACKGROUND

We use a service gap model developed by Esmalian et al. (2019) to characterize the social
susceptibility to the threats of infrastructure services disruptions. This framework suggests that
households’ experienced hardship in infrastructure service disruptions depends on the duration of
the outages (service disruption exposure level) and their tolerance to withstand the negative
impacts. Households have a varying zone of tolerance for the service disruptions and would
experience disproportionate hardship when the service disruptions surpass their tolerance for the
service. The service gap model explains why the same level of disruption exposure results in
different levels of experienced hardship (Esmalian et al. 2019b). Thus, in the current study, the
zone of tolerance was used to measure household susceptibility to infrastructure service
disruptions.

Zone of tolerance is determined by different demographic characteristics of households, as
well as household capabilities and resources they possess to mitigate the risk. Previous research
related to the determinants of the zone of tolerance in the case of power outages identified the
following influencing variables (Esmalian et al. 2019a):

1) Need: The more important it is for households to have access to electricity, the lower

their zone of tolerance is to the service outages.

2) Preparedness: The greater households are prepared for threats of the disaster, the higher
household’ zone of tolerance will be to the power outages.

3) Substitute: Households which have access to a substitute for power will have a higher
zone of tolerance to the disruptions.

4) Social capital: Households having a social capital as friends and family to rely on their
help during the disaster have a higher zone of tolerance.

5) Experience: Households with previous experience with natural disasters have a higher
zone of tolerance to the service disruptions.

6) Service expectations: Households with a higher expectation of the service losses have a
higher zone of tolerance to the service outages.

7) Information: Households having access to more reliable information about the service
disruptions have a higher zone of tolerance.

8) Sociodemographic characteristics: lower-income households, racial minorities,
households with kids (age 10 or less), households with an elderly, renters, households
who have lived in their residents shorter, and households living in multiple unit housings
have a lower zone of tolerance to power outages.
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In this study, we examined the significance of each of these factors in developing an
empirical model of household susceptibility to service disruptions.

DATA

A household survey was distributed across Harris County, Texas in the aftermath of
Hurricane Harvey. The online panel, Qualtrics, was used for distributing the survey. This study
focused on sheltered-in-place households since those who had evacuated before the event might
not experience service losses. After removing incomplete responses and those who evacuated, a
total sample of 574 responses were used for examining the households’ zone of tolerance for
power outages. The following table displays the measurement of variables considered in the

survey for modeling the zone of tolerance.

Table 1. Variable Description of the Models

Variable description

Variable description

Zone of tolerance (number of days)
Substitute (1: yes; 0. no )

Experience (1: yes; 0: no )

Need (5: important always to 1: not at
all important)

Education (1: less than high school; 2:
high school graduate or GED; 3:
trade/technical/vocational training; 4:
some college; 5: 2-year degree; 6: 4-
year degree; 7: graduate Level)
Preparedness (1. over-prepared to 5: not
at all prepared )

Social capital (1: yes; 0: no )
Information reliability (5. almost always
to 1: never)

Residence Type (1. single-family
housing; 0: multiple units )

Ownership (1. yes; 0: no )
Residence duration (number of years)
Service expectation (number of days)

Race minority (1. yes, 0: no )

Income (1: less than 325,000, 2:
$25,000-849,999; 3: $50,000-$74,999;
4: 875,000-899,999;5: 8100,000-
$124,999; 6: 8125,000-$149,999; 7:
more than $150,000)

Mobility/ disability (1. yes, 0: no )

Age ten (1. yes; 0: no )
Elderly (1: yes; 0: no )

METHODOLOGY

The focus of the current paper is to specify a statistical model with an appropriate fit and an
efficient number of predictor for determining the households’ zone of tolerance to power outages
based on consideration of different influencing factors. First, the models were fitted to data,
including all the available predictors, and then various algorithms were applied on models to find
the best subset of the variables for estimating the zone of tolerance. The proper model for each
class and the efficient subset of variables were selected, and then the selected models were
compared based on their prediction accuracy using cross-validation.

Models Implemented

The zone of tolerance is measured based on the number of days that household could tolerate
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the disruption. Three modeling classes (Poisson regression models, Accelerated Failure Time
(AFT) models, and ensemble learning methods (random forest and boosting)) were evaluated to
find a suitable method for modeling household susceptibility measure by the zone of tolerance.
The remainder of this section discusses each class of the models and their results.

Poisson Regression Model

Poisson regression, which is a type of generalized linear models is useful when dealing with
count data. Poisson distribution for the random component can take non-negative integer values
and is a right-skewed distribution (Agresti 2007). As the zone of tolerance is measured in the
number of days and has a positive skewness (Figure 1), Poisson regression could be an
appropriate candidate for modeling zone of tolerance.
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Figure 1. Histogram of the Zone of Tolerance

Poisson regression modeling, however, is based on an assumption that the mean and the
variance of the distribution are equal. This assumption is not valid for the zone of tolerance,
which has a mean of 3.83 and variance of 13.45 (based on the survey responses). Negative
Binomial regression (Cameron and Trivedi 2013) is another method which can be used for such
count data. This method accounts for the heterogeneity in the data by allowing the variance to
exceed the mean. The Negative Binomial model with a log link function was tested, as shown in
Equation 1.

T
where, g is the mean tolerance, xl-T is the vector of the predictors, £ is the vector of
parameters, &; is the error term, and exp(sl-) being a random gamma variable with a mean ofl

and a variance of « .
Accelerated Failure Models

AFT models are a type of survival analysis approaches for the time-to-event data. Survival
data are generally positive and non-symmetrically distributed often with a positive skew. Such
characteristics make survival analysis a proper model for the zone of tolerance. These models
have shown to be successful choices in predicting the restoration time of the power outages (Liu
et al. 2007). Adopting an AFT model would enable relating the zone of tolerance to the
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predictors with a linear relationship, as shown in Equation 2.
T
In this equation g is the mean tolerance, x,-T is the vector of predictors, £ is the vector of

parameters, and ¢&; is error terms which are assumed to be independently distributed.

We used residual values of the models to investigate which distribution for the survival time
would best fit the data. To this end, Kaplan-Meier estimator of residuals was used to determine
whether the assumed distribution sufficiently fits the data (Hosmer and Lemeshow 1999).
Exponential, Weibull, Log-logistic, and Lognormal distributions were considered for error terms
g;. As shown in Figure 2, the logistic and Lognormal distributions yield a better fit compared to

Exponential and Weibull.
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Figure 2. Checking the Fit of the Survival Models (a) Exponential (b) Weibull, (c¢) log-
logistic, and (d) log-normal AFT models.

Ensemble Learning Methods

Random forest and boosting are also examined to model the zone of tolerance. This class of
models does not use a specific probability distribution for the response variable (Nateghi et al.
2014). Random forest models generate a number of decision trees by drawing bootstrap
resamples from the dataset and use their averages for the prediction. The regression tree for
generating each of the decision trees is built by randomly selecting m variables out of the total
number p predictors to decorrelate the trees. Boosting is based on a similar approach; however,
the trees are generated sequentially. This means that each tree is not generated with the bootstrap
sample; instead, the tree is fit on the modified form of the original dataset (James et al. 2014). In
both methods, one needs to determine the tuning parameters. In this study, cross-validation was
used to find the optimum tuning parameters based on the test error. Random forest model was
generated using 250 trees and m =2 . Boosting was developed by 100 trees, shrinkage A =.04,
and depth =1.
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Model Selection

The stepwise model selection algorithm utilized to choose the best subset of the influencing
variables for the Negative Binomial model and AFT models. Here, the goal was to find the
model which can properly fit the data and also control for the number of variables included in the
model. Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used
for the stepwise model selection. AIC criteria may tend to choose more variables when the
sample size is large; thus, we examined BIC as well, which imposes a higher penalty for having
many variables as shown by the equations below.

AIC =-2xIn(L)+2x(p) 3)

BIC =-2xIn(L)+ pln(n) 4)
L refers to the likelihood of the fitted model, p is the number of parameters used in the model,
and n is the sample size.

Table 2. Summary of the Results for the Zone of Tolerance Models
Negative AFT-

Variables Binomial Lognormal
AIC BIC AIC BIC AIC BIC
v v v
v v v
v v v

v

AFT-Loglogistic

Substitute
Experience

Need

Service expectation
Preparedness
Social capital
Information
Residence Type
Ownership
Residence duration 4 v
income
Race minority v v v v v
education
Mobility/ disability v
Age ten
Elderly
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RESULTS

The summary of the results for selecting the best subset of the variables to be included in the
models is presented in Table 2. Based on the results shown in Table 2, we ultimately selected a
model containing substitute, experience, need, information, racially minority, service
expectations, social capital, and residence duration. Substitute, experience, need, information,
and racially minority are significant factors in almost all the models using AIC and BIC criteria
(Table 2), and thus included in the model. Service expectation of a household was included in the
model as it influences the general level of preparedness of the households. Social capital, which
refers to the resources available in a household’s social network, was chosen since it has been
shown to be an important variable in household recovery in disasters (Aldrich 2011). Residence
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duration affects the protective actions of the households. Households which lived in their homes
for a longer period of time are more probable to take effective risk mitigation actions such as
buying a generator (Lindell and Perry 2000; Stein et al. 2014); therefore, residence duration is
included in the model.

The three classes of models were developed using the selected subset of the variables.
Negative Binomial model, AFT- Loglogistic, AFT-Lognormal, Random forest, and Boosting
were compared based on their test error to select a proper modeling class. Here we compared the
out-of-sample modeling accuracy of the models by using cross-validation. The model
performance was calculated using 10-fold cross-validation. Subsequently, the data were divided
into 10 equally sized groups, the first group was held out as the validation dataset, and the model
was created by the remaining data. Rotating the validation dataset, the final cross-validation error
was computed by averaging each test error. Calculated Mean square error (MSE) of the models
is presented in Table 3.

Table 3. Prediction Results for the Zone of Tolerance Models

Model MSE
Negative Binomial 15.87
AFT-Lognormal 13.48
AFT-Loglogistic 12.29
Random forest 12.55
Boosting 12.39

The results of Table 3 suggest that the most accurate models are AFT with Loglogistic
assumption of the errors, boosting, and random forest. We select the AFT model as the final
model for measuring the zone of tolerance because of its simplicity over the random forest and
boosting. The rest of this section presents the fit of the AFT model.

Table 4. Final Loglogistic AFT Model for Prediction the Zone of Tolerance

Downloaded from ascelibrary.org by Texas A&M University on 11/09/20. Copyright ASCE. For personal use only; all rights reserved.

Variables Mean St. Error P-value

Intercept 1.7825 0.1798 <0.0001
Substitute 0.2606 0.0773 0.0008
Experience 0.2363 0.0954 0.0132
Need -0.1379 0.0326 <0.0001
Service expectation 0.0240 0.0102 0.0181
Social capital 0.0798 0.0642 0.2130
Information 0.0887 0.0328 0.0069
Residence duration 0.0040 0.0023 0.0820
Race minority -0.2146 0.0702 0.0023
Log(scale) -0.9373 0.0385 <0.0001

The results of the AFT model show that households which have a substitute for the zone of
tolerance have a higher zone of tolerance for power outages. Previous experience of the
households leads to a higher level of tolerance for power outages. These households have a better
perception regarding the prolonged service outages and are better capable of withstanding the
inverse impacts. The greater a household need for services, the lower their tolerance to the
disruptions. For example, households which need the electricity for using a medical device
would have a lower tolerance to the service losses. Households’ expectation of the potential
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disruptions is associated with their tolerance. Their expectation affects their preparation and
other protective actions that household would take to mitigate the risks, and therefore influence
their zone of tolerance. Social capital was also included in the model, and it is shown to have a
positive association with the zone of tolerance. Households with access to more reliable
information have reported a greater zone of tolerance. Access to proper information enables
households to better prepare and cope with service losses. Residence duration of households
positively influences their zone of tolerance, which is mainly due to their higher protective
actions. Finally, the model suggests that racial minorities have a lower zone of tolerance to the
power outages. This result highlights a disparity in household susceptibility for vulnerable
populations such as racial minorities.

CONCLUSION

This study examined the zone of tolerance for characterizing household susceptibility to
power outages caused by natural disasters. Using survey data collected from the affected
households in the aftermath of Hurricane Harvey, multiple empirical models were developed for
determining households’ tolerance to the power outages. Negative Binomial models, AFT
models, and ensemble learning methods were examined for determining the most appropriate
statistical model.

The contributions of this study are threefold. First, this study identified the influencing
factors such as having a substitute, having previous experience with a disaster, the need to the
service, access to reliable information, being racially minority, household’s expectation of the
disruptions, social capital, and duration of the residents as the best subset of variables for
determining the zone of tolerance. Second, the analysis showed that the AFT model with
Loglogistic distribution outperforms the other methods with its prediction accuracy. The
empirical model of household susceptibility complements the existing models of power outage
prediction in order to determine the societal risks of prolonged power outages in extreme weather
events and other natural disasters. Third, and from a practical perspective, the developed
empirical model enables estimation of households’ susceptibility and risks due to infrastructure
service losses and provides utility companies with a tool to strategically allocate the resources to
minimize the societal impacts of service disruptions through better investment prioritization and
restoration operation planning.
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