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ABSTRACT 

 The objective of this study is to empirically assess household susceptibility to the power 
disruptions during disasters. In this study, a service gap model is utilized to characterize 
household susceptibility to infrastructure service disruptions. The empirical household survey 
data collected from Harris County, Texas, in the aftermath of Hurricane Harvey was employed in 
developing an appropriate empirical model to specify the significance of various factors 
influencing household susceptibility. Various factors influencing households’ susceptibility were 
implemented in developing the models. The step-wise algorithm was used to choose the best 
subset of variables, and availability of substitutes, previous hazards experience, level of need, 
access to reliable information, race, service expectations, social capital, and residence duration 
were selected to be included in the models. Among three classes of models, accelerated failure 
time (AFT)-loglogistic model yielded the best model fitness for estimating households’ 
susceptibility to disaster-induced power disruption. The model showed that having a substitute, 
households’ need for the service, race, and access to reliable information are the most significant 
factors influencing household susceptibility to the power disruptions. Understanding households’ 
susceptibility to infrastructure service disruptions provides useful insights for prioritizing 
infrastructure resilience improvements in order to reduce societal impacts. 

INTRODUCTION 

Infrastructure service disruptions are one of the impacts of natural disasters that threaten the 
communities’ well-being. Electricity, water, communication, and transportation are among the 
critical services that households rely on prior, during, and after the hazards. In the infrastructure 
resilience literature, many research studies have been focusing on assessing physical 
performance and systems’ exposure to the disaster-induced service disruption (Dong et al. 2019a, 
b; Rasoulkhani and Mostafavi 2018). These studies, however, assume the sub-populations of a 
community are equally susceptible and experience equal hardship in the face of natural hazards-
induced service disruptions. Different households experience different levels of hardship under 
the same exposure due to their different level of susceptibility. This is because people do not 
hold equal needs and expectations of the infrastructure services (Tabandeh et al. 2018). Previous 
research (Coleman et al. 2019) has shown that there is a societal inequity in the experienced risks 
of households within an affected community. The socially vulnerable population is shown to 
suffer more hardship from infrastructure service disruptions. Hence, it is important to understand 
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the determinants of social susceptibility and incorporate it into the assessment of societal risks 
due to infrastructure service disruptions. 

Determining the social susceptibility to the service disruptions during natural disasters is 
challenging as households do not encounter prolonged service losses in their day-to-day lives. As 
a result, households do not have a clear perception of the potential threats and their ability to 
tolerate these disruptions before they actually experience one. Recognizing this, recent reports by 
the National Institute of Standards and Technology (Applied Technology Council 2016), and the 
National Infrastructure Advisory Council (Berkeley III and Wallace 2010) concluded that the 
current body of knowledge lacks fundamental empirical information about societal susceptibility 
and risks due to infrastructure disruptions in disasters. Addressing this important gap, we 
developed an empirical model to determine the household susceptibility to disaster-induced 
power outages based on survey data. 

THEORETICAL BACKGROUND 

We use a service gap model developed by Esmalian et al. (2019) to characterize the social 
susceptibility to the threats of infrastructure services disruptions. This framework suggests that 
households’ experienced hardship in infrastructure service disruptions depends on the duration of 
the outages (service disruption exposure level) and their tolerance to withstand the negative 
impacts. Households have a varying zone of tolerance for the service disruptions and would 
experience disproportionate hardship when the service disruptions surpass their tolerance for the 
service. The service gap model explains why the same level of disruption exposure results in 
different levels of experienced hardship (Esmalian et al. 2019b). Thus, in the current study, the 
zone of tolerance was used to measure household susceptibility to infrastructure service 
disruptions. 

Zone of tolerance is determined by different demographic characteristics of households, as 
well as household capabilities and resources they possess to mitigate the risk. Previous research 
related to the determinants of the zone of tolerance in the case of power outages identified the 
following influencing variables (Esmalian et al. 2019a): 

1) Need: The more important it is for households to have access to electricity, the lower 
their zone of tolerance is to the service outages. 

2) Preparedness: The greater households are prepared for threats of the disaster, the higher 
household’ zone of tolerance will be to the power outages. 

3) Substitute: Households which have access to a substitute for power will have a higher 
zone of tolerance to the disruptions. 

4) Social capital: Households having a social capital as friends and family to rely on their 
help during the disaster have a higher zone of tolerance. 

5) Experience: Households with previous experience with natural disasters have a higher 
zone of tolerance to the service disruptions. 

6) Service expectations: Households with a higher expectation of the service losses have a 
higher zone of tolerance to the service outages. 

7) Information:  Households having access to more reliable information about the service 
disruptions have a higher zone of tolerance. 

8) Sociodemographic characteristics: lower-income households, racial minorities, 
households with kids (age 10 or less), households with an elderly, renters, households 
who have lived in their residents shorter, and households living in multiple unit housings 
have a lower zone of tolerance to power outages. 
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In this study, we examined the significance of each of these factors in developing an 
empirical model of household susceptibility to service disruptions. 

DATA 

A household survey was distributed across Harris County, Texas in the aftermath of 
Hurricane Harvey. The online panel, Qualtrics, was used for distributing the survey. This study 
focused on sheltered-in-place households since those who had evacuated before the event might 
not experience service losses. After removing incomplete responses and those who evacuated, a 
total sample of 574 responses were used for examining the households’ zone of tolerance for 
power outages. The following table displays the measurement of variables considered in the 
survey for modeling the zone of tolerance. 

Table 1. Variable Description of the Models 
Variable description Variable description 
Zone of tolerance (number of days) Ownership (1: yes; 0: no ) 
Substitute (1: yes; 0: no ) Residence duration (number of years) 
Experience (1: yes; 0: no ) Service expectation (number of days)  
Need (5: important always to 1: not at 
all important) 

Race minority (1: yes; 0: no ) 

Education (1: less than high school; 2: 
high school graduate or GED; 3: 
trade/technical/vocational training; 4: 
some college; 5: 2-year degree; 6: 4-
year degree; 7: graduate Level) 

Income (1: less than $25,000; 2: 
$25,000-$49,999; 3: $50,000-$74,999; 
4: $75,000-$99,999;5: $100,000-
$124,999; 6: $125,000-$149,999; 7: 
more than $150,000) 

Preparedness (1: over-prepared to 5: not 
at all prepared ) 

Mobility/ disability (1: yes; 0: no ) 

Social capital (1: yes; 0: no ) Age ten (1: yes; 0: no ) 
Information reliability (5: almost always 
to 1: never) 

Elderly (1: yes; 0: no ) 

Residence Type (1: single-family 
housing; 0: multiple units ) 

 

METHODOLOGY 

The focus of the current paper is to specify a statistical model with an appropriate fit and an 
efficient number of predictor for determining the households’ zone of tolerance to power outages 
based on consideration of different influencing factors. First, the models were fitted to data, 
including all the available predictors, and then various algorithms were applied on models to find 
the best subset of the variables for estimating the zone of tolerance. The proper model for each 
class and the efficient subset of variables were selected, and then the selected models were 
compared based on their prediction accuracy using cross-validation. 

Models Implemented 

The zone of tolerance is measured based on the number of days that household could tolerate 
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the disruption. Three modeling classes (Poisson regression models, Accelerated Failure Time 
(AFT) models, and ensemble learning methods (random forest and boosting)) were evaluated to 
find a suitable method for modeling household susceptibility measure by the zone of tolerance. 
The remainder of this section discusses each class of the models and their results. 

Poisson Regression Model 

Poisson regression, which is a type of generalized linear models is useful when dealing with 
count data. Poisson distribution for the random component can take non-negative integer values 
and is a right-skewed distribution (Agresti 2007). As the zone of tolerance is measured in the 
number of days and has a positive skewness (Figure 1), Poisson regression could be an 
appropriate candidate for modeling zone of tolerance. 

 
Figure 1. Histogram of the Zone of Tolerance 

Poisson regression modeling, however, is based on an assumption that the mean and the 
variance of the distribution are equal. This assumption is not valid for the zone of tolerance, 
which has a mean of 3.83 and variance of 13.45 (based on the survey responses). Negative 
Binomial regression (Cameron and Trivedi 2013) is another method which can be used for such 
count data. This method accounts for the heterogeneity in the data by allowing the variance to 
exceed the mean. The Negative Binomial model with a log link function was tested, as shown in 
Equation 1. 
 log T

i i ix      (1) 

where, i  is the mean tolerance, T
ix  is the vector of the predictors,   is the vector of 

parameters, i  is the error term, and  exp i  being a random gamma variable with a mean of1 
and a variance of  . 

Accelerated Failure Models 

AFT models are a type of survival analysis approaches for the time-to-event data. Survival 
data are generally positive and non-symmetrically distributed often with a positive skew. Such 
characteristics make survival analysis a proper model for the zone of tolerance.  These models 
have shown to be successful choices in predicting the restoration time of the power outages (Liu 
et al. 2007). Adopting an AFT model would enable relating the zone of tolerance to the 
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Model Selection 

The stepwise model selection algorithm utilized to choose the best subset of the influencing 
variables for the Negative Binomial model and AFT models. Here, the goal was to find the 
model which can properly fit the data and also control for the number of variables included in the 
model. Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used 
for the stepwise model selection. AIC criteria may tend to choose more variables when the 
sample size is large; thus, we examined BIC as well, which imposes a higher penalty for having 
many variables as shown by the equations below. 
    2 ln 2AIC L p       (3) 

    2 ln lnBIC L p n      (4) 
L  refers to the likelihood of the fitted model, p  is the number of parameters used in the model, 
and n  is the sample size. 

Table 2. Summary of the Results for the Zone of Tolerance Models 

Variables 
Negative 
Binomial 

AFT-
Lognormal AFT-Loglogistic 

AIC BIC AIC BIC AIC BIC 
Substitute             
Experience             
Need             
Service expectation           
Preparedness       
Social capital         
Information             
Residence Type        
Ownership       
Residence duration         
income       
Race minority            
education       
Mobility/ disability        
Age ten       
Elderly       

RESULTS 

The summary of the results for selecting the best subset of the variables to be included in the 
models is presented in Table 2. Based on the results shown in Table 2, we ultimately selected a 
model containing substitute, experience, need, information, racially minority, service 
expectations, social capital, and residence duration. Substitute, experience, need, information, 
and racially minority are significant factors in almost all the models using AIC and BIC criteria 
(Table 2), and thus included in the model. Service expectation of a household was included in the 
model as it influences the general level of preparedness of the households. Social capital, which 
refers to  the resources available in a household’s social network, was chosen since it has been 
shown to be an important variable in household recovery in disasters (Aldrich 2011). Residence 
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duration affects the protective actions of the households. Households which lived in their homes 
for a longer period of time are more probable to take effective risk mitigation actions such as 
buying a generator (Lindell and Perry 2000; Stein et al. 2014); therefore, residence duration is 
included in the model. 

The three classes of models were developed using the selected subset of the variables. 
Negative Binomial model, AFT- Loglogistic, AFT-Lognormal, Random forest, and Boosting 
were compared based on their test error to select a proper modeling class. Here we compared the 
out-of-sample modeling accuracy of the models by using cross-validation. The model 
performance was calculated using 10-fold cross-validation. Subsequently, the data were divided 
into 10 equally sized groups, the first group was held out as the validation dataset, and the model 
was created by the remaining data. Rotating the validation dataset, the final cross-validation error 
was computed by averaging each test error. Calculated Mean square error (MSE) of the models 
is presented in Table 3. 

Table 3. Prediction Results for the Zone of Tolerance Models 
Model MSE 
Negative Binomial 15.87 
AFT-Lognormal 13.48 
AFT-Loglogistic 12.29 
Random forest 12.55 
Boosting 12.39 

The results of Table 3 suggest that the most accurate models are AFT with Loglogistic 
assumption of the errors, boosting, and random forest. We select the AFT model as the final 
model for measuring the zone of tolerance because of its simplicity over the random forest and 
boosting. The rest of this section presents the fit of the AFT model. 

Table 4. Final Loglogistic AFT Model for Prediction the Zone of Tolerance 
Variables Mean St. Error P-value 
Intercept 1.7825 0.1798 <0.0001 
Substitute 0.2606 0.0773 0.0008 
Experience 0.2363 0.0954 0.0132 
Need -0.1379 0.0326 <0.0001 
Service expectation 0.0240 0.0102 0.0181 
Social capital 0.0798 0.0642 0.2130 
Information 0.0887 0.0328 0.0069 
Residence duration 0.0040 0.0023 0.0820 
Race minority -0.2146 0.0702 0.0023 
Log(scale) -0.9373 0.0385 <0.0001 

The results of the AFT model show that households which have a substitute for the zone of 
tolerance have a higher zone of tolerance for power outages. Previous experience of the 
households leads to a higher level of tolerance for power outages. These households have a better 
perception regarding the prolonged service outages and are better capable of withstanding the 
inverse impacts. The greater a household need for services, the lower their tolerance to the 
disruptions. For example, households which need the electricity for using a medical device 
would have a lower tolerance to the service losses. Households’ expectation of the potential 
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disruptions is associated with their tolerance. Their expectation affects their preparation and 
other protective actions that household would take to mitigate the risks, and therefore influence 
their zone of tolerance. Social capital was also included in the model, and it is shown to have a 
positive association with the zone of tolerance. Households with access to more reliable 
information have reported a greater zone of tolerance. Access to proper information enables 
households to better prepare and cope with service losses. Residence duration of households 
positively influences their zone of tolerance, which is mainly due to their higher protective 
actions. Finally, the model suggests that racial minorities have a lower zone of tolerance to the 
power outages. This result highlights a disparity in household susceptibility for vulnerable 
populations such as racial minorities. 

CONCLUSION 

This study examined the zone of tolerance for characterizing household susceptibility to 
power outages caused by natural disasters. Using survey data collected from the affected 
households in the aftermath of Hurricane Harvey, multiple empirical models were developed for 
determining households’ tolerance to the power outages. Negative Binomial models, AFT 
models, and ensemble learning methods were examined for determining the most appropriate 
statistical model. 

The contributions of this study are threefold. First, this study identified the influencing 
factors such as having a substitute, having previous experience with a disaster, the need to the 
service, access to reliable information, being racially minority, household’s expectation of the 
disruptions, social capital, and duration of the residents as the best subset of variables for 
determining the zone of tolerance. Second, the analysis showed that the AFT model with 
Loglogistic distribution outperforms the other methods with its prediction accuracy. The 
empirical model of household susceptibility complements the existing models of power outage 
prediction in order to determine the societal risks of prolonged power outages in extreme weather 
events and other natural disasters. Third, and from a practical perspective, the developed 
empirical model enables estimation of households’ susceptibility and risks due to infrastructure 
service losses and provides utility companies with a tool to strategically allocate the resources to 
minimize the societal impacts of service disruptions through better investment prioritization and 
restoration operation planning. 
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