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In natural hazard engineering, fragility curves are used to determine the likelihood of damage to an engineered
system under different magnitudes of hazard intensity. Analogous to fragility curves for engineered systems,
survival models developed in the present study determine the extent of disturbances for shelter-in-place
households caused by infrastructure service disruptions during disasters. This study used empirical data from
household surveys collected in the aftermath of Hurricane Harvey, Hurricane Florence, and Hurricane Michael to
create empirical survival models for determining household-level disturbances related to eight infrastructure

services: power, water, communication, sewer systems, transportation, solid waste collection, grocery stores, and
healthcare facilities. The survival models considered various influencing factors, such as sociodemographic
factors, previous experience, risk perception, and access to resources to determine what percentage of households
in a community would experience considerable hardship under varying durations of service disruptions. The
developed curves suggested that although the susceptibility patterns are similar for short durations of infra-
structure service disruptions, prolonged service disruptions pose varying levels of disturbance in different
communities based on the household characteristics and contextual factors. Susceptibility curves could be
implemented with current tools for assessing the reliability and resilience of infrastructure systems to promote
understanding of the societal impacts that disruptions in these services pose to the affected communities. The
resulting empirical survival models provide necessary tools and insights for determining the susceptibility of
communities to disruptions of various infrastructure services during disasters. Hence, the outcomes of this study
provide new empirical insights and models enabling decision-makers to integrate human-centric dimensions into
infrastructure retrofit and restoration processes to more equitably reduce societal impacts of service disruptions.
Such human-centric approaches enable designing socially resilient cities and contribute to designing sustainable
infrastructure systems.

1. Introduction

Assessment of the resilience and reliability of engineered systems has
advanced in recent years due to the development of empirical and
analytical models for investigating system performance. As shown in
Fig. 1, the focus of reliability and resilience analysis studies has been to
create empirical models and analytical methods to evaluate the extent of
damage and disruptions in engineered systems given hazards of varying
magnitudes. First, various prediction tools were developed to estimate
different hazard scenarios posing threats of various magnitudes to
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communities (Komatitsch, FErlebacher, Goddeke, & Michéa, 2010;
Vickery, Lin, Skerlj, Twisdale, & Huang, 2006). These assessment tools
then employ fragility curves for determining the likelihood of damage to
engineered systems under different hazard magnitudes (Dunn et al.,
2018). The fragility curves assist in translating the impacts of hazards
into the probability of failure in systems (U.S. Army Corps of Engineers
2010). Similarly, restoration curves have been created and used to es-
timate the restoration time of damaged engineered systems (Lei, Chen,
Li, & Hou, 2019; Mensah & Duenas-Osorio, 2016). With advancements
in natural hazard engineering methods, such as reliability and resilience

E-mail addresses: amiresmalian@tamu.edu (A. Esmalian), sjdong@udel.edu (S. Dong), amostafavi@civil.tamu.edu (A. Mostafavi).

https://doi.org/10.1016/j.scs.2020.102694

Received 7 August 2020; Received in revised form 24 December 2020; Accepted 26 December 2020

Available online 31 December 2020
2210-6707/© 2020 Elsevier Ltd. All rights reserved.


mailto:amiresmalian@tamu.edu
mailto:sjdong@udel.edu
mailto:amostafavi@civil.tamu.edu
www.sciencedirect.com/science/journal/22106707
https://www.elsevier.com/locate/scs
https://doi.org/10.1016/j.scs.2020.102694
https://doi.org/10.1016/j.scs.2020.102694
https://doi.org/10.1016/j.scs.2020.102694
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scs.2020.102694&domain=pdf

A. Esmalian et al.

models, the impacts and failures of engineered infrastructure systems
could be estimated, and mitigation and retrofit actions plans could be
developed (Dehghani, Mohammadi Darestani, & Shafieezadeh, 2020;
Hendricks et al., 2018). The impacts of natural hazards, however, are
not limited to the failure of engineered physical systems, and there is a
need for translating these impacts on the affected communities and
considering societal impacts (Applied Technology Council, 2016). An
important gap in the current literature is the absence of empirical and
analytical models and tools to determine the societal impacts of infra-
structure disruptions (Dong, Esmalian, Farahmand, & Mostafavi, 2020;
Mostafavi, 2018). Determining the societal impacts helps to understand
the inequities in the impact of natural hazard on the communities and
promoting sustainable way to design and repair the infrastructure
systems.

The inclusion of societal impacts in resilience and reliability analysis
requires an understanding of the tolerance and susceptibility of house-
holds to the service losses (Coleman, Esmalian, & Mostafavi, 2020). The
lack of empirical information about the underlying mechanisms and
extent of households’ susceptibility to infrastructure service disruption
has led to the inadequate consideration of the human-centric aspect in
assessing the societal risks of such hazards (Mostafavi & Ganapati,
2019). Prior studies have shown that the susceptibility to service dis-
ruptions is not equal among the households in an affected community
(Coleman, Esmalian, & Mostafavi, 2019; Dargin & Mostafavi, 2020;
Mitsova, Esnard, Sapat, & Lai, 2018). The determinants of the disparities
in the susceptibility to the service disruptions have been attributed to
the sociodemographic characteristics of the households, their capabil-
ities, expectations and needs, protective actions and risks perceptions
(Chakalian, Kurtz, & Hondula, 2019; Coleman et al., 2019; Coleman
et al., 2020; Dargin, Berk, & Mostafavi, 2020; Esmalian, Dong, Coleman,
& Mostafavi, 2019; Mitsova et al., 2018). While these studies have
improved understanding of the factors influencing the susceptibility of
households, empirical models for the determination of households’
tolerance to service disruptions for determining the impacts of infra-
structure service disruptions on the communities are lacking. In other
words, analogous to fragility curves for engineered systems, there is a
need for susceptibility curves for humans to determine the extent of
disturbances caused by service outages

In this study, we developed empirical models to bridge the gap be-
tween the reliability and resilience assessment of the physical system
and societal considerations (Fig. 1). We first developed models to
determine susceptibility level for shelter-in-place households based on
the duration of the service disruptions. To examine societal risks, the
models integrate reliability assessment of the engineered system with
susceptibility of households. We used the survey data collected in the
aftermath of 2017 Hurricane Harvey in Texas, 2018 Hurricane Florence
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in the Carolinas, and 2018 Hurricane Michael in Florida to develop
empirical survival models for each infrastructure service. Accordingly,
empirical models were implemented to generate susceptibility curves.
These curves provide a tool for translating the extent of service disrup-
tions into societal impacts. Analogous to the use of fragility curves, one
could use the susceptibility curves to identify the proportion of house-
holds for which a certain level of service disruptions exceeds their
tolerance. The susceptibility curves could be integrated with available
reliability and resilience models to estimate the proportion of the sus-
ceptible households in a community. The susceptibility curves help
infrastructure owners and operators, emergency managers, and utility
companies to better examine the societal risks of such service losses.
These empirical curves provide a decision-making tool enabling stake-
holders to plan service recovery strategies while considering the societal
impacts on the affected residents. Enabling consideration of human-
centric aspect into the resilience assessment is a key aspect of
designing sustainable cities.

2. Factors affecting household-level disturbances

Multiple factors influence the extent of household-level susceptibil-
ity to infrastructure service disruption. Esmalian et al. (2019) developed
a service gap model for assessing households’ susceptibility to infra-
structure service disruptions. Households’ tolerance is a metric evalu-
ating the susceptibility of the households to the service disruptions
(Esmalian et al., 2019). This model captures disparities in societal risks
due to such disruptions. The disparities in the societal impacts of
infrastructure disruptions are due not solely to the higher exposure of
certain households. Households intrinsically have different levels of
tolerance to cope with disruptions. In this study, the measure of a
household’s tolerance is used to address this differential ability to cope
with the threats posed by infrastructure service disruptions.

Susceptibility of households to the infrastructure systems disruptions
is affected by various influencing factors. Previous research (e.g., Cole-
man et al., 2019) has shown that socially vulnerable populations, such as
lower-income families, those with lower educational attainment,
households with a young member, and racial minorities, have a signif-
icantly lower tolerance for infrastructure services. In this study, influ-
encing variables (Fig. 2) were identified through an exploratory analysis
of three hurricanes, Hurricane Harvey, Hurricane Florence, and Hurri-
cane Michael. These variables were chosen through a systematic pro-
cess. First, an extensive review of the literature was conducted to
identify the potential factors which could influence tolerance level. Then
survey data were collected from households who experienced one of the
three hurricane events, yielding a large dataset for investigating
importance of the variables. Finally, the significance of the variables was
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Fig. 1. Spectrum of analysis tools and models for assessing the physical disruptions and social disturbances in the nexus of hazards, built environment, and humans.
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Fig. 2. Factors influencing susceptibility to infrastructure service disruption.

tested on tolerance to various infrastructure services to identify influ-
encing factors. In this study, we built the models to determine the
tolerance using these identified variables. Following is a brief descrip-
tion of each variable. (A detailed description of the influencing factors
can be found in (Coleman et al., 2020).

2.1. Demographic factors

Demographic characteristics influence households’ perceptions, re-
sources, and vulnerability to a threat (Baker, 2011). In this study, we
collected the demographic characteristics of the households responding
to the survey; specific characteristics of individuals were not considered.
Characteristics considered in the models for determining tolerance of
loss of services were: household income (Fothergill & Peek, 2004), ed-
ucation level of the head of the household (Muttarak & Pothisiri, 2012),
ethnicity (Marsh, Parnell, & Joyner, 2010), a member less than 10 years
of age or older than 65 years of age (Flanagan, Gregory, Hallisey,
Heitgerd, & Lewis, 2011), disabled individual (Stough, Sharp, Resch,
Decker, & Wilker, 2015), an individual ill with chronic disease (Kessler,
Wang, Kendrick, Lurie, & Springgate, 2007), and whether households
have a vehicle. These variables have been shown to separately impact
the tolerance level, but in this research, we investigate their importance
in the presence of the other variables in the model.

2.2. Property factors

Four variables were considered for residences: (1) type of the resi-
dence, (2) if the residence is owned or rented, (3) distance from super-
markets, and (4) whether residences are located in a flood zone. These
variables influence the preparation (Baker, 2011), adjustment (Lindell &
Hwang, 2008), and exposure (Koks, Jongman, Husby, & Botzen, 2015)
of households for the service disruptions.

2.3. Risk perception

(1) Forewarning (the length of time in advance of the event that
households first learn of an impending event), (2) the time that house-
holds start taking preparation actions, (3) information they receive
about the disruptions, and (4) the household’s expectation of the
duration of the disruptions. These variables can influence tolerance by
affecting perception (Morss, Mulder, Lazo, & Demuth, 2016), protective
actions (Lindell, Arlikatti, & Prater, 2009), and responses (Lindell &

Hwang, 2008) of the households about the threats of the disruptions.
2.4. Resources

The household’s (1) preparedness for the event, (2) if they have a
substitute for the disrupted services, and (3) the social capital of the
households were considered as households’ resources for coping with
the service disruptions. Households with better general preparedness for
the disruptions would better tolerate the disruptions (Baker, 2011).
Moreover, disruptions in some services, such as electricity, could be
offset by the substitute, such as a generator, if available. Households
with a higher level of self-efficacy are more likely to take protective
actions (Douglas & David, 2001; Mclvor & Paton, 2007). Finally,
households having friends and family members on whom they can rely
during the disaster can better cope with the disruptions (Esmalian et al.,
2019).

2.5. Sensitivity

Households’ sensitivity to service losses is determined by their need
for the service. The need for the service influences susceptibility to
infrastructure service disruption (Clark, Seager, & Chester, 2018).
Households with a higher level of need for the service will have a lower
tolerance for the service disruption. For example, the elderly have seen
to have a high tolerance for the disruption in wireless networks (Cole-
man et al., 2019) due to less reliance on wireless networks in their
day-to-day lives.

In this paper, we collected household surveys and created empirical
models to determine the households’ tolerance to the disruption of eight
critical infrastructure services—electricity, transportation, water,
communication, sewer, solid waste removal, supermarkets, and
healthcare services—using the empirical data collected from the three
hurricanes.

3. Data and method

Three household surveys were deployed in the aftermath of Hurri-
cane Harvey, Hurricane Florence, and Hurricane Michael to collect
relevant service disruption data. Hurricane Harvey was a category 4
hurricane (highest wind 130 mph), which made landfall on Harris
County, Texas, in August 2017. Harvey caused catastrophic flooding in
Houston and caused severe disruptions in infrastructure services.
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Harvey was formed over the Atlantic Ocean on August 17, 2017, and
made landfall August 25, 2017, a forewarning time of roughly 8 days.
Hurricane Florence was a category 4 hurricane with highest wind speed
of 150 mph. Hurricane Florence made landfall in the Carolinas in
September 2018, causing severe damage. This event caused flooding and
was the wettest tropical cyclone of record in the Carolinas. Hurricane
Florence was formed on August 31, 2018, and made landfall at the
Carolina coastal areas around September 13, a forewarning time of
roughly 14 days. The third event considered in this study was Hurricane
Michael, which was a category 5 hurricane (highest wind speed of 160
mph). Hurricane Michael affected the Florida Panhandle in October
2018, and was one of the most severe wind events occurring in the
United States. Hurricane Michael was formed on October 7, 2018, and
made landfall on October 10, 2018, in Florida, which due to its quick
movement, had a short forewarning time of around 3 days. These events,
with Hurricane Harvey as a major flooding hurricane, Michael as an
event with severe winds, and Florence with a combination of the wind
and flooding, were used to explore households’ experience with infra-
structure disruptions. Fig. 3 shows the study area of (a) Hurricane
Harvey, (b) Hurricane Florence, and (c) Hurricane Michael.

3.1. Survey implementation

We collected survey data in the aftermath of Hurricane Harvey,
Hurricane Florence, and Hurricane Michael using the Qualtrics survey
platform. Qualtrics maintains online panels of responders who have
agreed to take surveys. Qualtrics surveys have successfully collected
data in surveys implemented by scholars and practitioners. As house-
holds who evacuate before the disaster may not experience infrastruc-
ture service disruptions, the survey focused mainly on shelter-in-place
households which decided not to evacuate during the event.

The focus of this study was to examine the impacts of infrastructure
service disruptions on households; thus, coastal areas with evacuation
orders were not included in the samples. The data for Hurricane Harvey
were collected from Harris County, with a population of around 4.65
million. The number of responders for each focus area was designed to
be proportional to the population of each ZIP code. Those who evacu-
ated their homes and the flooded households were removed from the
analysis. The Hurricane Harvey survey numbered 1,008 complete re-
sponses, from which 850 were used for creating the models after
removing surveys of households which evacuated. Household data for
Hurricane Florence were collected from affected counties in North
Carolina, with a combined population of 1 million. A total sample of 573
responses was collected, with 401 used for analysis. The data for Hur-
ricane Michael were collected from the residents of Florida, Georgia, and
Alabama, with the largest portion of responses from Florida. The im-
pacts of infrastructure service disruptions extended to residents of

@ ()
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Number of responses
c 0
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@ 31-40
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Georgia and Alabama; thus, we enlarged our sample to include those
households as well. This survey contained 706 responses, from which
619 responses were drawn for developing the models.

3.2. Measures

The tolerance of households to service disruptions was measured by
asking, Considering an upcoming severe hurricane (like Harvey/Florence/
Michael), overall, how many days could your household tolerate the (Ser-
vice disruptions)?. In this way, we measured the subjective capability of
the households to tolerate the disruptions, which helps to understand
the underlying causes and mechanisms leading to susceptibility.
Examining a household’s tolerance through the subjective measure
takes into account that households recognize what factors influence
their ability to anticipate, buffer, and adapt to the hazard. Therefore,
these measures are related to the cognitive self-evaluation of a house-
hold’s capabilities and capacities for responding to risks (Jones & Tan-
ner, 2017). Households’ tolerance to the disruptions in the eight
infrastructure services was measured, and the models were developed
using the identified significant influencing factors. The descriptive sta-
tistics of the variables used to develop the models is presented in Table 1.
In addition, Table 2 presents the summary statistics for the level of
tolerance under the three events. The survey questions regarding each
question and the specific variable for each service are presented in the
Supplementary information section.

3.3. Survival analysis

Accelerated failure time models (AFT) were used for modeling
tolerance level. AFT models use a survival analysis approach for the
time-to-event data. Survival analysis has been adopted in medical
research, engineering, and economics to describe duration between
events (Barker & Baroud, 2014) and proved to be an appropriate
approach in modeling the restoration of failed engineering systems
(Dale, 1985; Liu, Davidson, & Apanasovich, 2007). Survival data are
triggered by an initial event, such as electrical system failure in power
outages and followed by a subsequent event, such as the restoration of
electricity in this example. The time between these two events is called
survival time (Oakes, 2001). This situation could describe tolerance
data, which are triggered by the initial service losses and are followed by
the time when the duration of service disruptions exceeds what house-
holds could tolerate and thus cause them disturbance. In addition, sur-
vival data are generally positive and non-symmetrically distributed,
often with a positive skew. Such characteristics make survival analysis a
proper tool for determining the tolerance, which is the time span in
which a household could cope with the service disruptions without
experiencing significant hardship. Other types of modeling the tolerance
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Fig. 3. Survey response distribution over the study areas: (a) Hurricane Harvey, (b) Hurricane Florence, (3) Hurricane Michael.
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Table 1
Measures for the influencing factors of the susceptibility to infrastructure
services.
Coding scheme H F M
Demographic characteristics
?fsls)tha" $25000 136 207 256
$25,000-$49,999 21.9 26.8 26.2
(=2)
s(sfg,)ooo-$74,999 228 246 204
Income fZi’)OOO' §99,999 127 130 130
$100,000 -$124,999 9.2 55 6.0
(=5)
$125,000-$149,999 74 44 38
(=6)
More than $150,000 12.4 5.0 5.0
=7
Less than High
1. R 2.
School (=1) ° 0.8 6
High school
graduate or GED 12.9 14.9 17.8
(=2)
Trade/ technical/
Education vocational training 4.5 3.9 6.2
(=3)
Some college (=4) 17.4 20.7 18.2
2-year degree (=5) 8.5 16.0 13.4
4-year degree (=6) 32.4 24.6 22,5
Post Graduate Level 221 191 19.4
=7
. o White (=0) 61.9 65.7 72.7
Racial// Ethnic Minority Non-White (=1) 381 329 259
Having Children (younger than ~ Yes (=1) 16.7 21.0 21.6
10 years) No (=0) 83.1 79.0 78.4
Yes (=1) 34.9 25.7 25.9
Elderly (65 years or older) No (=0) 64.8 74.3 741
Number of years
Years in State™ living in the 27.41  25.83  29.66
respective state
. . - Yes (=1) 18.0 27.6 10.8
Difficulty with Mobility No (=0) 82.0 79.4 89.2
Having Chronic Medical Yes (=1) 29.5 30.1 37.0
Condition No (=0) 70.5 69.9 63.0
C o Yes (=1) 48.0 37.6 42.5
M
edication Use No (=0) 520 624 575
. . Yes (=0) 97.2 92.5 92.8
Having a Vehicle No (=1) 2.80 75 2.9
Property factors
Apartment/ mobile 747 75.1 67.9
. home (=0)
Residence Type Single-family home
ge-tamy 241 238 310
=D
Rented the 704 702 664
. residence (=0)
Homeownership Full ¢
paymen 280 285 316
mortgage loan (=1)
Yes (=1) 17.1 14.4 9.8
Live in Flood Zone No (=0) 68.7 75.7 78.4
Ido not know (N/A)  14.2 9.9 11.8
Distance to Supermarkets* Number in miles 2.97 4.16 6.10
Risk perception
Expected Disruption ** Number in days - - -
Days of Forewarning* Number in days 5.82 8.24 6.26
Days of Preparation™ Number in days 4.19 4.49 3.23

Access to Reliable Information

Previous Experience

Did not search for
information (N/A)
Never (=1)

Seldom (=2)
Sometimes (=3)
Often (=4)

Almost Always (=5)

Sustainable Cities and Society 66 (2021) 102694

Table 1 (continued)

Coding scheme H F M
Exverience Yes (=1) 847 870 789
P No (=0) 153 130 211
Experienced Damage Yes (=1) 528 48.3 48.0
P 8 No (=0) 472 517 520

Resources
Not at all Prepared 21 08 26
=D
ffg;ly Prepared 3.9 6.3 8.9
Preparedness Level S;mewhat Prepared
s P 401 323 365
Well-prepared (=4) 49.0 54.0 46.0
Over-prepared (=5) 4.9 6.6 6.0
Substitute-power Yes (=1) 204 826 365
P No (=0) 796 674 635

Strongly agree (=5) 26.0 28.5 25.7
Somewhat agree
=4

Neither agree nor
disagree (=3)
Somewhat disagree

44.6 47.2 46.7

Self-efficacy for protective
actions related to
infrastructure service

18.7 16.3 17.0

disruptions 7.9 6.1 7.5
P =2)
Strongly disagree 28 19 31
=1
. . . . Yes (=1) 54.5 55.0 57.5
1 1 (F Famil,
Social Capital (Friends/Family) No (=0) 455 45.0 42.5
Social Capital (Emotional Well-  Yes (=1) 79.9 77.1 78.6
being) No (=0) 20.1 22.9 21.4
Social Capital (Community Yes (=1) 42.9 44.2 43.9
Member) No (=0) 57.1 55.8 56.1
Sensitivity

Level of Need for Service ** ?I:)I)at all important - - -
Slightly important
(=2)
Moderately
important (=3)
Very important (=4) - - -
Extremely
important (=5)

" The responses for the mean values are reported.
"™ The responses for each service is provided in the supplementary
information.

such as generalized linear models (Poisson family and negative binomial
regression) and ensemble learning methods (random forests and boost-
ing) were examined by the authors for developing the models; however,
the AFT models were found to have the lowest prediction error and
provided explanatory power. More details can be found in (Esmalian,
Dong, & Mostafavi, 2020).

Using AFT models, we can relate the tolerance directly to the pre-
dictors with a linear relationship, as shown in Eq. (1).

logu, =x'B+ & (€]

where y; represents the mean tolerance, xI denotes the vector of pre-
dictor, f is the vector of parameters, and ¢; is an error term that is
assumed to be independently distributed.

We used the Kaplan-Meier estimator of residuals to determine which
distribution for the survival time would best fit the data (Hosmer and
Lemeshow 1999). We compared the Kaplan-Meier estimators of the re-
siduals with the log-logistic distribution to check the fit. Close exami-
nation of the residuals (Supplementary information, Figs. A1-A8)
revealed that the log-logistic distributions for error terms ¢; leads to an
appropriate fit of the models.

AFT is especially useful for descriptive purposes, such as identifying
the importance of factors influencing tolerance. In this study, we first
included all factors identified to influence the tolerance for each service
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Table 2
Level of Tolerance for Disruptions in Infrastructure Services.
P C w S T SW SM H
Mean 3.84 3.94 3.33 1.34 8.28 9.17 6.98 9.25
Hurricane Harvey Median 3.00 2.00 2.00 0.00 7.00 7.00 5.00 5.00
Std. Dev 4.91 4.76 3.83 3.07 7.32 10.77 6.54 13.95
Mean 6.31 5.73 4.33 1.69 8.94 8.06 7.64 12.65
Hurricane Florence Median 5.00 3.00 3.00 0.00 7.00 5.00 6.00 7.00
Std. Dev 7.28 10.47 6.28 5.50 11.82 11.85 9.53 16.34
Mean 6.97 6.25 4.12 1.66 5.59 8.38 6.50 13.20
Hurricane Michael Median 5.00 3.00 3.00 0.00 5.00 5.00 5.00 7.00
Std. Dev 6.80 10.56 4.91 4.11 4.94 12.39 7.45 17.76

Note: Power (P), communication (C), water (W), sewer (S), transportation (T), solid waste collection (SW), supermarkets (SM), and healthcare facilities (H).
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Fig. 4. Summary of the influencing factors of survival models for power, water, communication, and sewer systems under Hurricane Harvey, Hurricane Florence,
and Hurricane Michael. Coefficients in this plot are normalized with the mean equal to zero and the variance equal to one. The whiskers show the 95 % confidence
interval. Thus, the variables which do not cross the x = 0 line are significant at a 5 % level of confidence. The tables of these results are available in the supple-
mentary information section (Table A2-5).
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in the models. Then, Akaike Information Criterion (AIC), Eq. (2), was
used in a stepwise model selection to choose the best subset of the
variables determining the level of tolerance to disruption of various
infrastructure services.

AIC = -2 xIn(L) +2 % (p) (2)

4. Household-level survival models for developing susceptibility
curves

We developed models based on empirical survey data to determine
the tolerance of households to the eight infrastructure services (power,
transportation, water, communication, sewer, solid waste, supermar-
kets, and healthcare facilities). In this section, we provide a brief over-
view of the factors influencing household-level susceptibility based on
the survival models developed for the three events (Hurricane Harvey,
Florence, and Michael). These models enable determining the tolerance
level for the disruption in each infrastructure service. A household’s
tolerance for the service outages is an indicator of their susceptibility to
service losses. The greater a household’s tolerance for the outages, the
lower its susceptibility would be. The influencing factors for suscepti-
bility regarding each service are identified; the rest of this section pro-
vides a short discussion regarding the influencing factors in the models
for each infrastructure service. Interested readers are referred to the
Supplementary Information for details about the factors and their

Transportation

Solid waste

Sustainable Cities and Society 66 (2021) 102694

associated parameters in the model. We first discuss the services which
households need inside their homes, namely power, water, communi-
cation, and sewer (Fig. 4). Then, Fig. 5 presents the results for trans-
portation, solid waste, supermarket, and healthcare services. These
figures show the summarized results for the developed models for the
household-level susceptibility to the service losses. In these figures, the
whiskers show the 95 % confidence interval of the normalized co-
efficients. In addition, the x = 0 line is depicted to show the statistical
significance of the variables in the models developed for each service.

4.1. Power

Racial minority households had a significant negative coefficient in
both Hurricane Harvey and Hurricane Michael, showing that these
groups have a lower tolerance for power outages even when other var-
iables are taken into account in the models. The metropolitan areas with
densely interconnected roads provide better accessibility for the resi-
dents to obtain their supplies in the case of road closures. Households in
more metropolitan areas could provide essential supplies, such as can-
ned food and flashlights, to better withstand the potential prolonged
power outages. Thus, in the less urban areas of the Carolinas and Florida,
not having a vehicle was a significant negative factor in influencing the
tolerance in Hurricane Michael and Hurricane Florence. In urban Harris
County, this variable was not significant in the model developed for
Hurricane Harvey. Responders affected by Hurricane Harvey live in
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more urban areas compared to those who were affected by Hurricane
Florence and Hurricane Michael. Home ownership and the type of
resident had a significant positive association with the tolerance level;
however, when including other variables, such as having power back up,
these variables became partly significant. This is due to the fact that
homeowners and those living in single-unit houses are more likely to
take protective actions and buy generators, and the impact of these
property factors is mediated in the models.

Having a generator, self-efficacy, and preparedness of the house-
holds play an important role in the susceptibility of the households to
disruptions. These protective actions would increase a household’s
tolerance to power outages. For households to take proper protective
actions, it is important to have advanced warning about the event and to
expect disruptions. Forewarning and preparation duration had a sig-
nificant positive association with the tolerance level in Hurricane Flor-
ence and Hurricane Michael. Affected households in these events had a
higher incidence of previous hurricane encounter with wind-related
power outages. On the other hand, having reliable information about
the disruptions after the outages occur was a significant positive factor
in Hurricane Harvey with fewer wind-related extreme event encounters.
Although correlation analyses (Coleman et al., 2020) revealed that those
with previous experience have a greater tolerance for power outages,
this variable was only significant in Hurricane Michael when other
factors are included. Finally, household’s need for power had a signifi-
cant negative influence on the tolerance level, which shows that, in
addition to the protective actions, it is important to consider the specific
needs of the households in determining their tolerance for the service
disruptions.

4.2. Water

Residence type, racial minority households, and having a child were
significant sociodemographic factors in the developed models. Similar to
power outages, the negative coefficient of being a racial minority
showed that these households reported having a lower tolerance for the
water outages. Those who live in detached housing have more space for
storage of the supplies and potentially more space for storing water
which could afford them a higher tolerance. The direct well-being
impact of water disruption on the children and protecting them from
the potential threats give these households a lower tolerance for the
disruptions.

Storing food and water before the event could help households
prepare for water disruptions. As a result, the significant positive role of
accessing reliable information, the expectations regarding the disrup-
tion, general preparedness level, the duration of forewarning, the
preparation level of the households, and self-efficacy becomes clear. If
proper information about the potential disruption is communicated to
households, preparations such as supplying food and water could
significantly help a household to cope with the water disruptions.
Having social capital in different forms was a significant positive factor
in increasing households’ tolerance for water outages. These households
could rely on assistance from their social ties in coping with water dis-
ruptions. Households with a higher need for water were found to have a
lower tolerance for water disruptions. Therefore, the specific needs of
the household, such as larger households or those with children, largely
influence their tolerance.

4.3. Communication

Although correlation analysis (Coleman et al., 2020) suggested that
factors such as ownership, type of residence, and income are significant
factors influencing tolerance, the developed models showed a decrease
in the influence of such variables when other influencing factors were
included in the models. For example, a lower proportion of the socially
vulnerable households own generators, and including this factor in the
models could mediate the effect of the sociodemographic factors
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considering the cost and space requirement of the generators. On the
other hand, the significance of race, education, having a child, and
having a vehicle in different regions was not mediated by the other
variables included in the models. This could be related to the inherent
needs of these groups in the affected regions or to the influence of other
factors, outside the boundary of the considered variable in the models,
that could affect the tolerance for the communication service
disruptions.

Availability of power back-up supports operation of communication
devices and, therefore is a significant variable in increasing tolerance for
communication disruptions. The general preparedness and the duration
of preparation, on the other hand, may not be relevant to the tolerance
of households to the disruptions in communication services, as sug-
gested by the models. The major ways that households use communi-
cation services are related to communicating with friends and family
and receiving and sharing information about the event, followed by
entertainment, work, and education. Therefore, although general pre-
paredness might help in attaining a higher state of preparedness for
those who decide to shelter in place, it may not directly affect their
tolerance for loss of communication services. Those with a greater self-
efficacy and those who received a longer forewarning were found to
have a higher tolerance for the disruptions. Households with lower
levels of need and higher expectations of the disruptions had higher
levels of tolerance in all the events.

4.4. Sewer

Those with a child are more concerned about the well-being of their
household members and reported having a significantly lower tolerance
for disruptions in sewer service. In general, we found no significant
differences in the manner in which different sociodemographic charac-
teristics influence tolerance level for the disruptions in sewer systems. In
addition, the protective actions for the sewer systems are limited and are
mostly effected after the event. Therefore, variables such as prepared-
ness, forewarning, and preparation duration were found not to influence
tolerance for sewer systems disruptions. Households with social capital
can rely on the help of their social ties in coping with these disruptions
or evacuating their homes, as suggested by the significant positive co-
efficient of this variable. Those with a lower need, heightened antici-
pation of disruptions, and a higher level of self-efficacy seem to have the
highest tolerance for the sewer disruptions.

4.5. Transportation

Sociodemographic characteristics of households are mainly medi-
ated by other variables in the models. One exception is related to the
influence of not having a vehicle on the tolerance for transportation
disruptions, which has a significant negative association with the level
of tolerance. The effect of this variable on the tolerance level could not
be explained by other variables in the models. Households without a car
generally rely on public transportation for commutes and are highly
susceptible to the impact of road closures on public services.

Forewarning is a critical factor in determining tolerance level to
transportation disruptions; this variable has a positive association with
the level of tolerance. Households need to be aware of disaster condi-
tions to decide whether to evacuate or to shelter in place. Preparedness
and self-efficacy help households to meet their needs for travel to obtain
supplies, which make them less susceptible to transportation disrup-
tions. Households who live farther away from the supermarkets have a
higher tolerance for the prolonged road closures. This could be because
these households may store more supplies in their homes to prevent
multiple trips to the supermarkets, which satisfies households’ high
need for supplies during the disaster. The premise of this finding is
dependent on other variables, such as having a vehicle in the models. If a
vulnerable household does not have a vehicle and enough space for
storing supplies and also lives farther away from the supermarkets, their
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tolerance for road closures may get severely affected. Another inter-
esting pattern related to road closures is the higher tolerance of those
who have a higher daily travel mileage. These households may either
have more travel choices or have a better knowledge about the road
conditions, which helps them have a better capability to cope with the
closures.

In Hurricane Harvey, in which residents have more history of
flooding, the previous experience with disasters was a significant factor
influencing the households’ tolerance. This marks the importance of
how educating households on the potential threats of a disaster could
help them in finding ways to mitigate the impacts. Having a higher
expectation of the disruptions and a lower need for using the trans-
portation infrastructure were highly significant in increasing house-
holds’ tolerance for road closures.

4.6. Solid waste

Various sociodemographic characteristics, such as income, educa-
tion, race, having a child, being elderly, and using medication, were
found to be significant in affecting the households’ tolerance for dis-
ruptions in solid water removal. Income, education, being elderly, and
using medication had a positive association with the tolerance level
while being minority and having children were negatively related to the
households’ tolerance. The significance of these sociodemographic
characteristics in the presence of other variables in the models suggests
that, compared to other services, the disparity in susceptibility to service
disruptions, in this case, could not be explained by other variables
considered in the model. The removal of solid waste is not typically done
by individual households, and households’ protective actions, such as
obtaining supplies, usually do not include the preparedness for the
disruptions in solid wastes; therefore, other variables could not mediate
the effect of the sociodemographic characteristics.

Having social capital increases households’ tolerance to disruptions
in solid waste removal. Social ties of the households could help with
debris removal. Having previous experience with a disaster, higher ex-
pectations of the disruptions, and longer duration forewarning increase
the tolerance of the household for the service disruptions. The influence
of these variables on the tolerance, however, is lower compared to other
infrastructure services, especially considering that there are lower pro-
tective actions for mitigating impacts. The effect of these variables in the
developed models shows that households with a better perception of
upcoming disruptions generally have a higher tolerance for service
disruption. This result highlights the importance of proper risk
communication and education about the potential threats of the service
disruptions. The need for the services remains the most significant factor
in explaining the tolerance of the households for disruptions in solid
waste removal.

4.7. Supermarket

Storing enough supplies for shelter-in-place condition could afford
households with a higher tolerance for prolonged disruptions of super-
markets. Prior knowledge of the need for storing supplies, the capability
of obtaining supplies, and the ability to store supplies play a significant
role in the increase of tolerance. Socially vulnerable groups, such as
renters, racial minority households, and households with lower educa-
tion attainment reported a lower tolerance for these types of disruptions.
These populations might have a lower capability to obtain and store the
supplies or a lower perception of the need for storing supplies.

Having a long forewarning and higher expectation of disruptions
could lead to greater household preparedness and could further increase
the household tolerance for disruptions. Those households with strong
social capital could rely on assistance from their social ties when the
disruptions occur and consequently have a higher tolerance for the
service disruptions. The need for the services highly influences the
tolerance for the prolonged disruptions in supermarkets. Interestingly,
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the expectation and the preparedness level were not significant in
Hurricane Florence (with a long forewarning duration); however, self-
efficacy and the sociodemographic characteristics of households
became significant in the Hurricane Florence model. One explanation
for this pattern could be the longer forewarning of affected households
in Hurricane Florence. The long forewarning gave affected households a
longer lead time for obtaining the required supplies for the upcoming
event to take protective actions.

4.8. Healthcare

Multiple sociodemographic characteristics affect the tolerance level
of the households to the disruptions in healthcare facilities. Racial mi-
nority groups, households with lower education attainment, and those
with a child indicated a lower tolerance for these service outages. Those
households with an elderly member and those who take medication
reported a high tolerance. This could be due to the fact that these
households are in need of the service and consequently have stored
medical supplies and are prepared for the potential disruptions.

The need for the healthcare service similar to most other infra-
structure services affected tolerance level. There is a negative associa-
tion between the level of need and households’ tolerance for service
disruptions. Forewarning, having previous experience, and self-efficacy
are indicators that households will better prepare for potential disrup-
tions in the healthcare services. These factors help households to provide
items, such as commonly used medicine and first aid kits, to be prepared
for the threats to well-being.; however, the expectation for potential
disruptions in the healthcare services was not significant in influencing
tolerance. In this case, it is worth mentioning that among all services,
responders reported the lowest expectation of disruptions in healthcare
services. Moreover, not many households have a regular need for the
service before the event; this lower expectation could not explain the
variability in the tolerance for healthcare services. Having social capital
could help households obtain physical and mental support during the
event; therefore, this variable was a significant factor in increasing
tolerance. Having a power back-up was found to increase the tolerance
for healthcare services in Hurricane Michael. Some medical devices
require power and storage of some medication requires refrigeration;
thus power back-up could be of high importance in such instances. An
example like this shows how the increase in the tolerance for one service
(electricity) affects the tolerance for another service (healthcare). Thus,
the need for these services is interdependent.

5. Susceptibility curves for determining household-level
disturbances due to infrastructure service disruptions

Survival curves were developed to determine the proportion of sus-
ceptible households that experience disturbance (i.e., service distur-
bance exceeding tolerance level) under different durations of service
outages. These curves could be developed for various regions to answer
the question: “What proportions of households will not tolerate a certain
duration of service disruption?” In the curves, Kaplan-Meier estimates
were implemented in determining survival probabilities. Survival
probability (P;) of T days is defined as surviving (not experiencing
disturbance) the Tth day having already survived the previous T-1 days
(Oakes, 2001). The overall probability of surviving T days of disruptions
would be then calculated by the following equation:

S(T) =Py x Py X ... x Pr 3

In this equation, each survival probability (Pr) is calculated by dividing
the number of households that did not experience disturbance for T-1
days and survived day Tth by the number of households that did not
experience disturbance by the end of day T-1. Figs. 6 and 7 depict the
proportion of susceptible households for which the duration of disrup-
tion has exceeded their tolerance. This value is calculated as 1- (S(T)).
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These curves could be used by utility providers and decision-makers to
obtain an undemanding of the households’ susceptibility to the potential
service disruptions.

Fig. 6 shows susceptibility curves for power, water, communication,
and sewer services. The results show that households in the three study
regions have a higher susceptibility for disruptions in sewer systems,
followed by water, communication, and power. One explanation for the
higher susceptibility to water and sewer is the inability to provide a
substitute for these services and theses services being related to the basic
functioning of households. The susceptibility curves for these services
are consistent across the three hurricanes. The similarities between the
susceptibility curves for the same service decrease as the duration of the
disruptions increases. This result shows that most communities would
have a similar tolerance for short service disruptions; however, their
disturbance from the prolonged service outages vary among commu-
nities. The duration of disruption which leads to the disturbance of 50 %
of the households in the community is similar in most locations. As the
duration of disruptions increases, however, there are some outlier
households which could tolerate more days of disruptions. The suscep-
tibility patterns for these outliers do not quite match in different regions
and for various services (except for sewer system). The results unveil the
contextual difference in the susceptibility patterns to the disruption to
services. These differences could be related to the specific characteristics
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of the regions (e.g., urban versus suburban versus rural), historical and
cultural backgrounds, and the sociodemographic characteristics of the
areas. These factors should be considered while assessing the suscepti-
bility of different regions. The largest deviation in susceptibility curves
is apparent in the susceptibility to power disruptions in the context of
Hurricane Harvey. Residents of Harris County who were affected by
Hurricane Harvey have less experience with the prolonged power out-
ages and also had a lower rate of having a substitute; therefore, they
seem to have a higher proportion of not surviving the outages. The
graphs containing the various service for each area are presented in the
supplementary information section (Fig. A.9) to help with comparing
susceptibility patterns among different services.

Fig. 7 displays susceptibility curves for susceptibility to trans-
portation, solid waste, supermarkets, and healthcare services outages.
The results show that shelter-in-place households are less susceptible to
these services compared to services needed inside their households. In
addition, the estimated susceptibility curves for these services have less
agreement for the three regions. In general, households have a higher
tolerance for disruptions in these services, and there is a higher uncer-
tainty in estimating these curves. Unlike the susceptibility for power
system disruption, residents affected by Hurricane Michael had a
significantly lower tolerance to road closures compared to the residents
affected by Hurricane Harvey and Hurricane Florence. The difference
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Fig. 7. Susceptibility curves for disruptions in transportation, solid waste collection, supermarkets, and healthcare services.

could be due to the less experience with flooding of those affected
households in Hurricane Michael than in Harvey and Florence. The
curves in Fig. 7, indicate that while the residents affected by Hurricane
Harvey seem to have a higher tolerance for transportation disruptions
than those affected by Hurricane Florence, the residents of Hurricane
Florence show a higher tolerance for road closures of more than a week
(75 % proportion). There are some outliers among residents affected by
Hurricane Florence who could better tolerate road closures due to their
different characteristics and needs from the service.

The proportion of susceptible households for transportation and su-
permarket closures in Hurricane Harvey and the transportation disrup-
tion in Hurricane Florence could be zero for a short period of time. These
patterns suggest that the residents of an affected community have a
capacity to tolerate a short duration of outages without experiencing
great disturbance. The susceptibility curves for the healthcare services
for the three hurricanes are close for disruptions less than four days. As
the duration of service disruptions increases, however, the susceptibility
curves obtained from different hurricanes deviate significantly (Fig. 7).
Residents affected by Hurricane Harvey had a higher susceptibility to
the longer-duration disruptions in healthcare services. A larger pro-
portion of Harris County households experienced disturbance from the
long healthcare access disruptions compared to residents affected by
Hurricane Florence and Hurricane Michael. It should be noted, however,
that the curve is generated considering the responses from all
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households and not merely those who needed the healthcare services.
Thus, some households might have reported a large tolerance for service
disruptions due to their lesser need for the service.

6. Discussion and concluding remarks

Susceptibility curves for susceptibility to infrastructure service
disruption were developed to bridge the gap in the reliability and
resilience analysis of physical infrastructure systems and the impacts
disruptions pose to communities. Susceptibility curves enable trans-
lating the service disruptions to the probability of the household-level
disturbance in the affected communities. Advances in the resilience
analysis of physical infrastructure systems have enabled the assessment
of system performance under various hazard-induced disruptions. While
these models for assessing the system resilience inform about the
physical impacts of natural hazards, they provide no insights regarding
the societal impacts on affected communities. Achieving sustainability
goals such as designing human-centered resilient cities calls for human-
centric approaches to enable inclusion of needs of the community in the
performance assessment of infrastructure systems. In this research, we
developed empirical models to determine households’ tolerance for
service disruptions. The empirical susceptibility curves were created
accordingly to enable inclusion of social considerations in the assess-
ment of the impacts of infrastructure service disruptions on
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communities. Researchers could therefore implement the curves to link
the findings related to resilience of infrastructure systems to how a
community could be impacted due to service disruptions. The integra-
tion of the outcomes of physical infrastructure models with suscepti-
bility curves enables a more holistic assessment of infrastructure
resilience through the considerations of societal impacts.

This study introduced the use of survival analysis and susceptibility
curves for considering the societal impacts of disruptions in infrastruc-
ture services. The empirical survival models and curves created in this
study offer a significant advancement in improving infrastructure
resilience assessment through consideration of household-level distur-
bances. Advancement in reliability and resilience assessment of infra-
structure systems have provided researchers and practitioners with
models and tools (such as fragility curves) to estimate physical failures,
loss of performance, and service disruptions on engineered systems
during natural hazards. Little of the existing work, however, has
considered societal impacts due to infrastructure service disruptions.
This limitation was due mainly to the absence of empirical data and
models to determine household-level disturbances caused by disruptions
in various infrastructure services. This study addresses this important
gap by creating empirical survival models and curves that could be
effectively integrated with resilience and reliability models of infra-
structure. For example, the existing infrastructure resilience models
(Batouli & Mostafavi, 2018; Guikema & Nateghi, 2018; Ouyang &
Duenas-Osorio, 2014; Rasoulkhani, Mostafavi, Presa, & Batouli, 2020)
could be used to estimate the extent of disruptions in power (Liu et al.,
2007; Mensah & Duenas-Osorio, 2016), transportation (Dong, Yu, Far-
ahmand, & Mostafavi, 2020; Fan, Jiang, & Mostafavi, 2020), and water
(Adachi & Ellingwood, 2008; Guidotti, Gardoni, & Rosenheim, 2019)
infrastructure under different hazard scenarios. Then the estimated
duration of disruptions could be used in the empirical susceptibility
curves to estimate the portion of households experiencing disturbance
under a particular duration of disruptions. Accordingly, additional so-
cietal considerations could be devised in the formulation of service
restoration and resource allocation prioritization in the infrastructure
models. Through this process, more convergent models of infrastructure
resilience assessment could be obtained for disaster risk reduction
(Mostafavi & Ganapati, 2019; Peek, Tobin, Adams, Wu, & Mathews,
2020).

The susceptibility curves provide emergency management and
infrastructure/utility companies with a tool to determine susceptibility
of the service users to disruptions and to proactively plan for mitigating
the risks to households. These curves could be used to generate a profile
of susceptibility for a specific infrastructure service in different loca-
tions. Thus, the curves could inform resource allocation and prioritiza-
tion of the restoration of the services. Taking power outages as an
example, the curves in Fig. 6 suggest that a utility company in Harris
County should expect that a power outage lasting more than 2.5 days
would cause disturbance to around 50 % of service users. In contrast, the
same proportion of residents affected by Hurricane Michael and Hurri-
cane Florence would tolerate the disruptions for up to around 5 days.
This information could help the decision-makers in: 1) identifying the
susceptibility of the communities to the disruptions in infrastructure
services; 2) enhancing resource allocation to the improvement of
infrastructure services which are critical for the functioning of the
community; and 3) prioritizing the restoration of infrastructure systems
based on the susceptibility of households to reduce the societal impacts
of service disruption.

Susceptibility curves developed for different infrastructure services
in this study suggest that community susceptibility patterns to service
outages vary across services and regions. Households show greater
susceptibility to disruptions in sewer systems, water, and power
compared to the services provided outside their homes, such as trans-
portation, supermarkets, solid waste collection, and healthcare facilities.
The curves also show that, while the susceptibility patterns of different
locations are similar below a certain duration of outage, prolonged
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outages might pose different levels of disturbance to a community. The
difference observed in the susceptibility patterns of different areas could
be related to specific sociodemographic, urban, and historical charac-
teristics of the affected community. The historical hazard experience of a
community influences its susceptibility to infrastructure service dis-
ruptions. Areas with more experience with flooding have a higher
tolerance for flooding-related disruptions, such as road closures, and
areas with more experience with hurricanes have a higher tolerance for
wind-related disruptions, such as power outages. Thus, the inherent
characteristics of different regions influence the susceptibility of the
communities.

Survey data collected from the three major hurricane events enabled
the development of the empirical survival models. These empirical
models considered a range of variables affecting tolerance for service
disruptions. Households have distinct needs and capabilities and,
therefore, different tolerance for service outages. Susceptibility curves
are based on the wide range of influencing factors and the specific
characteristics of communities. Similar curves could be developed by
implementing empirical models in different regions to examine the so-
cietal impacts of disruptions in various infrastructure services to inform
infrastructure resilience, hazard mitigation, and emergency response
plans.

While this research examined a wide range of identified influencing
factors affecting households’ susceptibility to infrastructure service
disruptions, additional variables could influence the susceptibility of the
households to the service disruptions. The examination of additional
variables, such as disparities in political power and urban history, could
be pursued in future research. In addition, as supported by the findings
of this research, the susceptibility to one service could affect the sus-
ceptibility to other services. In other words, the susceptibility to infra-
structure service disruptions is interdependent. Future investigations
can focus on understanding the interconnected impacts of service dis-
ruptions on the households’ disturbances.
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