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A B S T R A C T   

In natural hazard engineering, fragility curves are used to determine the likelihood of damage to an engineered 
system under different magnitudes of hazard intensity. Analogous to fragility curves for engineered systems, 
survival models developed in the present study determine the extent of disturbances for shelter-in-place 
households caused by infrastructure service disruptions during disasters. This study used empirical data from 
household surveys collected in the aftermath of Hurricane Harvey, Hurricane Florence, and Hurricane Michael to 
create empirical survival models for determining household-level disturbances related to eight infrastructure 
services: power, water, communication, sewer systems, transportation, solid waste collection, grocery stores, and 
healthcare facilities. The survival models considered various influencing factors, such as sociodemographic 
factors, previous experience, risk perception, and access to resources to determine what percentage of households 
in a community would experience considerable hardship under varying durations of service disruptions. The 
developed curves suggested that although the susceptibility patterns are similar for short durations of infra
structure service disruptions, prolonged service disruptions pose varying levels of disturbance in different 
communities based on the household characteristics and contextual factors. Susceptibility curves could be 
implemented with current tools for assessing the reliability and resilience of infrastructure systems to promote 
understanding of the societal impacts that disruptions in these services pose to the affected communities. The 
resulting empirical survival models provide necessary tools and insights for determining the susceptibility of 
communities to disruptions of various infrastructure services during disasters. Hence, the outcomes of this study 
provide new empirical insights and models enabling decision-makers to integrate human-centric dimensions into 
infrastructure retrofit and restoration processes to more equitably reduce societal impacts of service disruptions. 
Such human-centric approaches enable designing socially resilient cities and contribute to designing sustainable 
infrastructure systems.   

1. Introduction 

Assessment of the resilience and reliability of engineered systems has 
advanced in recent years due to the development of empirical and 
analytical models for investigating system performance. As shown in 
Fig. 1, the focus of reliability and resilience analysis studies has been to 
create empirical models and analytical methods to evaluate the extent of 
damage and disruptions in engineered systems given hazards of varying 
magnitudes. First, various prediction tools were developed to estimate 
different hazard scenarios posing threats of various magnitudes to 

communities (Komatitsch, Erlebacher, Göddeke, & Michéa, 2010; 
Vickery, Lin, Skerlj, Twisdale, & Huang, 2006). These assessment tools 
then employ fragility curves for determining the likelihood of damage to 
engineered systems under different hazard magnitudes (Dunn et al., 
2018). The fragility curves assist in translating the impacts of hazards 
into the probability of failure in systems (U.S. Army Corps of Engineers 
2010). Similarly, restoration curves have been created and used to es
timate the restoration time of damaged engineered systems (Lei, Chen, 
Li, & Hou, 2019; Mensah & Dueñas-Osorio, 2016). With advancements 
in natural hazard engineering methods, such as reliability and resilience 
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models, the impacts and failures of engineered infrastructure systems 
could be estimated, and mitigation and retrofit actions plans could be 
developed (Dehghani, Mohammadi Darestani, & Shafieezadeh, 2020; 
Hendricks et al., 2018). The impacts of natural hazards, however, are 
not limited to the failure of engineered physical systems, and there is a 
need for translating these impacts on the affected communities and 
considering societal impacts (Applied Technology Council, 2016). An 
important gap in the current literature is the absence of empirical and 
analytical models and tools to determine the societal impacts of infra
structure disruptions (Dong, Esmalian, Farahmand, & Mostafavi, 2020; 
Mostafavi, 2018). Determining the societal impacts helps to understand 
the inequities in the impact of natural hazard on the communities and 
promoting sustainable way to design and repair the infrastructure 
systems. 

The inclusion of societal impacts in resilience and reliability analysis 
requires an understanding of the tolerance and susceptibility of house
holds to the service losses (Coleman, Esmalian, & Mostafavi, 2020). The 
lack of empirical information about the underlying mechanisms and 
extent of households’ susceptibility to infrastructure service disruption 
has led to the inadequate consideration of the human-centric aspect in 
assessing the societal risks of such hazards (Mostafavi & Ganapati, 
2019). Prior studies have shown that the susceptibility to service dis
ruptions is not equal among the households in an affected community 
(Coleman, Esmalian, & Mostafavi, 2019; Dargin & Mostafavi, 2020; 
Mitsova, Esnard, Sapat, & Lai, 2018). The determinants of the disparities 
in the susceptibility to the service disruptions have been attributed to 
the sociodemographic characteristics of the households, their capabil
ities, expectations and needs, protective actions and risks perceptions 
(Chakalian, Kurtz, & Hondula, 2019; Coleman et al., 2019; Coleman 
et al., 2020; Dargin, Berk, & Mostafavi, 2020; Esmalian, Dong, Coleman, 
& Mostafavi, 2019; Mitsova et al., 2018). While these studies have 
improved understanding of the factors influencing the susceptibility of 
households, empirical models for the determination of households’ 
tolerance to service disruptions for determining the impacts of infra
structure service disruptions on the communities are lacking. In other 
words, analogous to fragility curves for engineered systems, there is a 
need for susceptibility curves for humans to determine the extent of 
disturbances caused by service outages 

In this study, we developed empirical models to bridge the gap be
tween the reliability and resilience assessment of the physical system 
and societal considerations (Fig. 1). We first developed models to 
determine susceptibility level for shelter-in-place households based on 
the duration of the service disruptions. To examine societal risks, the 
models integrate reliability assessment of the engineered system with 
susceptibility of households. We used the survey data collected in the 
aftermath of 2017 Hurricane Harvey in Texas, 2018 Hurricane Florence 

in the Carolinas, and 2018 Hurricane Michael in Florida to develop 
empirical survival models for each infrastructure service. Accordingly, 
empirical models were implemented to generate susceptibility curves. 
These curves provide a tool for translating the extent of service disrup
tions into societal impacts. Analogous to the use of fragility curves, one 
could use the susceptibility curves to identify the proportion of house
holds for which a certain level of service disruptions exceeds their 
tolerance. The susceptibility curves could be integrated with available 
reliability and resilience models to estimate the proportion of the sus
ceptible households in a community. The susceptibility curves help 
infrastructure owners and operators, emergency managers, and utility 
companies to better examine the societal risks of such service losses. 
These empirical curves provide a decision-making tool enabling stake
holders to plan service recovery strategies while considering the societal 
impacts on the affected residents. Enabling consideration of human- 
centric aspect into the resilience assessment is a key aspect of 
designing sustainable cities. 

2. Factors affecting household-level disturbances 

Multiple factors influence the extent of household-level susceptibil
ity to infrastructure service disruption. Esmalian et al. (2019) developed 
a service gap model for assessing households’ susceptibility to infra
structure service disruptions. Households’ tolerance is a metric evalu
ating the susceptibility of the households to the service disruptions 
(Esmalian et al., 2019). This model captures disparities in societal risks 
due to such disruptions. The disparities in the societal impacts of 
infrastructure disruptions are due not solely to the higher exposure of 
certain households. Households intrinsically have different levels of 
tolerance to cope with disruptions. In this study, the measure of a 
household’s tolerance is used to address this differential ability to cope 
with the threats posed by infrastructure service disruptions. 

Susceptibility of households to the infrastructure systems disruptions 
is affected by various influencing factors. Previous research (e.g., Cole
man et al., 2019) has shown that socially vulnerable populations, such as 
lower-income families, those with lower educational attainment, 
households with a young member, and racial minorities, have a signif
icantly lower tolerance for infrastructure services. In this study, influ
encing variables (Fig. 2) were identified through an exploratory analysis 
of three hurricanes, Hurricane Harvey, Hurricane Florence, and Hurri
cane Michael. These variables were chosen through a systematic pro
cess. First, an extensive review of the literature was conducted to 
identify the potential factors which could influence tolerance level. Then 
survey data were collected from households who experienced one of the 
three hurricane events, yielding a large dataset for investigating 
importance of the variables. Finally, the significance of the variables was 

Fig. 1. Spectrum of analysis tools and models for assessing the physical disruptions and social disturbances in the nexus of hazards, built environment, and humans.  
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tested on tolerance to various infrastructure services to identify influ
encing factors. In this study, we built the models to determine the 
tolerance using these identified variables. Following is a brief descrip
tion of each variable. (A detailed description of the influencing factors 
can be found in (Coleman et al., 2020). 

2.1. Demographic factors 

Demographic characteristics influence households’ perceptions, re
sources, and vulnerability to a threat (Baker, 2011). In this study, we 
collected the demographic characteristics of the households responding 
to the survey; specific characteristics of individuals were not considered. 
Characteristics considered in the models for determining tolerance of 
loss of services were: household income (Fothergill & Peek, 2004), ed
ucation level of the head of the household (Muttarak & Pothisiri, 2012), 
ethnicity (Marsh, Parnell, & Joyner, 2010), a member less than 10 years 
of age or older than 65 years of age (Flanagan, Gregory, Hallisey, 
Heitgerd, & Lewis, 2011), disabled individual (Stough, Sharp, Resch, 
Decker, & Wilker, 2015), an individual ill with chronic disease (Kessler, 
Wang, Kendrick, Lurie, & Springgate, 2007), and whether households 
have a vehicle. These variables have been shown to separately impact 
the tolerance level, but in this research, we investigate their importance 
in the presence of the other variables in the model. 

2.2. Property factors 

Four variables were considered for residences: (1) type of the resi
dence, (2) if the residence is owned or rented, (3) distance from super
markets, and (4) whether residences are located in a flood zone. These 
variables influence the preparation (Baker, 2011), adjustment (Lindell & 
Hwang, 2008), and exposure (Koks, Jongman, Husby, & Botzen, 2015) 
of households for the service disruptions. 

2.3. Risk perception 

(1) Forewarning (the length of time in advance of the event that 
households first learn of an impending event), (2) the time that house
holds start taking preparation actions, (3) information they receive 
about the disruptions, and (4) the household’s expectation of the 
duration of the disruptions. These variables can influence tolerance by 
affecting perception (Morss, Mulder, Lazo, & Demuth, 2016), protective 
actions (Lindell, Arlikatti, & Prater, 2009), and responses (Lindell & 

Hwang, 2008) of the households about the threats of the disruptions. 

2.4. Resources 

The household’s (1) preparedness for the event, (2) if they have a 
substitute for the disrupted services, and (3) the social capital of the 
households were considered as households’ resources for coping with 
the service disruptions. Households with better general preparedness for 
the disruptions would better tolerate the disruptions (Baker, 2011). 
Moreover, disruptions in some services, such as electricity, could be 
offset by the substitute, such as a generator, if available. Households 
with a higher level of self-efficacy are more likely to take protective 
actions (Douglas & David, 2001; McIvor & Paton, 2007). Finally, 
households having friends and family members on whom they can rely 
during the disaster can better cope with the disruptions (Esmalian et al., 
2019). 

2.5. Sensitivity 

Households’ sensitivity to service losses is determined by their need 
for the service. The need for the service influences susceptibility to 
infrastructure service disruption (Clark, Seager, & Chester, 2018). 
Households with a higher level of need for the service will have a lower 
tolerance for the service disruption. For example, the elderly have seen 
to have a high tolerance for the disruption in wireless networks (Cole
man et al., 2019) due to less reliance on wireless networks in their 
day-to-day lives. 

In this paper, we collected household surveys and created empirical 
models to determine the households’ tolerance to the disruption of eight 
critical infrastructure services—electricity, transportation, water, 
communication, sewer, solid waste removal, supermarkets, and 
healthcare services—using the empirical data collected from the three 
hurricanes. 

3. Data and method 

Three household surveys were deployed in the aftermath of Hurri
cane Harvey, Hurricane Florence, and Hurricane Michael to collect 
relevant service disruption data. Hurricane Harvey was a category 4 
hurricane (highest wind 130 mph), which made landfall on Harris 
County, Texas, in August 2017. Harvey caused catastrophic flooding in 
Houston and caused severe disruptions in infrastructure services. 

Fig. 2. Factors influencing susceptibility to infrastructure service disruption.  
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Harvey was formed over the Atlantic Ocean on August 17, 2017, and 
made landfall August 25, 2017, a forewarning time of roughly 8 days. 
Hurricane Florence was a category 4 hurricane with highest wind speed 
of 150 mph. Hurricane Florence made landfall in the Carolinas in 
September 2018, causing severe damage. This event caused flooding and 
was the wettest tropical cyclone of record in the Carolinas. Hurricane 
Florence was formed on August 31, 2018, and made landfall at the 
Carolina coastal areas around September 13, a forewarning time of 
roughly 14 days. The third event considered in this study was Hurricane 
Michael, which was a category 5 hurricane (highest wind speed of 160 
mph). Hurricane Michael affected the Florida Panhandle in October 
2018, and was one of the most severe wind events occurring in the 
United States. Hurricane Michael was formed on October 7, 2018, and 
made landfall on October 10, 2018, in Florida, which due to its quick 
movement, had a short forewarning time of around 3 days. These events, 
with Hurricane Harvey as a major flooding hurricane, Michael as an 
event with severe winds, and Florence with a combination of the wind 
and flooding, were used to explore households’ experience with infra
structure disruptions. Fig. 3 shows the study area of (a) Hurricane 
Harvey, (b) Hurricane Florence, and (c) Hurricane Michael. 

3.1. Survey implementation 

We collected survey data in the aftermath of Hurricane Harvey, 
Hurricane Florence, and Hurricane Michael using the Qualtrics survey 
platform. Qualtrics maintains online panels of responders who have 
agreed to take surveys. Qualtrics surveys have successfully collected 
data in surveys implemented by scholars and practitioners. As house
holds who evacuate before the disaster may not experience infrastruc
ture service disruptions, the survey focused mainly on shelter-in-place 
households which decided not to evacuate during the event. 

The focus of this study was to examine the impacts of infrastructure 
service disruptions on households; thus, coastal areas with evacuation 
orders were not included in the samples. The data for Hurricane Harvey 
were collected from Harris County, with a population of around 4.65 
million. The number of responders for each focus area was designed to 
be proportional to the population of each ZIP code. Those who evacu
ated their homes and the flooded households were removed from the 
analysis. The Hurricane Harvey survey numbered 1,008 complete re
sponses, from which 850 were used for creating the models after 
removing surveys of households which evacuated. Household data for 
Hurricane Florence were collected from affected counties in North 
Carolina, with a combined population of 1 million. A total sample of 573 
responses was collected, with 401 used for analysis. The data for Hur
ricane Michael were collected from the residents of Florida, Georgia, and 
Alabama, with the largest portion of responses from Florida. The im
pacts of infrastructure service disruptions extended to residents of 

Georgia and Alabama; thus, we enlarged our sample to include those 
households as well. This survey contained 706 responses, from which 
619 responses were drawn for developing the models. 

3.2. Measures 

The tolerance of households to service disruptions was measured by 
asking, Considering an upcoming severe hurricane (like Harvey/Florence/ 
Michael), overall, how many days could your household tolerate the (Ser
vice disruptions)?. In this way, we measured the subjective capability of 
the households to tolerate the disruptions, which helps to understand 
the underlying causes and mechanisms leading to susceptibility. 
Examining a household’s tolerance through the subjective measure 
takes into account that households recognize what factors influence 
their ability to anticipate, buffer, and adapt to the hazard. Therefore, 
these measures are related to the cognitive self-evaluation of a house
hold’s capabilities and capacities for responding to risks (Jones & Tan
ner, 2017). Households’ tolerance to the disruptions in the eight 
infrastructure services was measured, and the models were developed 
using the identified significant influencing factors. The descriptive sta
tistics of the variables used to develop the models is presented in Table 1. 
In addition, Table 2 presents the summary statistics for the level of 
tolerance under the three events. The survey questions regarding each 
question and the specific variable for each service are presented in the 
Supplementary information section. 

3.3. Survival analysis 

Accelerated failure time models (AFT) were used for modeling 
tolerance level. AFT models use a survival analysis approach for the 
time-to-event data. Survival analysis has been adopted in medical 
research, engineering, and economics to describe duration between 
events (Barker & Baroud, 2014) and proved to be an appropriate 
approach in modeling the restoration of failed engineering systems 
(Dale, 1985; Liu, Davidson, & Apanasovich, 2007). Survival data are 
triggered by an initial event, such as electrical system failure in power 
outages and followed by a subsequent event, such as the restoration of 
electricity in this example. The time between these two events is called 
survival time (Oakes, 2001). This situation could describe tolerance 
data, which are triggered by the initial service losses and are followed by 
the time when the duration of service disruptions exceeds what house
holds could tolerate and thus cause them disturbance. In addition, sur
vival data are generally positive and non-symmetrically distributed, 
often with a positive skew. Such characteristics make survival analysis a 
proper tool for determining the tolerance, which is the time span in 
which a household could cope with the service disruptions without 
experiencing significant hardship. Other types of modeling the tolerance 

Fig. 3. Survey response distribution over the study areas: (a) Hurricane Harvey, (b) Hurricane Florence, (3) Hurricane Michael.  
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such as generalized linear models (Poisson family and negative binomial 
regression) and ensemble learning methods (random forests and boost
ing) were examined by the authors for developing the models; however, 
the AFT models were found to have the lowest prediction error and 
provided explanatory power. More details can be found in (Esmalian, 
Dong, & Mostafavi, 2020). 

Using AFT models, we can relate the tolerance directly to the pre
dictors with a linear relationship, as shown in Eq. (1). 

logμi = xT
i β + εi (1)  

where μi represents the mean tolerance, xT
i denotes the vector of pre

dictor, β is the vector of parameters, and εi is an error term that is 
assumed to be independently distributed. 

We used the Kaplan-Meier estimator of residuals to determine which 
distribution for the survival time would best fit the data (Hosmer and 
Lemeshow 1999). We compared the Kaplan-Meier estimators of the re
siduals with the log-logistic distribution to check the fit. Close exami
nation of the residuals (Supplementary information, Figs. A1–A8) 
revealed that the log-logistic distributions for error terms εi leads to an 
appropriate fit of the models. 

AFT is especially useful for descriptive purposes, such as identifying 
the importance of factors influencing tolerance. In this study, we first 
included all factors identified to influence the tolerance for each service 

Table 1 
Measures for the influencing factors of the susceptibility to infrastructure 
services.   

Coding scheme H F M 

Demographic characteristics 

Income 

Less than $25,000 
(=1) 

13.6 20.7 25.6 

$25,000-$49,999 
(=2) 

21.9 26.8 26.2 

$50,000-$74,999 
(=3) 22.8 24.6 20.4 

$75,000- $99,999 
(=4) 12.7 13.0 13.0 

$100,000 -$124,999 
(=5) 

9.2 5.5 6.0 

$125,000-$149,999 
(=6) 

7.4 4.4 3.8 

More than $150,000 
(=7) 12.4 5.0 5.0 

Education 

Less than High 
School (=1) 

1.9 0.8 2.6 

High school 
graduate or GED 
(=2) 

12.9 14.9 17.8 

Trade/ technical/ 
vocational training 
(=3) 

4.5 3.9 6.2 

Some college (=4) 17.4 20.7 18.2 
2-year degree (=5) 8.5 16.0 13.4 
4-year degree (=6) 32.4 24.6 22.5 
Post Graduate Level 
(=7) 

22.1 19.1 19.4 

Racial/ Ethnic Minority 
White (=0) 61.9 65.7 72.7 
Non-White (=1) 38.1 32.9 25.9 

Having Children (younger than 
10 years) 

Yes (=1) 16.7 21.0 21.6 
No (=0) 83.1 79.0 78.4 

Elderly (65 years or older) Yes (=1) 34.9 25.7 25.9 
No (=0) 64.8 74.3 74.1 

Years in State* 
Number of years 
living in the 
respective state 

27.41 25.83 29.66 

Difficulty with Mobility 
Yes (=1) 18.0 27.6 10.8 
No (=0) 82.0 72.4 89.2 

Having Chronic Medical 
Condition 

Yes (=1) 29.5 30.1 37.0 
No (=0) 70.5 69.9 63.0 

Medication Use Yes (=1) 48.0 37.6 42.5 
No (=0) 52.0 62.4 57.5 

Having a Vehicle 
Yes (=0) 97.2 92.5 92.8 
No (=1) 2.80 7.5 7.2  

Property factors 

Residence Type 

Apartment/ mobile 
home (=0) 74.7 75.1 67.9 

Single-family home 
(=1) 

24.1 23.8 31.0 

Homeownership 

Rented the 
residence (=0) 

70.4 70.2 66.4 

Full payment/ 
mortgage loan (=1) 

28.0 28.5 31.6 

Live in Flood Zone 
Yes (=1) 17.1 14.4 9.8 
No (=0) 68.7 75.7 78.4 
I do not know (N/A) 14.2 9.9 11.8 

Distance to Supermarkets* Number in miles 2.97 4.16 6.10  

Risk perception 
Expected Disruption ** Number in days – – – 
Days of Forewarning* Number in days 5.82 8.24 6.26 
Days of Preparation* Number in days 4.19 4.49 3.23 

Access to Reliable Information 
** 

Did not search for 
information (N/A) – – – 

Never (=1) – – – 
Seldom (=2) – – – 
Sometimes (=3) – – – 
Often (=4) – – – 
Almost Always (=5) – – –  

Previous Experience  

Table 1 (continued )  

Coding scheme H F M 

Experience 
Yes (=1) 84.7 87.0 78.9 
No (=0) 15.3 13.0 21.1 

Experienced Damage 
Yes (=1) 52.8 48.3 48.0 
No (=0) 47.2 51.7 52.0  

Resources 

Preparedness Level 

Not at all Prepared 
(=1) 

2.1 0.8 2.6 

Poorly Prepared 
(=2) 

3.9 6.3 8.9 

Somewhat Prepared 
(=3) 

40.1 32.3 36.5 

Well-prepared (=4) 49.0 54.0 46.0 
Over-prepared (=5) 4.9 6.6 6.0 

Substitute-power 
Yes (=1) 20.4 32.6 36.5 
No (=0) 79.6 67.4 63.5 

Self-efficacy for protective 
actions related to 
infrastructure service 
disruptions 

Strongly agree (=5) 26.0 28.5 25.7 
Somewhat agree 
(=4) 

44.6 47.2 46.7 

Neither agree nor 
disagree (=3) 18.7 16.3 17.0 

Somewhat disagree 
(=2) 7.9 6.1 7.5 

Strongly disagree 
(=1) 

2.8 1.9 3.1 

Social Capital (Friends/Family) Yes (=1) 54.5 55.0 57.5 
No (=0) 45.5 45.0 42.5 

Social Capital (Emotional Well- 
being) 

Yes (=1) 79.9 77.1 78.6 
No (=0) 20.1 22.9 21.4 

Social Capital (Community 
Member) 

Yes (=1) 42.9 44.2 43.9 
No (=0) 57.1 55.8 56.1  

Sensitivity 

Level of Need for Service ** Not at all important 
(=1) 

– – –  

Slightly important 
(=2) 

– – –  

Moderately 
important (=3) – – –  

Very important (=4) – – –  
Extremely 
important (=5) 

– – –  

* The responses for the mean values are reported. 
** The responses for each service is provided in the supplementary 

information. 
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Table 2 
Level of Tolerance for Disruptions in Infrastructure Services.    

P C W S T SW SM H 

Hurricane Harvey 
Mean 3.84 3.94 3.33 1.34 8.28 9.17 6.98 9.25 
Median 3.00 2.00 2.00 0.00 7.00 7.00 5.00 5.00 
Std. Dev 4.91 4.76 3.83 3.07 7.32 10.77 6.54 13.95  

Hurricane Florence 
Mean 6.31 5.73 4.33 1.69 8.94 8.06 7.64 12.65 
Median 5.00 3.00 3.00 0.00 7.00 5.00 6.00 7.00 
Std. Dev 7.28 10.47 6.28 5.50 11.82 11.85 9.53 16.34  

Hurricane Michael 
Mean 6.97 6.25 4.12 1.66 5.59 8.38 6.50 13.20 
Median 5.00 3.00 3.00 0.00 5.00 5.00 5.00 7.00 
Std. Dev 6.80 10.56 4.91 4.11 4.94 12.39 7.45 17.76 

Note: Power (P), communication (C), water (W), sewer (S), transportation (T), solid waste collection (SW), supermarkets (SM), and healthcare facilities (H). 

Fig. 4. Summary of the influencing factors of survival models for power, water, communication, and sewer systems under Hurricane Harvey, Hurricane Florence, 
and Hurricane Michael. Coefficients in this plot are normalized with the mean equal to zero and the variance equal to one. The whiskers show the 95 % confidence 
interval. Thus, the variables which do not cross the x = 0 line are significant at a 5 % level of confidence. The tables of these results are available in the supple
mentary information section (Table A2–5). 
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in the models. Then, Akaike Information Criterion (AIC), Eq. (2), was 
used in a stepwise model selection to choose the best subset of the 
variables determining the level of tolerance to disruption of various 
infrastructure services. 

AIC = − 2 × ln(L) + 2 × (p) (2)  

4. Household-level survival models for developing susceptibility 
curves 

We developed models based on empirical survey data to determine 
the tolerance of households to the eight infrastructure services (power, 
transportation, water, communication, sewer, solid waste, supermar
kets, and healthcare facilities). In this section, we provide a brief over
view of the factors influencing household-level susceptibility based on 
the survival models developed for the three events (Hurricane Harvey, 
Florence, and Michael). These models enable determining the tolerance 
level for the disruption in each infrastructure service. A household’s 
tolerance for the service outages is an indicator of their susceptibility to 
service losses. The greater a household’s tolerance for the outages, the 
lower its susceptibility would be. The influencing factors for suscepti
bility regarding each service are identified; the rest of this section pro
vides a short discussion regarding the influencing factors in the models 
for each infrastructure service. Interested readers are referred to the 
Supplementary Information for details about the factors and their 

associated parameters in the model. We first discuss the services which 
households need inside their homes, namely power, water, communi
cation, and sewer (Fig. 4). Then, Fig. 5 presents the results for trans
portation, solid waste, supermarket, and healthcare services. These 
figures show the summarized results for the developed models for the 
household-level susceptibility to the service losses. In these figures, the 
whiskers show the 95 % confidence interval of the normalized co
efficients. In addition, the x = 0 line is depicted to show the statistical 
significance of the variables in the models developed for each service. 

4.1. Power 

Racial minority households had a significant negative coefficient in 
both Hurricane Harvey and Hurricane Michael, showing that these 
groups have a lower tolerance for power outages even when other var
iables are taken into account in the models. The metropolitan areas with 
densely interconnected roads provide better accessibility for the resi
dents to obtain their supplies in the case of road closures. Households in 
more metropolitan areas could provide essential supplies, such as can
ned food and flashlights, to better withstand the potential prolonged 
power outages. Thus, in the less urban areas of the Carolinas and Florida, 
not having a vehicle was a significant negative factor in influencing the 
tolerance in Hurricane Michael and Hurricane Florence. In urban Harris 
County, this variable was not significant in the model developed for 
Hurricane Harvey. Responders affected by Hurricane Harvey live in 

Fig. 5. Summary of the influencing factors of survival models for transportation, solid waste, supermarkets, and healthcare systems under Hurricane Harvey, 
Hurricane Florence, and Hurricane Michael. Note: Coefficients in this plot are normalized with the mean equal to zero and the variance equal to one. The whiskers 
show the 95 % confidence interval. Thus, the variables which do not cross the x = 0 line are significant at a 5 % level of confidence. The tables of these results are 
available in the supplementary information section (Table A6-9). 
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more urban areas compared to those who were affected by Hurricane 
Florence and Hurricane Michael. Home ownership and the type of 
resident had a significant positive association with the tolerance level; 
however, when including other variables, such as having power back up, 
these variables became partly significant. This is due to the fact that 
homeowners and those living in single-unit houses are more likely to 
take protective actions and buy generators, and the impact of these 
property factors is mediated in the models. 

Having a generator, self-efficacy, and preparedness of the house
holds play an important role in the susceptibility of the households to 
disruptions. These protective actions would increase a household’s 
tolerance to power outages. For households to take proper protective 
actions, it is important to have advanced warning about the event and to 
expect disruptions. Forewarning and preparation duration had a sig
nificant positive association with the tolerance level in Hurricane Flor
ence and Hurricane Michael. Affected households in these events had a 
higher incidence of previous hurricane encounter with wind-related 
power outages. On the other hand, having reliable information about 
the disruptions after the outages occur was a significant positive factor 
in Hurricane Harvey with fewer wind-related extreme event encounters. 
Although correlation analyses (Coleman et al., 2020) revealed that those 
with previous experience have a greater tolerance for power outages, 
this variable was only significant in Hurricane Michael when other 
factors are included. Finally, household’s need for power had a signifi
cant negative influence on the tolerance level, which shows that, in 
addition to the protective actions, it is important to consider the specific 
needs of the households in determining their tolerance for the service 
disruptions. 

4.2. Water 

Residence type, racial minority households, and having a child were 
significant sociodemographic factors in the developed models. Similar to 
power outages, the negative coefficient of being a racial minority 
showed that these households reported having a lower tolerance for the 
water outages. Those who live in detached housing have more space for 
storage of the supplies and potentially more space for storing water 
which could afford them a higher tolerance. The direct well-being 
impact of water disruption on the children and protecting them from 
the potential threats give these households a lower tolerance for the 
disruptions. 

Storing food and water before the event could help households 
prepare for water disruptions. As a result, the significant positive role of 
accessing reliable information, the expectations regarding the disrup
tion, general preparedness level, the duration of forewarning, the 
preparation level of the households, and self-efficacy becomes clear. If 
proper information about the potential disruption is communicated to 
households, preparations such as supplying food and water could 
significantly help a household to cope with the water disruptions. 
Having social capital in different forms was a significant positive factor 
in increasing households’ tolerance for water outages. These households 
could rely on assistance from their social ties in coping with water dis
ruptions. Households with a higher need for water were found to have a 
lower tolerance for water disruptions. Therefore, the specific needs of 
the household, such as larger households or those with children, largely 
influence their tolerance. 

4.3. Communication 

Although correlation analysis (Coleman et al., 2020) suggested that 
factors such as ownership, type of residence, and income are significant 
factors influencing tolerance, the developed models showed a decrease 
in the influence of such variables when other influencing factors were 
included in the models. For example, a lower proportion of the socially 
vulnerable households own generators, and including this factor in the 
models could mediate the effect of the sociodemographic factors 

considering the cost and space requirement of the generators. On the 
other hand, the significance of race, education, having a child, and 
having a vehicle in different regions was not mediated by the other 
variables included in the models. This could be related to the inherent 
needs of these groups in the affected regions or to the influence of other 
factors, outside the boundary of the considered variable in the models, 
that could affect the tolerance for the communication service 
disruptions. 

Availability of power back-up supports operation of communication 
devices and, therefore is a significant variable in increasing tolerance for 
communication disruptions. The general preparedness and the duration 
of preparation, on the other hand, may not be relevant to the tolerance 
of households to the disruptions in communication services, as sug
gested by the models. The major ways that households use communi
cation services are related to communicating with friends and family 
and receiving and sharing information about the event, followed by 
entertainment, work, and education. Therefore, although general pre
paredness might help in attaining a higher state of preparedness for 
those who decide to shelter in place, it may not directly affect their 
tolerance for loss of communication services. Those with a greater self- 
efficacy and those who received a longer forewarning were found to 
have a higher tolerance for the disruptions. Households with lower 
levels of need and higher expectations of the disruptions had higher 
levels of tolerance in all the events. 

4.4. Sewer 

Those with a child are more concerned about the well-being of their 
household members and reported having a significantly lower tolerance 
for disruptions in sewer service. In general, we found no significant 
differences in the manner in which different sociodemographic charac
teristics influence tolerance level for the disruptions in sewer systems. In 
addition, the protective actions for the sewer systems are limited and are 
mostly effected after the event. Therefore, variables such as prepared
ness, forewarning, and preparation duration were found not to influence 
tolerance for sewer systems disruptions. Households with social capital 
can rely on the help of their social ties in coping with these disruptions 
or evacuating their homes, as suggested by the significant positive co
efficient of this variable. Those with a lower need, heightened antici
pation of disruptions, and a higher level of self-efficacy seem to have the 
highest tolerance for the sewer disruptions. 

4.5. Transportation 

Sociodemographic characteristics of households are mainly medi
ated by other variables in the models. One exception is related to the 
influence of not having a vehicle on the tolerance for transportation 
disruptions, which has a significant negative association with the level 
of tolerance. The effect of this variable on the tolerance level could not 
be explained by other variables in the models. Households without a car 
generally rely on public transportation for commutes and are highly 
susceptible to the impact of road closures on public services. 

Forewarning is a critical factor in determining tolerance level to 
transportation disruptions; this variable has a positive association with 
the level of tolerance. Households need to be aware of disaster condi
tions to decide whether to evacuate or to shelter in place. Preparedness 
and self-efficacy help households to meet their needs for travel to obtain 
supplies, which make them less susceptible to transportation disrup
tions. Households who live farther away from the supermarkets have a 
higher tolerance for the prolonged road closures. This could be because 
these households may store more supplies in their homes to prevent 
multiple trips to the supermarkets, which satisfies households’ high 
need for supplies during the disaster. The premise of this finding is 
dependent on other variables, such as having a vehicle in the models. If a 
vulnerable household does not have a vehicle and enough space for 
storing supplies and also lives farther away from the supermarkets, their 
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tolerance for road closures may get severely affected. Another inter
esting pattern related to road closures is the higher tolerance of those 
who have a higher daily travel mileage. These households may either 
have more travel choices or have a better knowledge about the road 
conditions, which helps them have a better capability to cope with the 
closures. 

In Hurricane Harvey, in which residents have more history of 
flooding, the previous experience with disasters was a significant factor 
influencing the households’ tolerance. This marks the importance of 
how educating households on the potential threats of a disaster could 
help them in finding ways to mitigate the impacts. Having a higher 
expectation of the disruptions and a lower need for using the trans
portation infrastructure were highly significant in increasing house
holds’ tolerance for road closures. 

4.6. Solid waste 

Various sociodemographic characteristics, such as income, educa
tion, race, having a child, being elderly, and using medication, were 
found to be significant in affecting the households’ tolerance for dis
ruptions in solid water removal. Income, education, being elderly, and 
using medication had a positive association with the tolerance level 
while being minority and having children were negatively related to the 
households’ tolerance. The significance of these sociodemographic 
characteristics in the presence of other variables in the models suggests 
that, compared to other services, the disparity in susceptibility to service 
disruptions, in this case, could not be explained by other variables 
considered in the model. The removal of solid waste is not typically done 
by individual households, and households’ protective actions, such as 
obtaining supplies, usually do not include the preparedness for the 
disruptions in solid wastes; therefore, other variables could not mediate 
the effect of the sociodemographic characteristics. 

Having social capital increases households’ tolerance to disruptions 
in solid waste removal. Social ties of the households could help with 
debris removal. Having previous experience with a disaster, higher ex
pectations of the disruptions, and longer duration forewarning increase 
the tolerance of the household for the service disruptions. The influence 
of these variables on the tolerance, however, is lower compared to other 
infrastructure services, especially considering that there are lower pro
tective actions for mitigating impacts. The effect of these variables in the 
developed models shows that households with a better perception of 
upcoming disruptions generally have a higher tolerance for service 
disruption. This result highlights the importance of proper risk 
communication and education about the potential threats of the service 
disruptions. The need for the services remains the most significant factor 
in explaining the tolerance of the households for disruptions in solid 
waste removal. 

4.7. Supermarket 

Storing enough supplies for shelter-in-place condition could afford 
households with a higher tolerance for prolonged disruptions of super
markets. Prior knowledge of the need for storing supplies, the capability 
of obtaining supplies, and the ability to store supplies play a significant 
role in the increase of tolerance. Socially vulnerable groups, such as 
renters, racial minority households, and households with lower educa
tion attainment reported a lower tolerance for these types of disruptions. 
These populations might have a lower capability to obtain and store the 
supplies or a lower perception of the need for storing supplies. 

Having a long forewarning and higher expectation of disruptions 
could lead to greater household preparedness and could further increase 
the household tolerance for disruptions. Those households with strong 
social capital could rely on assistance from their social ties when the 
disruptions occur and consequently have a higher tolerance for the 
service disruptions. The need for the services highly influences the 
tolerance for the prolonged disruptions in supermarkets. Interestingly, 

the expectation and the preparedness level were not significant in 
Hurricane Florence (with a long forewarning duration); however, self- 
efficacy and the sociodemographic characteristics of households 
became significant in the Hurricane Florence model. One explanation 
for this pattern could be the longer forewarning of affected households 
in Hurricane Florence. The long forewarning gave affected households a 
longer lead time for obtaining the required supplies for the upcoming 
event to take protective actions. 

4.8. Healthcare 

Multiple sociodemographic characteristics affect the tolerance level 
of the households to the disruptions in healthcare facilities. Racial mi
nority groups, households with lower education attainment, and those 
with a child indicated a lower tolerance for these service outages. Those 
households with an elderly member and those who take medication 
reported a high tolerance. This could be due to the fact that these 
households are in need of the service and consequently have stored 
medical supplies and are prepared for the potential disruptions. 

The need for the healthcare service similar to most other infra
structure services affected tolerance level. There is a negative associa
tion between the level of need and households’ tolerance for service 
disruptions. Forewarning, having previous experience, and self-efficacy 
are indicators that households will better prepare for potential disrup
tions in the healthcare services. These factors help households to provide 
items, such as commonly used medicine and first aid kits, to be prepared 
for the threats to well-being.; however, the expectation for potential 
disruptions in the healthcare services was not significant in influencing 
tolerance. In this case, it is worth mentioning that among all services, 
responders reported the lowest expectation of disruptions in healthcare 
services. Moreover, not many households have a regular need for the 
service before the event; this lower expectation could not explain the 
variability in the tolerance for healthcare services. Having social capital 
could help households obtain physical and mental support during the 
event; therefore, this variable was a significant factor in increasing 
tolerance. Having a power back-up was found to increase the tolerance 
for healthcare services in Hurricane Michael. Some medical devices 
require power and storage of some medication requires refrigeration; 
thus power back-up could be of high importance in such instances. An 
example like this shows how the increase in the tolerance for one service 
(electricity) affects the tolerance for another service (healthcare). Thus, 
the need for these services is interdependent. 

5. Susceptibility curves for determining household-level 
disturbances due to infrastructure service disruptions 

Survival curves were developed to determine the proportion of sus
ceptible households that experience disturbance (i.e., service distur
bance exceeding tolerance level) under different durations of service 
outages. These curves could be developed for various regions to answer 
the question: “What proportions of households will not tolerate a certain 
duration of service disruption?” In the curves, Kaplan-Meier estimates 
were implemented in determining survival probabilities. Survival 
probability (Ps) of T days is defined as surviving (not experiencing 
disturbance) the Tth day having already survived the previous T-1 days 
(Oakes, 2001). The overall probability of surviving T days of disruptions 
would be then calculated by the following equation: 

S(T) = P1 × P2 × … × PT (3)  

In this equation, each survival probability (PT) is calculated by dividing 
the number of households that did not experience disturbance for T-1 
days and survived day Tth by the number of households that did not 
experience disturbance by the end of day T-1. Figs. 6 and 7 depict the 
proportion of susceptible households for which the duration of disrup
tion has exceeded their tolerance. This value is calculated as 1- (S(T)). 
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These curves could be used by utility providers and decision-makers to 
obtain an undemanding of the households’ susceptibility to the potential 
service disruptions. 

Fig. 6 shows susceptibility curves for power, water, communication, 
and sewer services. The results show that households in the three study 
regions have a higher susceptibility for disruptions in sewer systems, 
followed by water, communication, and power. One explanation for the 
higher susceptibility to water and sewer is the inability to provide a 
substitute for these services and theses services being related to the basic 
functioning of households. The susceptibility curves for these services 
are consistent across the three hurricanes. The similarities between the 
susceptibility curves for the same service decrease as the duration of the 
disruptions increases. This result shows that most communities would 
have a similar tolerance for short service disruptions; however, their 
disturbance from the prolonged service outages vary among commu
nities. The duration of disruption which leads to the disturbance of 50 % 
of the households in the community is similar in most locations. As the 
duration of disruptions increases, however, there are some outlier 
households which could tolerate more days of disruptions. The suscep
tibility patterns for these outliers do not quite match in different regions 
and for various services (except for sewer system). The results unveil the 
contextual difference in the susceptibility patterns to the disruption to 
services. These differences could be related to the specific characteristics 

of the regions (e.g., urban versus suburban versus rural), historical and 
cultural backgrounds, and the sociodemographic characteristics of the 
areas. These factors should be considered while assessing the suscepti
bility of different regions. The largest deviation in susceptibility curves 
is apparent in the susceptibility to power disruptions in the context of 
Hurricane Harvey. Residents of Harris County who were affected by 
Hurricane Harvey have less experience with the prolonged power out
ages and also had a lower rate of having a substitute; therefore, they 
seem to have a higher proportion of not surviving the outages. The 
graphs containing the various service for each area are presented in the 
supplementary information section (Fig. A.9) to help with comparing 
susceptibility patterns among different services. 

Fig. 7 displays susceptibility curves for susceptibility to trans
portation, solid waste, supermarkets, and healthcare services outages. 
The results show that shelter-in-place households are less susceptible to 
these services compared to services needed inside their households. In 
addition, the estimated susceptibility curves for these services have less 
agreement for the three regions. In general, households have a higher 
tolerance for disruptions in these services, and there is a higher uncer
tainty in estimating these curves. Unlike the susceptibility for power 
system disruption, residents affected by Hurricane Michael had a 
significantly lower tolerance to road closures compared to the residents 
affected by Hurricane Harvey and Hurricane Florence. The difference 

Fig. 6. Susceptibility curves for disruptions in power, water, communication, and sewer services.  
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could be due to the less experience with flooding of those affected 
households in Hurricane Michael than in Harvey and Florence. The 
curves in Fig. 7, indicate that while the residents affected by Hurricane 
Harvey seem to have a higher tolerance for transportation disruptions 
than those affected by Hurricane Florence, the residents of Hurricane 
Florence show a higher tolerance for road closures of more than a week 
(75 % proportion). There are some outliers among residents affected by 
Hurricane Florence who could better tolerate road closures due to their 
different characteristics and needs from the service. 

The proportion of susceptible households for transportation and su
permarket closures in Hurricane Harvey and the transportation disrup
tion in Hurricane Florence could be zero for a short period of time. These 
patterns suggest that the residents of an affected community have a 
capacity to tolerate a short duration of outages without experiencing 
great disturbance. The susceptibility curves for the healthcare services 
for the three hurricanes are close for disruptions less than four days. As 
the duration of service disruptions increases, however, the susceptibility 
curves obtained from different hurricanes deviate significantly (Fig. 7). 
Residents affected by Hurricane Harvey had a higher susceptibility to 
the longer-duration disruptions in healthcare services. A larger pro
portion of Harris County households experienced disturbance from the 
long healthcare access disruptions compared to residents affected by 
Hurricane Florence and Hurricane Michael. It should be noted, however, 
that the curve is generated considering the responses from all 

households and not merely those who needed the healthcare services. 
Thus, some households might have reported a large tolerance for service 
disruptions due to their lesser need for the service. 

6. Discussion and concluding remarks 

Susceptibility curves for susceptibility to infrastructure service 
disruption were developed to bridge the gap in the reliability and 
resilience analysis of physical infrastructure systems and the impacts 
disruptions pose to communities. Susceptibility curves enable trans
lating the service disruptions to the probability of the household-level 
disturbance in the affected communities. Advances in the resilience 
analysis of physical infrastructure systems have enabled the assessment 
of system performance under various hazard-induced disruptions. While 
these models for assessing the system resilience inform about the 
physical impacts of natural hazards, they provide no insights regarding 
the societal impacts on affected communities. Achieving sustainability 
goals such as designing human-centered resilient cities calls for human- 
centric approaches to enable inclusion of needs of the community in the 
performance assessment of infrastructure systems. In this research, we 
developed empirical models to determine households’ tolerance for 
service disruptions. The empirical susceptibility curves were created 
accordingly to enable inclusion of social considerations in the assess
ment of the impacts of infrastructure service disruptions on 

Fig. 7. Susceptibility curves for disruptions in transportation, solid waste collection, supermarkets, and healthcare services.  
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communities. Researchers could therefore implement the curves to link 
the findings related to resilience of infrastructure systems to how a 
community could be impacted due to service disruptions. The integra
tion of the outcomes of physical infrastructure models with suscepti
bility curves enables a more holistic assessment of infrastructure 
resilience through the considerations of societal impacts. 

This study introduced the use of survival analysis and susceptibility 
curves for considering the societal impacts of disruptions in infrastruc
ture services. The empirical survival models and curves created in this 
study offer a significant advancement in improving infrastructure 
resilience assessment through consideration of household-level distur
bances. Advancement in reliability and resilience assessment of infra
structure systems have provided researchers and practitioners with 
models and tools (such as fragility curves) to estimate physical failures, 
loss of performance, and service disruptions on engineered systems 
during natural hazards. Little of the existing work, however, has 
considered societal impacts due to infrastructure service disruptions. 
This limitation was due mainly to the absence of empirical data and 
models to determine household-level disturbances caused by disruptions 
in various infrastructure services. This study addresses this important 
gap by creating empirical survival models and curves that could be 
effectively integrated with resilience and reliability models of infra
structure. For example, the existing infrastructure resilience models 
(Batouli & Mostafavi, 2018; Guikema & Nateghi, 2018; Ouyang & 
Dueñas-Osorio, 2014; Rasoulkhani, Mostafavi, Presa, & Batouli, 2020) 
could be used to estimate the extent of disruptions in power (Liu et al., 
2007; Mensah & Dueñas-Osorio, 2016), transportation (Dong, Yu, Far
ahmand, & Mostafavi, 2020; Fan, Jiang, & Mostafavi, 2020), and water 
(Adachi & Ellingwood, 2008; Guidotti, Gardoni, & Rosenheim, 2019) 
infrastructure under different hazard scenarios. Then the estimated 
duration of disruptions could be used in the empirical susceptibility 
curves to estimate the portion of households experiencing disturbance 
under a particular duration of disruptions. Accordingly, additional so
cietal considerations could be devised in the formulation of service 
restoration and resource allocation prioritization in the infrastructure 
models. Through this process, more convergent models of infrastructure 
resilience assessment could be obtained for disaster risk reduction 
(Mostafavi & Ganapati, 2019; Peek, Tobin, Adams, Wu, & Mathews, 
2020). 

The susceptibility curves provide emergency management and 
infrastructure/utility companies with a tool to determine susceptibility 
of the service users to disruptions and to proactively plan for mitigating 
the risks to households. These curves could be used to generate a profile 
of susceptibility for a specific infrastructure service in different loca
tions. Thus, the curves could inform resource allocation and prioritiza
tion of the restoration of the services. Taking power outages as an 
example, the curves in Fig. 6 suggest that a utility company in Harris 
County should expect that a power outage lasting more than 2.5 days 
would cause disturbance to around 50 % of service users. In contrast, the 
same proportion of residents affected by Hurricane Michael and Hurri
cane Florence would tolerate the disruptions for up to around 5 days. 
This information could help the decision-makers in: 1) identifying the 
susceptibility of the communities to the disruptions in infrastructure 
services; 2) enhancing resource allocation to the improvement of 
infrastructure services which are critical for the functioning of the 
community; and 3) prioritizing the restoration of infrastructure systems 
based on the susceptibility of households to reduce the societal impacts 
of service disruption. 

Susceptibility curves developed for different infrastructure services 
in this study suggest that community susceptibility patterns to service 
outages vary across services and regions. Households show greater 
susceptibility to disruptions in sewer systems, water, and power 
compared to the services provided outside their homes, such as trans
portation, supermarkets, solid waste collection, and healthcare facilities. 
The curves also show that, while the susceptibility patterns of different 
locations are similar below a certain duration of outage, prolonged 

outages might pose different levels of disturbance to a community. The 
difference observed in the susceptibility patterns of different areas could 
be related to specific sociodemographic, urban, and historical charac
teristics of the affected community. The historical hazard experience of a 
community influences its susceptibility to infrastructure service dis
ruptions. Areas with more experience with flooding have a higher 
tolerance for flooding-related disruptions, such as road closures, and 
areas with more experience with hurricanes have a higher tolerance for 
wind-related disruptions, such as power outages. Thus, the inherent 
characteristics of different regions influence the susceptibility of the 
communities. 

Survey data collected from the three major hurricane events enabled 
the development of the empirical survival models. These empirical 
models considered a range of variables affecting tolerance for service 
disruptions. Households have distinct needs and capabilities and, 
therefore, different tolerance for service outages. Susceptibility curves 
are based on the wide range of influencing factors and the specific 
characteristics of communities. Similar curves could be developed by 
implementing empirical models in different regions to examine the so
cietal impacts of disruptions in various infrastructure services to inform 
infrastructure resilience, hazard mitigation, and emergency response 
plans. 

While this research examined a wide range of identified influencing 
factors affecting households’ susceptibility to infrastructure service 
disruptions, additional variables could influence the susceptibility of the 
households to the service disruptions. The examination of additional 
variables, such as disparities in political power and urban history, could 
be pursued in future research. In addition, as supported by the findings 
of this research, the susceptibility to one service could affect the sus
ceptibility to other services. In other words, the susceptibility to infra
structure service disruptions is interdependent. Future investigations 
can focus on understanding the interconnected impacts of service dis
ruptions on the households’ disturbances. 
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