Zero Downtime Release:
Disruption-free Load Balancing of a Multi-Billion User Website

Usama Naseer”
Brown University

Alan Frindell

Facebook, Inc.

ABSTRACT

Modern network infrastructure has evolved into a complex organism
to satisfy the performance and availability requirements for the bil-
lions of users. Frequent releases such as code upgrades, bug fixes and
security updates have become a norm. Millions of globally distributed
infrastructure components including servers and load-balancers
are restarted frequently from multiple times per-day to per-week.
However, every release brings possibilities of disruptions as it can
result in reduced cluster capacity, disturb intricate interaction of the
components operating at large scales and disrupt the end-users by
terminating their connections. The challenge is further complicated
by the scale and heterogeneity of supported services and protocols.

In this paper, we leverage different components of the end-to-
end networking infrastructure to prevent or mask any disruptions
in face of releases. Zero Downtime Release is a collection of mecha-
nisms used at Facebook to shield the end-users from any disruptions,
preserve the cluster capacity and robustness of the infrastructure
when updates are released globally. Our evaluation shows that these
mechanisms prevent any significant cluster capacity degradation
when a considerable number of productions servers and proxies are
restarted and minimizes the disruption for different services (notably

TCP, HT TP and publish/subscribe).

CCS CONCEPTS

« Networks — Network management; Network protocol design.

KEYWORDS

Update releases, Load-balancing, Reliable networks.

ACM Reference Format:

Usama Naseer, Luca Niccolini, Udip Pant, Alan Frindell, Ranjeeth Dasineni,
and Theophilus A. Benson. 2020. Zero Downtime Release: Disruption-free
Load Balancing of a Multi-Billion User Website. In Annual conference of
the ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication (SIG-
COMM °20), August 10-14, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3387514.3405885

*Work done while at Facebook, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM °20, August 10—14, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7955-7/20/08.

https://doi.org/10.1145/3387514.3405885

Luca Niccolini
Facebook, Inc.

Ranjeeth Dasineni
Facebook, Inc.

Udip Pant

Facebook, Inc.

Theophilus A. Benson

Brown University

1 INTRODUCTION

Online service providers (OSP), e.g., Facebook, Google, Amazon,
deploy massively complex code-bases on large sprawling infrastruc-
tures to deliver rich web services to billions of users at a high quality
of experience. These code-bases are constantly being modified to
introduce bug fixes, performance optimizations, security patches,
new functionality, amongst a host of other reasons. Recent studies
from Facebook [50, 51] show that each day tens of thousands of
commits are pushed to tens of thousands of machines across the
globe. In fact, the number of web-tier releases increased from once
per week in 2007 to tens of times a day in 2016, each comprising of
1000s of code commits [20, 21].

At the scale of multi billion users and millions of machines, code-
update and release techniques must be swift while simultaneously
incurring zero downtime. Today, the state of the art approach for
deploying these code changes requires draining connections from
servers with the old code and incrementally restarting the servers to
introduce the new code [17, 28, 52]. This technique can have a host of
undesirable consequences from lowering aggregate server capacity
and incurring CPU overheads to disrupting and degrading end user
experience. At the scale of billions of connections, restarting con-
nections is disastrous for the ISP, end-user, and the OSP [11, 18]. The
process of connection-restart incurs a number of handshakes (e.g.,
TLS and TCP) which we show (in Section 2.5) consumes as much
as 20% of the OSP’s CPU. Additionally, the flood of new connec-
tions triggers wireless protocol signaling at the cellular base-station
which simultaneously drains a mobile phone’s batteries and can over-
whelm the cellular provider’s infrastructure. Finally, we observed
that during the restarts, users can experience QoE degradation and
disruptions in the form of errors (e.g., HTTP 500 error) and slower
page loads times (i.e., due to retries over high-RTT WAN).

Motivated by the high code volatility and the potential disruption
arising from code deployment, many online service providers have
turned their attention to designing practical and light-weight ap-
proaches for transparently deploying code in a disruption free man-
ner, i.e., deploying code while ensuring zero downtime. The design of
such a disruption free update mechanism for large providers is chal-
lenge by the following characteristics which are unique to the scale
at which we operate: first, large providers employ a large range of
protocols and services, thus, the update mechanisms must be general
and robust to different services. For example, we run services over
both HTTP and MQTT (a publish-subscribe protocol [45]) which
have distinctly different tolerance and state requirements. Second,
while many applications are stateless, anon-trivial set of applications
are stateful, thus the update mechanisms must be able to seamlessly
migrate or transparently recreate this state at the new server. For

https://doi.org/10.1145/3387514.3405885
https://doi.org/10.1145/3387514.3405885

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

EEE
E=E

AppServers

Backbone
Network

Internet

Edge
Origin

Data Center
(order of tens)

Edge PoP
(order of hundred)

Figure (1) End-to-end Infrastructure

example, a non-trivial number of connection are long-lived and often
transfer large objects, failing to migrate state can significantly impact
end-user performance. Third, due to energy reasons and application-
specific requirements, a subset of servers are resource-constrained
(e.g., cache priming [12, 29] for HHVM servers [5] consumes most
available memory), which prevents us from running both the new
code and old code on the same server, thus preventing us from lever-
aging kernel mechanisms to migrate connections.

Our framework builds on several unique characteristics shared
by the infrastructure of online service providers such as Facebook
and Google. First, the end-to-end infrastructure is owned and ad-
ministered by the provider which implies that updates in a specific
tier, can leverage a downstream tier to shield the end-user from
disruptions, e.g., the application tier can leverage the reverse proxy
tier. Second, while application state is hard to extract and isolate, for
long lived connections with large objects, we can recreate the state
by identifying the partial requests at the old server and replaying
them to the new server. Together these insights allow us to transpar-
ently migrate from old to new code while restarting servers without
exposing the loss of state or server termination to the end-user.

In our framework, an update is achieved by signaling the upstream
tier to handle connection migration and by indirectly externalizing
user-specific state and redirecting the state to an upstream tier. The
upstream tier redirects existing connections and the externalizes the
state to the new servers (or servers with the new code). Additionally,
zero downtime for a restarting L7LB is achieved by handing-over
traffic to side-car (instance with the new code) on the same machine.
To this end our framework consists of two mechanisms: a technique
for signaling and orchestrating connection hand-off via an upstream
tier, a method for detecting and externalizing state, and enhance-
ments to pre-existing hand-off kernel-based mechanisms to enable
them to scale to billions of users.

This framework has been deployed at Facebook for several years
and has helped to sustain an aggressive release schedule on a daily
basis. While comparing our framework to previously used release
methodologies, we observed that our framework provided the follow-
ing benefits: (i) we reduced the release times to 25 and 90 minutes, for
the App. Server tier and the L7LB tiers respectively, (ii) we were able
to increase the effective L7LB CPU capacity by 15-20% , and (iii) pre-
vent millions of error codes from being propagated to the end-user.

2 BACKGROUND AND MOTIVATION

In this section, we introduce Facebook’s end-to-end web serving
infrastructure and present motivational measurements from the
production clusters.

2.1 Traffic Infrastructure

Figure 1 provides an overview of Facebook’s geographically dis-
tributed multi-tiered traffic infrastructure, comprising of DataCenter
(order of tens) and Edge PoPs (Point-of-Presence, order of hundreds).

Naseer et al.

At each infrastructure tier, Facebook uses software load-balancers
(LB) to efficiently handle diverse user workload requirements and
QoE. Additionally, at the origin data centers, there are also applica-
tion servers in addition to the LBs.

e L4LB (Layer4LB): Facebook uses Katran, a transparent, XDP-
based [7], L4LB layer that serves as a bridge in between the network
routers and L7LB (proxies). Routers use ECMP [30] to evenly dis-
tribute packets across the L4LB layer, which in turn uses consistent
hashing [7, 26] to load-balance across the fleet of L7LBs.

e L7LB (Layer7LB): For L7 load-balancing, Facebook uses Prox-
ygen, an in-house proxy with responsibilities encompassing beyond
those a typical traditional L7LB shoulders. Operating in different
modes, it serves as the reverse proxy for load-balancing, forward
proxy for outbound requests and HTTP server. Proxygen is the heart
of traffic management at Facebook, supporting multiple transport
protocols (TCP, UDP), application protocols (HTTP/1.1, HTTP/2,
QUIC, publish/subscribe [45] etc.), serving cached content for CDN,
maintaining security (TLS etc.), health-checking and monitoring
upstream app. servers etc.

o App. Server tier: Resides in the DataCenter and ranges from
web (HHVM, django, custom apps. built leveraging the Proxygen
HTTP server library [1, 5, 53]) to special-purpose servers (e.g., Pub-
lish/Subscribe brokers [45]). HHVM servers (our focus in application
tier) are a general purpose application server for HACK [54], with
workloads dominated by short-lived API requests. However, they
also service long-lived workloads (e.g., HT'TP POST uploads).

2.2 Life of a Request

In this section we present a detailed view of how user requests are
processed by the various tiers of our infrastructure and in doing so we
highlight different application workflows and how they are treated.

(1) Edge PoP serves as the gateway into our infrastructure for
a user’s request and connections (TCP and TLS). These user re-
quests/connections are terminated by the Edge Proxygen.

(2) Edge Proxygen processes each request and, if the request can-
not be serviced at the Edge, it forwards the request to the upstream
Origin DataCenter. Otherwise, for cache-able content (e.g., web,
videos etc.) it responds to the user using Direct Server Return [7].

(3) Edge and Origin maintains long-lived HTTP/2 connections
over which user requests and MQTT connections are forwarded.

(4) Origin Proxygen forwards the request to the corresponding
App. Server based on the request’s context (e.g., web requests to
HHVM, django servers while persistent pub/sub connections to their
respective MQTT broker back-ends).

In this paper, we focus on restarts of Proxygen (at Edge and Origin)
and HHVM App. Server (at DataCenter), and focus on the traffic for
cache-able, uncache-able, and MQTT-backed content. Our goal is
to design a framework that shields transport (TCP and UDP) and
application protocols (HTTP and MQTT) from disruption, while still
maintaining reasonable update-speeds and zero downtime. This
work does not raise any ethical issues.

2.3 Release Updates

Traditionally, operators rely on over-provisioning the deployments
and incrementally release updates to subset of machines in batches.
Each restarting instance enters a draining mode during which it
receives no new connections (by failing health-checks from Katran

Zero Downtime Release

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

£ g
1.0 100 1.0 =
2 — L7LB mg p = °
- 0.8 AppServer @ g 80 T 08 £ 151 0
s L5 806 o n
o %% Lo eo o 210 I Ui
g g2 ¢ g IR
b0_4< gﬁ 20 50.4 9 Ti-f'rroﬁ
2 £o © X 5] EIT
w 024 o w 0.2 o 'Iluu'JO
a Xm 20 a a Sad
o ° @] a
Ll S : S o 001 : : : Rl - —
1 234 10 100 Config. L7LB code 10° 10 10° 10° 10 % 9246 8101214161820

Number of releases in a week Cause of update release

(a) # of releases (b) Root of L7LB restarts

of commits in AppServer push Timeline [minutes]

(c) Root of app. tier restarts (d) UDP mis-routing

Figure (2)

to remove the instance from the routing ring). This phase stays ac-
tive for the draining period [14, 15, 28], the time duration deemed
enough for existing connections to organically terminate. Once
draining period concludes, the existing connections are terminated
and the instance is restarted and the new code kicks-in.

2.4 Motivating Frequent Restarts

To swiftly address security concerns and adapt to evolving user expec-
tations, frequent code releases have become the norm [21, 31, 50, 51],
not the exception. In Figure 2a, we present the number of global
roll-outs per week, over a period of 3 months for 10 Facebook’s Edge
and DataCenter clusters.

L7LB: Globally, at the L7LB tier, we observe on average three or
more releases per week. In Figure 2b, we analyze the root-cause of
these releases and observe that the dominants factors are binary (i.e.,
code) and configuration updates. We note that unlike other organiza-
tions, where configuration changes might not necessitate a release,
Facebook requires restarting the instances for configuration update.
This is an artifact of system design and, since Zero Downtime Release-
powered restarts do not results in disruptions, it removes the com-
plexity of maintaining different code paths,i.e., one for robust restarts
for binary updates and another for configuration-related changes.
Binary updates (due to code changes) always necessitate arestart and
account for ~47% of the releases, translating to multiple times a week.

App. Server: Atthe App. Server tier (Figure 2a), we observe that, at
the median, updatesare released as frequently as 100 times a week [50,
51]. We also observed that each update contains any where from 10
to 1000 distinct code commits (Figure 2c¢) and such high degree of
code evolution necessitates frequent restarts. Conversations with
Facebook developers identified that the constant code changes to the
app. tier is a function a cultural adoption of the “Continuous Release”
philosophy. Although the App. Server tier evolves at a much higher
frequency, the impact of their restarts can be mitigated as L7LBs
terminate user connections and can shield the users from the App.
Server restarts. However, due to the stateful nature of the App. Server
tier and the high frequency of code updates (and thus restarts), some
users are bound to receive errors codes (e.g., HTTP 500) and timeouts.

2.5 Implications of Restarts

At Facebook scale, implications and consequences of frequent re-
leases can be subtle and far-reaching. The “disruption” induced by
arelease is measured along multiple dimensions, ranging from in-
crease in resource usage at CSP-end to a higher number of failed user

requests. Specifically at Facebook, any irregular increase in the num-
ber of HTTP errors (e.g., 500 code), proxy errors (e.g., timeouts), con-
nection terminations (e.g., TCP RSTs) and QoE degradation (e.g., in-
creased tail latency) quantify the extent of release-related disruptions.
Next, we discuss the direct and indirect consequences of a release.
¢ Reduced Cluster Capacity: Intuitively, during a rolling up-
date, servers with old code will stop serving traffic and this will
reduce the cluster’s effective capacity. An unexpected consequence
of reduced capacity is increased contention and higher tail latencies.
To illustrate this point, in Figure 3a, we plot the capacity for an Edge
cluster during a release. From this figure, we observe that during the
update, the cluster is persistently at less than 85% capacity which
corresponds to the rolling update batches which are either 15% or
20% of the total number of machines. Minutes 57 and 80-83 corre-
spond to time gap when one batch finished and the other started.
In a complementary experiment, we analyzed the tail latency and
observed significant increase due to a 10% reduced cluster capacity .

e Increased CPU Utilization: During a server restart, the ap-
plication and protocol states maintained by the server will be lost.
Clients reconnecting to Facebook’s infrastructure will need to rene-
gotiate this application and protocol state (e.g., TCP, TLS state). In Fig-
ure 3b, we plot the CPU utilization at the App. Server-tier when clients
reconnect. We observed that when 10% of Origin Proxygen restart,
the app. cluster uses 20% of CPU cycles to rebuild state. This overhead
mirrors observations made by other online service providers[11,18].

o Disrupted ISP Operations: At the scale of our deployment, a
restart of billions of connections can also put stress on the underlying
ISP networking infrastructure, especially the cellular towers. On
multiple instances, ISPs have explicitly complained about the abrupt
re-connection behavior and the resulting congestion on the last-mile
cellular connections.

¢ Disrupted end-user quality of experience: Despite efforts
to drain connections, restarts at the Proxygen or App. Server tiers lead
to disruptions for users with long-lived connections (e.g., MQTT)
which outlive the draining period. These disruptions manifest them-
selves in multiple ways ranging from explicit disruption (e.g., HTTP
500 error codes) to degraded user experience (e.g., retries). At our
scale, we observe that at the tail (i.e., p99.9) most requests are suffi-
ciently large enough to outlive the draining period. In such situations,
users need to re-upload or restarts session interactions.

The state of the art for performing updates, i.e., draining and
rolling updates, may be suitable for a large number of medium sized
online service providers. However, at our scale, the collateral damage
of applying these techniques extends beyond our infrastructure and
users, to the underlying Internet and cellular fabric.

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

> 1.00] '
= 1
S D12 !
S 0954 % H
9] & !
C 090 S 1.0 1
~ : |
- -] 1
© 05854 o |
Kol 0.8 1
] o 1
oL !
z 0 20 40 60 80 100 120 0 20 40 60 80

Timeline [minute] Timeline [minute]

(a) Cluster capacity. (b) CPU spike.

Figure (3) Impact of release.

3 DESIGN CHOICES

With the growing adoption of mono-repos [25] and micro-services [47],
the need for a zero-disruption code release mechanism is increas-
ingly becoming important both at Facebook and at other companies.
In this section, we elaborate on emerging production techniques and
discuss how these technique fail to operate at our scale.

3.1 Ideal Design (PerfectReload)
Abstractly, there are three ways to seamless update code.

e Language Support (Option-1): The first is to use a language
with built-in support for headless updates such as Erlang [13]. Unfor-
tunately, this approach is not supported by most common languages.
In fact, only a trivially small number of our services are written in
such a language. Orthogonally, the effort required to rewrite our
entire fleet of services in such a language is practically unrealistic.

o Kernel Support (Option-2): A more promising alternative is to
leverage the support from operating systems for seamlessly migrat-
ing connections between two processes — from the one running old
code to the one running new code. However, this has two main draw-
backs: First, kernel techniques like SO_REUSEPORT do not ensure
consistent routing of packets. During such migration of a socket,
there is a temporary moment before the old process relinquishes
the control over it when both processes will have control over the
socket and packets arriving at it. While temporary, such ambiguous
moments can have a significant impact at our scale. To highlight this
problem, in Figure 2d, we examine the number of misrouted packets
during a socket handover. These misrouted packetsillicit errors code
from the server which will propagate to the end-users. While there
are solutions to enforce consistency, e.g., CMSG, SCM_RIGHTS [39]
and dup() [40], they are still limited for UDP. Second, these techniques
are not scalable owing to the hundreds of thousands of connections
at scale per instance. Additionally, a subset of the socket state e.g.,
TLS, may not be copied across process boundaries because of the
security implications of transferring sensitive data.

Ignoring the scalability and consistency issues, we note that two
key issues remain un-addressed. First, for long lived connections, we
may need to wait for an infinite amount of time for these connections
to organically drain out, which is impractical. Second, application-
specific states are not transfered by SO_REUSEPORT, only new socket
instances are added to the same socket family. Terminating these
long lived connections or ignoring application state will lead to
user facing errors. Thus, we need a general solution for addressing
application state and for explicitly migrating long-lived connections.

e Protocol and Kernel Support (Option-3): We can address scal-
ability issues by only migrating listening sockets across application
processes and allowing the old instance to drain gracefully. For long-
lived connections, we can leverage a third party server such as an

Naseer et al.

upstream component to help drain and coordinate migrations of ac-
tive connections. For example, during the update of App. Servers, an
App. Servers can signal the Proxygen to migrate connections by termi-
nating active connections and setting up new connections. However,
for this approach to be disruption free, it requires the connection’s
protocol to support graceful shutdown semantics (for e.g. HTTP/2’s
GoAways) which not supported by a significant subset of our connec-
tions such as HTTP/1.1 or MQTT. Moreover, existing APIs and mech-
anisms in the kernel are inadequate to achieve such migration of sock-
ets properly without causing disruptions for UDP based applications.

The ideal disruption-free release system is expected to:

(1) Generic: Generalizes across the plethora of services and proto-
cols. As demonstrated with Options-3 and Options-1, specialized
solutions limited to specific languages or protocol do not work
at large providers where multiple protocols and languages need
to be supported.

(2) Preserve State: Should either reserve or externalize states to
prevent the overhead of rebuilding them after restarts.

(3) Tacklelong-lived connections: Should be able to preventlong-
lived connection disruptions as draining period is not enough
for them to gracefully conclude.

4 ZERODOWNTIME RELEASE

In this section, we present the design and implementation details
for framework to achieve Zero Downtime Release. Our framework
extends on option-3 and introduces primitives to orchestrate sched-
uling, state externalization, and design enhancements to enable
pre-existing operating system to scale to our requirements. In partic-
ular, our framework introduces three update mechanisms, and are
composed to address the unique requirements of the different tiers
in the end-to-end infrastructure. Next, we elaborate on each of these
three update/release mechanisms and illustrate how our primitives
are used and in particular how the unique challenges are addressed.
The key idea behind the techniques is to leverage Proxygen, either its
building blocks (e.g., sockets) or its position in end-to-end hierarchy,
to prevent or mask any possible disruption from end-users.

4.1 Socket Takeover

Socket Takeover enables Zero Downtime Restarts for Proxygen by
spinning up an updated instance in parallel that takes-over the lis-
tening sockets, whereas the old instance goes into graceful draining
phase. The new instance assumes the responsibility of serving the
new connections and responding to health-check probes from the
L4LB Katran. Old connections are served by the older instance un-
til the end of draining period, after which other mechanism (e.g.,
Downstream Connection Reuse) kicks in.

Implementation: We work-around the technical limitations dis-
cussed in (§ 4) by passing file descriptors (FDs) for each listening
socket from the older process to the new one so that the listening
sockets for each service addresses are never closed (and hence no
downtime). Aswe passan openFD from the old process to the newly
spun one, both the passing and the receiving process share the same
file table entry for the listening socket and handle separate accepted
connections on which they serve connection level transactions. We
leverage the following Linux kernel features to achieve this:

Zero Downtime Release

Old Proxy
Instance

New Proxy
{_Instance

Option-2: Updated instance takes
over listening and accepted sockets,
terminate old instance.

Option-1:
Reload binary/config. Listening u
without restarting. sockets

%

[Graceful shutdowns

wealjsumoq
A3

Machine

4 —
Option-3: Takes-over listening
sockets, drains old instance, gracefully \
shutdown conn. at end of draining.

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

New CONN.

Control MSY. e
Health-checks.
User-space pkt. fwd.

weaJdisdn
e

new) / ®

Figure (4) Design choices for PerfectReload

(1) CMSG: A feature in sendmsg() [39, 42] allows sending con-
trol messages between local processes (commonly referred to as
ancillary data). During the restart of L7LB processes, we use this
mechanism to send the set of FDs for all active listening sockets
for each VIP (Virtual IP of service) from the active instance to the
newly-spun instance. This data is exchanged using sendmsg(2) and
recvmsg(2) [39, 41, 42] over a UNIX domain socket.

(2) SCM_RIGHTS: We set this option to send open FDs with the
data portion containing an integer array of the open FDs. On the
receiving side, these FDs behave as though they have been created
with dup(2) [40].

Support for UDP protocol: Transferring a listening socket’s
FDs to a new process is a well-known technique [35, 36, 38, 43]
has been added to other proxies like (HAProxy [3]) in 2018 [4] and
more recently to Envoy [16]. Although the motivation is same, Prox-
ygen’s Socket Takeover is more comprehensive as it supports and
addresses potential disruptions for multiple transport protocols (TCP
and UDP).

Although UDP is connection-less, many applications and proto-
cols built on top of UDP (QUIC, webRTC etc.) do maintain states
for each flow. For TCP connections, the separation of listening and
accepted sockets by Linux Kernel lessens the burden to maintain
consistency from the user-space application. On the other hand, UDP
has no such in-built support. Typically, a consistent routing of UDP
packets to a socket is achieved via application of hashing function
on the source and the destination address for each packet. When
SO_REUSEPORT socket option is used for an UDP address (VIP),
Kernel’s internal representation of the socket ring associated with
respective UDP VIP is in flux during a release — new process binds to
same address and new entries are added to socket ring, while the old
process shutdowns and gets its entries purged from the socket ring.
This flux breaks the consistency in picking up a socket for the same
4-tuple combination. This significantly increases the likelihood of
UDP packets being misrouted to a different process that does not
have state for that flow (Figure 2d).

Owing to mis-routing of UDP packets, a typical SO_REUSEPORT-
less architecture uses a thread dedicated to accepting new connection
that hands off newly accepted connections to worker threads. UDP
being datagram centric and without any notion of packet type such
as SYN for TCP, the kernel cannot discriminate between a packet
for a new connection vs an existing one. The approach of using
one thread to accept all the packet cannot scale for high loads since
the responsibilities of maintaining states and multiplexing of UDP
packets must now happen in the application layer, and such thread
becomes a bottleneck.

Figure (5) Socket Takeover

To circumvent the scaling issues, we use SO_REUSEPORT option
with multiple server threads accepting and processing the packets in-
dependently. To solve the mis-routing issue, we extended the Socket
Takeover to pass FDs for all UDP VIP sockets. This essentially is
equivalent of calling dup() [40] on an existing socket FD and thus
avoids creation of a new FD for this socket. In other words, the socket
ring for this VIP within kernel remains unchanged with each process
restart. The newly spun process can thus resume processing packets
from where the old process left off.

However, one problem still remains un-addressed. All the packets
arenow routed to the new process, including the ones for connections
owned by the old (existing) process. For applications that require and
maintain states for each UDP based flow (e.g., QUIC), the new process
employs user-space routing and forwards packets to the old process
through a pre-configured host local addresses. Decisions for user-
space routing of packets are be made based on information present
in each UDP packet, such as connection ID [33] that is present in each
QUIC packet header. In our implementation this mechanism effec-
tively eliminated all the cases of mis-routing of UDP packets while
still being able to leverage multiple threads for better scalability.

Workflow: (Figure 5) An existing Proxygen process that is serv-
ing traffic has already bound and called accept() on socket FDs per
VIP. In step @), the old Proxygen instance spawns a Socket Takeover
server that is bound to a pre-specified path and the new Proxygen pro-
cess starts and connects to it. In step ®), the Socket Takeover server
then sends the list of FDs it has bound, to the new process via the
UNIX domain socket with sendmsg() and CMSG. The new Proxygen
process listens to the VIP corresponding to the FDs (step ©). It then
sends confirmation to the old server to start draining the existing
connections (step ©). Upon receiving the confirmation from the new
process, the old process stops handling new connections and starts
draining existing connections (step ®)). In step (), the new instance
takes over the responsibility of responding to health-check probes
from the L4LB layer (Katran). Step @) stays active until the end of
draining period and UDP packets belonging to the older process are
routed in user-space to the respective process.

View from L4 as L7 restarts: An L4LB (Katran) that sits in front
of the L7 proxy and continuously health-checks (HC) each L7LB is
agnostic of updates in L7LB servers because of the zero downtime
restart mechanism. We can thus isolate the L7 restarts only to that
layer. This not only simplifies our regular release process but also
help in reliability of the overall system since the blast radius of a
buggy release is largely confined to one layer where mitigation (or
rollbacks) can be applied swiftly.

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

Edge does not drop the
conn. and tunnels through
another Origin L7LB.

L7LB restarts. All tunneled
conn. are broken.

server

Broken conn.
New Conn. _
Control msgs. Origin

Figure (6) Downstream Connection Reuse

Connections between Edge and Origin: Proxygen in Edge and
Origin maintain long-lived HTTP/2 connections (§ 2) between them.
Leveraging GOAWAY, they are gracefully terminated over the drain-
ing period and the two establish new connections to tunnel user
connections and requests without end-user disruption.

Caveats: Socket Takeover process is not free-of-cost and incurs
CPU and memory overhead, as the two Proxygen instances run par-
allel on the same machine. Although the machine stays available to
serve new connections, there’s (often insignificant) diminished CPU
capacity for the draining duration (§ 6.3).

4.2 Downstream Connection Reuse

As described earlier, MQTT is used to keep persistent connections
with billions of users and the protocol requires underlying trans-
port session to be always available (e.g., for live notifications). As a
result, MQTT clients periodically exchange ping and initiate new
connections as soon as transport layer sessions are broken. MQTT
does not have a built-in disruption avoidance support in case of
Proxygen restarts and relies on client re-connects. Given the lack of
GOAWAY-like support in the protocol, the edge only has the options
of either waiting for the clients to organically close the connection
or forcefully close it and rely on client-side reconnects.

A key property for MQTT connections is that the intermediary
LBs only relay packets between pub/sub clients and their respective
back-ends (pub/sub brokers) and as long as the two are connected,
it does not matter which Proxygen relayed the packets. MQTT con-
nections are tunneled through Edge to Origin to MQTT back-ends
over HTTP/2 (§ 2). Any restarts at Origin are transparent to the
end-users as their connections with the Edge remains undisturbed. If
we can reconnect Edge Proxygen and MQTT servers through another
Origin Proxygen, while the instance in question is restarting, end
users do not need to reconnect at all. This property makes Origin
Proxygen “stateless” w.r.t MQTT tunnels as the Origin only relays the
packets. Leveraging this statelessness, disruptions can be avoided
for these protocols that do not natively support it — a mechanism
called Downstream Connection Reuse (DCR).

Each end-user has a globally unique ID (user-id) and is used to
route the messages from Origin to the right MQTT back-end (having
the context of the end-user connection). Consistent hashing [7, 26]
is used to keep these mappings consistent at scale and, in case of
arestart, another Proxygen instance can take-over the relaying re-
sponsibility without any end-user involvement and disruption (at
back-end or user side).

Workflow: Figure 6 presents the details of the Downstream Con-
nection Reuse transactions. When an Origin Proxygen instance is

Naseer et al.

AS-1 is restarting

POST foo

3
>

&
<
Code 200

Back-ends

Figure (7) Partial Post Replay

restarting, it send a reconnect_solicitation message to downstream
Edge LB step @ to signal the restart. Instead of dropping the connec-
tion, Edge LB sends out re_connect (contains user-id) to Origin, where
another healthy LB is used to relay the packets to corresponding
back-end (located through user-id) (steps 8, 82). MQTT back-end
looks for the end-user’s connection context and accepts re_connect
(if one exists) and sends back connect_ack (steps €, C2). Otherwise,
re_connect is refused (by sending connect_refuse), Edge drops the
connection and the end-user will re-initiate the connection in the
normal way.

Caveats: Restarts at Origin is the ideal scenario for DCR as Edge
is the next downstream and can thus keep the restarts transparent
to users. For a restart at the Edge, the same workflow can be used
with end-users, especially mobile clients, to minimize disruptions
(by pro-actively re-connecting). Additionally, DCR is possible due to
the design choice of tunneling MQTT over HTTP/2, that has in-built
graceful shutdown (GOAWAYs).

4.3 Partial Post Replay

An App. Server restart result in disruption for HTTP requests. Due to
their brief draining periods (10-15s), long uploads (POST requests)
pose a specific pain point and are responsible for the most disruptions
during restarts.

A user’s POST request makes its way to the App. Server through
the Edge and Origin Proxygen. When the app. server restarts, it can
react in multiple ways: (i) The App. Server fails the request, responds
with a 500 code and the HTTP error code makes it way to user. The
end-user observes the disruption in form of “Internal Server Error”
and the request gets terminated (disrupted). (ii) The App. Server can
fail the request with 307 code (Temporary Redirect), leading to a
request re-try from scratch over high-RTT WAN (performance over-
head). (iii) The 307 redirect can be improved by buffering the POST
request data at the Origin L7LB. Instead of propagating the error (500
or 307 retry) to the user, the OriginL7LB canretry the buffered request
to another healthy App. Server. The massive overhead of buffering
every POST request until completion makes this option impractical.

In light of deficiencies of alternate effective techniques, Partial
Post Replay [27] leverages the existence of a downstream Proxygen
and the request data at restarting app. server to hand-over the incom-
plete, in-process requests to another App. Server. A new HTTP code
(379) is introduced to indicate a restart to the downstream Proxygen.

Workflow: Figure 7 presents a high-level view of the workflow. A
user makes a POST request (@) which is forwarded to an App. Server
(®). When the App. Server (AS in Figure 7) restarts, it responds to any
unprocessed requests with incomplete bodies by sending a 379 status
code and the partially received POST request data, back to down-
stream Origin Proxygen (©). For HTTP/1.1, the status message is set
to “Partial POST Replay”. The Proxygen instance does not send the

Zero Downtime Release

379 status code to the end-user and instead builds the original request
and replays it to another healthy App. Server ©). When the request
gets completed, the success code is returned back to the end-user ®.

Caveats: There is a bandwidth overhead associated with replay-
ing the request data — high bandwidth connections, existing between
Origin Proxygen and App. Server in DataCenter, are required to make
Partial Post Replay viable. Additionally, since end-user applications
are not expected to understand code 379, it should never be sent back
to end-user. In case when intermediary cannot replay request to
another server, the requests should be failed with standard 500 code.

4.4 Applicability Considerations

Next, we discuss the applicability of the three mechanisms to the
different tiers. As mentioned in § 2, the tiers differ in their function-
ality and operational capacity, and can also have specific operational
limitations, e.g., App. Server tier is restarted hundreds of times a
week and requires draining period in order of tens of seconds. Such
operational aspects decide the applicability of the three mechanism.

Whereas Socket Takeover is used at every Proxygen instance in the
end-to-end architecture, Socket Takeover is not used for the HHVM
server at the App. Server tier and Partial Post Replay is used there
to tackle any disruptions. Due to the very brief draining period for
HHVM servers, Socket Takeover by itself is inadequate to prevent
disruptions for large POST requests as these requests are not ex-
pected to be completed by the end of the draining phase for the
old instance and hence would lead to connection resets when the
old instance terminates. Therefore, a co-ordinated form of drain-
ing with the downstream is required to hand-over the request to
another healthy instance. Additionally, operational aspects of App.
Server tier makes Socket Takeover unfavorable as these machines
are too constrained along CPU and memory dimensions to support
two parallel instances (e.g., priming local cache for a new HHVM
instance is memory-heavy). Downstream Connection Reuse is used at
both Edge and Origin Proxygen for MQTT-based services due to their
long-lived connection nature. For Downstream Connection Reuse to
work at Edge, application code at the user-end needs to understand
the connection-reuse workflow transactions.

The three mechanisms differ with respect to the protocol or the
target layer in the networking stack. Hence, there’s no interdepen-
dencies and the mechanisms are used concurrently. Socket Takeover
and Downstream Connection Reuse are triggered at the same time, i.e.,
when a Proxygen restarts. Note that, if the next-selected machine to
relay the MQTT connections is also under-going a restart, it does not
have any impact on Downstream Connection Reuse, since the updated,
parallel instance is responsible for handling all the new connections.
For Partial Post Replay, it is possible that the next HHVM server is
also restarting and cannot handle the partially-posted requested,
since the corresponding instance is in draining mode and not ac-
cepting any new requests. In such a case, the downstream Proxygen
retries the request with a different HHVM server. At production, the
number of retries is set to 10 and is found enough to never result in
a failure due to unavailability of active HHVM server.

5 HANDS-ON EXPERIENCE

In this section we discuss our experiences and the challenges we
faced in developing and deploying the Zero Downtime Release.

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

5.1 Socket Takeover

As discussed in section 4.1, passing controls of a listening socket
between processes with SCM_RIGHTS is known technique. Our so-
lutions use it as a building block for zero-downtime release in a
large-scale production service. It is thus important to understand
limitations and operational downsides of using such feature and
have proper monitoring and mitigation steps in place.

e Downsides of sharing existing sockets: When the owner-
ship of a socket is transferred to another process its associated state
within the kernel remains unchanged since the File Descriptor (FD)
still points to the same underlying data structure for the socket within
Kernel even though the application states in user-space have changed
with the new process taking over the ownership of the socket.

While this mechanism to pass control of a socket is not an issue
per se, an unchanged socket state in the Kernel even after restart of
the associated application process is not only unintuitive but can
also hinder in debugging of potential issues and prevent their swift
mitigations. It is a common practice to roll back the newly released
software to a last known version to mitigate ongoing issues. Albeit
rare in occurrence, if there is any issue in the Kernel involving socket
states, such as ones stemming from erroneous states within their data
structure, diagnosing or mitigating such issues on a large scale fleet
poses several challenges since a rollback of the latest deployment
does not resolve the issue. For example, we encountered a bug in the
UDP write path [22] after enabling the generic segmentation offload
(UDP GSO) Kernel feature [23]. On many of the updated servers,
the buffer in UDP sockets (sk_buff) were not cleared properly after
failures within certain syscalls in write paths. This resulted in slow
accumulation of buffers over period of time, eventually leading to
a system wide failure to successfully write any further packet. A
simple restart of the application process owning the socket did not
mitigate this issue since the underlying socket structure persisted
across process restarts while using the Socket Takeover mechanism.

Another pitfall with the mechanism of passing the control of
sockets is that it introduces possibilities of leaking sockets and their
associated resources. Passing the ownership of sockets to a different
process using their FDs is essentially equivalent to a system call
dup(fd) wherein upon passing these FDs to the new process, the
Kernel internally increases their reference counts and keeps the
underlying sockets alive even after the termination of the applica-
tion process that owns them. It is thus essential that the receiving
process acts upon each of the received FDs, either by listening on
those sockets or by closing any unused ones. For example, when
multiple sockets bind to the same address using the socket option
SO_REUSEPORT, the Linux Kernel internally multiplexes incoming
packets to each of these sockets in a fairly uniform manner. However,
during a release if the newly spun process erroneously ignores any
of the received FD:s for these sockets after Socket Takeover, without
either closing the FDs or listening on the received sockets for incom-
ing packets, it can lead to large increase in user facing errors such
as connection timeouts. This is because the orphaned sockets now
owned by the new process are still kept alive in the Kernel layer and
hence receive their share of incoming packets and new connections
- which only sit idle on their queues and never get processed.

Remediation: For swift mitigations of operational issues during
a release, such as the ones involving persistent erroneous socket

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

states or socket leaks as mentioned earlier in this section, a mech-
anism to dynamically disable the Socket Takeover process presents
a safe and convenient approach. To allow such options, applications
employing Socket Takeover mechanism must incorporate such fall-
back alternatives on all of its phases, spanning from the initialization
phase (when sockets are created) to the shutdown phase (as the pro-
cess gracefully terminates all of its existing connections). Proxygen,
for example, allows transitioning to either modes by executing a
set of heuristics tuned to its needs on each of its operating phases.
During the initialization phase Proxygen resorts to allocating and
binding new sockets if it cannot receive FDs of listening sockets from
the existing process. Similarly, during its shutdown phase Proxygen
adopts different strategies depending on the runtime behavior - such
as signaling the L4LB to not send any new traffic by failing the health
probes if no other instance is running on the same host, to transition-
ing back to the running mode from the shutdown phase if the newly
spun process crashes during its initialization phase. Additionally,
being able to selectively disable this approach for a subset of sockets
makes ad-hoc debugging and development easier.

We recommend fine-grained monitoring of socket states, such as
connection queue lengths, failure counts in socket reads/writes, num-
ber of packets processed and dropped and counts of FDs passed across
process domains to detect problems of these nature in early phases.
While the occurrence of such issues is quite rare in our experience,
monitoring of such events not only notifies the concerned engineers
but can also trigger automated responses to mitigate the impact.

e Premature termination of existing process: During a re-
lease phase, there is a period of time during which multiple appli-
cation processes within a same host are serving requests. During
such window of time, premature exit of the old instance before the
new service instance is completely ready and healthy can resultin a
severe outage. Typically, the newly spun instance goes through ini-
tialization and setup phase, such as loading of configuration, setting
up of its server pools and spinning of threads, and may also invoke
remote service calls. It is thus common to encounter issues due to
issues of its own such as deadlocks and memory leaks or due to issues
external to itself, such as failures on the remote service calls in its
startup path. It is thus imperative to keep the old service instance
and serve incoming requests as the new instance is being initialized.

Remediation: Our recommendation based on experience is to
implement a message exchange mechanism between the new and
old application server instances to explicitly confirm that the Socket
Takeover was successful, and acknowledge the readiness to serve.
The same mechanism that was used to pass FDs of sockets during
the Socket Takeover can be trivially extended to allow exchange of
such messages. Only upon receiving the explicit message should the
old instance initiate its shutdown phase with proper draining phase
to allow graceful termination of existing connections.

e Backward compatibility: Any changes in the Socket Takeover
mechanism must be backward compatible and support versioning.
If the system of acknowledgment from the new instance to the old
instance breaks, the service gets exposed to significant availability
risk. To illustrate this notion further, any change in the behavior
of the Socket Takeover version n needs to be compatible with the
version n+1, and thus, needs to handle all the possible transitions:
— n— nrestart of an existing version in production
— n— n+1 deployment of the new implementation

Naseer et al.

5% instances restarted 20% instances restarted

(%] [

— —

810 £ 101

= =

Y 0.8 1 Y 0.8 1

[[

g g

D 0.6 D 0.6

o o

~ 0.4 4 — 0.4 4

%] %]

S o021 i S o021 i
Y —— ZeroDowntime 502 —— ZeroDowntime
© HardRestart © HardRestart
E 0.0 1 E 0.0 1

O 0.96 0.98 1.00 O 0.8 0.9 1.0

[a] Fraction of baseline capacity [b] Fraction of baseline capacity

Figure (8) Cluster capacity at {5,20}% batch restarts.

- n+1— nrevert of the deployment above (for example, due to a
regression)

— n+1—n+1 restart of the new version in production

For this reason we recommend the implementation of explicit ver-
sioning logic within the messaging mechanism to make it easier for
the developer to specify the intended behavior when introducing
new changes in the algorithm. A newly spun process can gracefully
terminate itself early if it fails to negotiate a common version with
an existing process. Only after successfully completing version ne-
gotiation, the existing process sends the FDs of listening sockets to
the new process.

o Availability risks and health-checks: The process of release
itself can increase the availability risks for a service going through
the release. For instance, degradation in the health of a service being
released even at a micro level, such as one at an individual host level,
can escalate to a system wide availability risks while updating a large
fraction of its servers. The overall release process, therefore, must
be tuned such that the health of the service being updated remains
consistent for an external observer of the service. For example, when
Proxygen, an L7LBinstance, is being updated with the Socket Takeover
mechanism, its state must continue to be perceived as healthy to the
observers in L4LB layer. Occasionally it is possible that the servers
going through deployment in peak hours suffer momentary CPU
and memory pressure, and consequently reply back as unhealthy
to external health monitors for the service. This seemingly momen-
tary flap can escalate to system wide instability due to mis-routing
of packets for existing connections if, for example, the L4LB layer
employs a consistent routing mechanism such as consistent-hash to
pick an L7LB destination server based on the source and destination
addresses in a packet header.

Remediation: To avoid instability in routing due to momentary
shuffle in the routing topology, such as changes in the list of healthy
servers going through a release process using the Socket Takeover
mechanism, we recommend adopting a connection table cache for
the most recent flows. In Facebook we employ a Least Recently Used
(LRU) cache in the Katran (L4LB layer) to absorb such momentary
shuffles and facilitate connections to be routed consistently to the
same end server. Adoption of such mechanism also usually yields
performance improvements.

5.2 Partial Post Replay

Here we discuss potential pitfalls of the store-and-replay solution
regarding HT TP semantics and app. server behavior; while some of
the solutions were part of the original design, some others are less

Zero Downtime Release

14 2 14
Q
.13 < 1.3
& .
012 €121
€ &
o 1.1 O 1.1
] ':
R R e I A e
>
& 0.9 = 0.9
3* —— DCR 2 —— DCR
0.8 c @ 0.8 c
woutDCR | = woutDCR
0.7 . ; . 4 0.7
20 40 60 0 20 40 60 80

Timeline [minutes] Timeline [minutes]
Figure (9) Impact of Downstream Connection Reuse

obvious and were only discovered after deploying the solution in
production.

o Preserving HTTP Semantics: Partial Post Replay is designed
to work with any HT TP version; some simple rules must be defined
for each protocol version to make sure that the necessary state is
transferred back to the proxy so that the original request can be
replayed to a different server. As an example HTTP/2 and HTTP/3
request pseudo-headers (beginning with ’:") are echoed in the re-
sponse message with a special prefix (e.g. 'pseudo—echo—path -’
for the " :path:’ pseudo-header). The most interesting corner cases
however were discovered with HTTP/1.1 and chunked transfer en-
coding where the body stream is split into chunks; each chunk is
preceded by a header that indicates the chunk length and the end of
the body is signaled by a chunk trailer. A proxy implementing PPR
must remember the exact state of forwarding the body to the original
server, whether it is in the middle or at the beginning of a chunk in
order to reconstitute the original chunk headers or recompute them
from the current state.

o Trusttheapp. server,but always double-check: A solution
like PPR requires a Proxy and its immediate upstream hop to collab-
orate and implement the client and server-side of the mechanism. In
Facebook infrastructure since we control both sides there is implicit
trust on the app. server doing the right thing and not be malicious.
However, the upstream may also behave as a proxy itself forwarding
responses from another app. server which does not implement PPR
and may be using the HTTP response status code 379. We hit this
case in production, where the web-server acting as a proxy would re-
turn responses from a buggy upstream service returning randomized
HTTPresponse codes due to amemory corruption bug. Although this
was due to a bug, we realized that there was the need for a more strict
check on the conditions to enable the feature on a specific request.

Remediation: The current implementation and RFC do not de-
fine a negotiation mechanism for the feature and assumes previous
knowledge at the intermediary and server that the peer is going
to support the feature. Also, HTTP response code 379 was specif-
ically picked within an unreserved range in the IANA status code
registry [6] and therefore no assumption can be made on the server
not using that status code for other purposes. To disambiguate then
we used the HTTP Status message, and defined that the proxy must
enable PPR only on seeing a 379 response code with PartialPOST
as the status message.

6 EVALUATION

Our evaluation of our framework, Zero Downtime Release, is moti-
vated by the following practical questions:

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

(1) How does Zero Downtime Release fare in comparison with tra-
ditional release techniques on performance and availability grounds?
(2) What are the operational benefits of using Zero Downtime Re-
lease at productions scale in terms of minimizing disruptions,
preserving capacity and release scheduling?
(3) What are the system overheads of Zero Downtime Release?
Evaluation Metrics Zero Downtime Release has been operational
at Facebook for multiple years and has assisted in rolling-out thou-
sands of code updates with minimal disruptions. A sophisticated
auditing infrastructure [37, 49] has been built over the years for
real-time monitoring of cluster and user performance, including re-
leases and their implications. Each restarting instance emits a signal
through which its status can be observed in real-time (e.g., health of
the parallel processes, duration of takeover etc.). The instances also
log system benchmarks (e.g., CPU utilization, throughput, Request
per Second (RPS) served etc.) as well as counters for the different
connections (e.g., Number of MQTT connections, HTTP status code
sent, TCP RSTs sent etc.). The monitoring systems also collect per-
formance metrics from the end-user applications and serve as the
source of measuring client-side disruptions (e.g., errors, HTTP codes
sent to user etc.). Our evaluation of Zero Downtime Release, we exam-
ine these data sources to analyze the performance and operational
implications of our Zero Downtime Release framework.
Evaluation Setup In our evaluation, we conduct experiments in
production clusters across the globe, serving live end-user traffic.
Experimenting with live deployments allows us to not only measure
the impact at scale, but also measure the impacts across the differ-
ent protocols. For each system component, we aim to highlight
improvement in target system’s availability, quality of service (QoS)
and their impact on client. We further explore their use in alleviat-
ing the complexity of managing hundreds of production clusters.
Finally, we address the additional costs related to persistent long
haul techniques and explore their impact on performance.

6.1 Comparison with Traditional Release

To measure the effectiveness of Zero Downtime Release, we conducted
multiple HardRestart across 10 productions clusters. A HardRestart
mirrors the traditional roll-out process — updates are rolled out in
batches across a cluster and the restarting instances enter the drain-
ing mode (i.e., the server stops receiving new connection until the
end of draining period). Since the goal is to compare against Zero
Downtime Release, we set the same draining duration (20 minutes)
and test two batch sizes (5% and 20%) in ten randomly selected Edge
production clusters. During both restart strategies, we monitor sys-
tem metrics (e.g., idle CPU) and performance counters (e.g., HTTP
and MQTT stats). Furthermore, we analyzed the client-side disrup-
tions by examining performance metrics collected from end-users.

6.1.1 Improvedtimeto completion. Figure 16 summarizes Com-
pletion Times of various restart mechanisms for Proxygen and App.
Server releases (i.e., time required to update our global deployments
for either Proxygen and App. Server). We observe that in the me-
dian update, Proxygen releases finish in 1.5 hours, whereas, App.
Server releases are even faster (25 minutes). The major factor behind
the differences in their completion time is the different draining
behavior. Proxygen are configured to drain for 20 minutes while
App. Server have a short draining interval (10-15 seconds) since their
workload is dominated by short-lived requests. As we are going to

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA Naseer et al.
Traditional 1.0 'gg
g 20 = 20
£, 00t
o t [a) |
* 0'?....&&&&@%%%%%%%%%? W 0.61 5ot
1234567 8 91011121314151617181920 8 3;5 104
. 0.41 £
ZeroDowntime %E
%
g 0.2 0.2 — PPR 9 59
£0.0-= %%%%9§==== ======== 00 WOutPPR g i
o .0 I i
* N N N N = Conn. Stream Timeouts Write
LA B B B B B B B S U S B B B B N R B R 0000 0001 0002 0003 .
12345678 91011121314151617181920 % di ted rst. abort/unack. timeouts
Timeline [minutes] o conn. disrupte Error type

Figure (10) Packet mis-routing

show next, Zero Downtime Release preserves capacity and minimizes
while taking order of tens of minutes to restart the tiers.

6.1.2 Improved L7 Cluster Capacity. Katran maintains an up-
dated view of available Proxygen through health-checks. Recall that
performing a HardRestart on an instance causes this instance to block
new connections and thus to fail health-checks, because health-check
connections are rejected. Whereas Zero Downtime Release enables
the new Proxygen instance to take-over health-check responsibil-
ity. Looking at Katran logs, we observe the expected behavior: Zero
Downtime Restart stays transparent to Katran while, for HardRestart,
the restarted instances are removed from Katran table.

To explore the impact of the two restart approaches on clusters’
available capacity, we measure the idle CPU metrics under the drain-
ing phase of both restart approaches. Figure 8(b) plots the cluster’s to-
talidle CPUresources, normalized by the baseline idle CPUresources,
recorded right before the restart. In Socket Takeover (§ 6.3), we expect
an increase in CPU usage because of the parallel process on same
machine, leading to a slight (within 1%) decrease in cluster’sidle CPU.
However, this is radically different from the HardRestart case, where
the cluster’s CPU power degrades linearly with the proportion of
instances restarted because each instance is completely taken offline.

6.1.3 Minimizing User Faced Disruptions. Pub/Sub services
(Downstream Connection Reuse):

To measure MQTT related disruptions, we performed restarts
with and without Downstream Connection Reuse (DCR at the Origin.
Figure 9 highlights its impact on minimizing the client side disrup-
tions. The figure plots a timeline of Publish messages routed through
the tunnel to measure the impact of restarts on communication be-
tween end-users and their MQTT brokers (back-ends). The figure
also plots the median number of new MQTT connections created at
the back-ends, by measuring the number of ACKs sent in response to
MOQTT connect messages from end-users. The number represent the
median across the cluster machines and are normalized by their value
right before restart. In contrast to DCR case where the number of pub-
lished messages do not deteriorate during the restart, we observer a
sharp drop in Publish messages when Downstream Connection Reuse
is not used (woutDCR), indicating disruptions in communication be-
tween users and their MQTT brokers. On the other hand, we observe
a sharp spike in number of ACKs sent for new MQTT connections
for woutDCR case, indicating that the restarting instance terminated
the MQTT connection, leading to the clients retrying to reconnect
with the back-end brokers. With DCR, we do not observe any change
as connections between users and their back-end brokers are not

Figure (11) POST disruption

Figure (12) Proxy errors comparison

terminated and, instead, are routed through another Origin Proxygen
to same broker.
Web (Partial Post Replay): In absence of Partial Post Replay (PPR),
the restarting App. Server terminates the in-process POST requests
and returns error code (e.g., HTTP code 500) to the downstream
Proxygen and, eventually, the error code reaches the end-user. In case
of PPR, the server returns a code 379 and the partial POST data which
is then replayed to another App. Server alongside the original request.
To test Partial Post Replay’s effectiveness, we observe App. Server
restarts from the downstream Origin Proxygen’s vantage point and in-
spect the POST requests sent to a restarting server. A reception of 379
response, along with the partial request data, signals a request that
would have faced disruption in the absence of Partial Post Replay—
allowing us to measure the scale of disruptions due to App. Server
restarts. Figure 11 compares the Partial Post Replay’s impact by pre-
senting the percentage of connections disrupted across the web tier
for 7 days. Note that App. Server are restarted tens of times a day (Fig-
ure 2a) and the 7 days worth of data covers around 70 web tier restarts.
We observe that Partial Post Replay is extremely effective at minimiz-
ing the POST requests disruptions. Although the percentage might
seem very small (e.g., 0.0008 at median), there are billions of POST
request per minute for the web-tier and even the small percentages
translate to huge number of requests (e.g, ~6.8 million for median).

6.1.4 Minimizing Proxy Errors. A major benefit of using Zero
Downtime Release is to improve proxy performance during restart
w.r.t. errors. Errors result in connection terminations or 500 response
codes both of which are highly disruptive to end-user’s performance
and QoE. To measure these disruptions, we measured the errors
sent by the Edge proxy to end-users, under both kind of restarts.
Figure 12 presents the ratio of errors observed for the two restarts
(traditional and Zero Downtime Release). The 4 types of errors cor-
respond to different types of disruptions: (i) Connection Reset (conn.
rst.) refers to sending a TCP RST to terminate the connection, (ii)
Stream abort/unacknowledged refers to errors in HTTP, (iii) Time-
outs refer to TCP level timeouts, (iv) write timeout refers to case
when application times-out due to disruption in underlying connec-
tion. We observe a significant increase in all errors for “traditional”
as compared to Zero Downtime Release. Write timeouts increase by
as much as 16X and are significantly disruptive for user experience
as users can not retry right away.

6.1.5 Impact on consistent packet routing. Next, we measure
the efficacy of Socket Takeover for consistently routing packets to the
right proxy process, in cases where multiple proxies are available
(updated and draining instance). We disable the connection-ID based

Zero Downtime Release

[Restarted Instance
[Non-Restarted instances

—— Cluster-wide average

E.
D1
S

0123456 7 8 91011121314151617181920212223242526
o] e b e b LR LR A A I b Il
Li bR R IR b

0123456 7 8 91011121314151617181920212223242526

TTITETT Y

T1 1 I 1 I I [

.1--5-5-1--1--1--1-4-.1..1.{.(_%%%%
Fea s

MQTT conn.

0123456 7 8 91011121314151617181920212223242526
Timeline [minutes]

Figure (13) Timeline of Proxygen restart

QUIC packet routing and inspect the packets received at both in-
stances. Since the HardRestart case has only one instance running at
a time, no UDP mis-routing exists. In the context of this experiment,
traditional approach refers to the case where sockets are migrated to
the updated instance, but the system lacks connection-ID powered
user-space routing. Figure 10 present the number of UDP packets
mis-routed per instance. A packet is marked mis-routed if the wrong
proxy instance receives it i-e packets bound for the draining instance
are received at updated one. Although we observe some mis-routing
for Zero Downtime Release at start of the restart, their magnitude is
insignificant compared to traditional case, with 100X less packets
mis-routed for the worst case (tail at T=2).

6.2 Operational Benefits at Scale

To evaluate the effectiveness of Zero Downtime Release at scale, we
monitored 66 production cluster restarts across the globe.
6.2.1 Performance and stabilityimprovements: Figure 13 shows
a timeline of the system and performance metrics (Requests Per Sec-
ond (RPS), number of active MQTT conn., throughput and CPU
utilization) during releases. The metrics are normalized by the value
just before the release was rolled-out. During each batch restart (20%
of the instances), we collected the target metrics from each cluster in-
stance and Figure 13 plots the distributions (averaged over a minute)
observed across two groups of machines: (i) the 20% restarted (Gg),
(ii) the rest of 80% non-restarted (GyR). Observing the two groups
side by side demonstrates standing their behavior during restarts.
The timeline (x-axis in minutes) marks 4 phases: (i) T<1 state before
restart, (ii) T=2 marks the start of batch restart, (iii) T=24 marks the
end of draining period, (iv) T>24 state after batch restart is concluded.
All the observed metrics are normalized by their values at T=0. We
further present a cluster-wide view in form of the average metrics
calculated across all instances of the cluster.).
Cluster-widebehavior: Across RPS and number of MQTT conn.,
we observe virtually no change in cluster-wide average over the
restart period. No significant change in these cluster-wide metrics
after T=2, even with 20% of the cluster restarting, this highlights the
benefits of Zero Downtime Release at scale in practice. We do observe
asmall increase in CPU utilization after T=2, attributed to the system
overheads of Socket Takeover, i.e., two Proxygeninstances run parallel
for the duration of draining period on same machine resources (§ 6.3).

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

| isaaanentsssassnnsassseny
SRy

1234567 8 91011121314151617181920212223242526
Timeline [minutes]

Figure (14) Disruptions during Proxygen restart
Gp vs G g behavior: Analyzing the per-group breakdown, we

observe the inflation in CPU utilization for restarting instances (Gg)
only persists for two minutes (at T=2,3) and the CPU util. gradually
decreases until the end of draining period where we observe a sharp
decrease (at T>24) due to termination of parallel process. CPU util. of
the (Gg) to be lower than cluster-wide average and Gg (non-restarted
group) is surprising as every machine in Gg runs two Proxygen in-
stances during 2 < T < 24. We observe RPS to drop for Gg and rise for
GNR after T=3, indicating that Gg instances are serving lower num-
ber of requests than their pre-restart state and the G R instances are
serving a higher proportion. The contrasting behavior for the two
groups arise due to CPU being a function of RPS i-e an instance serv-
ing less number of requests requires lower CPU cycles. Since Katran
uniformly load-balances across Proxygen fleet and the newly-spun,
updated instance has no request backlog, it gets the same share of re-
quests as others — leading to the drop and ramp-up in RPS over time.
For MQTT connections, we observe their number to fall across
Gr instances and gradually rise for Gy g. This behavior is expected
as the MQTT connections get migrated to other healthy instances
(GNR) through DCR. However, we do not observe their number
to drop to zero for G at end of draining as the updated, parallel
Proxygen picks up new MQTT connections during this duration.
Timeline for disruption metrics: Figure 14 builds a similar
timeline for disruption metrics — TCP resets (RST), HTTP errors
(500 codes) and Proxy errors, presenting their count. Each point is
the average value observed for a cluster and the box plot plots the
distribution across the clusters. The timeline is divided into the four
phases, similar to Figure 13. We observe that the disruption met-
rics stay consistent throughout the restart duration. Even for a 20%
restart, we do not observe any increase in these disruption metrics —
highlighting the effectiveness of Zero Downtime Release in shielding
disruptions. No change in TCP RSTs highlights the efficacy of Zero
Downtime Release for preventing TCP SYN related inconsistencies,
observed for SO_REUSEPORT based socket takeover techniques [38].
6.2.2 Ability to release at peak-hours. Traffic load at a cluster
changes throughout the day (exhibiting di-urinal pattern [44]). The
traditional way is to release updates during off-peak hours so that
the load and possible disruptions are low. Figure 15 plots the PDF of
Proxygen and App. Server restarts over the 24 hours of the day. Prox-
ygen updates are mostly released during peak-hours (12pm-5pm).
Whereas, the higher frequency of updates for App. Server (Figure 2a)
leads to a continuous cycle of updates for the App. Server — a fraction
of App. Server are always restarting throughout the day as seen by
the flat PDF in Figure 15. From an operational perspective, operators
are expected to be hands-on during the peak-hours and the ability to
release during these hours go a long way as developers can swiftly
investigate and solve any problems due to a faulty release.

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

Naseer et al.

— L7LB

100 -

80 -

60 -

CDF

404

1.04
5 020 — LB
£ AppServer 0.8
% 0.15 1 06
w 0.6+
£ 0.10 8
uc—) . O 04
&
0.05 0.24
o .
\
0.01
0.00

;095%%0%ooa oo e o e or®
Hour of the day
Figure (15) Update release time

6.3 System Overheads

Micro-benchmarks: Improving cluster availability and client’s per-
formance during a restart can come at the cost of increased system
resource usage. Figure 17 plots the system resource usage during the
restart phase for machines in a randomly chosen production edge
cluster. Since the CPU consumption is variable at different phases of
the restart (increases at first and then returns to normal state as seen
in timeline figure 13), we plot system benchmarks during the entire
restart and present the median numbers observed across the different
machines in a randomly selected edge cluster. The presence of two
concurrent Proxygen instances contributes to the costs in system
resources (increased CPU and Memory usage, decreased through-
put). The change in throughput correlates with CPU usage (inverse
proportionally), and the tail throughput decreases is caused by the
initial spike in CPU usage. Although the tail resource usage can be
high (persisting for around 60-70 seconds), the median is below 5%
for CPU and RAM usage i-e the increased resource usage does not
persistent for the whole draining duration (§ 6.2). As the machine
is still available and able to serve connections, this overhead is a
small price to pay for minimizing disruptions and keeping the overall
cluster close to its baseline capacity (i.e., non-restart scenario).

7 RELATED WORK

Release engineering: [24] is critical to important and performance
for large-scale systems and has been a topic of discussion among
industry [8, 20, 21], and researchers as well [9]. Different companies
handle the release process in their own way, to suit the needs of their
services and products [9, 20]. With the increased focus on improving
performance and availability of global-scale systems, release engi-
neering has become a first class citizen [20] at present and this paper
moves forward the discussion around the best practices for update
releases at a global scale.

Load-balancing at scale: The paper builds on the recent ad-
vancements in improving network infrastructure (Espresso [58],
FBOSS [19], Katran [7] etc) and the use of L7LB [2, 3, 48, 53, 56] for
managing traffic, to proposes novel ideas to improve the stability
and performance by leveraging the L7LB, in order to mask any pos-
sible restart-related disruptions from end-users and improve the
robustness of protocols that do not natively support graceful shut-
downs. Note that, some aspects of the papers have been discussed in
earlier works [34, 46] from Facebook. However, this paper tackles a
wider-range of mechanisms, evaluate them at production-scale and
describes the experiences of using these mechanisms.

0 20 40 60 80 100120 140 160 180 200 0! - : : . -)
Duration to complete 0 5 10 15 20 25 30
release [minutes]

Figure (16) Time required to push release

/ —— CPU usage (increase)
AppServer 20 A / RAM usage (increase)

—— Throughput (decrease)

% change
Figure (17) System benchmarks

Managing restarts and maintenance at scale: Recent work

hasfocused on managing failures and management-related restart/updates

for various components of infrastructure, ranging from hardware
repairs [57] to network and switch upgrades [10, 32] in data-centers.
Our focus is mostly on software failures and graceful handling of
restarts, to allow faster deployment cycles and have zero disruptions.
While these works focus on mostly data-center scenarios, we tackle
the entire end-to-end infrastructure at a global scale.

Disruption avoidance: Recently, afew proxies have been armed
with disruption avoidance tools to mitigate connection terminations
during restarts [36, 43]. HAProxy proposed Seamless Reloads [35, 55]
in 2017 and socket FD transfer mechanism (similar to Socket Takeover)
was added in 2nd half 2018 [4]. Envoy recently added Hot Restart [16]
that uses a similar motivation. Our mechanisms are more holistic as
they support disruption-free restarts for protocols other than TCP
(e.g.,UDP) and provide an end-to-end support to mitigate disruptions,
e.g., Partial Post Replay for HT TP and Downstream Connection Reuse
for MQTT. Additionally, this work provides a first-time, hands-on
view of the deployment of these techniques on a global scale.

8 CONCLUSION

Owing to high code volatility, CSPs release upto tens of updates
daily to their millions of globally-distributed servers and the fre-
quent restarts can degrade cluster capacity and are disruptive to user
experience. Leveraging the end-to-end control over a CSP’s infras-
tructure, the paper introduces Zero Downtime Release, a framework
to enable capacity preservation and disruption-free releases, by sig-
naling and orchestrating connection hand-over during restart (to a
parallel process or upstream component). The framework enhances
pre-existing kernel-based mechanisms to fit diverse protocols and in-
troduces novel enhancements on implementation and protocol fronts
to allow fast, zero-downtime update cycles (globally-distributed fleet
restarted in 25 minutes), while shielding millions of end-users from
disruptions.

9 ACKNOWLEDGMENTS

Many people in the Proxygen and Protocols teams at Facebook have
contributed to Zero Downtime Release over the years. In particular,
we would like to acknowledge Subodh Iyengar and Woo Xie for their
significant contributions to the success of Zero Downtime Release. We
also thank the anonymous reviewers for their invaluable comments.
This work is supported by NSF grant CNS-1814285.

Zero Downtime Release

REFERENCES

[1] Django. https://www.djangoproject.com/.

[2] Envoy Proxy. https://www.envoyproxy.io/.

[3] HAProxy. http://www.haproxy.org/.

[4] HAProxy source code. https://github.com/haproxy/haproxy.

[5] HHVM. https://github.com/facebook/hhvm.

[6] Hypertext Transfer Protocol (HTTP) Status Code Registry.
https://bit.ly/3gqRrtP.

[7] Katran - A high performance layer 4 load balancer. https://bit.1ly/38ktXD7.

[8] Bram Adams, Stephany Bellomo, Christian Bird, Tamara Marshall-Keim, Foutse
Khomh, and Kim Moir. 2015. The practice and future of release engineering: A
roundtable with three release engineers. IEEE Software 32, 2 (2015), 42—-49.

[9] Bram Adams and Shane McIntosh. 2016. Modern release engineering in a
nutshell-why researchers should care. In 2016 IEEE 23rd international conference
on software analysis, evolution, and reengineering (SANER), Vol. 5. IEEE, 78-90.

[10] Omid Alipourfard, Chris Harshaw, Amin Vahdat, and Minlan Yu. 2019. Risk based
Planning of Network Changes in Evolving Data Centers. (2019).

[11] Sid Anand. 2011. Keeping Movies Running Amid Thunderstorms Fault-tolerant
Systems @ Netflix. QCon SF. https://bit.1ly/37ahP65

[12] Oracle Corporation and/or its affiliates. Priming Caches.
https://bit.1ly/20xnPzi.

[13] AppSignal. 2018. Hot Code Reloading in Elixir. https://bit.1ly/2H1k8hh.

[14] Envoy Project Authors. Command line options, drain-time-s.
https://bit.1ly/38f3RRW.

[15] Envoy Project Authors. Command line options, parent-shutdown-time-s.
https://bit.ly/2Sa7Fys5.

[16] Envoy Project Authors. Hot restart. https://bit.1ly/2H3Kwan.

[17] The Kubernetes Authors. Safely Drain a Node while Respecting the PodDisrup-
tionBudget. https://bit.1ly/2SpYgkZ.

[18] Netflix Technology Blog. 2018. Performance Under Load.
https://bit.1ly/20CQobYU.

[19] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang, Saman Kazemkhani, Rob
Sherwood, Ying Zhang, and Hongyi Zeng. 2018. Fboss: building switch software
at scale. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. ACM, 342-356.

[20] SE Daily. Facebook Release Engineering with Chuck Rossi - Transcript.
https://bit.1ly/2H8Xwew.

[21] SE Daily. 2019. Facebook Release Engineering with Chuck Rossi.
https://bit.ly/3bfGalL7.

[22] Willem de Bruijn. udp: with udp segment release on error path.
http://patchwork.ozlabs.org/patch/1025322/.

[23] Willem de Bruijn and Eric Dumazet. 2018. Optimizing UDP for content delivery:
GSO, pacing and zerocopy. In Linux Plumbers Conference.

[24] Andrej Dyck, Ralf Penners, and Horst Lichter. 2015. Towards definitions for
release engineering and DevOps. In 2015 IEEE/ACM 3rd International Workshop
on Release Engineering. IEEE, 3-3.

[25] Alex Eagle. 2017. You too can love the MonoRepo. https://bit.1ly/2H40EbF.

[26] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,

[27]

[28

[29]
[30]

(31

[32]

[33

[34]

[35]

[36

[37]

Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and
Jinnah Dylan Hosein. 2016. Maglev: A fast and reliable software network
load balancer. In 13th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 16). 523-535.

Alan Frindell. HTTP Partial POST Replay. https://tools.ietf.org/html/
draft-frindell-httpbis-partial-post-replay-00.

GlobalScape. Server Drain, Maintenance, and Auto-Restart.
https://bit.ly/31B7A9A.

Sara Golemon. 2012. Go Faster. https://bit.1ly/2Hg1Ed7.

Christian Hopps et al. 2000. Analysis of an equal-cost multi-path algorithm.
Technical Report. RFC 2992, November.

Jez Humble. 2018. Continuous Delivery Sounds Great, but Will It Work Here?
Commun. ACM 61, 4 (March 2018), 34-39.

Michael Isard. 2007. Autopilot: automatic data center management. ACM SIGOPS
Operating Systems Review 41, 2 (2007), 60-67.

Janalyengar and Martin Thomson. 2018. Quic: A udp-based multiplexed and secure
transport. Internet Engineering Task Force, Internet-Draft draftietf-quic-transport-17
(2018).

Subodh Iyengar. 2018. Moving Fast at Scale: Experience Deploying IETF QUIC
at Facebook. In Proceedings of the Workshop on the Evolution, Performance,
and Interoperability of QUIC (Heraklion, Greece) (EPIQ@AZ18). Association for
Computing Machinery, New York, NY, USA, Keynote.

Lawrence Matthews Joseph Lynch. Taking Zero-Downtime Load Balancing even
Further. https://bit.1ly/20A66XY.

Michael Kerrisk. The SO_REUSEPORT socket option.
https://lwn.net/Articles/542629/.

Ran Leibman. Monitoring at Facebook - Ran Leibman, Facebook - DevOpsDays
Tel Aviv 2015. https://bit.1ly/20DbgT1.

(38]
(39]

[40]

o
=

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

Joseph Lynch. True Zero Downtime HAProxy Reloads.
https://bit.ly/31H2dWz.

Linux man page. cmsg(3) - access ancillary data.
https://linux.die.net/man/3/cmsg.

Linux man page. dup, dup2, dup3 - duplicate a file descriptor.
https://linux.die.net/man/2/dup.

Linux man page. recvmsg(2). https://linux.die.net/man/2/recvmsg.
Linux man page. sendmsg(2). https://1linux.die.net/man/2/sendmsg.
Suresh Mathew. Zero Downtime, Instant Deployment and Rollback.
https://bit.1ly/2ZgNGzV.

Arun Moorthy. 2015. Connecting the World: A look inside FacebookaAZs
Networking Infrastructure. https://unc.live/2UzVeof.

mqtt.org. MQ Telemetry Transport, machine-to-machine (M2M) connectivity
protocol. http://mqgtt.org/.

Kyle Nekritz and Subodh Iyengar. Building Zero protocol for fast, secure mobile
connections. https://bit.ly/2VkkoiH.

Sam Newman. 2015. Building microservices: designing fine-grained systems.
O’Reilly Media, Inc.".

NGINX. NGINX Reverse Proxy. https://bit.1ly/39fkWLt.

Inc O4AZReilly Media. 2012. FacebookaAZs Large Scale Monitoring System Built
on HBase. https://bit.ly/2tAHlnc.

Chuck Rossi. 2017. Rapid release at massive scale. https://bit.1ly/2woT9jB.
Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and
Michael Stumm. 2016. Continuous deployment at Facebook and OANDA. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 21-30.

Amazon Web Services. Configure Connection Draining for Your Classic Load
Balancer. https://amzn.to/39iQLMS.

Daniel Sommermann and Alan Frindell. 2014. Introducing Proxygen, Facebook
HTTP framework.

Facebook Open Source. Hack - Programming Productivity Without Breaking
Things. https://hacklang.org/.

Willy Tarreau. 2017. Truly Seamless Reloads with HAProxy 4AS No More Hacks!
https://bit.1ly/31Ihfvm.

VDMS. Our software - CDN. https://bit.1ly/2UCokZI.

Kashi Venkatesh Vishwanath and Nachiappan Nagappan. 2010. Characterizing
cloud computing hardware reliability. In Proceedings of the 1st ACM symposium
on Cloud computing. ACM, 193-204.

Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew
Holliman, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur
Jain, et al. 2017. Taking the edge off with espresso: Scale, reliability and
programmability for global internet peering. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. ACM, 432-445.

https://www.djangoproject.com/
https://www.envoyproxy.io/
http://www.haproxy.org/
https://github.com/haproxy/haproxy
https://github.com/facebook/hhvm
https://bit.ly/3gqRrtP
https://bit.ly/38ktXD7
https://bit.ly/37ahP65
https://bit.ly/2OxnPzi
https://bit.ly/2H1k8hh
https://bit.ly/38f3RRW
https://bit.ly/2Sa7Fy5
https://bit.ly/2H3Kwan
https://bit.ly/2SpYgkZ
https://bit.ly/2OCQbYU
https://bit.ly/2H8Xwew
https://bit.ly/3bfGaL7
http://patchwork.ozlabs.org/patch/1025322/
https://bit.ly/2H40EbF
https://tools.ietf.org/html/draft-frindell-httpbis-partial-post-replay-00
https://tools.ietf.org/html/draft-frindell-httpbis-partial-post-replay-00
https://bit.ly/31B7A9A
https://bit.ly/2Hg1Ed7
https://bit.ly/2OA66XY
https://lwn.net/Articles/542629/
https://bit.ly/2ODbgT1
https://bit.ly/31H2dWz
https://linux.die.net/man/3/cmsg
https://linux.die.net/man/2/dup
https://linux.die.net/man/2/recvmsg
https://linux.die.net/man/2/sendmsg
https://bit.ly/2ZgNGzV
https://unc.live/2UzVe0f
http://mqtt.org/
https://bit.ly/2VkkoiH
https://bit.ly/39fkWLt
https://bit.ly/2tAHlnc
https://bit.ly/2w0T9jB
https://amzn.to/39iQlMS
https://hacklang.org/
https://bit.ly/31Ihfvm
https://bit.ly/2UC0kZI

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Traffic Infrastructure
	2.2 Life of a Request
	2.3 Release Updates
	2.4 Motivating Frequent Restarts
	2.5 Implications of Restarts

	3 Design Choices
	3.1 Ideal Design (PerfectReload)

	4 Zero Downtime Release
	4.1 Socket Takeover
	4.2 Downstream Connection Reuse
	4.3 Partial Post Replay
	4.4 Applicability Considerations

	5 Hands-on Experience
	5.1 Socket Takeover
	5.2 Partial Post Replay

	6 Evaluation
	6.1 Comparison with Traditional Release
	6.2 Operational Benefits at Scale
	6.3 System Overheads

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

