

Novel metal-organic framework of UTSA-16 (Zn) synthesized by a microwave method: Outstanding performance for CO₂ capture with improved stability to acid gases

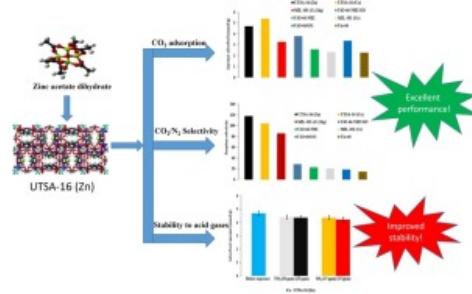
Sanjit Gaikwad ^a, Seok-Jhin Kim ^b, Sangil Han ^a

Show more

Outline

Share

Cite


<https://doi.org/10.1016/j.jiec.2020.04.015>

[Get rights and content](#)

Abstract

Herein we present a novel metal-organic framework (UTSA-16 (Zn)), where cobalt in the framework is replaced by zinc via microwave irradiation, with significantly improved stability in humid air and acid gases and better selectivity (CO₂/N₂) than the original Co-containing framework. The synthesis was performed using microwave irradiation by changing the irradiation time from 1 to 6 h. The integrities of the frameworks were assessed with scanning electron microscopy for particle morphology, powder X-ray diffraction for crystal integrity, Brunauer-Emmett-Teller for structural properties, and thermogravimetric analysis for thermal stability. An irradiation time of 4 h produced 4h-UTSA-16 with an outstanding CO₂ adsorption capacity of 4.71 mmol/g at 298 K and 1 bar and with CO₂/N₂ selectivity of 118. The improvement in stability and CO₂/N₂ sorption selectivity of UTSA-16 (Zn) over the parent UTSA-16 (Co) was not compromised by decreases in CO₂ uptake after exposure to humid air, SO₂, and NO₂ gases. Further, analysis of production cost showed that the UTSA-16 (Zn) is superior to other adsorbents for CO₂ capture.

Graphical abstract

[Download : Download high-res image \(130KB\)](#)

[Download : Download full-size image](#)

Keywords

Adsorption; Metal-organic frameworks; Microwave; UTSA-16; Acid gases

Introduction

CO₂ is the primary greenhouse gas responsible for global warming, and global CO₂ emissions are predominately caused by fossil fuels during electricity generation. To maintain global temperature increases between 2.48 and 2.88 °C, CO₂ concentration in the atmosphere should be suppressed below 450 ppm [1]. CO₂ capture and storage as a CO₂ control option can substantially contribute to reducing CO₂ levels to target emission of 30–60% of that measured in 2000 by 2050. Global CO₂ emissions have continued to increase gradually throughout the century due to the combustion of carbon-based fuels (coal, natural gas, and oil) as well as chemical reactions in steel, cement, and petrochemical industries [2]. With regard to energy use and environmental conservation, providing energy while reducing CO₂ emissions with efficient technology is one of the most demanding needs of a global society. Among CO₂ emission control strategies such as pre-combustion, post-combustion, and oxy-combustion technologies, post-combustion technology is an attractive method as it is easily applicable to existing fossil fuel-based power plants.

Among chemical separation processes, such as chemical and physical adsorption and [membrane separation](#) [3], chemical absorption with [amine](#) solutions has been widely used for CO₂ capture in petrochemical processes. However, amine aqueous solutions suffer from disadvantages like metal instruments corrosion, the high energy requirement for the regeneration process, and complicated processes with a large volume. According to reviews on CO₂ [4], [5], a compromising CO₂ capture sorbent for practical applications should provide low production cost, high CO₂ molecular diffusion, high CO₂ [sorption](#) capacity, and CO₂/N₂ sorption selectivity as well as stability to impurities in the flue gas.

To overcome challenges in the [chemical adsorption](#) process, a large number of porous adsorbents have been designed as high-capacity adsorbents including [zeolite](#), [activated carbon](#), and metal-organic frameworks (MOFs) [6], [7]. The main criteria for adsorbent selections are a large ratio of surface area to weight, high uptake capacity and sorption selectivity, and stability. MOFs, made up of metal ions and organic ligands to form a highly ordered porous framework, are one of the most compromising organic-inorganic porous materials. The unique properties in MOF materials are due to their physical and chemical properties like uniform pore size distribution, tuneable functionality, and large surface area. MOFs possess promising capabilities for many applications including gas adsorption, separation, catalysis [8], [9], medical application [10], [11], optical application [12], and electronic materials [13]. Their potential continues to rise due to the unlimited number of coordination binding of metal and organic linkers as well as the simple modification of MOFs, which in turn, make them promising materials as an adsorbent for CO₂ capture.

Modification of MOFs by doping metal ions have been used for improving the separation performance, and the applicability of this method has been shown by some researchers. Jiao et al. [14] reported that MM-MOF-74, in which different metal ions (Mg²⁺, Ni²⁺, and Co²⁺) had been incorporated, resulting in improvement in CO₂ adsorption. Botas et al. modified MOF-5 with the addition of Co, showing a 17% increase in CO₂ uptake over parent MOF-5 [15]. Bae et al. designed a Li-doped MOF for a 13% increase in CO₂ uptake while a negligible change in CH₄ uptake, thus an improvement in CO₂/CH₄ selectivity [16]. Cao et al. [17] specified that HKUST-1 doped with K⁺ showed an 11% rise in CO₂ uptake over the HKUST-1 without K⁺ ions. Further, Wei et al. reported that by replacing the metal form of Zn to Cu, the new MOF PCN-922(Cu) showed better performance in gas adsorption and stability compared to the parent PCN-921(Zn) [18].

In another aspect, surface functionalization by changing organic ligands has been proposed as a technique for improving the adsorption and stability properties of MOFs. To improve CO₂ adsorption capacity based on acid-base reaction, NH₂ functional groups are often combined with MOF linkers [19]. The stabilities of certain MOFs were improved by surface functionalization with CH₃ due to preventing water molecules from nearby metal clusters [20]. Deng et al. reported that the functionalization with multiple organics on MOF-5 improved uptake capacities of H₂ and CO₂ compared with the unfunctionalized MOF-5 [21]. Besides, pillar-shaped ligands were used to provide an improved accessibility of amine/amide functional groups in interpenetrated structures of MOFs [22], resulting in an improved adsorption selectivity of CO₂/N₂.

FEEDBACK

There are several techniques for synthesizing MOFs including solvothermal, sol-gel, microwave (MW), electrochemical, ultrasound, and mechanical methods depending on the energy source to proceed with the formation of the crystalline structure by metal and organic linkers [23], [24], [25]. Masoomi et al. reported mechanosynthesis method for the synthesis of TMU-4,5 with azine-functionalized pores [26], where charged pores in the MOFs provided an effective interaction between host and guest molecules for enhanced adsorption capacities [26], [27]. MW techniques involve ionic conduction and dipole rotation for shifting the energy to solvent being heated without heating a reactor. This results in characteristic properties of MW such as fast crystallization, distribution, efficiency, particle size control, and small particle size [28], [29]. For example, Khan et al. investigated reaction mechanism for the synthesis of Cu-BTC using microwave irradiation and conclude that rapid synthesis is mainly dependent on rapid nucleation rather than rapid crystal growth [30] and Albuquerque et al. synthesized MOF-74 (Ni) by a microwave method using **benzoic acid** as chemical modular to reduce reaction time for the removal of metal ion from aqueous solution [31]. Chen et al. synthesized MOF-74 (Ni) with a rapid synthesis time of 1 h compared to 32 h for condensation reflux method and 24 h for hydrothermal method [32], while Jhung et al. prepared Cr-MIL-101 and showed that crystallization time can control particle size [33]. Sargazi et al. [34], [35] developed a novel microwave-assisted reverse micelle method (MARM) to produce **thorium** MOFs. The MOFs synthesized with MARM showed improved adsorption capacities for CO and CH₄ gases compared to those made with an ultrasonic-assisted reverse micelle method. In a previous study, UTSA-16 (Co) was synthesized by a microwave method [36], showing a 23% improved performance for CO₂ adsorption capacity as compared to solvothermal method due to uniform crystal structure. However, it still suffers from stability issue which causes reduced adsorption capacity and selectivity.

In this study, we developed a novel crystalline structure of UTSA-16 (Zn) composed of zinc and **citric acid** by using microwave irradiation in KOH solution. We investigated the effects of exchanging Zn for Co in UTSA-16 (Co) with regard to its physical properties, CO₂ separation performance, and stability to humid air and acid gases. The synthesis procedure was developed by changing reaction times to determine an optimal synthesis condition for the crystalline structure formation of UTSA-16 (Zn). CO₂ and N₂ adsorption capacities were measured using a volumetric method, thus producing adsorption selectivities. The synthesized samples with different reaction times were examined to determine crystalline morphology, pore size distribution, particle size, and thermal stability using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA), respectively. In addition, because combustion byproducts such as humid air and acid gases in flue gas break coordination bindings between metal and organic ligand, as a result reduced performance we investigated stability by exposing UTSA-16 (Zn) to humid air, SO₂, and NO₂ gases with concentrations between 15 and 25 ppm to prove its applicability in post-combustion CO₂ capture. Molecular diffusion of CO₂ and N₂ in UTSA-16 (Zn) was studied using a microporous model based on **adsorption isotherms** obtained from TGA measurements.

Experimental

Chemicals

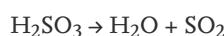
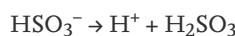
All chemicals were purchased from Sigma-Aldrich and used without any further purification including zinc (II) acetate dihydrate (ACS reagent, $\geq 98.0\%$), **citric acid** (ACS reagent, $\geq 99.5\%$), **deionized water**, KOH (reagent grade, 90%), methanol (anhydrous, 99.8%), and diethyl ether (anhydrous, $\geq 99.7\%$) except ethanol (ACS reagent, $\geq 99.8\%$) which was obtained from Honeywell Chemicals. CO₂ and N₂ gases ($> 99.995\%$) were used for adsorption measurements.

Sample preparation

UTSA-16 (Zn) was synthesized by using a microwave irradiation power of 300 W at 90 °C for 1–6 h. Zn(CH₃COO)₂·2H₂O (1.5365 g), C₆H₈O₇·H₂O (1.47 g), and KOH (1.17 g) were homogeneously mixed in 35 ml of solvent (H₂O:C₂H₅OH = 1:1 (V/V)). The solution was transferred into a glass reactor and tightly closed by a **Teflon** cap, and then kept in a microwave oven (Discover SP, CEM, USA). After microwave irradiation with different times, the white-colored samples were obtained by using **centrifugation** process (FLETA 5, Hanil, Korea) and washed with ethyl ether two times, methanol three times, and then immersed in methanol for solvent exchange by replenishing three times per day for 2–3 days. The powder product was separated from the solvent via centrifugation at 5000 rpm, and dried under vacuum for 2 h, followed by removal of excess solvent from the powder produced by heating at 90 °C for 6 h under vacuum.

Characterization

FEEDBACK

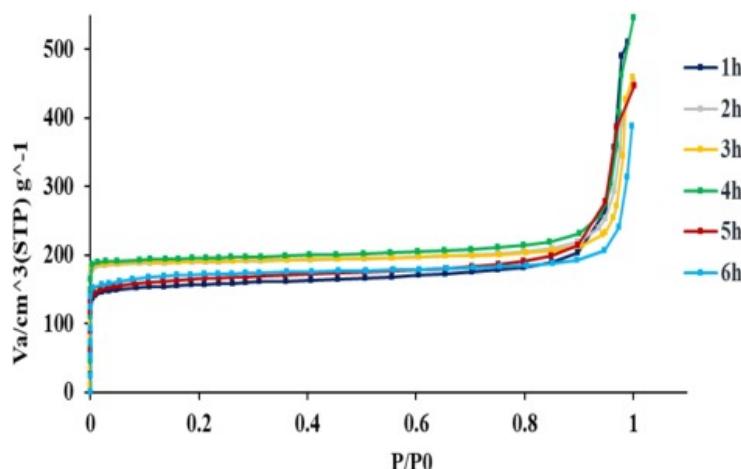


The crystallinity of the synthesized samples was examined from XRD diffraction patterns by using X'Pert Pro-MPD (PANalytical, Netherlands). Thermal stability was identified using TGA (Scinco TGA N1000) while heated to 800 °C at 5 °C per minute under N₂ gas flow at 50 mL/min. Fourier transform infrared (FTIR) spectra were measured using an FTIR 6300 spectrometer (JASCO, Japan) between 400 cm⁻¹ and 4000 cm⁻¹. The particle size and powder morphologies of the UTSA-16 (Zn) samples, which were coated with gold-palladium, were examined based on microscope images taken from SEM instrument (Merlin compact, Carl Zeiss) under the condition of an accelerating voltage of 1 kV/10 kV and a current of 10 μA. BET surface area, pore volume, and pore size distribution of UTSA-16(Zn) samples were measured using a Quantachrome Instrument Autosorb iQ Station 1 under [liquid nitrogen](#) adsorption at 77 K.

Adsorption isotherm measurement

Adsorption capacities of CO₂ and N₂ for UTSA-16 (Zn) samples were measured based on a volumetric method by using BelSorp Mini II (MicrotracBEL, Japan) at different temperatures (298, 313, 323, 333, 343 and 353 K) under 0–1 bar where temperatures were controlled using a water-circulating container connected to a temperature controller with an accuracy of ±0.01 °C. CO₂, N₂, and He gases with ultrahigh purity grade (>99.995%) were used. Helium gas was used to determine the free space of the sample holder in the volumetric apparatus. Samples were degassed by heating at 90 °C for 12 h under vacuum before each measurement.

Stability to humid air and acid gases

The stability of UTSA-16 (Zn) was investigated by comparing adsorption capacities and XRD patterns before and after separate exposure to humid air and SO₂ and NO₂ gases. The samples were conditioned to humid air with a relative humidity of 80% and then conditioned to SO₂ (15 ppm) and NO₂ (10 ppm) with 80% relative humidity at room temperature, respectively, each for 2 days. The acid gases with controlled concentrations were produced using salt solutions with different pH in aqueous solution, temperatures, and flow rate of carrier gas [37]. Between each exposure, we measured adsorption capacities and X-ray diffraction patterns for UTSA-16 (Zn) samples evacuated at 90 °C under vacuum for 12 h. pH 3.7 NaHSO₃ aqueous solution (500 μg/ml) was used at 45 °C to generate 15 ppm SO₂ gas. Airflow (200 ml/min) was used to deliver SO₂ gas from a reactor to a desiccator where UTSA-16 (Zn) samples were placed under 80% relative humidity and prepared using a saturated NaCl aqueous solution. pH 3 NaNO₂ aqueous solution (800 μg/ml) at 45 °C was used to generate 10 ppm NO₂ gas. Airflow (100 ml/min) was used to transfer NO₂ gas from a reactor to a desiccator. To generate 25 ppm SO₂ and NO₂, the preparation conditions were similar except that the air flow was 100 ml/min for SO₂ and 50 ml/min for NO₂. Concentrations of SO₂ and NO₂ were identified using Drager-Tubes (Drager, Germany). The reaction mechanism of SO₂ is shown below.

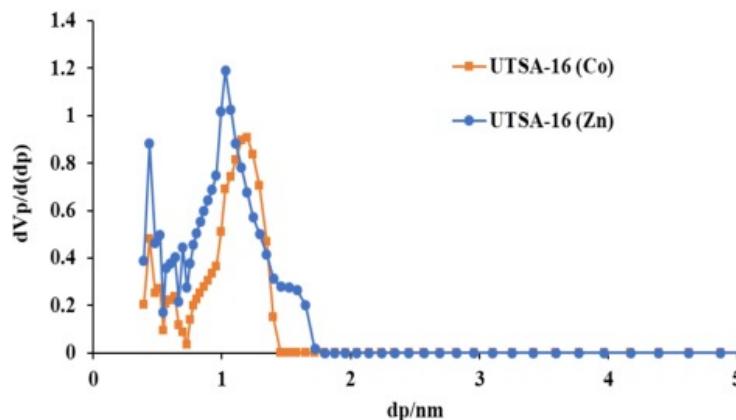

Results and discussion

Structural characterization and thermal stability

The structural properties of UTSA-16 (Zn) with different reaction times were measured from liquid N₂ adsorption [isotherms](#) (Fig. 1) at 77 K using a Quantachrome Instrument Autosorb iQ Station 1. The initial large increase at low pressure ($P/P_0 < 0.1$) is a notable behavior of the type I isotherms caused by a micropore structure of the UTSA-16 (Zn). The surface areas and pore volumes in [Table 1](#) increased from 475.38 m²/g to 786.61 m²/g and from 0.5038 cm³/g to 0.7875 cm³/g in the reaction time from 1 h to 4 h, respectively. As the reaction time increased above 4 h, the surface area and pore volume decreased showing maximum values at 4 h, possibly due to the competing reaction of unreacted Zn clusters with organic ligands. 4h-UTSA-16 (Zn) was selected for pore size distribution investigation from the N₂ adsorption-desorption isotherms. When Co was replaced with Zn in UTSA-16, the majority of the pores (Fig. 2) were in the range of 0.3–1.79 nm for 4h-UTSA-16 (Zn), a larger value as compared to the pore size distribution of UTSA-16 (Co) (0.3–1.45 nm). The surface area of 4h-UTSA-16 (Zn) was decreased in comparison to the surface area of 4h-UTSA-16 (Co), while the total pore volume was increased compared to the UTSA-16 (Co) [36]. The specific surface area is mainly affected by the atomic weight of the metal in MOF framework in the case of metal replacement [38].

FEEDBACK

similar trend was observed in other MOFs [38] such as Mg/DOBDC (1495 m²/g), Co/DOBDC (1080 m²/g), Ni/DOBDC (1070 m²/g) and Zn/DOBDC (816 m²/g) where specific surface area was decreased with increase in atomic weight of metal from Mg to Zn in MOFs.

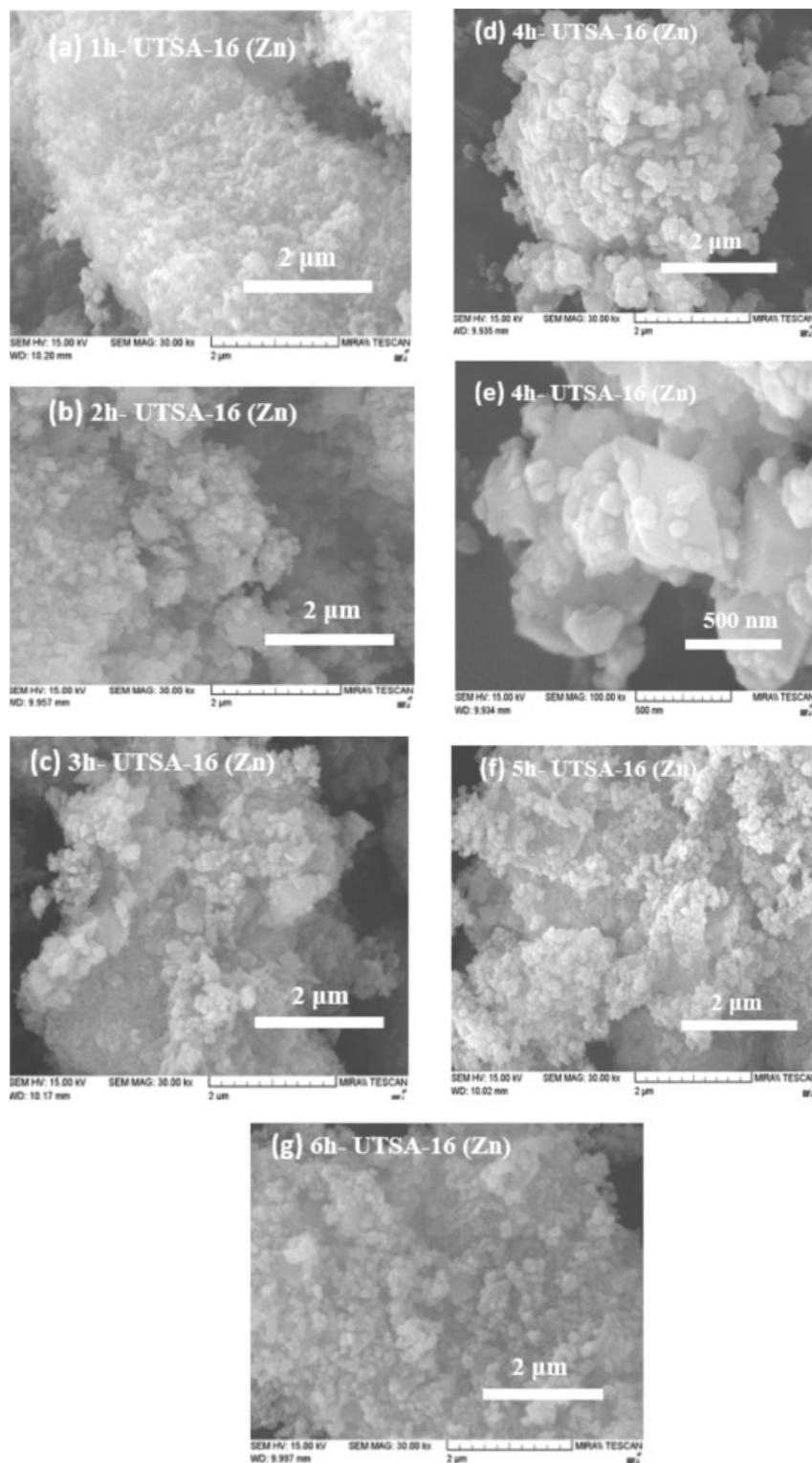

[Download : Download high-res image \(128KB\)](#)

[Download : Download full-size image](#)

Fig. 1. N₂ adsorption isotherm of microwave-assisted synthesized UTSA-16 (Zn) with different reaction times at 77 K.

Table 1. Specific surface area and pore volume of UTSA-16 (Zn).

Adsorbents	Specific surface area (m ² /g)	Total pore volume (cm ³ /g)
1h-UTSA-16 (Zn)	475.38	0.5038
2h-UTSA-16 (Zn)	577.35	0.7499
3h-UTSA-16 (Zn)	580.91	0.7824
4h-UTSA-16 (Zn)	786.61	0.7875
5h-UTSA-16 (Zn)	514.96	0.6753
6h-UTSA-16 (Zn)	500.19	0.6553


[Download : Download high-res image \(107KB\)](#)

[Download : Download full-size image](#)

FEEDBACK

Fig. 2. Pore size distribution graphs of 4h-UTSA-16 (Zn) and 4h- UTSA-16 (Co) calculated using the NLDFT method.

The morphology and the powder size of samples (Fig. 3) are affected by reaction time as it increases from 1 to 6 h. The particles of 1h-UTSA-16 (Zn) and 2h-UTSA-16 (Zn) showed a granular aspect. As reaction time went above 3 h, polyhedron structures were observed with well-defined faces and edges. The size of UTSA-16 (Zn) particle increased from 0.18 to 0.27 μm with continuous nucleation by attaching small granular particles on the surface of the particle (Fig. 3(e)) as measured with Image J software (NIH, USA).

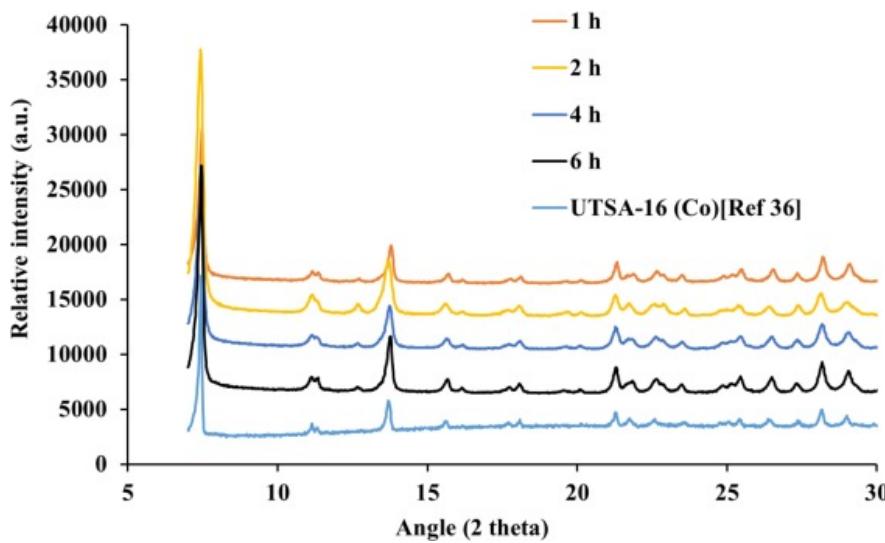
FEEDBACK

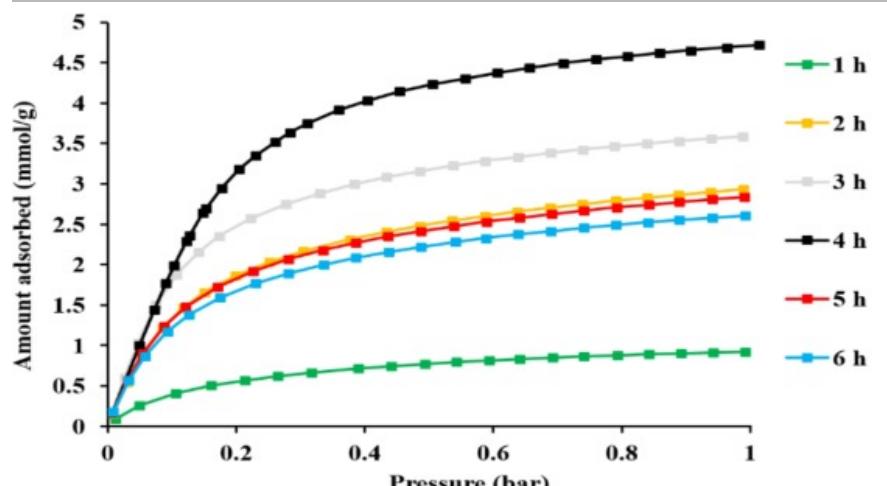
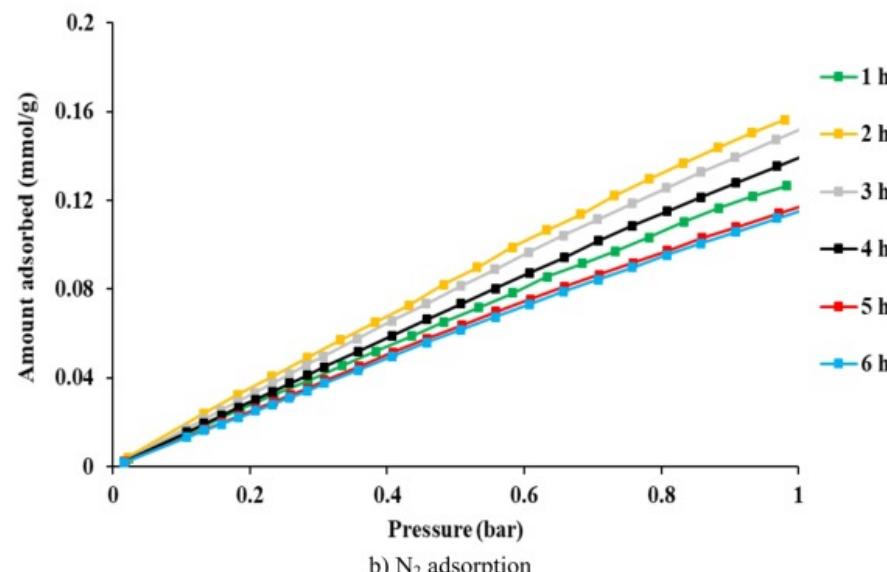
[Download : Download high-res image \(1MB\)](#)[Download : Download full-size image](#)

Fig. 3. SEM images of UTSA-16 (Zn) samples with reaction time increase of (a) 1 h, (b) 2 h, (c) 3 h, (d) 4 h, (e) 4 (enlarged), (f) 5 h, and (g) 6 h.

Thermal stabilities of UTSA-16 (Zn) samples were evaluated by using TGA with a heating rate of 20 °C/min (Fig. 4). The first drop in weight between 100 and 170 °C corresponds to the evaporation of adsorbed water and impurities from the samples. After the first drop, all samples were stable up 320 °C. Interestingly, the 1 h sample showed a 35% weight loss from 320 to 440 °C and 4% further decrease up to 470 °C. However, samples with reaction times over 3 h showed a 32% loss from 320 to 480 °C, suggesting that the samples prepared with a small reaction time are not stable upon heating which results in more loss of organic ligands and collapse of the crystal structure. The TGA results correlate well to the thermal analysis data (Fig. S1 in supporting information) obtained by using a [differential scanning calorimetry](#) (DSC, Q600 SDT TA Instruments, USA). For 4h-UTSA-16 (Zn) sample, three endothermic peaks were discovered at 90–150 °C for dehydration, 300–315 °C and 330–360 °C for decomposition.

The crystal structure of UTSA-16 (Zn) was examined using XRD measurements (Fig. 5). The main diffraction peaks were observed at 11.3, 13.8, 21.3, 28.4, which are identical to the diffraction data of UTSA-16 (Co) [36]. The strong and sharp shapes of main peaks prove a highly ordered crystalline structure for the UTSA-16 (Zn). The similarity of the XRD patterns indicates that the substituted Zn metal did not affect the characteristic crystal structure of UTSA-16, which was composed of Co.


[Download : Download high-res image \(234KB\)](#)[Download : Download full-size image](#)



Fig. 5. XRD patterns of UTSA-16 (Zn) with reaction time increase (1–6 h).

CO₂ and N₂ adsorption capacity measurements

To examine the CO₂ capture performance as a function of reaction time, CO₂ and N₂ adsorption capacities (Fig. 6) were measured separately at 298 K under a pressure range of 0–1 bar using a volumetric method. The 1h-UTSA-16 (Zn) showed the lowest CO₂ capacity because of the incomplete crystal structure of UTSA-16 (Zn), consistent with it having the lowest surface area (Table 1). The CO₂ capacity for the 1 h sample was much lower than the 6 h sample (35% capacity of 6 h sample at 1 bar), although there was only a small difference in surface area (475.38 m²/g for 1 h, 500.19 m²/g for 6 h), highlighting the importance of an optimized reaction time for capture performance. CO₂ adsorption capacities increased with a reaction time increase, showing a maximum capacity of 4.71 mmol/g at a reaction time of 4 h. This well corresponds to the largest surface area and pore volume (Table 1) provided by the complete crystalline structure for the reaction time of 4 h. Once the reaction ti

FEEDBACK

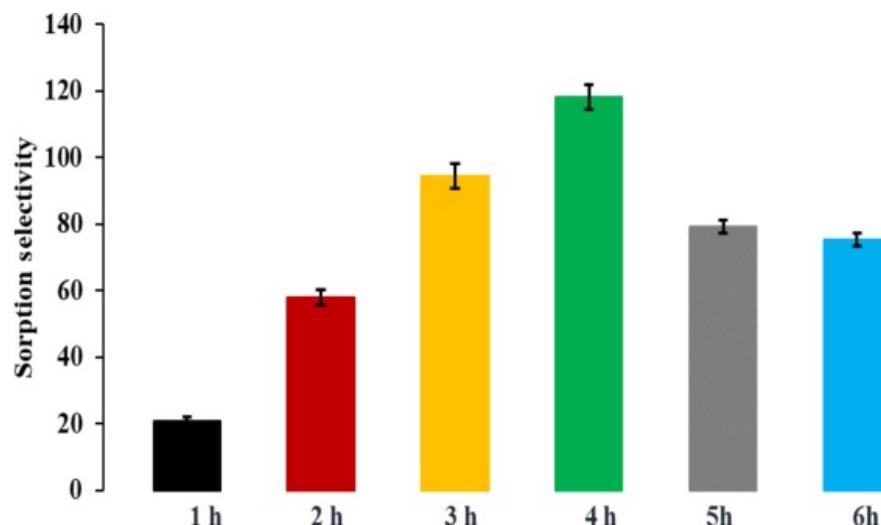
it showed decreased CO₂ capacities by 30–35% compared to that of 4h-UTSA-16 (Zn). On the contrary, there was no increasing trend in N₂ adsorption as the reaction time increased, resulting in enhanced CO₂/N₂ adsorption selectivity concurrent with increased reaction times. The adsorption selectivity (Fig. 7) of UTSA-16 (Zn) gradually increased to 118 as reaction time increased and then decreased after 4 h, 4h-UTSA-16 (Zn) showed the highest selectivity (118) among other MOFs (6 for CuDABCO [39], 8 for ZIF-8 [40], 12 for MIL-101 (Cr) [41], 18 for MOF-5 [42], 16.5 for MOF-177 [42] and 104 for UTSA-16 (Co) [36]).

a) CO₂ adsorptionb) N₂ adsorption

[Download](#) : [Download high-res image \(361KB\)](#)

[Download](#) : [Download full-size image](#)

Fig. 6. CO₂ (a) and N₂ (b) adsorption capacities at 298 K of UTSA-16 (Zn) prepared with different reaction times.



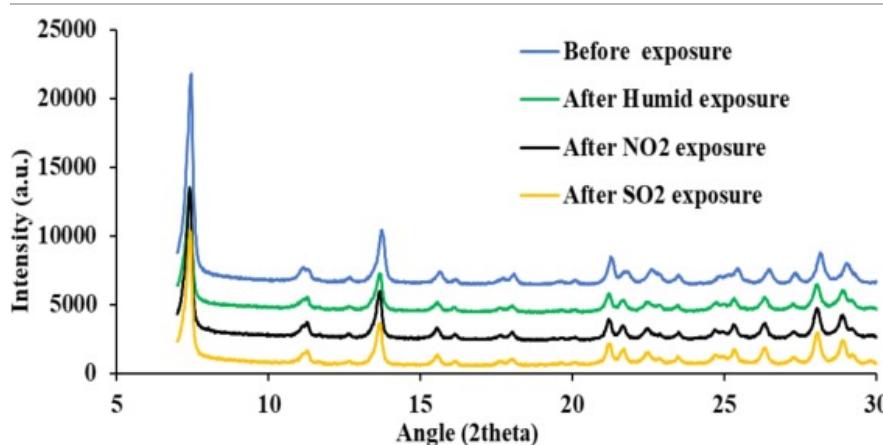
[Download : Download high-res image \(120KB\)](#)
[Download : Download full-size image](#)

Fig. 7. CO₂/N₂ selectivities for UTSA-16 (Zn) prepared with different reaction times. Error bars represent standard deviation ($n = 3$).

Furthermore, the CO₂ adsorption capacity of UTSA-16 (Zn) (4.71 mmol/g) was higher than other composite adsorbents and MOF fibers such as polyethyleneimine (PEI)@MIL-101(Cr,Mg) (3.04 mmol/g) [43], ZIF-8 PAN fiber (0.8 mmol/g), HKUST-1 PAN fiber (2.55 mmol/g) [44], amine@MCM-48 (2.05 mmol/g) [45], graphite oxide (GO)@MOF-505 (3.94 mmol/g) [46], HKUST-1 **monolith** (2.8 mmol/g) [47], 5A zeolite@ZIF-8 composite (2.97 mmol/g) [48] at 298 K and 1 bar. Adsorption selectivity of UTSA-16 (Zn) (118) for CO₂/N₂ was even much higher than other composite MOFs such as PEI@ZIF-8 (25.4) [49], 5A zeolite@ZIF-8 composite (30) [48] and PEI@PAN/ZIF-8 (54) [44].

Stability analysis to humid air and acid gases

The stability of 4h-UTSA-16 (Zn) in flue gas impurities was verified by comparing adsorption capacities and XRD patterns before and after the samples were conditioned to humid air and acid gases (Fig. 8). The XRD patterns for samples conditioned to humid air, SO₂, and NO₂ look identical, even with regard to small details. UTSA-16 (Co), however, showed small changes in peak position and peak intensity after the exposures [36].



[Download : Download high-res image \(209KB\)](#)
[Download : Download full-size image](#)

Fig. 8. XRD patterns of 4h-UTSA-16 (Zn) after exposure to impurities.

[FEEDBACK](#)

The adsorption capacities were examined before and after each exposure to humid air, SO₂, and NO₂ gases to determine any effects of impurities on adsorption performance, even though the crystal structure had remained intact. The exposed samples were cleaned by heating at 90 °C under vacuum for 12 h before each adsorption experiment. There were negligible changes in CO₂ adsorption capacities when conditioned to SO₂ (15 ppm) and NO₂ (10 ppm) (Fig. S2 in supporting information), whereas UTSA-16 (Co) showed a 28–40% decrease, suggesting a significantly improved stability with metal exchange to Zn [36]. The adsorption selectivities of 4h-UTSA-16 (Zn), where the selectivity is defined as the ratio of CO₂ adsorption capacity at 0.15 bar to the N₂ adsorption capacity at 0.85 bar, giving a normalized value at given pressures (Fig. S3 in supporting information), decreased by 6% after humid air and NO₂ and by 17% after SO₂ exposure (Fig. 9). These values are still higher than others reported in the literature values, even after exposure (22.5 for ZIF-79 [50], 20 for ZIF-69 [50], 19.5 for ZIF-68 [50], 50 for ZIF-78 [51], and 38 for Ni/DOBDC [52]).

We further investigated the stability performance for UTSA-16 (Zn) and UTSA-16 (Co) at increased concentrations of acid gases (25 ppm each for SO₂ and NO₂). CO₂ adsorption capacities for UTSA-16 (Co) at 298 K and 1 bar were decreased by 6% and 47% after exposure to NO₂ and SO₂, respectively (Fig. 10(a)), while capacities for UTSA-16 (Zn) were decreased only by 6% and 10%, respectively (Fig. 10(b)). In addition, there were relatively small decreases in the selectivities after exposure for UTSA-16 (Zn) compared to UTSA-16 (Co) (Fig. S4 in supporting information).

Diffusivity estimation and temperature effect on adsorption

For the adsorption separation processes, the mobility of adsorbed gas molecules into porous adsorbents is an important aspect as well as adsorption capacity. To identify the effects of humid air and acid gases on the mobility of CO₂ and N₂ molecules, molecular diffusion coefficients of the gases in 4h-UTSA-16 (Zn) were investigated. Ruthven [53] described a typical micropore diffusion model and it was used to process the CO₂ and N₂ kinetic data to estimate the intracrystalline diffusivities of CO₂ and N₂ in 4h-UTSA-16 (Zn) based on adsorption amounts of CO₂ and N₂ with time increase at 298 K and 1 bar by TGA. The ratio of adsorption uptake (m_t/m_∞) can be associated with diffusion time using Eq. (1).

$$1 - \frac{m_t}{m_\infty} = \frac{6}{\pi^2} \exp \frac{-\pi^2 D_c t}{r_c^2} \quad (1)$$

where, t is the diffusion time (s), D_c is the intracrystalline diffusivity (cm²/s), m_∞ is the limit of adsorption amount per unit mass (mmol/g), m_t is the adsorption capacity per unit mass at time t (mmol/g), and r_c is the radius of an adsorbent powder (cm).

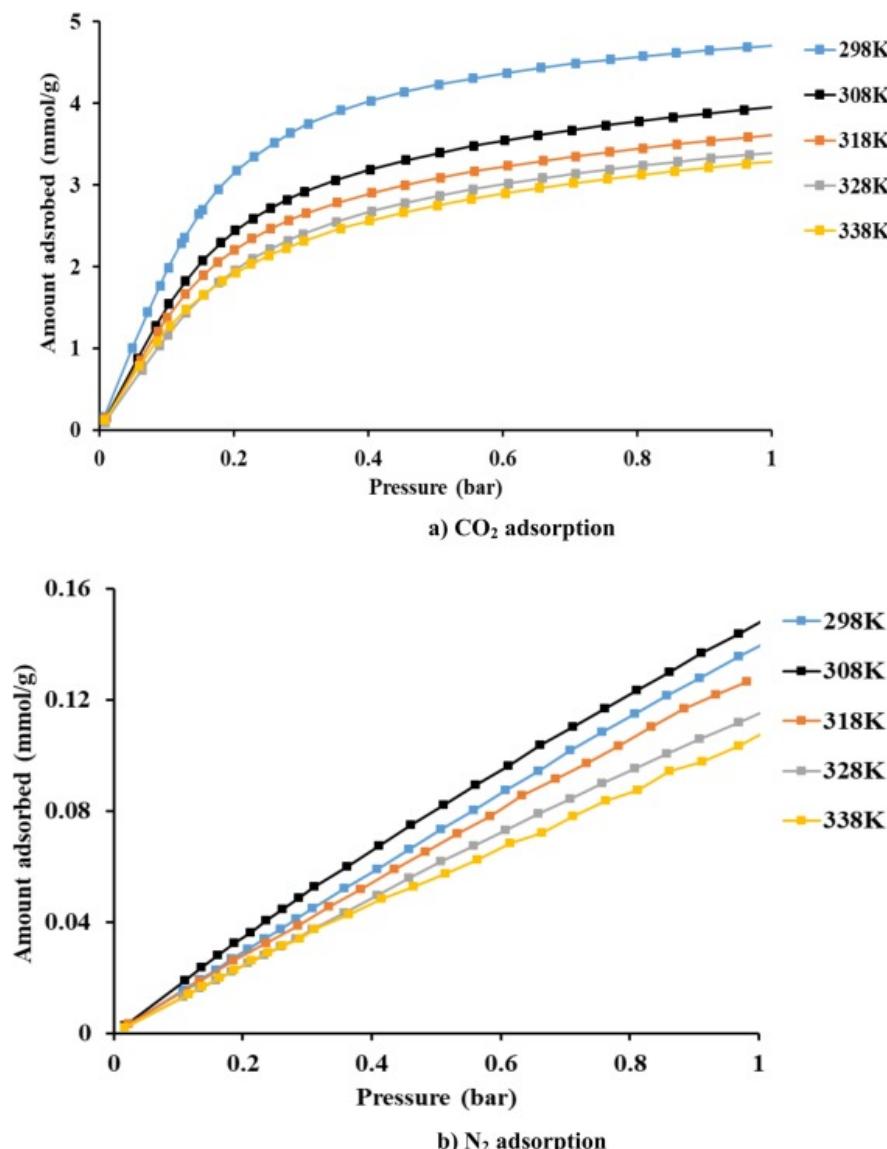

The diffusion time constants (D_c/r_c^2 , s⁻¹) were evaluated from the relation between the linear plot of $\ln(1 - (m_t/m_\infty))$ and time. The intracrystalline diffusivity, D_c , was then evaluated from the diffusion time constant. The radius of a crystal particle was measured using ImageJ software [54] based on the SEM images of the 4h-UTSA-16 (Zn) samples. The average radius of particles for 4h-UTSA-16 (Zn) was 0.24 μm (Fig. 3(d)). The CO₂ diffusivities (Table 2) decreased after each exposure, showing that molecular diffusion was hindered regardless of the negligible changes in crystallinity and adsorption capacity. A similar decrease in diffusivity was observed for MIL-101(Cr, Mg) impregnated with polyethyleneimine after exposure to humid air and acid gas [43]. The CO₂ diffusivities for UTSA-16 (Zn) were similar to those reported for UTSA-16 (Co) [36], which were lower than reported diffusivities for other MOFs (1.50 × 10⁻¹⁰, 1.60 × 10⁻⁸, 1.70 × 10⁻⁸, 3.00 × 10⁻⁸, and 7.40 × 10⁻⁹ cm²/s for ZIF-90, Co-NIC, Ni-HF, Zn/Co-BTEC, and Zn-TTC) [55].

Table 2. CO₂ and N₂ diffusion coefficients of 4h-UTSA-16 (Zn) after exposure to impurities.

Gas	Intracrystalline diffusivity (D_c), cm ²	Before exposure	After humid air exposure	After NO ₂ exposure	After SO ₂ exposure
N ₂	9.87×10^{-17}	4.73×10^{-17}	2.86×10^{-17}	1.46×10^{-17}	
CO ₂	2.28×10^{-13}	1.81×10^{-13}	1.69×10^{-13}	1.52×10^{-13}	

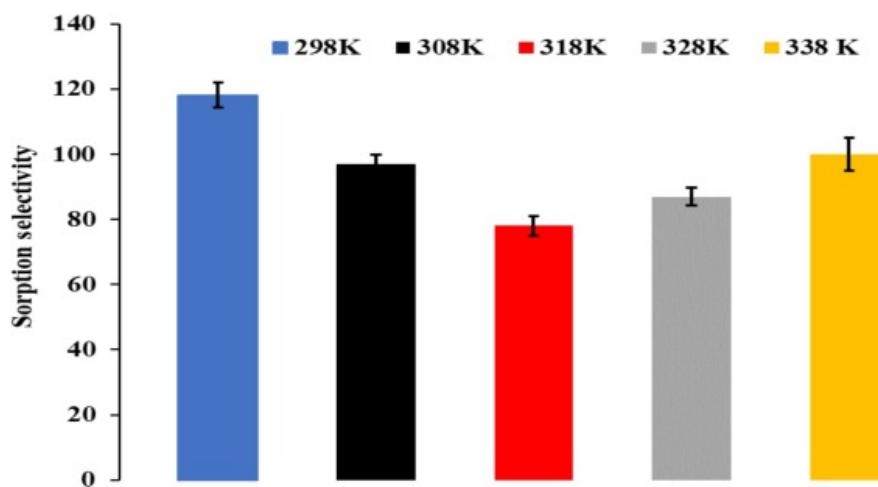
FEEDBACK

To investigate temperature effects on adsorption capacities, adsorption capacities were measured as temperature was increased from 298 to 338 K. The adsorption amounts were gradually decreased with increasing temperature (Fig. 11), while CO₂/N₂ sorption selectivities were decreased until 318 K, and then increased with higher temperatures (Fig. 12), showing the minimum selectivity of 78 at 318 K which is still higher than most of the selectivities reported in the literature (20–25) for Cu-BTC MOF [56], (19) for zeolite 4A [57], and (18) for Zeolite 13X [57] under the same conditions. This is presumably due to the relatively small decrease in CO₂ capacity compared with N₂ capacity at increased temperatures.

Download : [Download high-res image \(361KB\)](#)

Download : [Download full-size image](#)

Fig. 11. CO₂ (a) and N₂ (b) adsorption isotherms of 4h-UTSA-16 (Zn) at different temperatures.

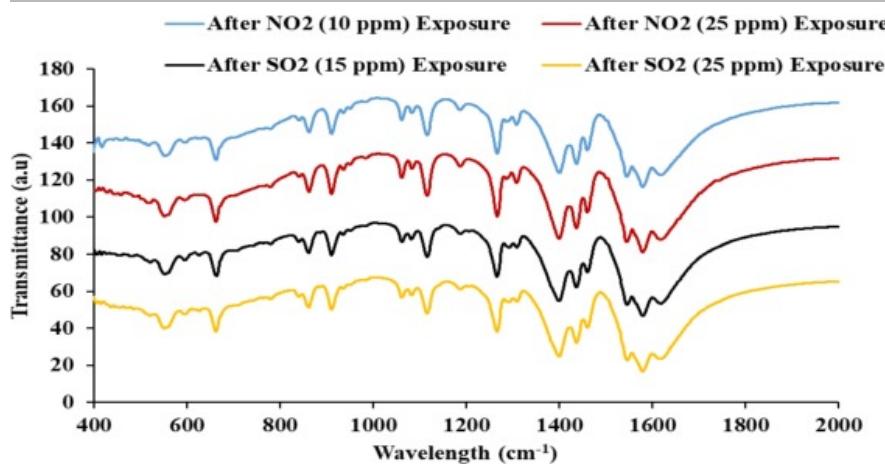


[Download : Download high-res image \(135KB\)](#)
[Download : Download full-size image](#)

Fig. 12. CO₂/N₂ selectivities for 4h-UTSA-16 (Zn) at different temperatures. Error bars represent the standard deviation ($n = 3$).

FTIR analysis after exposure to SO₂ and NO₂

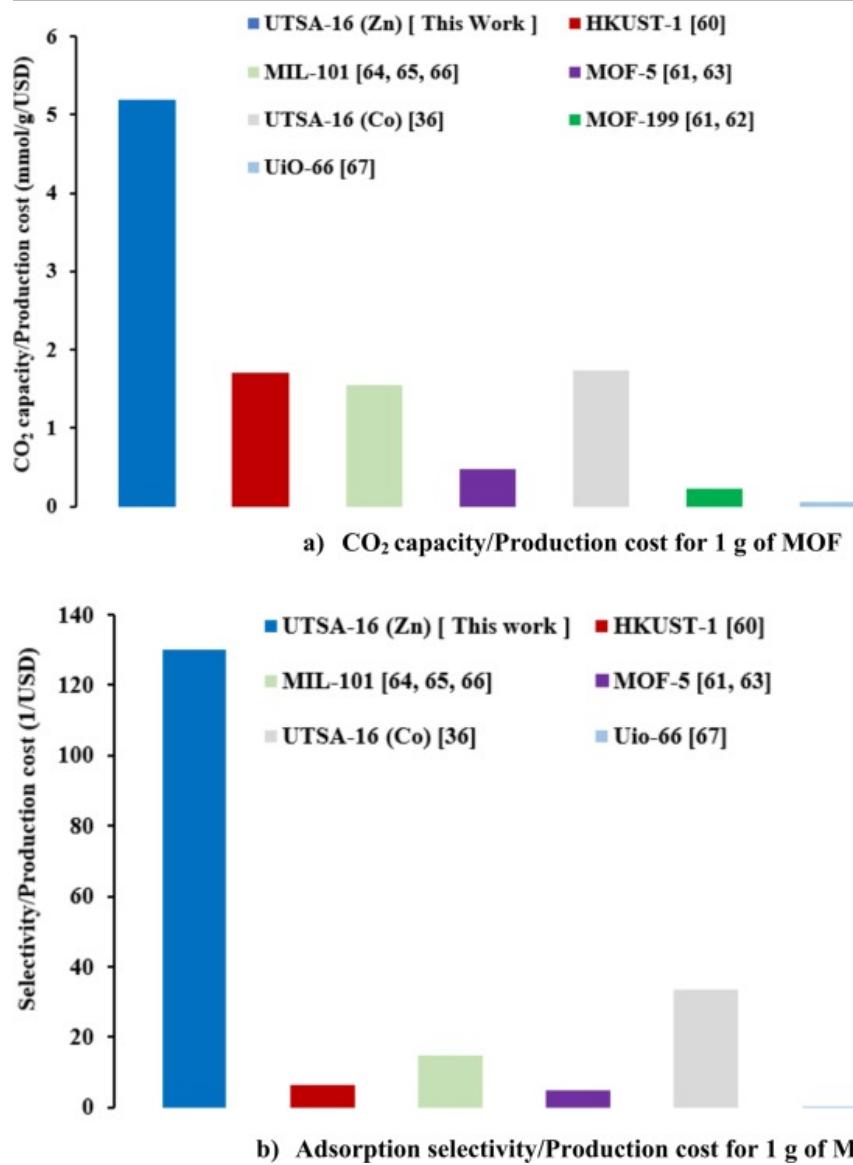
FT-IR spectra for 4h-UTSA-16 (Zn) were measured to reveal the molecular interactions or bonding formations after exposure to NO₂ and SO₂ (Fig. 13). The samples were degassed by evacuating at 90 °C for 12 h after separate exposure of SO₂ and NO₂ each for 2 days at 80% relative humidity to evacuate the samples from unreacted SO₂ and NO₂ in the pores. The FTIR spectra after exposure to SO₂ at 15 and 25 ppm clearly show a new peak at 650 cm⁻¹ due to S–O stretching vibrations [36]. However, no band appeared at 1345–1385 cm⁻¹ which would have indicated N–O stretching after exposure to NO₂ at 10 and 25 ppm. This discrepancy indicates that there was no formation or functionality by NO₂ gas adsorption [58]. Interestingly, there was less of a decrease in CO₂ adsorption capacity for UTSA-16 (Zn) than for UTSA-16 (Co) (Fig. 10(a)), despite the sulfate formation after SO₂ exposure, highlighting the improved stability of UTSA-16 (Zn). Correspondingly, CO₂ adsorption analysis (Fig. 10(b)) also showed that adsorption capacities were not affected by exposure to humid air and acid gases. However, adsorption capacities were reduced via sulfate formation for UTSA-16 (Co) after SO₂ exposure, due to its low stability [36]. The two peaks at 1395 and 1574 cm⁻¹ indicate the symmetric and antisymmetric stretching vibrations of carboxylic functionalities in the UTSA-16 (Zn), respectively [59].



[Download : Download high-res image \(255KB\)](#)
[Download : Download full-size image](#)

Fig. 13. FTIR spectra of 4h-UTSA-16 (Zn) after NO₂ and SO₂ exposure with degassing.

[FEEDBACK](#)


Cyclic performance of UTSA-16 (Zn) CO₂ capture

Stable adsorption performance during cyclic operations is important for practical applications in separation processes with adsorbents. Here we investigated the cyclic ability of UTSA-16 (Zn) by performing five consecutive cycles of CO₂ adsorption using a volumetric method at 298 K and 338 K (Fig. 14). From CO₂ adsorption isotherms (Fig. S5 in supporting information), the maximum adsorption capacities at 1 bar are presented which show a constant performance in adsorption at both temperatures.

Analysis of MOF production cost

The synthesis cost of MOF is all the time a critical topic to study for practical applications. The total cost for 1 g of each MOF production was estimated based on the required amounts of the metal precursor and organic linker, and the amount of produced MOF (Table S1 in supporting information). The unit cost for each reactant was obtained from Sigma-Aldrich. Due to the relatively low cost (0.21 USD/g) of Zn precursor, UTSA-16 (Zn) showed the smallest production cost (0.91 USD/g) for 1 g of MOF among UTSA-16 (Co) (3.12 USD/g) [36], HKUST-1 (1.96 USD/g) [60], MOF-199 (3.85 USD/g) [61], [62], MOF-74 (64.23 USD/g) [61] MOF-5 (2.31 USD/g) [61], [63], MIL-101 (1.97 USD/g) [64], [65], [66] UiO-66 (32.11 USD/g) [67] and IRMOF-0 (23.31 USD/g) [61] (Fig. 15), presenting additional advantage of reduced production cost as well as improvement in stability and selectivity when Co was replaced with Zn in the UTSA-16 framework.

For a further economic analysis regarding CO₂ capture performance, CO₂ capture capacities at 1 bar and 298 K and adsorption selectivities at 298 K were divided by the production cost for 1 g of each MOF. The CO₂ adsorption capacity and selectivity for UTSA-16 (Zn) per unit cost were superior to other MOFs (Fig. 16), showing the practical applicability due to the outstanding capacity, selectivity, stability, and low cost.

[Download : Download high-res image \(316KB\)](#) [Download : Download full-size image](#)

Fig. 16. CO₂ adsorption capacity (a) and adsorption selectivity (b) normalized by MOF production cost for 1 g.

Conclusion

UTSA-16 (Zn) has been successfully produced by replacing Co metal with Zn using a microwave method while maintaining the original framework of UTSA-16 (Co). XRD spectra confirmed that all diffraction peaks of UTSA-16 (Zn) were identical to the parent UTSA-16 (Co), suggesting that the Zn replacement does not affect the original crystallinity of UTSA-16 (Co). According to the study on reaction time for the synthesis, it was revealed that the synthesis time of 4 h is optimal for high surface area, large pore volume, and maximum CO₂ capture performance. The surface area (786.61 m²/g) of UTSA-16 (Zn) was slightly lower than that of UTSA-16 (Co) (804.2 m²/g), while total pore volume of UTSA-16 (Zn) (0.788 cm³/g) was increased more than twice as compared to UTSA-16 (Co) (0.353 cm³/g). UTSA-16 (Zn) with an optimized synthesis time of 4 h showed a noticeable improvement in stability for adsorption capacity after exposure to SO₂ and NO₂ gases compared to the parent UTSA-16 (Co) while possessing the high CO₂ adsorption of the parent UTSA-16 (Co). Furthermore, the CO₂/N₂ adsorption selectivity of UTSA-16 (Zn) showed a 13% increase (from 104 to 118) over the UTSA-16 (Co), which is an outstanding value as compared to other MOFs and composites with PEI (21 for MOF-591, 27 for MOF-592 [68], 12 for MIL-101 (Cr) [41], 18 for MOF-5 [42]). The developed UTSA-16 (Zn) can be a strong candidate for CO₂ capture in flue gas because of the enhanced stability,

FEEDBACK

adsorption capacity, and selectivity. The lowest production cost of UTSA-16 (Zn) among other MOFs further highlights that the UTSA-16 (Zn) is one of the best MOF adsorbents for post-combustion CO₂ capture reported so far. In the near future, pellets will be made exclusively from UTSA-16 (Zn) or as a composite with other low-cost porous material such as [activated carbon](#) for a practical application.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) ([#NRF-2017R1C1B1002851](#)) and the Cooperative R&D between Industry, Academy, and Research Institute funded Korea Ministry of SMEs and Startups in 2019 (Grant No. [S2652595](#)).

Appendix A. Supplementary data

The following are the supplementary data to this article:

 [Download : Download Word document \(437KB\)](#)

[Recommended articles](#) [Citing articles \(1\)](#)

References

- [1] M. Wise, K. Calvin, A. Thomson, L. Clarke, B. Bond-Lamberty, R. Sands, S.J. Smith, A. Janetos, J. Edmonds *Science*, 324 (2009), pp. 1183-1186
[CrossRef](#) [View Record in Scopus](#)
- [2] R. Quadrelli, S. Peterson *Energy Policy*, 35 (2007), pp. 5938-5952
[Article](#) [Download PDF](#) [View Record in Scopus](#)
- [3] R. Littel, G. Versteeg, W.P.M. Van Swaaij *Chem. Eng. Sci.*, 46 (1991), pp. 3308-3313
[Article](#) [Download PDF](#) [View Record in Scopus](#)
- [4] S. Choi, J.H. Dresel, C.W. Jones *ChemSusChem*, 2 (2009), pp. 796-854
[CrossRef](#) [View Record in Scopus](#)
- [5] A. Sayari, Y. Belmabkhout, R. Serna-Guerrero *Chem. Eng. J.*, 171 (2011), pp. 760-774
[Article](#) [Download PDF](#) [View Record in Scopus](#)
- [6] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long *Chem. Rev.*, 112 (2011), pp. 724-781
[View Record in Scopus](#)
- [7] M.R. Hudson, W.L. Queen, J.A. Mason, D.W. Fickel, R.F. Lobo, C.M. Brown *J. Am. Chem. Soc.*, 134 (2012), pp. 1970-1973
[CrossRef](#) [View Record in Scopus](#)
- [8] S. Regati, Y. He, M. Thimmaiah, P. Li, S. Xiang, B. Chen, J.C.-G. Zhao

FEEDBACK

Chem. Commun., 49 (2013), pp. 9836-9838

[CrossRef](#) [View Record in Scopus](#)

[9] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su
Chem. Soc. Rev., 43 (2014), pp. 6011-6061
[View Record in Scopus](#)

[10] I. Imaz, M. Rubio-Martínez, J. An, I. Sole-Font, N.L. Rosi, D. Maspoch
Chem. Commun., 47 (2011), pp. 7287-7302
[CrossRef](#) [View Record in Scopus](#)

[11] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre
Chem. Rev., 112 (2011), pp. 1232-1268
[View Record in Scopus](#)

[12] M. Allendorf, C. Bauer, R. Bhakta, R. Houk
Chem. Soc. Rev., 38 (2009), pp. 1330-1352
[CrossRef](#) [View Record in Scopus](#)

[13] M. Clemente-León, E. Coronado, C. Martí-Gastaldo, F.M. Romero
Chem. Soc. Rev., 40 (2011), pp. 473-497
[CrossRef](#) [View Record in Scopus](#)

[14] Y. Jiao, C.R. Morelock, N.C. Burtch, W.P. Mounfield III, J.T. Hungerford, K.S. Walton
Ind. Eng. Chem. Res., 54 (2015), pp. 12408-12414
[CrossRef](#) [View Record in Scopus](#)

[15] J.A. Botas, G. Calleja, M. Sánchez-Sánchez, M.G. Orcajo
Langmuir, 26 (2010), pp. 5300-5303
[CrossRef](#) [View Record in Scopus](#)

[16] Y.-S. Bae, B.G. Hauser, O.K. Farha, J.T. Hupp, R.Q. Snurr
Microporous Mesoporous Mater., 141 (2011), pp. 231-235
[Article](#) [!\[\]\(927753982fca4c21e781b80aafaaf020_img.jpg\)](#) [Download PDF](#) [View Record in Scopus](#)

[17] Y. Cao, Y. Zhao, F. Song, Q. Zhong
J. Energy Chem., 23 (2014), pp. 468-474
[Article](#) [!\[\]\(59c6cdac5c61f8d985627ae70baefb6c_img.jpg\)](#) [Download PDF](#) [View Record in Scopus](#)

[18] Z. Wei, W. Lu, H.-L. Jiang, H.-C. Zhou
Inorg. Chem., 52 (2013), pp. 1164-1166
[CrossRef](#) [View Record in Scopus](#)

[19] W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle III
Chem. Soc. Rev., 43 (2014), pp. 5561-5593
[CrossRef](#) [View Record in Scopus](#)

[20] N.C. Burtch, H. Jasuja, K.S. Walton
Chem. Rev., 114 (2014), pp. 10575-10612
[CrossRef](#) [View Record in Scopus](#)

[21] H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi
Science, 327 (2010), pp. 846-850
[CrossRef](#) [View Record in Scopus](#)

[22] V. Safarifard, S. Rodríguez-Hermida, V. Guillerm, I. Imaz, M. Bigdeli, A. Azhdari Tehrani, J. Juanhuix, A. Morsali, M.E. Casco, J. Silvestre-Albero

FEEDBACK

Cryst. Growth Des., 16 (2016), pp. 6016-6023

[CrossRef](#) [View Record in Scopus](#)

[23] N. Stock, S. Biswas

Chem. Rev., 112 (2011), pp. 933-969

[View Record in Scopus](#)

[24] Y.-R. Lee, J. Kim, W.-S. Ahn

Korean J. Chem. Eng., 30 (2013), pp. 1667-1680

[CrossRef](#) [View Record in Scopus](#)

[25] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long

Chem. Rev., 112 (2012), pp. 724-781

[CrossRef](#) [View Record in Scopus](#)

[26] M.Y. Masoomi, K.C. Stylianou, A. Morsali, P. Retailleau, D. Maspoch

Cryst. Growth Des., 14 (2014), pp. 2092-2096

[CrossRef](#) [View Record in Scopus](#)

[27] H. He, L. Hashemi, M.-L. Hu, A. Morsali

Coord. Chem. Rev., 376 (2018), pp. 319-347

[Article](#) [Download PDF](#) [View Record in Scopus](#)

[28] Z. Ni, R.I. Masel

J. Am. Chem. Soc., 128 (2006), pp. 12394-12395

[CrossRef](#) [View Record in Scopus](#)

[29] J. Klinowski, F.A.A. Paz, P. Silva, J. Rocha

Dalton Trans., 40 (2011), pp. 321-330

[CrossRef](#) [View Record in Scopus](#)

[30] N.A. Khan, E. Haque, S.H. Jhung

Phys. Chem. Chem. Phys., 12 (2010), pp. 2625-2631

[CrossRef](#) [View Record in Scopus](#)

[31] G.H. Albuquerque, G.S. Herman

Cryst. Growth Des., 17 (2016), pp. 156-162

[32] C. Chen, X. Feng, Q. Zhu, R. Dong, R. Yang, Y. Cheng, C. He

Inorg. Chem., 58 (2019), pp. 2717-2728

[CrossRef](#) [View Record in Scopus](#)

[33] S.H. Jhung, J.H. Lee, J.W. Yoon, C. Serre, G. Férey, J.S. Chang

Adv. Mater., 19 (2007), pp. 121-124

[CrossRef](#) [View Record in Scopus](#)

[34] G. Sargazi, D. Afzali, A. Mostafavi

Ultrason. Sonochem., 41 (2018), pp. 234-251

[Article](#) [Download PDF](#) [View Record in Scopus](#)

[35] G. Sargazi, D. Afzali, A. Mostafavi

Appl. Organomet. Chem., 33 (2019), p. e4816

[CrossRef](#) [View Record in Scopus](#)

[36] S. Gaikwad, S. Han

Chem. Eng. J., 371 (2019), pp. 813-820

[Article](#) [Download PDF](#) [View Record in Scopus](#)

FEEDBACK

[37] S. Han, Y. Huang, T. Watanabe, S. Nair, K.S. Walton, D.S. Sholl, J.C. Meredith

Microporous Mesoporous Mater., 173 (2013), pp. 86-91

Article Download PDF View Record in Scopus

[38] S.R. Caskey, A.G. Wong-Foy, A.J. Matzger

J. Am. Chem. Soc., 130 (2008), pp. 10870-10871

CrossRef View Record in Scopus

[39] P. Mishra, S. Edubilli, B. Mandal, S. Gumma

Microporous Mesoporous Mater., 169 (2013), pp. 75-80

Article Download PDF View Record in Scopus

[40] Z. Zhang, S. Xian, H. Xi, H. Wang, Z. Li

Chem. Eng. Sci., 66 (2011), pp. 4878-4888

Article Download PDF View Record in Scopus

[41] K. Munusamy, G. Sethia, D.V. Patil, P.B.S. Rallapalli, R.S. Somani, H.C. Bajaj

Chem. Eng. J., 195 (2012), pp. 359-368

Article Download PDF View Record in Scopus

[42] D. Saha, Z. Bao, F. Jia, S. Deng

Environ. Sci. Technol., 44 (2010), pp. 1820-1826

CrossRef View Record in Scopus

[43] S. Gaikwad, S.-J. Kim, S. Han

Microporous Mesoporous Mater., 277 (2019), pp. 253-260

Article Download PDF View Record in Scopus

[44] C. Choi, R.L. Kadam, S. Gailwad, K.-S. Hwang, S. Han

Microporous Mesoporous Mater. (2020), p. 110006

Article Download PDF View Record in Scopus

[45] H.Y. Huang, R.T. Yang, D. Chinn, C.L. Munson

Ind. Eng. Chem. Res., 42 (2003), pp. 2427-2433

CrossRef View Record in Scopus

[46] Y. Chen, D. Lv, J. Wu, J. Xiao, H. Xi, Q. Xia, Z. Li

Chem. Eng. J., 308 (2017), pp. 1065-1072

Article Download PDF View Record in Scopus

[47] D. Qian, C. Lei, G.-P. Hao, W.-C. Li, A.-H. Lu

ACS Appl. Mater. Interfaces, 4 (2012), pp. 6125-6132

CrossRef View Record in Scopus

[48] F. Gao, Y. Li, Z. Bian, J. Hu, H. Liu

J. Mater. Chem., 3 (2015), pp. 8091-8097

CrossRef View Record in Scopus

[49] S. Xian, F. Xu, C. Ma, Y. Wu, Q. Xia, H. Wang, Z. Li

Chem. Eng. J., 280 (2015), pp. 363-369

Article Download PDF View Record in Scopus

[50] R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O'Keeffe, O.M. Yaghi

J. Am. Chem. Soc., 131 (2009), pp. 3875-3877

CrossRef View Record in Scopus

[51] A.O.z.r. Yazaydin, R.Q. Snurr, T.-H. Park, K. Koh, J. Liu, M.D. LeVan, A.I. Benin, P. Jakubczak, M. Lanuza, I. FEEDBACK

J. Am. Chem. Soc., 131 (2009), pp. 18198-18199

[CrossRef](#) [View Record in Scopus](#)

[52] J. Liu, J. Tian, P.K. Thallapally, B.P. McGrail

J. Phys. Chem. C, 116 (2012), pp. 9575-9581

[CrossRef](#) [View Record in Scopus](#)

[53] D.M. Ruthven

Principles of Adsorption and Adsorption Processes

John Wiley & Sons, New York (1984)

[Google Scholar](#)

[54] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid

Nat. Methods, 9 (2012), p. 676

[CrossRef](#) [View Record in Scopus](#)

[55] S. Han, Y. Huang, T. Watanabe, Y. Dai, K.S. Walton, S. Nair, D.S. Sholl, J.C. Meredith

ACS Comb. Sci., 14 (2012), pp. 263-267

[CrossRef](#) [View Record in Scopus](#)

[56] Q. Yang, C. Xue, C. Zhong, J.F. Chen

AIChE J, 53 (2007), pp. 2832-2840

[CrossRef](#) [View Record in Scopus](#)

[57] R.V. Siriwardane, M.-S. Shen, E.P. Fisher, J.A. Poston

Energy Fuels, 15 (2001), pp. 279-284

[View Record in Scopus](#)

[58] H.-Y. Chen, M. Kollar, Z. Wei, F. Gao, Y. Wang, J. Szanyi, C.H. Peden

Catal. Today, 320 (2019), pp. 61-71

[Article](#) [Download PDF](#) [CrossRef](#) [View Record in Scopus](#)

[59] Q. Xie, F. Li, H. Guo, L. Wang, Y. Chen, G. Yue, D.-L. Peng

ACS Appl. Mater. Interfaces, 5 (2013), pp. 5508-5517

[CrossRef](#) [View Record in Scopus](#)

[60] C. Zhu, Z. Zhang, B. Wang, Y. Chen, H. Wang, X. Chen, H. Zhang, N. Sun, W. Wei, Y. Sun

Microporous Mesoporous Mater., 226 (2016), pp. 476-481

[Article](#) [Download PDF](#) [View Record in Scopus](#)

[61] D.J. Tranchemontagne, J.R. Hunt, O.M. Yaghi

Tetrahedron, 64 (2008), pp. 8553-8557

[Article](#) [Download PDF](#) [View Record in Scopus](#)

[62] S. Salehi, M. Anbia

Energy Fuels, 31 (2017), pp. 5376-5384

[CrossRef](#) [View Record in Scopus](#)

[63] Z. Zhao, Z. Li, Y. Lin

Ind. Eng. Chem. Res., 48 (2009), pp. 10015-10020

[CrossRef](#) [View Record in Scopus](#)

[64] T. Zhao, F. Jeremias, I. Boldog, B. Nguyen, S.K. Henninger, C. Janiak

Dalton Trans., 44 (2015), pp. 16791-16801

[CrossRef](#) [View Record in Scopus](#)

FEEDBACK

[65] Q. Liu, L. Ning, S. Zheng, M. Tao, Y. Shi, Y. He
Sci. Rep., 3 (2013), p. 2916
[View Record in Scopus](#)

[66] Z. Zhou, L. Mei, C. Ma, F. Xu, J. Xiao, Q. Xia, Z. Li
Chem. Eng. Sci., 147 (2016), pp. 109-117
[Article](#) [Download PDF](#) [View Record in Scopus](#)

[67] M. Taddei, P.V. Dau, S.M. Cohen, M. Ranocchiari, J.A. van Bokhoven, F. Costantino, S. Sabatini, R. Vivani
Dalton Trans., 44 (2015), pp. 14019-14026
[CrossRef](#) [View Record in Scopus](#)

[68] H.T. Nguyen, Y. Tran, H.N. Nguyen, T.C. Nguyen, F. Gándara, P.T. Nguyen
Inorg. Chem., 57 (2018), pp. 13772-13782
[CrossRef](#) [View Record in Scopus](#)

[View Abstract](#)

© 2020 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

[About ScienceDirect](#)

 RELX™

[Remote access](#)

[Shopping cart](#)

[Advertise](#)

[Contact and support](#)

[Terms and conditions](#)

[Privacy policy](#)

We use cookies to help provide and enhance our service and tailor content and ads. By continuing you agree to the [use of cookies](#).
Copyright © 2021 Elsevier B.V. or its licensors or contributors. ScienceDirect ® is a registered trademark of Elsevier B.V.
ScienceDirect ® is a registered trademark of Elsevier B.V.

FEEDBACK