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Highlights
Zeolites have shown tunable structures, chemical stability and biocompatibility
features.

Zeolites because of various pore sizes and structures have shown a high loading
efficacy.

Zeolites can carry various types of therapeutic agents such as drugs and proteins.

Zeolite structures can be adjusted on-demand, based on the type of drug and delivery
route.

Zeolite modification can even results in stimuli-responsive carriers for advanced
delivery.

There are continuing attempts to achieve appropriate controlled-release therapeutic systems by designing innovative functional
drug delivery systems (DDS). Although various types of delivery system have been developed, strategies that have successfully
made it to the clinic are rare. Given their diverse structures, zeolites have attracted significant research attention for controlled
and targeted drug delivery purposes. The structure of zeolites can be microporous, mesoporous or macroporous, which can be
exploited to deliver a variety of therapeutic agents to the target site in a controlled manner. In this review, we introduce the
different types of zeolite, and discuss the challenges and opportunities associated with their usage as drug delivery systems.
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Introduction
Biotechnology and biomedical science, especially drug delivery and gene delivery sections, are experiencing rapid development
because of their importance to human life 1, 2, 3. Many DDSs (see Glossary) have been suggested, including liposomes,
proliposomes, phospholipids, gels, and microspheres, among others 4, 5, 6. Given their unique structural characteristics in
addition to their biocompatibility, large surface areas, and ability to control their physicochemical properties, micro- and
mesoporous inorganic products, such as zeolites, have been largely used as adjuncts to polymeric substances in a variety of
forms, such as composites, blends, hydrogels, and hosts, for drug delivery 7, 8, 9, 10, 11. Zeolites have been a focus of recent drug
release system research for the controlled delivery of drugs because of the regular and uniform shape of their pores and their
ion exchange abilities 12, 13, 14. The large pore sizes available in some zeolite constructions have been used by engineers to
freely release drug molecules. Another primary use of zeolites is their application in the synthesis of hydrogels for
biotechnological and therapeutic purposes, which resulted from their highly crystalline form and ability to engineer them to
selectively adsorb wanted or unwanted inorganic or organic particles 15, 16, 17. Moreover, in veterinary medicine, zeolites have
been exploited with direct benefits on the morphology, performance, and microbial flora of the digestive tract, release of
metabolically vital ions, removal of unwanted ions, improvements in the nutrition condition of mammals, enhanced levels of
immunity, and removal of toxic products of digestion. Zeolites have additional useful properties, including long-term biological
durability and ability to adjust immune system performance, that have attracted significant attention in the biomedical field
[18]. In addition, zeolites can be used to deliver DNA to cells because they can be internalized within the cell by endocytosis. The
main challenge to the use of zeolites is their cytotoxicity (e.g., erionite can cause cancer). However, such a challenging feature can
be exploited in cancer treatment in terms of harnessing the antiproliferative and proapoptotic actions of zeolites [15].

In addition to the features discussed above, zeolites have also attracted research interest because of their low cost, abundance,
and high availability. The high specific area and microporous volume of zeolites results from the numerous micro- and
mesoporous cavities and pores that they contain [19]. Zeolites are classified according to their chemical composition (Si/Al), pore
size, and pore structure. Nano-sized particles are highly applicable for drug delivery, with mesoporous silica-based
nanoparticles one of the main candidates in research for drug release 20, 21.

Given the decline in drug development, often as a result of biological issues associated with drug molecules, research interest in
the development of nanoscience-based molecules has expanded 22, 23, 24, 25. The use of nanotechnology for medical
applications has many advantages, such as: (i) drugs can be released that have poor water solubility; (ii) drug molecules can be
directly transferred into a specified cell or tissue; (c) drugs can be transferred across rigid cell borders and tissue walls; (d)
successful encapsulation and release of large molecular therapeutics; and (e) simultaneous delivery or release of several drugs
with different release rates into one tissue 26, 27, 28.

In this review, we focus on the applications of different synthetic and natural zeolites in medical and drug delivery to highlight
the advantages of using zeolites as DDSs.

Zeolites in drug delivery
Zeolite can be used as a platform for the delivery of various types of drug. However, because of the small size of the drugs, they
can be easily released from the structure. Therefore, the zeolite pore size needs to be adjusted in terms of the desired drug [29].
Moreover, differences in hydrophilicity between zeolites and drugs can limit their loading capacity, although this can be
overcome via surface modification of the zeolite 30, 31. Thus, the surface of a zeolite can be adjusted depending on the drug that
needs to be delivered. Table 1 details examples of zeolite structures, properties, and applications in biomedical applications.

Table 1. Examples of zeolites used in biomedical applications

Zeolite L Hydrothermal Cell separation; detection of cancer cells; DNA delivery 60, 127, 128
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Zeolite A Hydrothermal 

Sol-gel [32]

Antimicrobial wound-healing dressing; antimicrobial coating of bone implants;

inhibition of osteoclasts

66, 130, 131

Clinoptilolite - Environmental purification; removal of radioactive contaminants; detoxification

of organisms; positive effects on nutrition and digestive tract; gastroprotective

effects; drug delivery; construction of biosensors; antioxidant, antiapoptotic,

anti-inflammatory, and antitumor activity

37, 43, 48,

57, 58, 132,

133, 134,

135, 136,

137, 138

ZSM-5

Zeolite

Hydrothermal Drug delivery (gentamycin); antibacterial properties; bone implants; catalyst

membrane and energy

7, 105, 144

Mordenite - Drug-delivering biomaterials [72]

Chabazite - Optical imaging drug delivery [55]

Zeolite X Hydrothermal Nanocarrier; catalyst 94, 145

Zeolite Y Hydrothermal Drug delivery; adsorption 76, 146

Beta Zeolite Microwave;

hydrothermal

Toxics adsorption; growth factor delivery 36, 67, 147,

148

Analcime One-pot

hydrothermal

route

Antioxidant [149]

Phillipsite Hydrothermal Antioxidant [150]

Ferrierite – Antioxidant

Erionite – Highly carcinogenic

Natural zeolites

Clinoptilolite

Clinoptilolite (Table 1) is a natural zeolite with a microporous tetrahedral arrangement of silica and alumina. It has the overall
formula: (Na, K, and Ca)  Al  (Al, Si) Si O ·12H O. It appears as white to reddish tabular monoclinic tectosilicate crystals
with a hardness of 3.5–4 on the Mohs scale, with a specific gravity of 2.1–2.2. It typically occurs as a result of conversion (as a
glass) from a vitreous to a crystalline state of volcanic glass shards in tufts and as vesicle fillings in basalts, andesites, and
rhyolites 32, 33, 34. The use of clinoptilolite in industry and academia focuses on its ion exchange properties, given that it has a
strong exchange affinity for ammonium (NH ). A typical example of this is its use as an enzyme-based urea sensor. It is also
used as fertilizer and sold as a deodorizer in the form of pebble-sized chunks contained in a mesh bag 19, 35.
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Mesoporous zeolites have been a focus of research to exploit their ability to increase the intestinal absorption of vitamins and
minerals. For example, a bentonite clinoptilolite natural zeolite blend was used as a porous carrier for the encapsulation and
slow release of vitamin E; thermodynamic investigations revealed the endothermic origin of the automatic encapsulation
procedure and showed that the release profile was within the recommended dietary allowance for humans [35]. A novel pathway
was proposed for modification of chitosan-attached natural clinoptilolite zeolites for biomedical purposes. In this example,
caffeic acid (CA) was efficiently mixed with chitosan via laccase, resulting in the constant generation of hydrogen peroxide,
highlighting the use of this system as a beneficial antimicrobial agent [36].

De Gennaro et al. modified the clinoptilolite with cetylpyridinium chloride and loaded it with diclofenac sodium to evaluate the
release behavior. Drug adsorption followed a pseudo-second order reaction and was controlled by boundary layer diffusion. In
addition, the drug release mechanism was controlled by anionic exchange with a rapid final phase resulting in sustained drug
release [37]. Pasquino et al. modified the clinoptilolite surface to act as a delivery system for nonsteroidal anti-inflammatory
drugs (NSAIDs; e.g., Ibuprofen and diclofenac). The results indicated that the molecular conformation of the drugs had an
important role in their interaction with the zeolite and the surface modifications resulted in higher binding energy. In addition,
the release mechanism was controlled by anion exchange. The drug release behavior was evaluated by using a rheology method,
in which the gel-like system was based on a surfactant and a binding salt was used for topical release [38]. Such drugs act as a
strongly binding salt, increasing the viscosity of the solution [39]. Counter-ions of such drugs enter the surfactant head groups
and alter the packing factor of the micelles, affecting their morphology and rheological behavior [40].

A diclofenac sodium (DS) oral delivery system was also explored by Serri et al., who used cetylpyridinium chloride surfactant-
modified zeolites to investigate DS release under pseudo gastric fluid conditions. This system exhibited long-term effective
release for the DS-zeolite solution up to 9 h [30]. According to Rodriguez et al., purified natural clinoptilolite zeolites can be used
as efficient porous materials in anti-diarrheic applications [41]. Clinoptilolite has also been used as an adjuvant in cancer
therapy: treatment with this zeolite prolonged the life-span of, and reduced tumor size, in rat models by decreasing protein
kinase B (c-Akt) expression and stimulating the expression of p21WAF1/CIP1 and p27KIP1 tumor suppressor genes [42]. Drug-
loaded clinoptilolite also reduced the clinical symptoms and indications related to endoscopically negative gastroesophageal
reflux disorder and healing of damages caused by NSAID use. This gastroprotective effect of zeolites, especially clinoptilolite,
could stem from the fact that zeolites mainly attach to hydrogen ions and biologically active amines and nitrates [43].

Clinoptilolite was also utilized as a porous platform in an oral DDS for the release of various vitamins (A, D  and E). Such
zeolites exhibit buffer properties that can protect vitamins in acidic environments and increase their shelf-life. Thus, fat-soluble
vitamins show high bioactivity in the presence of zeolites because the latter protect them from the acidity of the gastrointestinal
tract [44]. Moreover, magnetic clinoptilolite nano and/or microparticles could be used in novel multimodal investigations for
use in optical imaging, MRI, thermo- and phototherapy, hyperthermia, as well as for drug release [45].

Ivkovic et al. discussed the synthesis of, and mechanisms involved in, thermomechanically activated zeolites as a new approach
for highly efficient drug delivery (e.g., clinoptilolite combined with both synthetic and natural active substances). The authors
studied the use of such systems as anti-HIV, antidiabetes, antihypertension and anticancer agents. As a result of their 3D
structure and appropriate cellular activity, activated clinoptilolite in combination with natural materials exhibited synergic
effects and improved biocompatibility. These results show that it is possible to fabricate novel molecules that work in harmony
with natural cell structures, decreasing or even removing complications associated with autoimmune reactions, toxicity, and
other impacts [46]. In addition, hemostatic properties of clinoptilolite were compared with those of Quikclot®, a commercially
available treatment for external hemorrhage. Mortality in the Quikclot-treated group was ∼53%, whereas that in the zeolite
group was ∼20%. Moreover, the healing process was completed using the zeolite, whereas Quikclot usage resulted in necrotic
tissue. This hemostatic mechanism of clinoptilolite is related to its negatively charged framework, which activates the blood-
clotting process [47]. When added to the diet of poultry, clinoptilolite improved their intestine health by changing the gut
morphology, increasing the villus height and villus to crypt depth, decreasing the pH, and reducing the counts of Salmonella and
Escherichia coli [48]. A Zn ion exchange clinoptilolite (ZnCP) has been used as an alternative to zinc sulfate (ZnSO ), compared to
which it exhibited higher bioavailability, confirmed by increased tissue Zn accumulation and Zn transporter genes expression
(ZnT1, ZnT2, and MT4) 49, 50. In addition, clinoptilolite samples that were loaded with zinc nanoparticles also displayed
immune impacts against Salmonella pullorum [51].
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Mordenite (MOR; Table 1) is a zeolite mineral with the chemical formula, (Ca, Na , K ) Al Si O .7H O. According to Ullmann’s
Encyclopedia of Industrial Chemistry (2005), it is one of the six most abundant zeolites and is used commercially. MOR is
orthorhombic. It crystallizes in the form of fibrous aggregates, masses, and vertically striated prismatic crystals. It can be
colorless, white, or faintly yellow or pink. It has a Mohs hardness of 5 and a density of 2.1 g/cm . When it forms well-developed
crystals, they are hair like, very long, thin, and fragile 19, 34. The molecular structure of MOR is a framework containing chains
of five-membered rings of linked silicate and aluminate tetrahedral (four oxygen atoms arranged at the points of a triangular
pyramid around a central silicon or aluminium atom). Its high ratio of silicon to aluminum atoms makes it more resistant to
attack by acids compared with most other zeolites 19, 52.

MOR can be used in both biomedical and removal applications. For example, in a study of bovine urine wastewater static
adsorption and removal by MOR, the zeolite was shown to absorb increased amounts of waste material into its porous cavities
and decrease the concentration of unwanted soluble substances to <10 mg/l from an initial concentration of 45 mg/l. This
efficient removal and biological waste adsorption was suggested to result from the stable pores of H-beta and H-MOR and the
resistance of MOR to a high acid environment, as also indicated by the resulting adsorption isothermal curves [53].

Other natural zeolite compounds

There are many other types of zeolites that can be applied to various areas of science, including biomedical use (Table 1). Here,
we discuss several other zeolites that cannot be categorized only because there are only a few studies of them available thus far
compared with other zeolite forms.

Chabazite is a tectosilicate mineral, closely related to geminate, with the formula (Ca, Na , K , Mg) Al Si O ·6H O. Recognized
varieties include Chabazite-Ca, Chabazite-K, Chabazite-Na, and Chabazite-Sr, depending on the prominence of the indicated
cation. Chabazite crystallizes in the triclinic crystal system with typically rhombohedral shaped crystals that are pseudocubic.
The crystals are typically twinned, and both contact twinning and penetration twinning can be observed. These crystals can be
colorless, white, orange, brown, pink, green, or yellow 19, 54. The hardness ranges from 3 to 5 and the specific gravity from 2.0
to 2.2. More research is needed into such zeolite-rich rocks for drug delivery purposes, particularly because of toxic compounds
(e.g., the Chabazite-rich sample from Bowie). In addition, some other natural materials have been ignored for such applications,
because they expressed poor chemical and mineralogical features in terms of cationic distribution, and cation exchange ability
[55]. In an attempt to understand the release properties of chabazite, it was modified with a cationic surfactant, cetylpyridinium
chloride (CP), to evaluate the release of DS. According to the results, DS delivery was regulated mainly by film and particle
diffusion mechanisms, whereby the film thickness and distribution coefficient are important for film diffusion mechanism and
the effective diffusivity of the exchanging ions is important for particle diffusion [56].

Natural zeolites have the potential to be used for nutrition and dietary purposes in animals to improve their product qualities,
such as eggs, meat, or milk, because they can enhance the targeted release strategy for drugs and improve nutrient transfer. They
also have the ability to trap and hold nutrients for a long period of time because of their long-term stability and
nondegradability; these enable the drug and nutrient to be transferred slowly but constantly to the target areas inside the body
57, 58. In addition, the use of porous inorganic zeolites in animals to neutralize the deleterious effects of swallowed toxic
substances was investigated by Kececi et al.. These authors investigated the ability of zeolite and zeolite-containing composite
containers fed directly to animals to scavenge and absorb toxic chemicals in the body fluids and tissues. Zeolite-based materials
produced promising effects, attributed mainly to their inertness and nontoxic features and their appropriate pore diameter,
which can easily trap and hold toxic chemicals inside the body [59].

Synthetic zeolites

Zeolite Type L

Among the high diversity of natural and synthetic zeolites, Linde Type L (LTL) zeolite (Table 1) stands out owing to its appealing
physicochemical and structural properties and high versatility. LTL zeolite is a crystalline aluminosilicate with a well-defined
3D framework and hexagonal symmetry. It is formed by corner-sharing TO  tetrahedral (T being aluminum or silicon) leading
to the arrangement of cancrinite cages and the final 3D network. The presence of the trivalent aluminum infers an anionic
character to the framework and charge-compensating cations are required to balance the charge of the tetrahedral. This explains
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the stoichiometry of LTL zeolites with monovalent charge-compensating cations M  (M9[Al Si O ]⋅nH O), where the number
of water molecules per unit cell is 21 in fully hydrated materials and ∼16–20% in relative humidity [19].

Multifunctional porous media, such as zeolites, also can be implemented in novel biomedical areas, such as gene therapy agents.
For example, Bertucci et al. used zeolite-L as a carrier for peptide nucleic acids (PNAs) and for the delivery of organic molecules
inside living cells; Zeolite-L particles were modified by covalently attaching the PNA to their surface, while their channels were
occupied with fluorescent dye molecules. Fluorescence colocalization experiments showed that the zeolites bound to PNA were
not destroyed after their internalization into the target tissue. This result clearly showed the protective ability of porous zeolites
in protecting the encapsulated nucleic acid from unwanted release as a result of their fitted 60-nm channels, which can hold the
nucleic acid and enable it to attach properly to other functional groups. Such decoration resulting in a theranostic and gene
therapy nanoparticle 60, 61. Freeze–thaw fabricated poly vinyl alcohol (PVA)/pullulan cryogels were also used to fabricate
composite-containing zeolite-L nanoparticles to release enalapril maleate (EM). The addition of the zeolite increased the EM
loading efficiency because of its porous structure. The incorporation of zeolite-L powder nanoparticles reduced the humidity
absorption capacity of the cryogels and caused a new morphology configuration, which enhanced the release properties. This
system obeyed the Korsmeyer–Peppas release model, whereby EM release was controlled by diffusion mechanisms [62].

Zeolite Type A

Zeolite Type A (Table 1) exhibits a Linde Type A (LTA) structure. It has a 3D pore structure with pores running perpendicular to
each other in the x, y, and z planes, and comprises secondary building units 4, 6, 8, and 4–4. The pore diameter is defined by an
eight-member oxygen ring and is small at 4.2 Å. This leads into a larger cavity with a minimum free diameter of 11.4 Å. The
cavity is surrounded by eight sodalite cages (truncated octahedra) connected by their square faces in a cubic structure. The unit
cell is cubic (a = 24.61 Å) with Fm-3c symmetry. Zeolite A has a void volume fraction of 0.47, with a Si/Al ratio of 1.0. It thermally
decomposes at 700 °C. Zeolite A is of interest because its super cage structure is useful for various applications, such as drug
delivery, catalysis, and adsorption 19, 63, 64.

In research by Kocaaga et al., hydrogels comprising natural polysaccharide LM pectin and Zn-Na ion-exchanged type A zeolites
were synthesized as a wound dressings with sustained drug release. This research showed that using zeolites and inorganic
porous materials enhanced the oxygen transmission maintenance properties. Hydrogels containing zeolite A were fabricated by
a membrane diffusion approach and showed an ability to release the drug in a constant ratio up to 86% within 5 h. Zeolite A
nanoparticles acted as porous drug containers and improved the hydrogel stability by swelling, as well as preserving the oxygen
transmission rate [65]. Nitric oxide (NO)-rich, type A zeolite nanoparticles have been explored to understand their effects on
antimicrobial and wound-healing characteristics of moisture-sensitive delivery structures against wound pathogens, such as
Gram-negative bacteria (E. coli and Acinetobacter baumannii), Gram-positive bacteria (Staphylococcus epidermidis and methicillin-
resistant Staphylococcus aureus) and a fungus (Candida albicans). Adding the nanozeolite into a hydrophobic ointment base
decreased the water diffusion properties, altering the rate at which NO was released. The presence of the zeolite regulated the
stabilized ointment release into the wound and also controlled the adsorption or delivery of other chemical through porous
cavities of the zeolite, which resulted in the faster closure of the treated area [66]. Keeting et al. [67] reported that the
differentiation and conversion of one structure into another related structure of transforming growth factor beta in target
tissues could be improved by using type A zeolite crystals. Their analysis indicated that the presence of zeolite A increased
alkaline phosphatase activity and osteocalcin release. However, this action did not notably affect collagen fabrication per
individual cell. The porosity and adequate surface area of the zeolites provided a steady‐state mRNA conversion rate for TGFβ ,
which extend its release time up to 6 h [67]. In another study, 5-fluorouracil (5-FU), a common anticancer drug, was
encapsulated into zeolite 4A nanocomposite magnetic particles, which showed steady fluorescent behavior with near-infrared
(NIR) optical features. Cell viability tests revealed that encapsulation of the drug inside the zeolite pores enhanced its cytotoxic
properties compared with free 5-FU. The conversion and encapsulation of the drug into zeolitic nanoparticles resulted in
regulated and sustained drug release without any sudden release phenomena, because of the channel length of the zeolite and
its stable constant slow diffusion rate [68]. Rieger et al. analyzed the antimicrobial agent delivery properties of a silver-coated
LTA zeolite configuration mounted inside cellulose fibers by an electrospinning process. The electrospun nanofibers exhibited
considerable rates of microbial and bacterial inhibition of up to 92%, highlighting the efficiency of the system for the fast
delivery of antimicrobial agents to target sites using a modified porous structure. When Ag-LTA-Large zeolites with a lower
external surface area were immobilized onto the nanofiber mats, they presented four times-lower antimicrobial behavior
compared with Ag-LTA-Small and Ag-LTA-Meso inorganic samples also attached to the nanofiber mats. Notably, the
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stabilization of the zeolites significantly enhanced the initial bacteria removal after a relatively limited incubation period.
Moreover, it was reported that because of the extra outer surface area and open pores of the zeolites, the zeolite–nanofiber
composites provided the composite structure with a longer lasting drug delivery capability, leading to a manageable release
system [69].

In some cases, zeolite structures can be used with anticancer compounds as DDSs. For example, two different zeolite structures,
fugazite (FAU) and LTA, were studied to determine their usefulness as DDSs using α‐cyano‐4‐hydroxycinnamic acid (CHC), an
anticancer drug. FAU and LTA exhibited no toxicity to HCT-15 cancer cells individually. Significantly, CHC-loaded zeolites,
compared with nonencapsulated drug, enhanced deterrence of cell viability up to 585-fold. The implementation of the zeolite
into this system affected and more specifically controlled the solubility rate of the drug in the media by keeping it trapped in its
pores, preventing the bulk solubility of the drug and its in situ expansion [70]. A sulfonamide polymer composite with zeolite Y
was investigated by utilizing variant replacements from aqueous media. The intake properties of five sulfa-containing drugs
were found to be considerable because of the porous structure of the zeolite, which could be used for both water purification
and drug delivery. In addition, based on numeric modeling, the most persistent tautomeric (amide or imide) kind of each
antibiotic was suggested. Given the proper stabilization energy, monomers and dimers of imide sulfathiazole and amidic sulfa-
pyridine were set in a zeolite cage, whereas the residual sulfa-containing drugs were absorbed by the monomeric amidic faces.
The interactions of these zeolite–drug and drug–drug systems were investigated and showed that sulfonamides with the lowest
dimensions (sulfathiazole and sulfa-pyridine) had the ability to generate dimers inside the zeolite cage, in a situation in which
those molecules with the biggest size were immobilized as single molecules; thus, this highlights the ability of zeolites to
regulate the delivery of both types of sulfonamide [71]. Temozolomide (TMZ) as a chemotherapeutic agent embedded into
zeolite Y and MOR was used to treat glioblastoma. TMZ embedded in MOR showed higher efficiency compared with free TMZ
both in vitro and in vivo. Thus, zeolite Y and MOR can be considered as hosts for TMZ delivery. These zeolitic structures were
chosen because their Si/Al ratio, and wide and accessible pore configuration were anticipated to be functional for the
potentiation of TMZ. In addition, these materials hold the integrity of TMZ without any conversion before their exposure to
cancer cells [72].

Zeolite Type Y

Faujasite (FAU) is a mineral group in the zeolite family of silicate minerals. The group comprises FAU-Na, FAU-Mg, and FAU-Ca.
They all share the same basic formula: (Na, Ca, Mg) 3.5 [A Si O ] .32(H O) but vary in terms of the amounts of sodium,
magnesium, and calcium. FAU occurs as a rare mineral in several locations worldwide and is also synthesized industrially 19, 73.
Zeolite Y was first described in 1842 from the Limberg Quarries in Germany. The sodium modifier FAU-Na was added following
the discovery of the magnesium and calcium-rich phases during the 1990s. It was named for Barthélemy Faujas de Saint-Fond
(1741–1819), a French geologist and volcanologist 19, 74. The zeolite Y FAU framework comprises sodalite cages connected
through hexagonal prisms. The pores are arranged perpendicular to each other. Each pore, which is formed by a 12-membered
ring, has a relatively large diameter of 7.4 Å. The inner cavity has a diameter of 12 Å and is surrounded by ten sodalite cages. The
unit cell is cubic and its lattice constant is 24.7 Å. Zeolite Y has a void fraction of 48% and a Si/Al ratio of 2.43. It thermally
decomposes normally at 793 °C [19].

Karimi et al. compared the drug delivery and biomedical properties of the ZSM zeolite, Zeolite Y, and a polyethylene glycol (PEG)
nanocomposite structure as anticancer drug carriers. The authors concluded that PEG/ZSM zeolite composite samples showed
more antioxidant behavior and consistent release than PEG. The zeolite acted as an efficient platform because of its high surface
area and pore availability, as revealed by an nitrogen adsorption–desorption analysis, which indicated that zeolite pore volume
and surface area decreased dramatically after introducing the drug into the zeolite solution, indicating that the zeolite pores and
particles were successfully occupied by the drug. The truncated octahedron configuration of Zeolite Y also resulted in its high,
consistent ability to release curcumin [75]. Zeolitic polymer composites have also received significant attention in recent years.
For example, zerumbone is one of the most effective anticancer agents against colon, skin and breast cancers 76, 77. Salleh et al.
evaluated the performance of an anticancer DDS based on a zeolite Y gelatin composite loaded with zerumbone. Entrapping
zerumbone inside the zeolite improved its release efficiency because of the steady-release configuration, resulting mainly from
the inertness of zeolite Y, which acted as both a carrier and support for drug; in addition its pores encapsulated, protected, and
controlled the release of the drug [76].

pH-sensitive zeolite Y nanoparticles have also been synthesized hydrothermally to test their drug delivery efficiency. Tannic
acid-coated zeolites were prepared to adjust their slow-release behavior in comparison with uncoated porous zeolites. Results
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from zeolites loaded with metronidazole as an antiprotozoan drug showed that such zeolites can be utilized as antitrichomonal
agents against Trichomonas gallinae [78]. One of the benefits of synthetic zeolites compared with natural forms is their ability to
deliver the loaded substances in response to external manipulation release techniques, such as pH or the application of an
electric or magnetic field. For example, Paradee and Sirivat synthesized a zeolite Y-alginate hydrogel sample that was ion
exchanged with folic acid solution to encapsulate it in the microporous structure of the zeolite. An electric field was used to
study its impact on the diffusion rate of the drug, which found to be positive because of the interaction and electrorepulsion
between folic acid and the anode section of the field. In addition, the alginate crosslinking ratio and zeolite Al content had a
direct influence on the rate of folic acid delivery from the porous zeolite [79].

In another study, the zeolite was used as a porous structure in the system, and zeolite Y-gelatin composite synthesis was
reported in the presence of a glutaraldehyde crosslinker. Subsequently, it was revealed that zerumbone can be trapped in porous
cavities of zeolite Y. ATR-FTIR spectroscopy was used to characterize the interactions between zerumbone and zeolite Y.
Swelling tests showed that the gelatin crosslinked with glutaraldehyde decreased the water penetration of the former. After
crosslinking, an increase in the thermal decomposition temperature of the composite occurred that enhanced the composite
strength. Results showed that the zeolite did not interact with the drug and no middle chemicals were formed between
zerumbone and zeolite Y during the experiment. Given the hygroscopic nature of gelatin, it easily swells and erodes when
immersed in water; thus, the incorporation of the zeolite successfully controlled this characteristic by regulating water
adsorption via its diverse porous structure [80].

Zeolite Y with varying silica:alumina ratios were selected and loaded with 5-FU. Thermogravimetric probes and nitrogen
sorption data showed that 5-FU was absorbed within H type zeolite-Y (HY) pores. In addition, the amount of aluminum was
important in specifying the amount of 5-FU delivered. HY-5 with the minimum SiO /Al O  ratio did not have the ability to
deliver 5-FU, whereas HY-30 and HY-60 delivered nearly 56% and 63% 5-FU, respectively [81]. Vilaca et al. similarly investigated
the potential of the zeolite NaY as a drug carrier for 5-FU and reported that zeolite-loaded 5-FU nanocarriers showed higher
loading content and better release behavior compared with nanocarriers not involving zeolites. A comparison with samples
containing rhodamine B embedded in NaY clearly showed that the zeolite particles were able to enter the cytoplasm of human
colorectal carcinoma cells. Although this method was only applied to NaY zeolites, it is anticipated that both nano NaY and LTL
zeolites might have the ability to enter cells because of their smaller dimensions, such internalization would result in more
efficient drug delivery [82]. Research into the ability of silver-coated zeolites to increase the delivery rate of entrapped
sulfadiazine revealed a steady release of the drug over a longer period of time. When the drug was loaded in a solution, some of
the zeolite silver ions were released into the environment and interacted with sulfadiazine, restricting the bioavailability of the
complex. Solid-state deposition of the drug in the pores of the zeolite resulted in interatomic interactions between the drug and
Ag  and stabilized the total and prolonged drug release, which were not observed in unmodified materials [83].

FAU zeolites have been examined for their potential as DDSs. A DDS was developed by the encapsulation of liquid CHC in
empty pores of the zeolite structure at pH 7.0. The molecular behavior and characterization of CHC during the encapsulation
process was revealed by magnetic proton magnetic resonance spectrometry ( H NMR) and UV-Vis spectroscopy. Data analysis of
the drug both alone and packaged in NaY showed that CHC and the zeolite framework retained their original structure. The
encapsulation of CHC significantly increased its performance as an anticancer drug against human HCT-15 human carcinoma
cells. CHC molecules were loaded in zeolite Y super cages, without any structural changes or reduction in the crystallinity of the
fabricated zeolite, and the drug molecule also kept its molecular integrity [84]. As an absorber of both UVB and UVA,
oxybenzone (OXB) is used as an ingredient in sunscreen, with a maximum permissible concentration of 6% to avoid adverse
effects. Accordingly, it was suggested that a porous zeolite could be used to transfer the compound in sunscreen products at a
higher concentration. In vitro evaluations of encapsulated sunscreens showed that zeolite-loaded OXB exhibited significant anti-
UV effects. Photodegradation of OXB was also prevented by using zeolite encapsulation. Moreover, such an approach also
avoided any allergy-related effects, which have previously resulted in sunscreens being withdrawn from use 85, 86.

Nanocomposite technologies have also resulted in the development of samples and scaffolds with a higher elongation and
compression ability, enhancing the application of biomedical products 87, 88, 89, 90, 91, 92. For example, Arruebo et al.
synthesized magnetite and Y zeolite nano-sized composites with a high active surface area, mechanical capabilities and
adsorption content under standard physical conditions and ambient temperature. Benefits of such nanomagnetic composite
powders included: (i) uncomplicated synthesis route; (ii) inhibition of the magnetite nanoparticle agglomeration; and (iii)
presence of all magnetically produced materials within the aluminosilicate matrix. Moreover, in vitro tests revealed that the
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nanoparticles were suitable for drug delivery applications because they were able to hold and release large loadings of drugs,
such as DOX, because of their high fluid intake value and small pores, which also facilitated the slow release of this drug [93].
Ndiege et al. utilized zeolite Y in targeted imaging applications. Using click chemistry, targeting aptamers were linked to the
zeolite surface, which then attached to the target cell because of the specific cell biomarkers; thus, zeolites can also be modified
for use in both targeted therapy and imaging (Fig. 1) [94].

Download : Download high-res image (284KB) Download : Download full-size image

Figure 1. Bifunctional zeolites in targeted therapy and imaging. Reproduced, with permission, from [94].

Zeolite Type X

Zeolite X, alongside zeolite Y, is from the family of aluminosilicate zeolites with a FAU-type framework. Zeolite X differs from
zeolite Y in its Si/Al atomic ratio, which is normally in the range of 1–1.5 for zeolite X but higher for zeolite Y. A high Si/Al ratio
is favorable for thermal stability applications, a characteristic that is not necessarily required in zeolite X. The 24 tetrahedral
cube octahedral units (sodalite cages) in the FAU framework type are similar to the carbon atoms in diamond. They are
connected via hexagonal prisms (six double rings) creating a 3D porous channel structure, characterized by 12 oxygen ring
openings with a 8 Å gap and super cages of ∼12 Å 19, 73. Two synthetic zeolites were examined to understand their ability to
enclose and release anti-inflammatory drugs, such as ketoprofen. Zeolite A and zeolite X powders were used as porous
containers with desirable surface morphologies for drug delivery applications. Zeolites cannot retain ketoprofen sodium salt,
because of the repulsion of negative charges; thus, ketoprofen loading without activation treatment failed. Activation treatments
are essential to remove water molecules from inside the samples to guarantee the entrance of the external ketoprofen molecules
into the inner pores [95]. Under oral applications, 10% or less of the drug is able to enter at the gastric level; however, using
zeolites resulted in a decrease in the negative impacts of ketoprofen on the stomach because the zeolite-encapsulated drug was
able to pass through the stomach and into gastrointestinal tract before release [95]. Hassanvand et al. studied the application of
ultrasound in enhancing drug delivery and release properties of different mesoporous carriers based on zeolite nanoparticles.
Zeolite nanoparticles can pass the blood–brain barrier and enhance the amount of effective drugs reaching the target site. The
release profile of the penetrated drug can be controlled by applying ultrasonic waves to stimulate the nanopore zeolite–drug
framework; thus, drug-release behavior can be effectively controlled using this technique [96].

In another study, zeolites X and Y were used to determine the abilities of synthetic zeolites to encapsulate and then release
diclofenac and piroxicam from their nanometric cavities. Anti-inflammatory drugs are most effective following prolonged slow
release in most patients. Zeolites are effective carriers for such drugs because they enable their slow release because of their
micro- and mesoporous structures, which prevent the sudden exposure of the drug to the body [97]. Recently, NaX-FAU was
loaded with danazol via an incipient wetness approach and its transfer was compared in vitro and ex vivo with that of oral
danazol. The stability of the loaded zeolites was reported to be almost 6 months. In addition, drug delivery tests indicated the
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initial slow release of loaded danazol, which then increased with time. An everted gut sac model was used for ex vivo evaluation
and showed that transport of danazol across the intestinal epithelium was enhanced when loaded in zeolites. The authors
proposed that microporous NaX-FAU could be utilized as a DDS to facilitate the oral delivery of poorly water-soluble drugs. The
synthesized zeolites maintained their natural solid structure under both fasted and fed state conditions, indicating that
dissolution of danazol from the inorganic aluminosilicate particles was related to the textural characteristics and encapsulation
capacity (pore size) of the mesopore carriers in both environments [98]. Surfactants have also been utilized to enhance the
performance of zeolite as drug carriers. Zeolite–surfactant platforms increased chloroquine adsolubilization, which was related
to the concentration and chain length of the surfactant and the type of zeolite. However, P and Z type zeolites with
sodium/calcium counterion complexes exhibited weak adsolubilization of chloroquine [99].

Zeolites could be particularly useful for the stable, controlled release of NSAIDs, including indomethacin and ibuprofen, and
could also help to avoid the adverse effects of such drugs associated with their oral application. Ibuprofen and indomethacin are
popular analgesic and anti-inflammatory medications, with a molecular size of ∼10 × 4.5 Å and 13.5 × 5.5 Å, respectively. The
size of zeolites is the main reason why these drugs are well confined within them and present a slow release behavior. The size
of zeolite X pores is ∼2 nm or 20 Å, which is suitable for biomedical applications and drug delivery purposes [100]. The CuX
zeolite porous structure was reported as an anticancer drug transfer system for classifiophosphamide. This platform comprised
two ingredients that were physically combined. Data from in vivo tests showed that the anticancer impact of drug-encapsulated
CuX zeolite particles was similar to that obtained by classifiophosphamide. The potential benefit of CuX zeolites is their
constant retention in the blood circulation, their resistance, and their establishment intact at concentrations of 100–1000 ng ml
 plasma [101].

MFI Type Zeolites

ZSM-5 (framework type MFI from ZSM-5) is an aluminosilicate zeolite belonging to the pentasil family of zeolites. It has a
chemical formula of Na Al Si O ·16H O (0 < n < 27) 7, 19. MFI zeolites comprise several pentasil units linked by oxygen
bridges to form pentasil chains. A pentasil unit includes eight five-membered rings. In these rings, the vertices are Al or Si, and
an O is assumed to be attached between the vertices. The pentasil chains are interconnected by oxygen bridges to form
corrugated sheets with ten-ring holes. Similar to the pentasil units, each ten-ring hole has Al or Si as vertices with an O assumed
to be bound between each vertex. Each corrugated sheet is connected by oxygen bridges to form a structure with ten-ring
straight channels running parallel to the corrugations and sinusoidal ten-ring channels running perpendicular to the sheets 19,
102. MFI type zeolite coatings were synthesized on titanium and a titanium alloy (Ti-6Al-4 V) [103]. Adhesion to the titanium
substrate section can be created based on the arranged structure of the MFI zeolite. The proposed zeolite showed potential to
prevent the release of toxic ions by trapping them in its micro cages and prevented or reduced the release of Al and V ions into
human tissue [104].

Avery et al. prepared a synthetic silica MFI film to evaluate its use as a lysozyme adsorption structure. This type of synthetic
silica-based aluminosilicate can also be considered for use in peripheral medical devices. Although the orientation of the zeolite
crystals did not have a significant role in the sorption process, incubation volume and time both impacted sorption [105].

Bone grafting is a routine orthopedic surgical procedure that can facilitate bone formation in bone defects or sections with
bone-healing complications. A noticeable problem after bone grafting is postoperative recipient graft site infection, with a high
mortality rate and necessitating the increased use of drugs and medical resources. Zeolites show potential in such situations
because of their neutral cytotoxicity and bone-like characteristics. Guo et al. used the ZSM-5 zeolite as an additive that was
synthesized by using a hydrothermal method. The disk-like shape of ZSM-5 zeolites and their 100-nm thickness and 300-nm
diameter enable them to encapsulate drugs inside their pores and release them slowly at a desirable rate to treat infections over
a significant period of time [106]. The continuous release of gentamicin from ZSM-5 zeolites reduced both bacterial adhesion
and biofilm formation substantially. Hence, the gentamicin-loaded ZSM-5 zeolites could be useful DDSs for the treatment of
implant-associated infections because of their high biocompatibility, pore size distribution, and functional groups [106].

Hydrothermally synthesized ZSM-5 zeolites, with specific SiO :Al O  ratios, have potential as mesoporous drug delivery
nanostructures and have been studied to evaluate their release properties for 5-FU. All release profiles showed that 50% of the
drug was released to the tissue media in the first 15 min after injection. This was likely because of the 3D pore configurations of
the ZSM-5 zeolite and drug coatings in the opening of the pores. By contrast, this kind of zeolite caused a secondary slow release
of 5-FU that lasted 2–4 h, related to the drug molecules being deeply adsorbed into the micropores of the zeolite [107]. Wen et al.
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successfully developed a ZSM-5–DOX–chitosan composite with an pH sensitivity that was exploited to regulate its release
behavior in cancerous and noncancerous cells. The cancerous milieu is more acidic than normal tissue milieu; hence, in the
acidic tumor cells, chitosan dissolved, releasing DOX quickly and efficiently. This composite also showed a significantly lower
rate of DOX release in healthy tissues because it was unable to diffuse out of the pores of the zeolite. This appropriate drug-
release behavior of zeolites is the result, in addition to their porous structures, particle size distribution and surface
functionalization, of their enhanced permeability and retention (EPR) effect, modulated drug distribution profiles, long-lasting
circulation time, and their adequate intracellular penetration because of their nanometer size (Fig. 2) [108].
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Figure 2. Anticancer drug delivery for cancer therapy using zeolites. Synthesis of zeolite-based drug carrier systems against
osteosarcoma: (a) preparation of zeolites by hydrothermal method; (b) formation of hollow zeolites using desilication
technology; (c) loading drug and chitosan (CS) coating; (d) cellular uptake of zeolites by tumor cells; and (e) tumor cell apoptosis
induced by doxorubicin release from zeolites. Reproduced, with permission, from [108].

Microneedles based on microporous zeolites have also been fabricated for transdermal drug delivery. Polymer-templated
zeolitic microneedles were formed through a UV exposure crosslinking procedure in which regular cylindrical pseudo MFI
zeolite needles were shaped on a substrate of silicon. Such zeolite microneedles were tested for use for saline fluid delivery into
fresh pig skin. This microneedles displayed better penetration because of the smaller particle size of the zeolites, which enabled
them to cross the tissue barriers and effectively guide the drug to its desired destination, where polymer composites presented
lower cross-diffusion because of their bigger unit sizes and longer chains, restricting their diffusion rate 109, 110.

MFI-type borosilicate zeolites with a variable Si/B content were combined in a hydrothermal procedure by utilizing silicic acid
and sodium tetraborate decahydrate. The authors examined the synthesized borosilicate zeolites as DDSs for the delivery of
DOX. The results indicated that the quantity of released drug increased by reducing the pH. In vitro tests of the samples based
on MTT tests showed that the amount of boron could be regulated by different synthesis parameters, such as adjusting the pore
size according to the diameter of the drug by altering the crystallization time and precursor gel pH. Thus, borosilicate particles
with well-organized rectangular-shaped nanocrystals and large external surface area demonstrated higher drug delivery
capacities [111]. The drug loading volume of boroferrisilicates with varying Fe/B contents developed using a hydrothermal
procedure was investigated with DOX. The loading yield was reduced by enhancing the iron ratio: for specimens with Fe/B= ∞,
the loading yield increased significantly. However, given the interaction between drug and heteroatom-substituted zeolites, the
release amount was low. Although zeolite pores showed a high degree of absorption, the release rates were not comparable for
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Fe/B, because the desorption of DOX molecules from surface of the zeolites was prevented by the strong interaction of the drug
molecules and the surface of the heteroatom-changed zeolites; thus, the release rate for all boroferrisilicate zeolites is assumed
to be low [112].

Chemotherapy is an important treatment for metastatic cancer, but often results in significant adverse effects on nontarget
tissues. In a recent study, the combination of mesoporous ZSM-5/CS/DOX nanodisks as DDSs for osteosarcoma was
investigated. The pH-responsive ZSM-5/CS/DOX nanodisks showed a high drug loading output and quickly delivered DOX to
acidic target tissues, such as tumor cells. In addition, as reducing the tumor growth rate, these pH-responsive zeolite drug
carriers also demonstrated fewer adverse effects, particularly cardiac toxicity, which was confirmed by pharmacokinetic studies,
serological examinations, and H&E staining assays. Thus, the ZSM-5/CS/DOX nanodisks could be useful pH-responsive drug
carriers for targeted cancer therapy [113]. Delivery of NO and simultaneous absorption of nitrosamine by MFI zeolites in a
proposed digestive system have also been evaluated. Three types of aluminosilicate zeolites, including HZSM-5 zeolites,
mesoporous zeolites, and mesoporous MCM-41 silica, were shown to transfer and absorb NO particles in gastric tissues (Fig. 3).
Investigation of the influence of the amount of (3-aminopropyl)triethoxysilane (APTS) on the structure of zeolite pores and
morphological state of silica and other mesoporous samples showed that hierarchical zeolites have a crucial role in the
controllable modification of APTS, where numerous amino propyl groups can be grafted in mesopores while the
aluminosilicate structure is maintained. The resulting structure exhibited the potential to release NO and consequently adsorb
nitrosamines [114].

Download : Download high-res image (215KB) Download : Download full-size image

Figure 3. Nitric oxide (NO) release and nitrosamine capture by an amino propyl-functionalized silica matrix in gastric fluid.
Reproduced, with permission, from [114].

BEA-type Zeolites

Zeolite beta is an old zeolite discovered before Mobil began the ‘ZSM’ naming sequence. As the name implies, it was the second
in an earlier sequence. The structure of zeolite beta was only recently determined because the structure is complex and interest
only increased in it once it had become important for dewaxing operations. Zeolite beta comprises an intergrowth of two
distinct structures: Polymorphs A and B. The polymorphs grow as 2D sheets and the sheets randomly alternate between the two.
Both polymorphs have a 3D network of 12-ring pores. The pores in two of the dimensions are not significantly impacted by the
intergrowth of the polymorphs; however, the pore becomes tortuous in the direction of the faulting, although it does not
become blocked 19, 115.

In some cases, zeolites can improve the physical behavior of the DDS to effectively transfer drugs that cannot be delivered in
normal conditions alone. For example, Karavasili et al. investigated the ability of BEA zeolites to facilitate the dissolution of
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nifedipine, which is poorly soluble and is associated with numerous difficulties in terms of its local delivery. The data showed a
complete encapsulation rate for the drug in the presence of the zeolite and an increase in drug delivery in both gastric and
intestinal environments compared with direct utilization of the drug. The positive effect of the DDS was attributed to the
availability of a more active surface area in the zeolites compared with the simple drug absorption route; this increased surface
area slowed the aggregation of the drug particles and resulted in their amorphization [116]. Karavasili et al. studied three
synthetic zeolite types (BEA-ZSM-NaX) to understand their effect on the solubility of indomethacin and its release
characteristics when it was coated inside the zeolites. Drug delivery analysis indicated that the release rates of this highly
insoluble drug were well regulated by zeolites with different microstructures, whereas cytocompatibility tests showed that these
zeolite particles had no toxic effects on human cells in vitro; thus, these zeolites could be suitable DDSs because of their fine
pore size and active outer surface area [117]. Mitoxantrone-loaded beta zeolite nanoparticles also showed significant cytotoxic
effects on cancer tissues. Mitoxantrone is thought to attach to the zeolite via interactions in the b-hydroxyketone of the
anthraquinone framework of the drug with zeolite aluminum, where relatively strong binding enables the drug to be released
slowly [118]. Molecular dynamics (MD) have also been used to understand the diffusion rates of salbutamol and theophylline
inside BEA zeolites. MD analysis revealed that the salbutamol and theophylline presented different diffusion patterns, with
salbutamol diffusing more freely compared with theophylline. The authors suggested that modeling should be use more
proactively when designing and analyzing zeolite–drug combinations ahead of any experimental investigation. Nevertheless,
BEA zeolites show significant potential as DDS and for use in other bioapplications [119]. Table 2 summarizes the properties
and performance of the various zeolites discussed in this review.

Table 2. General perspectives on the properties and performance of different forms of zeolite

Zeolite L ✓ × ✓ × × ✓ 12 3 1 7.1 Å

Zeolite A ✓ ✓ ✓ ✓ ✓ 8 3 1 4/1 × 4/1

ZSM-5

Zeolite

✓ ✓ × ✓ ✓ 10 3 2 5/1 × 5/5;

5/3 × 5/6

FAU
✓ × ✓ × × × 12 3 1 7/4 × 7/4

✓ ✓ ✓ × ✓ 12 3 1 7/4 × 7/4

Beta zeolite ✓ × ✓ × × ✓ 12 3 2 6/6 × 6/7;

5/×5/6

Clinoptilolite ✓ ✓ ✓ ✓ × ✓ 8 2 3 3/1 × 7/5;

3/6 × 4/6;

2/8 × 4/7

Mordenite ✓ × ✓ × × ✓ 12 1 2 6/5 × 7;

2/6 × 5/87

Chabazite ✓ × ✓ × × × 6 2 3 3.8 × 3.8;

3.8 × 3.8;

3.8 × 3.8
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a

Data from [19].

Concluding remarks: challenges and future directions
Despite the numerous advantages of zeolites as DDS, the usage of such systems have been associated with some challenges. One
of the main challenges is controlling the release profile, for which the main mechanism is diffusion. The pore size of zeolites is
usually larger than that of the drug molecules or particles, which can then be released rapidly as a result. Therefore, the textural
characteristics of the zeolite should be modified to achieve a controlled release profile 29, 120. In addition, some zeolites might
also induce cytotoxic and carcinogenic effects. As a brittle and wool-like fibrous zeolite, erionite has similar properties to
asbestos and results in lung cancer and malignant mesothelioma. The cytotoxicity of erionite affects the cytosol and, at nucleus
level, results in cell necrosis 121, 122. Other fibrous zeolites, such as offretite and skolecite, might also exhibit cytotoxicity that
disrupts the cell structure and results in swollen mitochondria and squared cells [123]. NaA zeolites perturb mineral metabolism
and tissue mineral composition, and Al can be detected in all tissues and Si concentration can be increased in spleen, muscle,
aorta, lung, and kidney tissues [124].

The addition of clinoptilolite to cell culture media in the form of nanoparticles can increase cell apoptosis and decrease DNA
synthesis. Thus, such zeolites can be used as adjuvant cancer treatments if they can be delivered to cancerous cells. Clinoptilolite
decreases the activity of epidermal growth factor receptors, and also the activity of PKB/Akt and NF-κB, as a result of its
adsorptive and ion exchange features [125]. EGF reduction by such zeolites influences the calcium level, impacting signaling
pathways [126]. Moreover, clinoptilolite decreases protein kinase B expression, induces the expression of p21WAF1/CIP1 and
p27KIP1 tumor suppressor proteins, and blocks growth in several cancer cell lines [42]. However, higher dosages of
clinoptilolite can cause inflammatory responses in the intestine and damage the intestinal barrier. This type of inflammatory
reaction is mediated by the increase in CD4-positive and CD25-positive T and B lymphocytes and by higher serum
concentrations of IL-2 and IL-10 [127].

As a porous structure, zeolites have attracted significant research attentions in DDSs, because of the ability to enhance their
loading capacity and control the drug release rate. Zeolites are able to carry different types of drugs and biological molecules to
targeted tissues and organs. Surface modification can endow zeolites with various attributes that can be utilized in drug delivery.
It is expected that research on the surface modification of zeolites will be expanded in the future specially for cancer therapy.
Some innovative surface modifications can not only enhance the delivery ability, but also induce specific therapeutic
characteristics based on the composition of the materials used. Moreover, adjusting the particle size of the zeolites enables them
to enter living cells. This class of materials can be also used as theragnostic agents for therapeutic and imaging applications.
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Glossary
Andesite

an extrusive igneous, volcanic rock, of intermediate composition, with an aphanitic to porphyritic texture.

Basalt
mafic extrusive igneous rock formed by the rapid cooling of magnesium-rich and iron-rich lava exposed at or very near the surface of a terrestrial

planet or a moon; >90% of all volcanic rock on Earth is basalt.

Chabazite
tectosilicate mineral of the zeolite group, closely related to gmelinite; formula Al₂Si₄O₁₂•6H₂O; recognized varieties include Chabazite-Ca,

Chabazite-K, Chabazite-Na, and Chabazite-Sr, depending on the prominence of the indicated cation.

Clinoptilolite
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(from the heulandite group); the most common and suitable natural zeolite for commercial and industrial applications.

Drug
delivery systems (DDSs): drug delivery refers to approaches, formulations, technologies, and systems for transporting a pharmaceutical compound

in the body as needed to safely achieve its desired therapeutic effect.

Mesoporous
containing pores with diameters between 2 and 50 nm, according to IUPAC nomenclature.

Mordenite
zeolite mineral with the chemical formula, Al₂Si₁₀O₂₄•7H₂O. It is one of the six most abundant zeolites and is used commercially.

Nanotechnology
science, engineering, and technology conducted at the nanoscale (∼1–100 nm).

Orthorhombic
in crystallography, the orthorhombic crystal system is one of seven crystal systems. Orthorhombic lattices result from stretching a cubic lattice

along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base and height, such that a, b, and c

are distinct.

Rhyolites
igneous, volcanic rock, of felsic composition. It can have any texture from glassy to aphanitic to porphyritic. The mineral assemblage is usually

quartz, sanidine, and plagioclase. Biotite and hornblende are common accessory minerals. It is the extrusive equivalent to granite.

Tectosilicate
formerly called polysilicate; any member of a group of compounds with structures that have silicate tetrahedrons (each of which comprises a

central silicon atom surrounded by four oxygen atoms at the corners of the tetrahedron) arranged in a 3D lattice.

Zeolite
any of a large group of minerals comprising hydrated aluminosilicates of sodium, potassium, calcium, and barium. They can be readily dehydrated

and rehydrated, and are used as cation exchangers and molecular sieves.
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