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Highlights

« Chitosan-Zeolite composites exhibit synergic properties.

« Chitosan-Zeolite composites have been used in various application from separation

to biomedical.

« Underlying mechanisms of chitosan-zeolite performance in various application are

presented.

« Challenges, limitations, and future directions of the chitosan-zeolite applications are

outlined.

Abstract

Microporous and mesoporous minerals are key elements of advanced technological cycles nowadays. Nature-driven
microporous materials are known for biocompatibility and renewability. Zeolite is known as an eminent microporous hydrated
aluminosilicate mineral containing alkali metals. It is commercially available as adsorbent and catalyst. However, the large
quantity of water uptake occupies active sites of zeolite making it less efficient. The widely-used chitosan polysaccharide has also
been used in miscellaneous applications, particularly in medicine. However, inferior mechanical properties hampered its usage.
Chitosan-modified zeolite composites exhibit superior properties compared to parent materials for innumerable requests. The
alliance between a microporous and a biocompatible material with the accompaniment of negative and positive charges,
micro/nanopores and proper mechanical properties proposes promising platforms for different uses. In this review, chitosan-

modified zeolite composites and their applications have been overviewed.
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1. Introduction

Back in 1756, for the first time, natural zeolite was discovered as a potentially large resource. Since then, natural zeolite has been
quickly developed and mined from discovery and extraction stages to the vast production in most parts of the world [1].
However, nowadays, it can be synthesized in various ways to customize its characteristics for particular uses. In the basic gel and
hydrothermal/solvothermal conditions, zeolites are mostly fabricated from metal cations or organic amines/ammonium cations
as the templates or structure-directing agents [2]. Although classical strategies for manufacturing of hierarchical zeolite using
mesoporous templates through post-modification are often described as high energy consumption way associated with uses of
expensive eco-destructive organic solvents, these days, new protocols of green synthesis have been also designed to effectively

synthesize hierarchical zeolites with reducing waste and cost [3].

Natural/synthetic zeolites, as the microporous materials, have been vastly used in many fields including environmental
engineering and biomedical engineering applications. To be more specific, the zeolite family was considered in gas separation,
organic solvent purification, water, and wastewater cleanup at very low partial pressures and appeared useful desiccants [4].
Purifying air streams for purging volatile organic compounds by the use of zeolite has also been reported [5]. The porous
structure has given zeolite new dimensions to be applied in selective adsorption of materials such as organic molecules and
heavy metals, gas separation and gas sensing, allowing it to sieve molecules with specific dimensions [6,7]. For instance, zeolite
4A based on coal fly ash was utilized in the removal of heavy metals ions from Refs. [8,9]. It was reported that Ni%* and Cu?* were
removed from wastewater using cellulose acetate/zeolite fibers [10]. However, the high water uptake characteristic of zeolite
necessitates the use of a complement to achieve novel platforms with mesoporous structures by the use of biopolymers [[11],
[12], [13]], epoxy [14,15], and metal [[16], [17], [18]].

Incorporation of biopolymers into zeolite or in situ synthesis of zeolite in the presence of biopolymers made possible
development of mesoporous zeolite frameworks for tailor-making mineral catalysts for biomedical applications. Typically,
chitosan [19,20], agarose [[21], [22], [23]], starch [[24], [25], [26]], gelatin [27], alginate [28], silk [29], poloxamer [30], and polylactic
acid (PLA) [31]biopolymers have attracted significant attention over the years because of their eco-friendly and biocompatibility
features. Chitosan, as a well-known biopolymer, has been utilized in different applications because of'its functional groups and
biocompatibility [32,33]. However, chitosan has some drawbacks such as colloid formation in water, low surface area, dissolution
in acidic solutions and degradation. Crosslinking of chitosan enhances its mechanical properties for acidic media. Cross-linked

FEEDBACK CJ

https://www.sciencedirect.com/science/article/pii/S0008621519306834 2/35


https://www.sciencedirect.com/science/article/pii/S0008621519306895
https://www.sciencedirect.com/science/article/pii/S000862152030135X
https://ars.els-cdn.com/content/image/1-s2.0-S0008621519306834-fx1_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S0008621519306834-fx1.jpg

1/29/2021 From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan - ScienceDirect

chitosan-modified zeolite frameworks are mesoporous networks with superior surface area and efficiency with respect to zeolite

alone.

Recent years have seen an increasing number of studies focusing on the uses of bio-based zeolite composites. There have been
some reliable reports on the synergism between chitosan and zeolite for engineering applications [34]. Despite such promising
features, reports on chitosan-assisted zeolite are scattered and required to be classified. This paper is an overview of
chitosan/zeolite frameworks, their synthesis and applications to pave a classical way for designing novel composites with
extraordinary characteristics.

2. Zeolite, chitosan, and zeolite-chitosan materials

In general, zeolites are known as crystalline aluminosilicate porous minerals in which oxygen atoms are arranged in tetrahedral
atom structures providing it an extraordinary character for adsorbent, catalyst, and membrane usages. The oxide structure
forms an open framework known as tectoaluminosilicates with the possibility of having more than 240 synthetic and 40 natural
zeolites that have been identified [35,36]. The Structure Commission of the International Zeolite Association (IZA) has
introduced the biggest database of zeolite materials with approximately 250 types which have been coded with a three-letter (e.g.,
IRR, UWY, JST, etc.).

Notwithstanding their natural origin, zeolites can be synthesized via different methods, including hydrothermal [37], sol-gel
[38], and microwave [39]. Hydrothermal and sol-gel are the most prevailing approaches for zeolite synthesis. It is a proven fact
that microwave synthesis methods are considered as the most facile approach for zeolite synthesis. Hydrothermal fabrication
method, as a subclass of conventional heating methods, is based on transferring the heat from the surface to the middle of the
materials. However, the microwave approach could directly transfer heat more intensively, homogenously, and quickly [40].
Zeolites have already utilized in various application such as petrochemicals synthesis; water and wastewater treatments; air
separation; detergents; antibacterial agents; etc. due to their cost-efficient, high specific surface area, structural characteristics
like a negatively charged lattice, ion—exchange capacity, selectivity, non-toxic properties, ease of availability, and abundantly.
Zeolites have been originally utilized as an ion-exchange bed in water purification/softening, separation substrate, catalyst, and
sorbent [[41], [42], [43]]. The first generation of synthetic zeolite contained small pores, later a variety of and large-cage zeolites
were engineered [44,45]. Attention was also paid to control the pore size and functionality of zeolite frameworks for its higher
adsorption capacity [46,47]. Inspired by natural zeolites, zeolitic imidazolate frameworks (ZIFs), a subgroup of pretty new
material called metal-organic frameworks (MOFs), including tetrahedral metal cations as the role of silicon and the imidazolate
as linkers replaced the role of oxygen have been introduced. The mimics of zeolites properties associated with MOFs
characteristic gives them specific features consisting tailorable porosity, high inner surface area, ultrahigh thermal stability, and
chemical robustness in a variety of organic solvents which led ZIFs as well-candidate materials for abundant functionalities in
different majors as diverse as environmental engineering to the biomedical engineering field. The ZIFs could synthesize with
hierarchical porous crystalline structure (mesoporous or microporous) so that they possess various morphological structures,

crystalline patterns, and properties [48,49].

Chitosan is one of the outmatched derivatives of chitin with a broad spectrum of molecular weight from 1000 Da to 2*10° Da
which can be found in the exoskeleton of crabs and shrimps, skeleton structure of many animals, and fungi cell walls. The low
viscosity and better water solubility of chitosan with a molecular weight below the 10000 Da made it an excellent applicant for
tissue engineering and biomedical demands [50]. Chitosan is a subset of polysaccharides including indiscriminately spread p-
(1 > 4)-linked p-glucosamine and N-acetyl-p-glucosamine with two functional groups (=NH2 and =—OH) as active sites which
made it applicable as excellent supporting bed and adsorbent for up taking diverse kind of polar pollutants and drug molecules
(see Fig. 1). The amount of mole fraction of b-glucosamine in chitosan structure is elevated than chitin [51]. The general way to
chitosan synthesis from chitin is the chemical treatment in an alkaline environment with concentrated sodium hydroxide in an
aqueous solution which is called the deacetylation process (see Fig. 1). In the deacetylation process, ==NH, replaces the acetyl
group in the main chain of chitin. Three major operational parameters including, reaction Time, NaOH concentration, and
solution temperature effects on the purity, activity, and chitosan characteristics [52]. Changing ==NH2 to ==NH3+ through the
protonation process at pH > 6.5 leads to an increase in the water-solubility of chitosan and its adhesive properties to negatively
charged surfaces [53]. In addition, chitosan exhibits wide applications in the various fields from air/water purification to

biomedical engineering due to its distinctive characteristics such as nontoxicity, eco-friendly, flexibility, and biodegradability.
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Fig. 1. (A) Industrially most important zeolite structures including (a) Zeolite-A (b) Zeolite (X and Y), and (c) ZSM-5 (MFI
topology) [160] (B) Chitin and chitosan structure, (a) N-Deacetylation of chitin to chitosan, (b) Schematic of chitosan molecule
structure. (C) Proposed equations for the formation of chitosan—zeolite composites and also the structure of chitosan—zeolite
composites (d) SEM images for (a) zeolite-X encapsulated in chitosan gel, (b) encapsulated zeolite-Y, (c) in-situ synthesized
zeolite-A crystal [161].

Immersing as-synthesized zeolite particles into the chitosan-gelling solution and also the one-spot fabrication of zeolite
frameworks into gel solution of chitosan hydrogel solution, are listed as the most popular way to produce various kinds of
zeolite/chitosan hybrid composites (see Fig. 1). Needless to say, the hybrid combination of chitosan and zeolite crystals elevated
the properties of both materials at the same time and makes a more practical material for more sophisticated applications. Also,
it is proven that the existence of zeolite particles in the acidic solution of chitosan gel is well stable and the characteristics of
zeolite-bearing chitosan xerogels including specific surface area and the pore volume are comparable to the of chitosan aerogels
(120).
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Typically, the type of zeolite and the applied dosage play a pivotal role in the properties of the zeolite/chitosan complex. Barbosa
et al. [54] have performed a comprehensive study on the impact of various fractions of clinoptilolite and 4A-type zeolites in the
chitosan film matrix. Using a homogenizer, it was tried to disperse different fractions of zeolite particles in the matrix of
chitosan solution. The membranes were subsequently provided by casting solution method. Front SEM images of the pristine
chitosan (2%) film and the composite indicated a smooth and homogeneous microstructure morphology and similar topology.
Nevertheless, existing different types of zeolites with a varied extent in the membrane matrix made cross-sectional images a
little different. These images indicated that in the membrane with a higher content of zeolites, particles tend to settle down in
the lower surface of the membrane (Fig. 2.). Moreover, their findings showed that as the fraction of zeolites in the composite
structure increased up to 2%, water vapor permeation decreased and higher thermal stability was achieved. However, as the
zeolite fraction surpassed 2%, it adversely affected the mechanical stability of the composite toward the films tend to be more
fragile and brittle.

Ag-A Film Ag-Clinoptilolite

0.2%

Cross-section

Download : Download high-res image (1MB) Download : Download full-size image

Fig. 2. SEM images of zeolite/chitosan membrane with 0.1 an 0.2% fraction of zeolite (a) Surface images of film (b) cross-sectional
images.

3. Applications of zeolite-chitosan composite
3.1. Environmental engineering applications

3.1.1. Adsorption

The adsorption process of different organic/inorganic contaminations from aqueous and gas phase is one of the most
traditional and practical techniques [55,56]. Designing and utilization of low-cost and high porous complexes as adsorbents or
supporting bed with high removal ability are of utmost importance [[57], [58], [59]]. Zeolite has been widely utilized as an
adsorption substrate that can be used in separation, drying and purification processes [60]. Zeolite and its composites have been
used for dehydration, gas separation and molecule screening. Zeolite performance depends on pore size and the number of

cations around the pore [61,62].

Lu et al. fabricated a strong adsorbent by optimizing the weight fraction of zeolite particles in the zeolite/chitosan complex.
They found the composite with 60 wt% zeolite showed better copper cations adsorption ability in comparison to complexes
with 50 wt% and 70 wt%, pure zeolite, and chitosan. In the acidic region, with a reduction in pH (==NH2) in chitosan alter to
(=NH3+) and decrease the copper cations adsorption [61]. Ngah et al. [63,64] studied characteristics and Cu(IT) gz ==pl:7 e Gl6n!
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three different chitosan/zeolite complexes. According to the outcomes of their study, the adsorption capacity of chitosan/zeolite
crosslinked with epichlorohydrin and sodium tripolyphosphate (51.32 mg/g) was higher than that of the uncrosslinked
chitosan/zeolite (25.61 mg/g) and chitosan/zeolite crosslinked with epichlorohydrin (14.75 mg/g). The (-CH,OH) groups in the
chitosan structure play a key role in the adsorption mechanism of Cu(II). In a similar work by Ngah et al. [65], they applied
uncrosslinked chitosan/zeolite for the elimination of copper cations. The maximum adsorption capacity of the adsorbent at pH
3 was reported 25.88 mg/g. The isotherm and kinetic study revealed that the adsorption process followed Langmuir and first-
order kinetic models, respectively. Moreover, the regeneration of the adsorbent was performed by EDTA. Mukhopadhyaya et al.
synthesized zeolite/chitosan nanocomposite using the phase inversion method for arsenic removal from water. It was revealed
that the zeolite content increase in nanocomposite was enhanced in hydrophilicity, the flux of membrane and porosity [66].
Various types of zeolite such as NaY, NaP, L, Phillipsite-Na, Z, and Fujasite-Na along with orthoclase mineral can be produced by
altering the reaction factors like temperature, synthesis time, Si/Al ratio and crystallization template. It was reported that the
zeolite NaY/chitosan was used to remove lead (III) from an aqueous solution. Adsorption data were fitted to the Langmuir
isotherm model and kinetic studies confirmed that the lead (III) removal obeyed the second-order model [67]. Yan et al.
synthesized hollow zeolite/chitosan particle via hydrolysis-gelation-hydrothermal technique. As shown in Fig. 3, the template
was fabricated based on alginate microparticles coated with chitosan. After that, microparticles were treated by elainic acid and
tetraethylorthosilicate (TEOS). Meantime the hydrothermal process, TEOS was hydrolyzed and it formed the shell of particles
and alginate was removed during alkaline synthesis and the hollow core was formed. Such a platform can be used in adsorption

of various ions like Cu*? [68].
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Fig. 3. The synthesis procedure of the hollow zeolite/chitosan particle.

Kusrini et al. modified clinoptilolite zeolites with chitosan and iron oxide to remove the mercury from the liquid condensate
hydrocarbon. Chitosan-modified zeolite enhanced the mercury rejection rate from 4.5 to 35% compared to the pristine zeolite.
Moreover, iron oxide modification enhanced the removal percentage of mercury to 65%. It was hypothesized that the chitosan
modifications enhanced both the functional groups and the removal efficiency. In addition, another hypothesis is that the iron
oxide nanoparticles enhanced the surface area and zeolite/chitosan/iron oxide exhibited the synergic effect and dramatically

increased the removal of mercury [69]. The functional groups of Chitosan react with various materials such as {|S¥SI33: Y\ @)
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known as a pollutant and threat to human health. However, inferior mechanical property hinders chitosan usage in fluorine
removal. Orozco et al. found that in situ syntheses of zeolite/chitosan composite led to the formation of the chemical interaction
between chitosan and zeolite components, which resulted in better adsorption than physical mixing. Higher content of chitosan
resulted in pore constriction and reduced the adsorption, thus the chitosan content was optimized [70]. It was reported that the
zeolite/chitosan composite is a cost-effective and efficient substrate for dye removals such as reactive red and methylene blue
[[71], [72], [73]]. Zeolite/chitosan composite can interact with various pollutants due to both the positive charge of the chitosan
and the negative charge of the zeolite. Xei et al. [74] utilized such composite to remove cationic (ammonium), anionic
(phosphate) and organic (humic acid) pollutants from water. Adsorption ability of chitosan/zeolite and surfactant-modified
chitosan/zeolite was comprehensively assessed on humic acid (HA) elimination in pH range from 4 to 12 by Lin and Zhan [75].
According to their founding, with an increase in solution pH, the removal efficiency of HA decreased. However, with an increase
in adsorbent dose, contact time, and initial concentration of HA the removal percentage was enhanced. Moreover, they report an
increase in the solution temperature directly influences the elimination efficiency of HA due to the endothermic nature of'the
adsorption process. Furthermore, the isotherm study exhibited the Langmuir model better fitted with the experiential data. In
alkaline conditions, due to the deprotonation of amino groups in chitosan architecture resulting in weakening the electrostatic

forces between adsorbent and HA molecules, the desorption of HA was taken place up to 66.6%.

Wafiroh et al. synthesized phosphorylated zeolite/chitosan as a proton exchange membrane fuel cell based on its proper
mechanical properties, proton conductivity, swelling properties, thermal resistance, and methanol permeability [76]. Wang et al.
[77] studied the influence of adding zeolite beta particles with diverse sizes and shapes in the chitosan membrane matrix for
application in the direct methanol fuel cell. The presence of zeolite particles in the chitosan matrix decreased the permeability
of methanol through the membrane due to their optimum free volume and methanol diffusion features. Moreover, modified
zeolite particles by sulfonic group exhibited a higher ability to reduce methanol permeability. Interactions between modified
zeolite particles and chitosan were considered as the main reason for the lower permeability of the complex. In a similar report,
Wu et al. [78] applied modified NaY zeolite with aminopropyl groups or sulfonicpropyl groups as filler into the chitosan
membrane matrix to reduce methanol permeability for direct methanol fuel cell (Fig. 4). The transitional phase generated
between chitosan structure and zeolite particles was recognized as the main cause of the reduction in methanol permeation.
The complex which possesses modified zeolite with sulfonicpropyl groups shows higher resistance to methanol permeation
compared to complex possesses modified zeolite with aminopropyl groups.

, — Larger cavity
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Chitosan

E—
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Fig. 4. Schematic illustration of the zeolite/chitosan membrane and modified-zeolite/chitosan membrane.

Yuan et al. [79] used sorbitol-plasticized chitosan/mordenite membrane for water/methanol adsorption and methanol

permeability then proposed a correlation between interfacial morphology of membrane and methanol permeability. The

presence of mordenite not only filled the voids in the chitosan structure but also enhanced the rigidity and phys FEEDBACK O3
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stability of the complex. Methanol permeability by the fabricated complex was 44% and 400% lower than the pristine chitosan

membrane and Nafion, respectively.

Wang et al. [80] added various zeolite (e.g., 3A, 4A, 5A, 13X, mordenite, and HZSM-5) with different silicon/aluminum ratio to the
chitosan membrane matrix and studied their ability in methanol permeation. According to their observation, with an increase
in silicon/aluminum ratio, the hydrogen-bonding between zeolite particles and chitosan molecules become stronger and make
cavities smaller. Zeolites with higher silicon/aluminum ratio exhibited higher methanol adsorption resulting in lower swelling.
Furthermore, methanol permeability was reduced by an increase in the zeolite particle size.

Han et al. synthesized chitosan-NaX zeolite from fly ash to remove arsenic from wastewater. The mechanism of arsenic removal
is depicted in Fig. 5. It was proposed that the Si-OH groups on NaX Zeolite can be mineralized by C-OH groups on chitosan to
generate the interpenetrating network, which is the process that fixed chitosan within the zeolite structure. AI-OH and NH,

groups belong to composite were protonated in the acidic region and the surface charge of the platform became positive which

then interacted with arsenic [81].
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Fig. 5. The schematic mechanism for arsenic adsorption using zeolite/chitosan composite.

3.1.1.1. Adsorption mechanism

Zeolites, as a whole, have been very popular for the separation of various gases. There have been different possible mechanisms
involved in gas separation for different zeolites. Shang et al. exhibited a unique separating mechanism for CO and N, separation
for chabazite zeolite. Contrary to molecular sieving, it was shown that a larger CO molecule was in preference to a small N,
molecule. The separation mechanism was based on the difference of ability of a guest molecule to induce temporary and
reversible cation deviation from the center of pore aperture. The separating mechanism was similar to the molecular trapdoor
[82]. Montanari et al. did a comparative study for CO, adsorption on zeolites 3A (K-LTA), 4A (Na-LTA), and 3A (Ca,Na-LTA). For
3A zeolite, CO, adsorption was mostly limited to the external surface. However, for 4A and 5A zeolites the adsorption of both
types of molecules and carbonate species occur mostly in cavities. The most of carbonate-like species are fabricated on 4A than
on 5A zeolite. This existing gap is induced by the partial poisoning of 5A cations [83]. Khalid et al. used zeolites to remove
phenol from aqueous solution and its adsorption properties were compared with activated carbon. Zeolites with a high Si/Al
ratio were hydrophobic which were suitable for phenol adsorption. BEA zeolite was used successfully and the adsorption
capacity was higher at low phenol concentration [84]. Recent advances in natural/synthetic zeolites for CO2 capture have been
fully recorded by Bonenfant et al. report. Incorporation of various cations into channels of zeolite structure leads to basicity and
an electric field governs the CO, adsorption. The basicity of the electric field varies significantly with Si/Al ratio. It was also
exhibited that an increase in pressure value, as well as a decrease in temperature, has a positive effect on the CO, adsorption
amount [85]. Langmi et al. investigated the use of zeolites for storing hydrogen storage material. Different zeolites like A, X, H
and RHO were synthesized with hydrothermal methods. Phase composition and crystallinity were checked with XRD. Results

displayed that hydrogen uptake in zeolites is dependent on temperature, framework and cation type [86]. Janche FEEDBACK O
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investigated the sorption properties of modified zeolites and mesoporous materials against the water with physio-chemical
methods. Selected materials were pelleted and investigated in lab-scaled storage to prove the performance of modified storage

materials. Impregnated mesoporous materials show a much lower temperature lift than zeolite [87].

3.1.2. Membrane separation

Contamination separation from water resources and air through the different process of membrane methodology such as ion
exchange, reverse osmosis and nanofiltration has grabbed a substantial deal of attention due to low cost, ease of operation and
safety issues. However, some most serious disadvantageous of membrane including non-biodegradability and low mechanical
properties restricted their application in harsh conditions. Characteristics of a membrane are chiefly influenced by the size,
porosity, and functional groups of composed materials and the surface morphology of the membrane. Controlling the
characteristics of composed materials leads to the design of a membrane with high adsorption capacity, low swelling rate, and
adequate hydrophilicity.

To address the nonbiodegradability of membranes, scientists have tried to apply biopolymers like chitosan to fabricate nontoxic
and biocompatible frameworks that are safer and do less damage to the environment. Habiba et al. [88] successfully synthesized
a uniform nanofibrous membrane with high chemical/physical stability in pure water, high acidic, and basic environment using
electrospinning of ternary mixture of hydrolyzed-chitosan/PVA/zeolite with optimized PVA to chitosan ratio (50:50) and 0.1 wt%
zeolite particles. Various explanations were reported to justify the stability of membrane in different pH environments like
chitosan insolubility and hydrogen bonding interconnections among the materials. However, decreases in internal pore sizes of
membrane reported as the possible reason for small shrinkage of the membrane in the acidic region. The resulting membrane
exhibits high adsorption kinetic and fair adsorption capacity at low contamination concentrations of three hazardous metal ions
(Ni (II), Ferric, and chromium (VI)). This eco-friendly, biodegradable membrane showed high stability and adsorption efficiency
after five repeated removal process, so that proved itself as a feasible and practical membrane for real-word demands (see Fig. 6).
In another similar report, Habiba et al. applied this membrane for a ternary pollutant system including Congo red, methyl
orange, and chromium (VI). Removal of Congo red and methyl orange followed the flocculation with high efficiency at a dye
concentration of more than 100 mg/L. For methyl orange below the 100 mg/L and for Chromium (VI) at all concentrations the

separation took place through the adsorption process [89].

Water molecules

Chitosan/PVA/Leolite

Download : Download high-res image (287KB) Download : Download full-size image

Fig. 6. Schematic of heavy metal ion separation by chitosan/PVA/zeolite membrane.

In another report, Batista et al. [90] enhanced the physical stability of chitosan film by crosslinking and combining with zeolite
particles then employed it for Cr(VI) elimination from the aqueous environment. According to their work, pristine chitosan film
dissolved quickly at the higher acidic environment (pH 4), however adding zeolite into the chitosan matrix increased its stability.

The results of their observation demonstrate that the complex had higher thermal stability and maximum adsorption capacity

17.28 m compared to pristine chitosan film.
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Truong et al. [91] attempted to optimized the weight fraction of zeolite in the chitosan-based membrane which supported
glutaraldehyde crosslinking. The best composite was synthesized with 20 wt% zeolite and applied to removal of four common,
toxic heavy metals (Cr, As, Cd and Pb) by the evacuation permeation process (see Fig. 7). Their observation showed that the Cr
selectivity of the membrane due to electrostatic forces between the amino group of chitosan and induced-negative charge on
zeolite particles was at its climax when the pH solution was 5.5. The negative charge of the zeolite surface at acidic region due to
the presence of the amino group in its structure leads to the uptake of cationic metal ions and the permeability factor of the
membrane was higher for Cr ions in comparison to AS. The recycling test was performed to survey the reusability ability of the

membrane. The reported results showed the reduction of membrane adsorption capacity after several cycles were less than 10%

of its initial state.

" Chitosan

Zeolite

Download : Download high-res image (175KB) Download : Download full-size image

Fig. 7. Mechanism of Cr>* separation process by chitosan/zeolite membrane.

Mukhopadhyaya et al. [66] synthesized zeolite/chitosan nanocomposite using the phase inversion technique for arsenic removal
from water. They found the presence of zeolite increased the porosity of membrane more than two times. In addition, the
hydrophilicity of membrane remarkably elevated and it's proven by a reduction in water contact angle. The optimization of
zeolite content in the membrane complex, electrostatic interaction between zeolite and pollutant molecules, increment in the
porosity, and wettability of membrane increased the Arsenic rejection up to more than 94% at high concentration of Arsenic
cations [66].

Nawawi et al. modified the chitosan membrane by adding different amounts of zeolite-A and treated with an alkaline solution
for the application in the pervaporation separation of the isopropanol-water mixture. The synthesized membrane showed low
swelling and high mechanical properties. In addition, Their findings depicted that Zeolite-A/chitosan with a ratio of 1:8 had a
superior performance for isopropanol-water mixture separation [92].

3.1.3. Catalyst

Zeolites have been utilized as catalysts for various reactions such as isomerization, hydrocarbon synthesis, dehydrogenation and
cracking, in which zeolite can ameliorate the various reactions such as metal-induced and acid-base reactions. Zeolites act as a
shape-selective oxidation catalyst based on transition-state selectivity and molecule size, in which the reaction of absorbed
molecules occurs within the zeolite pores to achieve the high level of product control [[93], [94], [95], [96]]. Junhua et al. [97]
performed removal of NO, by catalytic technology at low temperature (100-300 °C) with metal exchanged zeolite catalyst. The
impact of catalyst preparation method, precursor, and various supports was investigated. It was reported that chitosan amine
groups enhanced zeolite activity and promote catalytic efficiency [98]. Wang et al. [99] used chitosan film to control the
orientation of T'S-1 crystals on a porous alumina support. The crystal grains which were formed were b-oriented regarding the
pole figure and crystalline structural analysis. The produced membrane exhibited impressive selectivity for the oxidation-
catalysis experiment [99]. Zhang et al. prepared zeolite/chitosan (Zel/Chi) monoliths through a unidirectional freeze-drying
technique. The uptake of metal ions and also the drug release efficiency of the Zel/Chi monoliths with the porous structure were
examined and reported. For Cu*? capture, the maximum adsorption value was recorded 89 mg/g. The Cu*?-adsorbed Zel/Chi

monoliths, as a recyclable catalyst, showed excellent performance in the reduction of 4-nitrophenol to 4-aminopheng in e
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al. used hydrothermal synthetic method to prepare mesoporous zeolite ZSM-5 crystals by using ammonium-modified chitosan
and tetrapropylammonium hydroxide (TPOAH) as the meso-and micro-scale template. As prepared mesoporous ZSM-5
exhibited enhanced catalytic activity compared to conventional ZSM-5 for Claisen-Schmidt condensation reaction of 2-
hydroxylacetophenone [100]. Chen et al. prepared a novel zeolite (HY)-filled polymeric chitosan membrane. The membrane was
used for pervaporation experiments for the ethanol-water system. An increase in zeolite content caused the damage of the
crystalline structure of chitosan, indicating a strong interaction between HY zeolite and chitosan. The highest separation factor
was obtained for 20 mass% of HY zeolite content and remained constant during the PV process [101]. Yu et al. prepared
homogenous microspherical-shaped zeolite-A/chitosan which possesses the elevated ability of water uptake (290 mg/g) due to its
effective specific surface area (30 m?/g). The separation factor of 12 for the CH,4/H, mixture was also obtained [102]. Kumar et al.
synthesized zeolite/chitosan mesoporous composite for enhanced capture and catalytic activity in chemical fixation of CO; in
environmental applications. Zeolite/chitosan composite exhibited a synergistic effect and great catalytic performance in CO,
fixation within cyclic carbonates [34]. Morsli et al. synthesized the zeolite/chitosan composite using in situ synthesis and
encapsulation methods. It was found that the in situ synthesis of zeolite/chitosan composite resulted in better adsorption and
catalytic effect because more porosity was available [103]. Fereidooni et al. utilized zeolite/chitosan composite as a solid
heterogeneous catalyst to produce biodiesel using trans-esterification of waste cooking oil to methyl esters. Waste cooking oil
(WCO) was used as feedstock for biodiesel production. KOH-modification of natural zeolite leads to an increase in amount of
silica content in its framework and raises the K* content through hydroxylpotaslite formation as well. For alcohol/oil ratio of
1:7 at 40 V in presence of 2 wt% water, the yield of biodiesel from WCO was 93 wt% for 1 wt% catalyst [104]. It was demonstrated
that the zeolite treatment with KOH reduced the silica concentration and enhanced the K* via hydroxylpotaslite formation [104].

3.2. Biomedical applications

Biomedical engineering is the translation of engineering and applied science concepts to medicine and biology for enhancing
the level of health [[105], [L06], [L07], [L08]]. Biomedical engineering endeavors to fill the gap between engineering/material
science and medicine [109,110]. Tissue engineering, as a subgroup of biomedical engineering, is for designing appropriate
substrates to enhance cellular activity and tissue regeneration [[111], [112], [113]]. In this regard, various materials have been
tailored to exhibit maximum regeneration [[114], [115], [116]]. Cellular cytotoxicity evaluation of various types of zeolite reveals
that the zeolites are biocompatible and safe for medical usage depending on size, shape, surface chemistry, and dosage [117].
Because of'its low toxicity and tailorable structure, and because cages and channel form micrometer to the nanometer, zeolite
can be used in various fields such as drug delivery, tissue engineering, and regenerative medicine [118,119]. Indeed, the addition
of zeolites into the chitosan matrix can be expected to improve biomedical engineering characteristics of chitosan-based
hydrogels.

Zeolite/chitosan composite application is summarized in Table 1 [ [88,[120], [121], [122], [123], [124], [125], [126]]].

Table 1. Zeolite/chitosan frameworks and their applications.

Material Applications Comments
Zeolite/chitosan Removal of  Enhanced hydrophobicity thanks to the enlargement of the pore size of the membrane upon
arsenic the addition of zeolite content.

Zeolite/chitosan/bentonite/active Removal of ~ Enhanced soil pH and decreased biological effectiveness of heavy metals.

carbon cadmium
Chitosan-coated Na—X zeolite Removal of  The removal of arsenic was significantly performed by the formation of bonds of As—N and
arsenic As-O. Moreover, the surface hydroxyl group of AI-OH and —NH, facilitated arsenic removal

from wastewater.

Zeolite loaded in PLA/chitosan ~ Drugrelease Doxorubicin was loaded in zeolite and following the Fickian diffusion release mechanism.

nanofiber

zeolite-chitosan Catalyst Mesoporous substrate enabled for CO, fixation.
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Material Applications Comments
Zeolite/Chitosan/polyvinyl Adsorption  Nanofiber mechanical properties can be tuned by zeolite. adsorption mechanism obeys the
alcohol of methyl Freundlich model. pH reduction enhanced adsorption.
orange
Zeolite-loaded alginate/chitosan ~Wound Hydrogel beads used as a topical hemostat. Promote blood coagulation via multiple
dressing mechanisms: erythrocyte adhesion, factor concentration, and the ability to serve as a

mechanical barrier to blood loss.

Zeolite-chitosan Wound Enhanced antioxidant and antimicrobial properties were achieved.
dressing

Zeolite-chitosan Biological Nanocomposite improved the histological structure of rainbow trout intestine compared to
survey conventional composite.

Ag-zeolite-chitosan antibacterial ~The antibacterial agent was developed as a ceramic filler to endow the antibacterial feature to
surface composite.

Fly ash-zeolite-chitosan Absorption  Sorption efficiency with various ions
of heavy Cu (1I) > Fe (I1I) > Zn (II) > Mn (II)
metal ions

Magnetic Absorption  Nanofiber-coated sponges facilitated water-oil separation for many cycles.

zeolite/chitosan/polyacrylonitrile

Zeolite/chitosan/PVA Adsorption  Nanofiber removed Cr (VI), Fe (III), and Ni (II) ions from wastewater.

3.2.1. Tissue engineering

Using various kinds of zeolites to promote the properties of chitosan and fabricate robust hybrid composites in order to
stimulate the rehabilitation and regeneration of body tissues is a pretty new hot biomedical-research topic in recent years.
Considering the specific features which high porous zeolite materials have given to zeolite/chitosan hybrid composites such as
facile shape adjustment and excellent mechanical properties, Akmammedov et al. [127] prepared a freeze-dried scaftold based on
zeolite-A/chitosan nanocomposite with various zeolite mass ratio as diverse as 0.5, 1.0, and 2.0 wt% and introduced it to assess
viability, cell attachment, and Human Bone Marrow-derived Mesenchymal Stem Cells (hBMMSC) proliferation. The porous
structure facilitated the nutrient and cytokine diffusion within the scaffold and waste products diffused out. It was shown that
the zeolite-A/chitosan containing 0.5% of zeolite had higher efficiency in viability and attachments of hBMMSC and also it was
better for cellular activity than pristine chitosan.

Yu et al. [127] through an in vitro assay using simulated body fluid (SBF), studied the impact of Ca?* exchanged zeolite-A weight
fraction in a blend of chitosan matrix (in all cylinders, plates, and thin films forms) onto the rate of hydroxyapatite (HAP)
formation. The results of their work indicate that using Ca?* exchanged zeolite-A/chitosan, increased the formation rate of HAP
in comparison to zeolite type A/chitosan. This is mainly because, despite that the HAP only grows on the cubic-shaped crystals
of zeolite-A, these nanoparticles were formed onto the whole Ca?* exchanged zeolite-A surface including its channels (see Fig. 8).
Actually, an increase in the extent of calcium cations by increasing in the weigh fraction of Ca**exchanged zeolite-A from 20%
up to 55% in zeolite/chitosan bulk, improves the growth of HAP nanoparticles.
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Fig. 8. Scanning electronic morphology images of 55 wt% (d) and Ca**exchanged zeolite-A/chitosan (d’) as-synthesized zeolite-
A/chitosan hybrid composites.

3.2.2. Antibacterial and wound healing dress

By the development of cosmetics and dermatology demands, the application of natural zeolites as an excellent UV protector and
wound cure agents in biomedical industries is on the rise. Incorporation of silver metal into the framework of diverse types of
natural zeolite to achieve silver-based agent, through a process called ion-exchange, have been aroused much interest among
researchers. Taaca et al. [127] have designed a series of studies on the fabrication and characterization of Ag-zeolite/chitosan
composite for antimicrobial uses (see Fig. 9). To improve the antibacterial activity of chitosan-based implants, AgZ
nanoparticles, as ceramic fillers, were synthesized by incorporation of Ag into Philippine natural zeolite (NaZ). Then, it was
introduced to the chitosan biopolymer matrix and the composite was examined against S. aureus as well as E. coli and. The
outcomes revealed AgZ-chitosan composite could appreciably impede bacterial growth [128]. In another work, she tried to
enhance the antibacterial activity of AgZ-chitosan agents through surface modification of it via plasma treatment. Indeed, Ag
presence resulted in antibacterial activity of the composite, and plasma treatment elevated the wettability and adhesion of the
zeolite/chitosan composite. It was proposed that the plasma-treated Ag-zeolite/chitosan composite can be used in tissue
engineering, especially as a wound dressing [129,130]. A new hybrid composite was developed based on Ag* enriched zeolite-
A/chitosan to play a role as a powerful agent for inactivation microbial growth. In this study, Yu and his colleges [131] tried to
exchange silver elements with Na at sodalite cages of synthesized zeolite-A, which are connected by four-membered rings
forming a uniform 3D microporous structure. Moreover, using the electrostatic force between the anionic surface of
clinoptilolite microparticles and cationic tails of chitosan biopolymer, a chitosan-coated clinoptilolite composite was obtained
by Tegl et al. [130]. Chemo-enzymatic modification of this hybrid composite with caffeic acid (CA) agent aided by laccase
generating stable particles, as well as post-functionalized via glucose oxidase (GOX), leads to an immense improvement in its
antibacterial activity. Scacchettia et al. evaluated the quality of'a cotton fabric crosslinked by citric acid to the Ag-zeolite/chitosan

matrix regarding antimicrobial functionalities whereas its air and water permeability had a negligible reduction [130].

NaY zeolite

Ag modified zeolite
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Fig. 9. Exchanging of Ag* with Na* in the framework of NaZ zeolite for antibacterial applications.

FEEDBACK CJ

https://www.sciencedirect.com/science/article/pii/S0008621519306834 14/35


https://ars.els-cdn.com/content/image/1-s2.0-S0008621519306834-gr8_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S0008621519306834-gr8.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S0008621519306834-gr9_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S0008621519306834-gr9.jpg

1/29/2021 From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan - ScienceDirect

Chitosan has been vastly utilized for wound dressing due to its highly appealing results as the wound healing and blood stopper
agent [132]. Using chitosan-based patches for hemostasis purposes, its amino groups attract the negatively charged red blood
cells and subsequently form a scab at the addressed point. Scientists also believe that interacting with erythrocytes and/or
alteration in platelets activity in the injury site, and also the interaction between polycationic characteristics of chitosan and
nonspecific binding to cell membranes could be the possible mechanisms for controlling aggressive bleeding. On the other
hand, from a zeolite point of view, many types of them have shown good hemorrhage control capability in the in vivo tests.
According to the literature, it is considered that an exothermic water adoption phenomenon is the governing mechanism for

the treatment of traumatic hemorrhage using zeolite particles [133].

In such a way, zeolite-loaded chitosan composites have shown a synergistic impact toward higher hemostatic activity. Fathi and
coworkers [122] designed a strategy to investigate the efficiency of zeolite-laden hydrogel for blood clotting applications. In this
work, to encapsulate sodium zeolite particles in alginate/chitosan beads, firstly, they prepared a solution containing zeolite
dispersed in alginate solution with a 1:1 or 2:1 w/v ration. Then, the prepared solution was dropped wisely added into a mixing
mixture consist of chitosan, CaCl2, and acetic acid with 1% (w/v) of each component. Next, fabricated hybrid composites
introduced to in vitro assessment to study its hemostatic capabilities. Live/dead assessment indicated that the alginate/chitosan
coating has appreciably alleviated the cytotoxicity of zeolite particles on living cells. Also, the side effects of produced composite
onto the damaged cells in the targeted point were decreased in comparison to the pristine zeolite. The authors have explained
that chitosan excellent adhesion feature along with the adsorption of blood content by zeolite is the main reason for the good

efficacy of zeolite/chitosan composites as a topical hemostat.

In another similar work, Huang et al. [134] studied the implementation of self-assembling hydrophobically modified chitosan
(HCs)/ZSM-5 to stop minor and severe bleeding. The produced composite showed good biocompatibility since both HCs and
ZSM-5 considered biocompatible material. Moreover, cytotoxicity assessment of materials validated negligible side effects on
cell viability due to the excellent cell viability of pristine HCs and zeolite particles. According to the data from blood clotting
(HCs)/ZSM-5 provided a facile and efficient hemostasis activity (almost 86 + 5 s) rather than both ingredients in pure form.

3.2.3. Drug delivery and cancer therapy

According to the latest news of the World Cancer Report, the population who are suffering from cancer will increase to 15
million cases by 2020, therefore, synthesis and applications of cost-efficient and potent anticancer drug delivery systems based
on zeolite/chitosan carrier have become so important.

According to Fig. 10 different human body organs have various levels of pH (mostly alkaline environment). Moreover, different
pathological spots (e.g., ischemia [135], infections [136], and inflammation [137]) shows different pH profile compared to real
tissues. Therefore, it is of utmost significance to select carriers with high resistance to a wide range of undesired pH levels. In
other words, pH-responsive carries such as chitosan have a higher ability to keep drugs molecules in their matrix and release a
higher amount of medicine agents in the target location with a specific pH environment. For instance, many researchers
applied chitosan-based complexes for the delivery of anticancer drug molecules like doxorubicin (DOX) to cancerous cells
[138,139]. Cancerous spots generally have an acidic extracellular environment around 6-7 which is mostly because of their high
proliferation rate and activities results in proton generation [139]. Accordingly, it is very important that a small amount of drug
released from carries in the blood curriculum with a narrow pH window (~7.3-7.5) in its way to the target tumor cells. Although
there is a lot of studies on drug delivery by chitosan-based materials, a limited publication has been reported on chitosan/zeolite
compositions for delivery purposes [123,140,141].
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Fig. 10. The pH of various organs in the human body [162].

Synthesis of different platforms based on ZSM-5 zeolite and chitosan combination due to its synergistic characters, as a robust
anticancer, has attracted so many interests among researchers. Zeolite/chitosan was used in intravenous chemotherapy in which
DOX was loaded in mesoporous zeolite/chitosan and injected in a rat. The acidic environment of cancer resulted in chitosan
dissolution and the anticancer drug was released. Wen et al. fabricated ZSM-5 zeolite/chitosan via desilication (hollow core and
mesoporous shell) and loaded it with DOX as a pH-sensitive delivery system to treat osteosarcoma. The existence of lysosome
and endosome in the tumor caused the milieu to be acidic and chitosan was dissolved in acidic media and the drug was released
in the tumor area. Fan and the colleges [142] also designed a pH-sensitive DOX carrier by the synthesis of a nanodisk-shaped
mesoporous ZSM-5 zeolite/chitosan hybrid with low cardiac toxicity. The outcomes validated that in the acidic region like
tumor vicinity, the composite showed high efficacy against osteosarcoma because of its quick rate of DOX release (see Fig. 11).
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Fig. 11. Tllustration of ZSM-5 zeolite/chitosan composite as a DOX carrier for tumor treatment.

Abasian et al. [143] loaded doxorubicin into the magnetic NaX zeolite and embedded it within the PLA/chitosan nanofibers to
control the drug release rate, which obeyed the Fickian diffusion; such nanocomposite exhibited antitumor activity,
demonstrated by carcinoma cell death. In another report by Zhao et al. [144], zeolite encapsulated by chitosan-crosslinked TiO2
spherical-shaped composite was utilized as a supporting bed to green fabricate the different size ranges of selenium metalloid
nanoparticles (Se NPs) through self-assembly and UV-light aided process onto molecular-imprinted sites located on its surface.
According to the unique characteristics of nanosized Se spheres, they showed a quick and wonderful efficiency in diagnostic
detection of small cell lung cancer biomarkers.

Tiburu et al. [145] synthesized the zeolite/chitosan nanoparticle via ionic crosslinking using pentasodium triphosphate as an
anticancer platform. To study the possible cytotoxicity activity of such nanocomposite, it incubated with cancer cells (HeLa), and
it was observed that the HeLa cells’ growth was appreciably decreased. Tegl et al. [123] found out using a natural phenol
crosslinker such as caffeic acid to post-modify chitosan-coated clinoptilolite composite in order to immobilization of glucose

oxidase (GOX) for antibacterial goals, gives it considerable antioxidant properties.

3.3. Other potential applications

So far, despite environmental and biomedical engineering fields as the most significant focal point of zeolite/chitosan
composites functionalities, other potential applications have been introduced. Wafiroh et al. [146] synthesized phosphorylated
zeolite-A/chitosan as a proton exchange membrane fuel cell based on its proper mechanical properties, proton conductivity (3.2
10~* S/cm), swelling properties, thermal resistance up to 415 K, and methanol permeability. The chitosan used in this study was
extracted and purified from shrimp shell wastes. To reduce the swelling of chitosan in water, the crosslinking technique was
performed. The combination of low cost, the biocompatible natural polymer in this complex made it applicable as an
environmental-friendly electrolyte membrane for fuel cell demands.

Likewise, Wang et al. applied various hydrophilic/hydrophobic zeolites in the framework of chitosan to fabricate desired
zeolite/chitosan complexes for application in direct methanol fuel cell. They reported that reduction in the diffusion resistance

of methanol by adding hydrophilic zeolite to chitosan leads to the increment of the methanol permeability and free volume

cavity size. Existence of a large number of water molecules, (-SO42°), and (-NH;3*) in bulk of cross-linked chitosa

https://www.sciencedirect.com/science/article/pii/S0008621519306834 17/35


https://ars.els-cdn.com/content/image/1-s2.0-S0008621519306834-gr11_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S0008621519306834-gr11.jpg

1/29/2021 From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan - ScienceDirect

protons transportation. Despite hydrophobic zeolites, the utilization of hydrophilic zeolite enhanced proton conductivity [123].
Garcia et al. [147] used zeolite/chitosan film as protection cover on tomato during refrigerated storage. They assessed the
efficiency of protection by measuring fungal decay, speed of respiration, quality and general visual appearance characteristics.
The mentioned cover exhibited acceptable performance in delaying the ripening of tomatoes but could not prevent weight loss

of tomatoes during the experiment.

4. Commercialization and challenges

The extraction of chitosan from shrimp's shell wastes and other low-cost resources as well as applying natural zeolite leads to a
sharp rise in the utilization of biodegradable, nontoxic zeolite/chitosan complexes in recent years in many fields. Fortunately,
besides existing a vast resource of natural zeolite in most regions of the world, nowadays, by commercialization various zeolite
synthesis, as well as the industrialization of chitosan production from chitin origin with different deacetylation percentage,
jointly pave the way of commercialization of zeolite/chitosan hybrid composites. Although these compositions were applied in
various fields and showed excellent efficiency, many factors must be noticed before large-scale production. For instance, the
optimum amount of zeolite in the composites, as well as hydrophilic or hydrophobic properties of zeolite, affect the
characteristics of the complex. In addition, the cost/performance, quality, and how to uniform synthesis of material are the most
parameters that should be figured out before mass production. Since these composites have not designed or formulated with
specific purposes or formulation until now, there are always possibilities of discrepancies between the applications and
prepared complexes and this is the most conspicuous reason that inhibits the existence of these products on the global market

at least for now.

5. Future perspective and concluding remarks

Altering the porosity form macroporous to mesoporous and microporous can be a game-changer in high-technology usages.
Materials with controlled porous dispersity on the nano-scale play an essential role in various applications such as catalysis,
drug delivery systems, tissue engineering, coatings, cosmetics, bio-separation, diagnostics, gas-separation, and nanotechnology.
Zeolites possess an inherent limit on pore size and accessibility owing to the pore templates available for their synthesis.
However, macroporous materials with a wide range of pores diameter from 50 to 1000 nm such as porous carbohydrates result
in facile access to the internal pores at the cost of selectivity. Such shortcomings inspire scientist to develop the mesoporous
materials which have an intermediate and controllable pore size range. Chitosan/zeolite as a biocompatible mesoporous
material possesses narrow pore size distributions and high surface areas that exhibit the appropriate biocompatibility and low
toxicity. Environmental concerns have grown in recent years and industries endeavor to utilize bio-based and biocompatible
materials. Zeolite/chitosan composite can be attractive as a natural and cost-effective and properties-controlled material. The
tunable structure of zeolite/chitosan (zeolite pores diameter and around ions) enhances its usage in various applications such as
adsorption, catalyst and biomedical. For instance, zeolite can be used as a packaging film because of the proper adsorption of
ethylene gas [147]. Moreover, zeolite composites can be utilized as polymerization substrate of conductive polymers, which
yields unusual conductivity and can make frameworks in supercapacitors [148]. By altering the zeolite/chitosan properties, such
composite can be used in various applications with desired and tunable properties [149]. For instance, adding modified
nanoparticles like zeolite [[150], [151], [152]] and different polymers to the matrix of various substrates could improve their
antifouling and abilities to selective filtration/adsorption [[153], [154], [155], [156], [157], [158], [159]]. Physical and chemical
characteristics of various zeolite can be carefully modified to select specific molecules for separation technology uses. However,
according to the best knowledge of the authors, there is no study on chitosan/zeolite complexes in these applications. Therefore,
it is an open window to complex various zeolite types and their functionalized particles with chitosan and surveys their ability in
the antifouling and selective membrane.
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