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Abstract: This year marks the 100™ anniversary of the experiments by Garner and Allard (Garner and
Allard, 1920) that showed that plants measure the duration of the night and day (the photoperiod) to
time flowering. This discovery led to the identification of Flowering Locus T (FT) in Arabidopsis and
Heading Date 3a (Hd3a) in rice as a mobile signal that promotes flowering in tissues distal to the site of
cue perception. FT/Hd3a belong to the family of phosphatidylethanolamine binding proteins (PEBPs).
Collectively, these proteins control plant developmental transitions and plant architecture. Several
excellent recent reviews have focused on the roles of PEBP proteins in diverse plant species; here we
will primarily highlight recent advances that enhance our understanding of the mechanism of action of

PEBP proteins and discuss critical open questions.
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Introduction

The discovery of the PEBP proteins as interpreters of seasonal environmental cues has two major
chapters, physiological-biochemical and molecular-genetic investigations (Fig. 1). In 1920, physiological
approaches linked dynamic plant flowering responses to the relative length of day and night, also known
as the photoperiod (Garner and Allard, 1920). In 1934, plant leaves were shown to perceive the
favourable photoperiod stimulus (Knott, 1934). Grafting an induced leaf to a unstimulated plant was
sufficient for flowering, pointing to a mobile floral stimulus able to translocate from leaves to the shoot
apex where flowers form (Chailakhyan, 1936). The concept of florigen as the mobile stimulus was
introduced in 1936 (Chailakhyan, 1936) and the florigenic signal was found to be conserved in diverse
plant species (Zeevaart, 1976). The nature of florigen was proposed to be a balance of phytohormones
and metabolites (Bernier, 1988; Bernier et al., 1993). Molecular.and genetic analyses by many
laboratories and in many plant species in last 30 years identified the PEBP protein FLOWERING LOCUS T
(FT) and its homologs as a conserved florigenic signal (Putterill and Varkonyi-Gasic, 2016). They also
uncovered the components that aid FT long-distance movement (Jackson and Hong, 2012; Liu et al.,

2013) and identified PEBP proteins with roles antagonistic to that of FT (Jin et al., 2020).

A brief summary of PEBP family protein function

Evolutionarily, PEBP proteins can be grouped into three classes, the ancestral of which is MOTHER OF FT
AND TFL1 (MFT), see (Jin et al., 2020) and references therein. In Arabidopsis, MFT is strongly expressed
in seeds and roots and promotes seed dormancy (Vaistij et al., 2013). Two additional classes or PEBP
proteins comprise FT-like and TERMINAL FLOWER 1 (TFL1)-like proteins, which in Arabidopsis have three
and two members, respectively (Jin et al., 2020). FT and TFL1 and their homologs are best known for
their opposite roles in flowering time and inflorescence architecture, which underlie important crop
traits like day neutrality, determinacy, time to flower formation and number of flowers and seeds
produced and may contribute to reproductive barrier formation in wild species (Eshed and Lippman,
2019; Kinoshita and Richter, 2020; Périlleux et al., 2019; Song et al., 2015; Todesco et al., 2020) (Fig. 2
and Fig. 3A). However, activities of FT-like and TFL1-like genes regulate many other processes, among
these are tuberization in potato, bulb formation in onion, bud set and flush in trees [reviewed in (Jin et
al., 2020; Périlleux et al., 2019)]. More recently, TFL1 has been implicated in repression of bud

outgrowth both in hybrid aspen and in Arabidopsis (Maurya et al., 2020a; Zhu et al., 2020) and in seed
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development in Arabidopsis(Zhang et al., 2020a) (Fig. 4A). Common to all processes is that they are

seasonally controlled life history traits.

Identification of targets of TFL1 and FD - a repressive hub for reproductive development

Although non-nuclear roles have been identified for both TFL1 and FT family proteins (Abelenda et al.,
2019; Sohn et al., 2007; Zhang et al., 2020a), studies in Arabidopsis, rice, and potato tubers have
suggested nuclear functions of TFL1 and FT as a co-repressor and a co-activator, respectively, by acting
in a complex with the bZIP transcription factor FD via 14-3-3 proteins (Goretti et al., 2020; Hanano and
Goto, 2011; Kaneko-Suzuki et al., 2018; Navarro et al., 2011; Taoka et al., 2011; Teo et al., 2016; Zhang
et al., 2020b; Zhu et al., 2020). FD proteins have a conserved S/TAP motif, phosphorylation of which is
thought to mediate 14-3-3 interaction. FD phosphorylation is likely of biological importance. While TFL1
can readily interact with E. coli produced FD via 14-3-3.in vitro (Collani et al., 2019; Kaneko-Suzuki et al.,
2018), FT prefers phosphomimic recombinant FD in vitro and in vivo (Collani et al., 2019; Kawamoto et
al., 2015) and potato CENTRORADIALIS (StCEN/TFL1), for example, also cannot readily interact with
phosphomutant FD in vivo (Zhang et al., 2020b). FT binds phosphatidyl choline (PC) and a recent high-

resolution crystal structure reveals how PC associates with FT (Nakamura et al., 2019).

The nuclear roles of TFL1-FD and FT-FD complexes in vivo have remained poorly understood because of
low protein abundance and presence in only very few cell types. Recently, three labs including our own
reported identification of FD and/or TFL1 bound loci by ChIP-seq (Collani et al., 2019; Goretti et al.,
2020; Romera-Branchat et al., 2020; Zhu et al., 2020). Despite having been conducted at different stages
of development and in different photoperiod regimes, there is a strong overlap of binding peaks and
target genes between all studies, when using one data analysis pipeline (Zhu et al., 2020) on all datasets
(Fig. 5). In the following discussions we will focus on (Zhu et al., 2020), which uncovered 604 immediate
early TFL1-FD repressed targets. These targets identify TFL1-FD as a repressive hub for onset of
reproduction and inflorescence architecture (Fig. 3B). TFL1-FD repress expression of key flowering time
regulators that promote entry into the reproductive phase including CONSTANS (CO), and GIGANTEA
(@GI), and of meristem identity regulators that cause the switch from branch to flower fate in axillary
meristems like FRUITFULL (FUL), LEAFY (LFY), APETALA1 (AP1) and LATE MERISTEM IDENTITY 1 (LMI1)
(Collani et al., 2019; Fornara et al., 2010; Wagner, 2017; Zhu et al., 2020). LFY in particular had not been
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expected to be a PEBP/FD target based on promoter:reporter studies, however the critical regulatory
element for photoperiod regulation of LFY reside in its second exon (Blazquez and Weigel, 2000; Zhu et
al., 2020). The link between TFL1-FD and FT-FD and their direct targets AP1 and LFY is conserved during
short-day triggered growth cessation in hybrid aspen (Tylewicz et al., 2015), long-day photoperiod
induced opening of guard cells (Kinoshita et al., 2011) and possibly onion bulb formation (Rashid et al.,
2019); while that between TFL1-FD and FT-FD and FUL is conserved during secondary growth in tomato
(Shalit-Kaneh et al., 2019).

Other critical regulators of reproductive competency and the switch from branch to flower identity are
members of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) family of proteins (Hyun et al., 2016;
Wang et al., 2009; Yamaguchi et al., 2009; Yamaguchi et al., 2014) which also act upstream of the
AP1/FUL family of MADS box genes. The combined recent FD and TFL1 ChIP-seq datasets, which
collectively sampled diverse developmental stages and growth conditions (Collani et al., 2019; Goretti et
al., 2020; Romera-Branchat et al., 2020; Zhu et al., 2020), reveal that the SPL genes are not immediately
downstream targets of TFL1-FD, in agreement with prior genetic investigations (Wang et al., 2009;

Yamaguchi et al., 2009; Yamaguchi et al., 2014).

A role for PEBP proteins in transcriptional control of hormone signalling and response?

In addition, the 604 identified immediate early TFL1-FD repressed genes link to diverse hormonal
pathways, including the strigolactone, cytokinin, auxin, brassinosteroid, jasmonic acid and abscisic acid
pathways (Collani et al., 2019; Goretti et al., 2020; Romera-Branchat et al., 2020; Zhu et al., 2020) (Fig.
3B). The combined data suggest that — perhaps in a manner analogous to hormonal regulation of bud
outgrowth (Barbier et al., 2019) — multiple hormonal signals and response pathways together provide

permissive or prohibitive environments for given developmental trajectories in the axillary meristems.

A direct link between PEBP proteins and the above-mentioned hormone signalling pathways is in
agreement with independent investigations. Strigolactone sensitive SUPPRESSOR OF MAX2-LIKE 6, 7 and
8 (SMXL6-8) proteins enhance shoot branching by promoting axillary bud outgrowth (Wang et al., 2015).

Interestingly, SMXL6 and SMXL8 are not only among the immediate early TFL1-FD repressed targets
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identified, but wild type plants and tf/l1 mutants also display enhanced branch outgrowth in response to
photoperiod-mediated upregulation of FT in Arabidopsis (Zhu et al., 2020). The combined data suggest a
role for TFL1 in preventing bud outgrowth (Fig. 3B and Fig. 4A). Likewise, in aspen, bud outgrowth is
blocked by TFL1 and promoted by the aspen AP1/CAL/FUL homolog Like-AP1 (LAP1), which acts
genetically downstream of TFL1 (Maurya et al., 2020a) (Fig. 4A). This block of bud outgrowth occurs at
the end of the growing season in response to low temperature or short day which trigger elevated TFL1
and reduced FT2 accumulation (Maurya et al., 2020a; Maurya et al., 2020b). Analyses of direct and
indirect TFL-FD repressed targets also revealed that TFL1 represses cytokinin response (Zhu et al., 2020)
(Fig. 3B). Like SMXL6 and 8, cytokinin promotes branch outgrowth (Barbieret al., 2019; Zhu and Wagner,
2020).

Likewise, direct and indirect targets of TFL1-FD in Arabidopsis suggest that TFL1-FD blocks auxin
signalling and response (Zhu et al., 2020) (Fig. 3B). Prior studies have implicated auxin in promotion of
flower fate in axillary meristems of the Arabidopsis inflorescence (Yamaguchi et al., 2013). In tomato,
loss-of-function mutants of the ortholog of TFL1 in tomato, SELF PRUNING (SP), cause pleiotropic
changes, such as shoot determinacy, early flowering and simultaneous fruit ripening (Pnueli et al., 1998).
Polar auxin transport and auxin responses are altered in sp mutants, suggesting that SP may act -at least
in part- via auxin (Silva et al., 2018). Finally, DNA affinity purification sequencing (DAP-seq) and
expression analysis in mutants linked rice FD homologs to the OsARF19 auxin responsive transcription

factor, supporting the link from PEBP proteins to auxin response (Cerise et al., 2020).

Another group of TFL1-FD repressed genes are components of brassinosteroid (BR) signaling (Zhu 2020)
(Fig. 3B). In agreement with the genomic studies, BR biosynthesis mutants in Setaria cause formation of
additional spikelets, suggesting BR blocks inflorescence branching (Yang et al., 2018). The BR steroid
hormone has also been linked to onset of reproductive development (Nolan et al., 2020). In blue light,
the BR early response regulator and bHLH transcription factor BR ENHANCED EXPRESSION 1 (BEE1)
accumulates and promotes flowering by directly upregulating FT expression (Wang et al., 2019). Thus,

the BR pathway promotes onset of the reproductive phase and inflorescence branching.
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Multiple genes in the abscisic acid (ABA) pathway have been identified as shared targets of TFL1, FD and
the FD homolog FDP (Romera-Branchat et al., 2020; Zhu et al., 2020) (Fig. 3B and Fig. 5B). ABA has been
linked to upregulation of FT accumulation by several studies (Chang et al., 2019; Riboni et al., 2016), yet
the strongest link to PEBPs is via MFT during seed germination (Vaistij et al., 2018; Vaistij et al., 2013; Xi
et al., 2010) (Fig. 4C). Loss-of MFT and FD or FDP function reveals ABA dependent phenotypes during
cotyledon greening and seed germination, respectively (Romera-Branchat et al., 2020; Vaistij et al.,
2018; Vaistij et al., 2013; Xi et al., 2010). In addition, TFL1 promotes endosperm cellularization during
seed development by stabilizing the ABI5 transcription factor in the cytoplasm surrounding syncytial
peripheral endosperm (Zhang et al., 2020a) (Fig. 4C). ABA is furthermore known to prevent bud
outgrowth in Arabidopsis and aspen (Gonzalez-Grandio and Cubas, 2014; Gonzalez-Grandio et al., 2017;
Tylewicz et al., 2018). Whether and how ABA impacts the axillary meristem identity switch from branch

to floral fate is not known.

PEBP proteins and sugar transport and signalling

Sugar is transported from the source (photosynthesis in leaves) to various sink organs including shoot
apices, flowers, fruits and seeds as well as roots and storage organs like tubers and bulbs (Baena-
Gonzalez and Lunn, 2020; Martin-Fontecha et al., 2018). Tuberization in potato is promoted by the FT-
like SELF-PRUNING 6A (StSP6A) protein, expression of which is induced by high sucrose concentration
and closely associated with the number of tubers formed (Abelenda et al., 2019). StSP6A physically
interacts with the sucrose efflux transporter SSSWEET11 at the cell membrane (Fig. 4B). This prevents
sucrose from leaking to the apoplast and promotes symplastic sugar unloading into the tuber (Abelenda
et al., 2019). Coordinated expression of StSP6A and StSWEET11 promotes potato tuber formation,
supporting cross talk between sucrose source-sink partitioning and photoperiodic pathways (Abelenda

et al., 2019).

Sugar transport is also linked to onset of sexual reproductive development. Overexpressing FT in phloem
companion cells of minor leaf veins identified the sucrose transporter encoding SWEET10 gene as a
differentially expressed gene (Andrés et al., 2020). Both overexpression of FT and long-day inductive
conditions promote SWEET10 mRNA accumulation and 35S:SWEET10 causes early flowering irrespective

of photoperiod (Andrés et al., 2020). In addition, the trehalose-6-phosphate (T6P) synthase TPS1
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promotes flowering upstream of FT (Wahl et al., 2013). T6P is linked to sucrose signaling and
homeostasis (Baena-Gonzalez and Lunn, 2020). Trehalose-6-phosphatases (TPPs) were identified as
TFL1-FD repressed targets during the switch from branch to flower fate in axillary meristems (Collani et
al., 2019; Goretti et al., 2020; Romera-Branchat et al., 2020; Zhu et al., 2020) (Fig. 3B). In agreement
with this finding, multiple TPPs were recently implicated in suppression of branching in the maize
inflorescence (Claeys et al., 2019). This role of the TPPs in maize apparently does not rely on their

enzymatic activity (Claeys et al., 2019).

Antagonistic activities of FT- and TFL1-like proteins

The relative dose of FT- and TFL1-like activities is critical for flowering and inflorescence traits in many
species as well as for tuberization in potato (Kim et al., 2013; Krieger et al., 2010; Maurya et al., 2020a;
Zhang et al., 2020b) (Fig. 3A). A large expansion of the PEBP gene family followed by sub- or neo-
functionalization occurred in many crop species (Jin et al., 2020; Zheng et al., 2016). For example,
members of the eight-member cotton TFL1 family display diverse and frequently non-overlapping
expression patterns (Prewitt et al., 2018) and non-overlapping roles were reported for the five TFL1
homologs in tetraploid Brassica napus, an important oil and biofuel crop (Sriboon et al., 2020).
Moreover, mutations that change the balance between FT- and TFL1-like activities, such as loss-of-
function of an FT or TFL1 paralog, have been selected for numerous times during domestication
(Blackman et al., 2010; Comadran et al., 2012; lwata et al., 2012; Liu et al., 2018; Pin et al., 2010; Zheng
et al., 2016). Even when acting in concert, the FT or TFL1 paralogs do not contribute equally. For
example, in Brachypodium -as in Arabidopsis- weak and strong FT activators have been identified, which

act in different photoperiods (Jin et al., 2020; Lv et al., 2014; Shaw et al., 2019).

In most species one ‘central’ TFL1- and FT-like factor dominates, and null mutations in these have
pleiotropic and often deleterious effects (Kim et al., 2013; Krieger et al., 2010) (Fig. 3C). Thus, subtle
modulation of the relative dose of the opposing ‘central’ FT- and TFL1-like activities are generally most
beneficial for yield and other desirable crop traits; these can be caused by weak loss-of-function
mutations or by cis motif variation (Eshed and Lippman, 2019; Jiang et al., 2013; Park et al., 2014; Soyk
et al., 2017). Indeed, modulation of the relative PEBP activity is being exploited by CRISPR-Cas9-

mediated rapid breeding of desirable inflorescence architectures and for flowering on demand; this can
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be applied to leaf crops to block flowering or to tree crops to accelerate flowering/breeding, it can be
used to expand the geographic growth range (day neutrality) or to enhance crop harvestability
(determinate cultivars) in addition to yield (Eguen et al., 2020; Eshed and Lippman, 2019; Kwon et al.,
2020; Okada et al., 2017).

Underpinning the relative dose of FT- and TFL1-like activities are spatiotemporal control of mRNA and
protein accumulation, as well as protein movement. The former includes seasonally controlled
transcriptional upregulation of FT and increases in TFL1 expression in inductive long-day photoperiod in
Arabidopsis (Luccioni et al., 2019; Moraes et al., 2019; Périlleux et al., 2019; Zhu et al., 2020) and of FT
homologs like Hd3a and RFT1 in inductive short day photoperiod in rice (Shen et al., 2020; Tsuji et al.,
2011). Fine tuning of the Arabidopsis FT gene expression occurs, as recently uncovered via elegant
approaches, through redundantly acting enhancers at the FT locus (Zicola et al., 2019). FT accumulation
in short days is prevented, at least in part, by a DELLA-MYC3 repressor complex (Bao et al., 2019). This
explains the promotion of flowering in short days by gibberellin treatment. Interestingly the MYC3

bound element is not present in early flowering ecotypes such as Ler and Ws (Bao et al., 2019).

In addition, cross-regulation between PEBP proteins has been described. In long days, the repressive FT-
like homolog StSP5G of certain potato cultivars represses expression of the tuberization activating FT
StSP6A in leaves (Abelenda et al., 2016). Cultivated tomato, which displays day-neutral flowering, has
lost both short-day and long-day control of SINGLE FLOWER TRUSS (SFT) expression by FT-like proteins
(Song et al., 2020; Soyk et al., 2017). In the wild tomato, SFT expression is repressed by the repressive
FT homolog SISP5G in long-day and activated by FT-LIKE 1 (FTL1) in short-day (Song et al., 2020; Soyk et
al., 2017). In- Brachypodium, wheat and barley, FT1 activates expression of FT2 and both proteins act
sequentially to promote reproductive development (Digel et al., 2015; Lv et al., 2014; Shaw et al.,
2019). In contrast to regulation of FT accumulation, that of TFL1 is underexplored (Serrano-Mislata et al.,
2016). Finally, the available FT pool is modulated by interactions with the TCP transcription factor
BRANCHED1 (BRC1), which blocks FT activity in Arabidopsis and hybrid aspen (Maurya et al., 2020b;
Niwa et al., 2013).
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Both FT and TFL1 move from their sites of production to their sites of activity, with FT generally traveling
longer distances than TFL1 (Goretti et al., 2020; Putterill and Varkonyi-Gasic, 2016). As in Arabidopsis,
FT1 moves from the leaves to the shoot apex to promote seasonal growth in aspen (Miskolczi et al.,
2019). TFL1, by contrast only moves within the shoot apex (Conti and Bradley, 2007; Goretti et al., 2020;
Miskolczi et al., 2019), while other TFL1 homologs in Arabidopsis can move long-distance (Huang et al.,
2012). Studies by the Yu group have uncovered proteins that help FT loading from leaf companion cells
to sieve elements via endosomal vesicles in the leaf vasculature and promote long distance transport
(Liu et al., 2019; Liu et al., 2012; Zhu et al., 2016). This transport machinery is apparently conserved in
rice (Song et al., 2017), yet does not operate on the FT homolog in Arabidopsis (Zhu et al., 2016).
Moreover, in the developing seed, Ras-related nuclear (RAN) GTPases directed TFL1 movement from the
chalazal endosperm to the syncytial peripheral endosperm; in a manner distinct from the role of RAN
GTPases in nucleo-cytoplasmic protein transport (Zhang et al., 2020a). In agreement with possible
different transport mechanisms for FT and TFL1, residues critical for FT movement in Arabidopsis are not

conserved in TFL1 (Endo et al., 2018).

Competition of FT and TFL1 for chromatin bound FD

What is the mechanism by which different combined levels of FT- and TFL1-like activities modulate
biological processes? Zhu et al. recently showed that endogenous TFL1 recruitment to the chromatin
depends on FD (Zhu et al., 2020) (Fig. 3C). Moreover, a photoperiod-mediated or estradiol-controlled
inducible increase in the nuclear accumulation of FT resulted in FT recruitment to the genomic locations
occupied by TFL1 and FD, accompanied by a simultaneous reduction of TFL1 binding to these sites (Zhu
et al., 2020). This competition was observed at all flowering and meristem identity targets tested and
suggests that the antagonism between FT and TFL1 relies in large part on competition for FD mediated
access to shared target loci (Zhu et al., 2020) (Fig. 3C). Further support for this model comes from in
vitro studies (Collani et al., 2019; Kaneko-Suzuki et al., 2018). This model provides a mechanistic
explanation for the observed modulation of plant phase transitions and architecture by the relative dose

of TFL1- and FT-like activities (Eshed and Lippman, 2019; Jiang et al., 2013; Lifschitz et al., 2014).

The above-mentioned model also fits with prior data indicating that TFL1 and FT proteins, which are

very similar to each other in their primary amino acid sequence, can be converted into the opposite
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activity by single amino-acid changes, yielding FT-like proteins with TFL1-like activity and vice versa (Ahn
et al., 2006; Hanzawa et al., 2005; Ho and Weigel, 2014). Of note, such FT mutations can be antimorphic
or neomorphic (Blackman et al., 2010; Ho and Weigel, 2014; Pin et al., 2010). Neomorphic FT mutations
likely confer ability to repress gene expression onto FT, as recently ascribed to TFL1 (Zhu et al., 2020).

Antimorphic mutations, by contrast, likely block activation of gene expression by FT by competing for FD

binding (Kaneko-Suzuki et al., 2018).

The model suggests a central role of the bZIP transcription factor FD in the FT/TFL1 competition. While
FD activity is absolutely required for TFL1 recruitment to the chromatin(Zhu et al., 2020), epistasis
analyses using certain gain-of-FT and loss-of-FD function mutants suggests that other FT interaction
partners may exist (Jaeger et al., 2013; Romera-Branchat et al., 2020). One candidate for such an
interactor is FD PARALOGUE (FDP) (Romera-Branchat et al., 2020). Although FDP bound similar target
loci as FD (Fig. 5), CRISPR alleles of FDP were neither late flowering, nor enhanced the late flowering
phenotype of fd mutants (Romera-Branchat et al., 2020). However, when expressed in the FD domain,
FDP partially rescued the fd mutant phenotype (Romera-Branchat et al., 2020), suggesting that FDP is
able to interact with FD partners such as FT or TFL1, albeit with lower affinity. Of note, FD levels drop in
the shoot apex after the first flowers develop (Abe et al., 2019), however FD is not completely absent as
evidenced by FD ChIP-seq conducted several days after the first flowers develop (Romera-Branchat et
al., 2020). Likewise, two FD paralogs of hybrid aspen have different function; FD-like 1 (FDL1) but not
FDL2 upregulates LAP1 together with FT1 to antagonize growth cessation in long-day photoperiod
(Tylewicz et al., 2015). Functionally, FDL2 is more divergent from FDL1 than FD is from FDP; since
overexpression of FDL2, unlike overexpression of FDL1, did not delay growth cessation (Tylewicz et al.,
2015). Both FDP and FD overexpression triggers early flowering in Arabidopsis (Romera-Branchat et al.,
2020). In rice, OsFD1 and OsFD4 promote flowering in short days. Only OsFD1 is expressed in leaves,
while both OsFD1 and OsFD4 are expressed in the shoot apex (Cerise et al., 2020). On the basis of DAP-
seq, OsFD1 and OsFD4 bind similar DNA regions and both bZIP proteins are required for upregulation of
MADS box transcription factors from the AP1/FUL clade (OsMADS14) or the SEPALLATA clade
(OsMADS34) (Cerise et al., 2020). Future studies will reveal whether additional transcription factors

contribute to chromatin recruitment of PEBP proteins.
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Conclusion

In summary, recent years have uncovered both nuclear and non-nuclear interaction partners for FT-like
and TFL1-like PEBP proteins in diverse plant species. Genomic investigations from different laboratories
have now linked the plant PEBP proteins, which control plant developmental transitions and
architecture in response to seasonal cues, to diverse endogenous signalling pathways (Collani et al.,
2019; Goretti et al., 2020; Romera-Branchat et al., 2020; Zhu et al., 2020). Further investigation of these
pathways may enhance our understanding how these small proteins integrate information across the
entire plant. These recent findings also bring us back to the beginnings of photoperiod studies, which
had already invoked the critical importance of hormones and metabolites in mediating photoperiod
responses (Bernier, 1988; Bernier et al., 1993). Finally, recent and prior studies have uncovered a
mechanism for the dose-dependent opposite activities PEBP proteins that relies on competition for FD

bound to shared target loci (Zhu et al., 2020).

Despite these and additional advances (Eshed and Lippman, 2019; Jin et al., 2020; Kinoshita and Richter,
2020; Moraes et al., 2019; Périlleux et'al., 2019) many open questions remain. One concerns the
mechanism for the TFL1 and FT antagonism in the nucleus. Zhu et al showed that photoperiod
upregulation of FT can remove TFL1 from shared target loci, while FD apparently remains bound (Zhu et
al., 2020) (Fig. 3C). We posit that additional components likely contribute to the replacement of TFL1 by
FT. This is because overall FT protein levels in the inflorescence are lower than those of TFL1 (Conti and
Bradley, 2007; Jaeger and Wigge, 2007) and FT - at least in vitro - has lower affinity for 14-3-3/FD
(Collani et al., 2019; Kaneko-Suzuki et al., 2018).

A second question centers on the mechanism of action of TFL1 and FT. How do complexes that contain
either of these two opposite acting PEBP proteins activate or repress transcription? Thus far, very few
proteins have been identified that discriminate between TFL1 and FT (Ho and Weigel, 2014; Li et al.,
2019; Niwa et al., 2013), and none of these explain transcriptional activation and transcription

repression by the FT and TFL1 co-regulators, respectively.
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Finally, it is remarkable how conserved the immediate early targets of TFL1-FD and FT-FD are in different
species and in different developmental pathways (Kinoshita et al., 2011; Shalit-Kaneh et al., 2019;
Tylewicz et al., 2015; Zhu et al., 2020). This begs the question how the gene regulatory networks
downstream of PEBP proteins are rewired to control such diverse processes as seed development,
growth cessation in trees, bud outgrowth and bolting, switch form branch to flower fate, bulb formation
and tuberization. Some of the gene regulatory interaction uncovered during studies of the onset of
flower formation might be operational in these different developmental pathways as well, as common
to many of the above-mentioned phenomena is a switch from growth and carbon production to slow

growth in carbon sinks (Lifschitz et al., 2014; Martin-Fontecha et al., 2018).
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Figure legends

Fig. 1. Identification of PEBP proteins as factors that interpret seasonal cues to promote flowering and
that modulate additional life history traits in response to environmental signals. See text for details.

Fig. 2. Inflorescence architecture is shaped by alternative fates adopted by the axillary meristems.

(A) The architecture of the racemose inflorescence of Arabidopsis is shaped by the identity and
positioning of the lateral organs, such as (i) sessile buds that can be induced to grow out as branches
and (ii) indeterminate branches and (iii) determinate flowers. Inflorescence stages (11, 12) based on
(Ratcliffe et al., 1998). (B) Alternative fates of axillary meristems, adoption of which depends on a
combination of intrinsic and extrinsic cues. If an axillary branch meristem is converted to flower fate by
photoperiod shift, the resulting flower is subtended by a cauline leaf (flower node) (Hempel et al., 1998;
Zhu et al., 2020). (C) Terminal flowers form in tfl1 mutant inflorescences because the FT-FD activation
complex upregulates expression of the floral initiation and identity genes such as LFY and AP1 in the
shoot apex when TFL1 activity is absent (Lee et al., 2019; Zhu et al., 2020). Likewise, all branches are
converted to flowers. (D) 11 phase: Inflorescence meristem and axillary branch meristems prior to
formation of the first flower. Left: gTFL1-GFP protein accumulation in 42-day-old short-day-grown tfl1
plants immediately prior to formation of the first flower. Right: Diagram: before FT starts to be produced
in the rosette leaves, TFL1 accumulates in the axillary meristems but is barely detectable in the
inflorescence meristem. (E) 12 phase: Inflorescence meristem and axillary branch meristems after
formation of the first flower. FT protein moves into the inflorescence meristem where TFL1 accumulates
to prevent inflorescence meristem termination by FT-FD. In the incipient flower meristems, FT-FD
induce LFY and both LFY and FD-FT induce AP1 (Wagner et al., 1999; Winter et al., 2011; Zhu et al.,
2020).

Fig. 3. Mechanism by which TFL1- and FT-like PEBP proteins antagonistically tune plant architecture.
(A) Antagonistic roles of FT and TFL1. Top diagram: Inflorescence architecture. Right: Immediate flower
formation (no branches; TFL1<<FT) reduces the total number of flowers and seeds per plant. It also
shortens the time to seed set, which is advantageous in geographic regions with a short growing season.
Middle: A slight delay in onset of flower formation (TFL1 = FT) allows production of branches of more
flowers and seeds per plant. Time to seed set is delayed. Left: Extremely late onset of flower formation
(TFL1>>FT) promotes strong branching and can prevent annual plants from completing their life cycle.
Center diagram: The relative accumulation or balance of TFL1-like (purple triangle) and FT-like (blue
triangle) PEBP proteins defines not only the inflorescence architecture (above) but also tuber formation
(below) and other life history traits in response to seasonal cues (Eshed and Lippman, 2019; Jin et al.,
2020; Périlleux et al., 2019; Zhu and Wagner, 2020). Bottom diagram: StSP6A (FT-like protein) and
StTFL1 in potato promote and antagonize tuberization in inductive photoperiod (Navarro et al., 2011;
Zhang et al., 2020b). (B) Direct TFL1-FD and FT-FD regulated target genes reveal a prominent role in cell
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signaling. Immediate early TFL1-FD repressed and FT-FD activated targets include flowering time genes
(PRR7, CO and GI) and floral identity genes (LFY, AP1, FUL and LMI2) as expected. They also include
genes linked to phytohormone biosynthesis, signaling and response (auxin, abscisic acid,
brassinosteroid, cytokinin, jasmonic acid and strigolactone) as well as genes linked to sugar signaling
(TPPs) (Collani et al., 2019; Goretti et al., 2020; Romera-Branchat et al., 2020; Zhu et al., 2020). (C)
Molecular mechanism for the antagonistic roles of TFL1- and FT-like proteins (Kaneko-Suzuki et al.,
2018; Zhu et al., 2020). TFL1 (large purple circle) and FT (large orange circle) compete for access to
shared targets via the FD bZIP transcription factor (orange triangle) and 14-3-3 (orange line). In
Arabidopsis, FT and TFL1 are the ‘central’ activating and repressive PEBP co-regulators (Kim et al., 2013).
The final developmental readout depends not only on the balance of these two proteins but also on
additional ‘minor’ TFL1-like co-repressors and FT-like co-activators. We propose that the ‘minor’
repressive PEBPs (which includes neo- or anti-morph FT as well as TFL1 paralogs) assist TFL1 in
competing FT from genome associated FD. In Arabidopsis, these PEBPs include BROTHER OF FT AND
TFL1 and ARABIDOPSIS THALIANA (small overlapping purple circles). Likewise, ‘minor’ activating PEBS
help FT compete TFL1 from FD, such as TWIN SISTER OF FT (TSF) in Arabidopsis (small overlapping blue
circle).

Fig. 4. New developmental roles for PEBP family proteins.

(A) Sessile/dormant bud versus outgrowing branch fate in Arabidopsis (left) or aspen (right). In response
to inductive photoperiod, TFL1-FD opposition of branch outgrowth is overcome by FT-FD perhaps via
upregulation of SMXL gene expression (Zhu et al., 2020). Cold temperature and short-day mediate
cessation of growth and onset of dormancy by TFL1 repressing, in opposition to FT2-FDL1, an aspen
AP1/FUL/CAL homolog called LAP1 (Azeez et al., 2014; Maurya et al., 2020a; Maurya et al., 2020b). (B)
The tuberigenic mobile FT homolog StSP6A synthesized in leaves promotes symplastic sugar unloading
into potato tubers (Abelenda et al., 2019). (C) A role for TFL1 and MFT in seed development and seed
germination, respectively, is linked to abscisic acid pathway response regulator ABI5 (Vaistij et al., 2018;
Vaistij et al., 2013; Xi et al., 2010; Zhang et al., 2020a). TFL1-RAN, StSP6A-StSWEET11 and FT2-FDL1 are
direct protein-protein interactions (Abelenda et al., 2019; Maurya et al., 2020a; Zhang et al., 2020a).

Fig. 5. Strong overlap between FD, FDP, and TFL1 ChiP-seq peaks and targets at different
developmental stages.

(A) FD, TFL1 and FDP binding peak overlap based on ChlIP-seq analyses from three research groups
(yellow gradient) conducted at different developmental stages: 16-day-old long-day-grown plants
(Collani et al., 2019; Goretti et al., 2020), 24-day-old long-day-grown plants (Romera-Branchat et al.,
2020) and 42-day-old short-day-grown plants (Zhu et al., 2020). Data analysis as in (Zhu et al., 2020).
Row shows the peak overlap of the ChIP-seq experiments indicated on the left compared to all other
ChlP-seq experiments (columns). The rows focus on ChlP-seq datasets reliant on endogenous promoter
driven transgenes. Green color saturation indicates peak number overlap. For Zhu et al. datasets, two
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normalizations were conducted: one over mock samples (M; as in (Collani et al., 2019; Goretti et al.,
2020) and one over inputs (l; as in (Romera-Branchat et al., 2020)). (B) Strong overlap between FD, FDP
and TFL1 regulated targets at different developmental stages. Proportional Venn diagram of FT-
dependent photoperiod induced genes in 42-day-old short-day-grown plants (circle with diagonal green
stripes (Zhu et al., 2020)), TFL1-FD bound genes at the same stage (pink circle (Zhu et al., 2020)) and
uniquely FDP bound and regulated genes given gene expression changes in the fdp mutant in three-day-
old long day grown plants (grey circle; identified in (Romera-Branchat et al., 2020))
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Fig. 2. Inflorescence architecture is shaped by alternative fates adopted by the axillary
meristems.
(A) The architecture of the racemose inflorescence of Arabidopsis is shaped by the identity and

positioning of the lateral organs, such as (i) sessile buds that can be induced to grow out as
branches and (ii) indeterminate branches and (iii) determinate flowers. Inflorescence stages (11,
12) based on (Ratcliffe ef al., 1998). (B) Alternative fates of axillary meristems, adoption of
which depends on a combination of intrinsic and extrinsic cues. If an axillary branch meristem is
converted to flower fate by photoperiod shift, the resulting flower is subtended by a cauline leaf
(flower node) (Hempel et al., 1998; Zhu ef al., 2020). (C) Terminal flowers form in /f// mutant
inflorescences because the FT-FD activation complex upregulates expression of the floral
initiation and identity genes such as LFY and AP/ in the shoot apex when TFL1 activity is absent
(Lee et al., 2019; Zhu et al., 2020). Likewise, all branches are converted to flowers. (D) I1 phase:
Inflorescence meristem and axillary branch meristems prior to formation of the first flower. Left:
gTFL1-GFP protein accumulation in 42-day-old short-day-grown #fI/ plants immediately prior to
formation of the first flower. Right: Diagram: before FT starts to be produced in the rosette
leaves, TFL1 accumulates in the axillary meristems but is barely detectable in the inflorescence
meristem. (E) 12 phase: Inflorescence meristem and axillary branch meristems after formation of
the first flower. FT protein moves into the inflorescence meristem where TFL1 accumulates to
prevent inflorescence meristem termination by FT-FD. In the incipient flower meristems, FT-FD
induce LFY and both LFY and FD-FT induce AP/ (Wagner ¢t ai., 1999; Winter ef al., 2011; Zhu
el al., 2020).
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Fig. 3. Mechanism by which TFL1- and FT-like PEBP proteins antagonistically tune plant
architecture. (A) Antagonistic roles of FT and TFL1. Top diagram: Inflorescence architecture.
Right: Immediate flower formation (no branches; TFL1<<FT) reduces the total number of
flowers and seeds per plant. It also shortens the time to seed set, which is advantageous in
geographic regions with a short growing season. Middle: A slight delay in onset of flower
formation (TFL1 = FT) allows production of branches of more flowers and seeds per plant. Time
to seed set is delayed. Left: Extremely late onset of flower formation (TFL1>>FT) promotes
strong branching and can prevent annual plants from completing their life cycle. Center diagram:
The relative accumulation or balance of TFL1-like (purple triangle) and FT-like (blue triangle)
PEBP proteins defines not only the inflorescence architecture (above) but also tuber formation
(below) and other life history traits in response to seasonal cues (Eshed and Lippman, 2019; Jin
et al., 2020; Périlleux et al., 2019; Zhu and Wagner, 2020). Bottom diagram: StSP6A (FT-like
protein) and StTFL1 in potato promote and antagonize tuberization in inductive photoperiod
(Navarro ef al., 2011; Zhang et al., 2020b). (B) Direct TFL1-FD and FT-FD regulated target
genes reveal a prominent role in cell signaling. Immediate early TFL1-FD repressed and FT-FD
activated targets include flowering time genes (PRR7, CO and () and floral identity genes
(LFY, AP1, FUL and LMI2) as expected. They also include genes linked to phytohormone
biosynthesis, signaling and response (auxin, abscisic acid, brassinosteroid, cytokinin, jasmonic
acid and strigolactone) as well as genes linked to sugar signaling (7PPs) (Collani er al., 2019;
Gorett1 ef al., 2020; Romera-Branchat er al., 2020; Zhu er al., 2020). (C) Molecular mechanism
for the antagonistic roles of TFL1- and FT-like proteins (Kaneko-Suzuki ez al., 2018; Zhu et al.,
2020). TFL1 (large purple circle) and FT (large orange circle) compete for access to shared
targets via the FD bZIP transcription factor (orange triangle) and 14-3-3 (orange line). In
Arabidopsis, FT and TFL1 are the ‘central” activating and repressive PEBP co-regulators (Kim er
al., 2013). The final developmental readout depends not only on the balance of these two
proteins but also on additional ‘minor” TFL1-like co-repressors and FT-like co-activators. We
propose that the ‘minor’ repressive PEBPs (which includes neo- or anti-morph FT as well as
TFL1 paralogs) assist TFL1 in competing FT from genome associated FD. In Arabidopsis, these
PEBPs include BROTHER OF FT AND TFL1 and ARABIDOPSIS THALIANA (small
overlapping purple circles). Likewise, ‘minor’ activating PEBS help FT compete TFL1 from FD,
such as TWIN SISTER OF FT (TSF) in Arabidopsis (small overlapping blue circle).
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Fig. 4. New developmental roles for PEBP family proteins.
(A) Sessile/dormant bud versus outgrowing branch fate in Arabidopsis (left) or aspen (right). In
response to inductive photoperiod, TFL1-FD opposition of branch outgrowth is overcome by FT-
FD perhaps via upregulation of SMXL gene expression (Zhu ef al., 2020). Cold temperature and
short-day mediate cessation of growth and onset of dormancy by TFL1 repressing, in opposition
to FT2-FDLI, an aspen AP1/FUL/CAL homolog called LAPI (Azeez et al., 2014; Maurya et al.,
2020a; Maurya ef al., 2020b). (B) The tuberigenic mobile FT homolog StSP6A synthesized in
leaves promotes symplastic sugar unloading into potato tubers (Abelenda et al., 2019). (C) A
role for TFL1 and MFT in seed development and seed germination, respectively, is linked to
abscisic acid pathway response regulator ABIS (Vaistij e al., 2018; Vaistij ef al., 2013; Xi et al.,
2010; Zhang et al., 2020a). TFL1-RAN, StSP6A-StSWEET11 and FT2-FDLI1 are direct protein-
protein interactions (Abelenda ef al., 2019; Maurya ef al., 2020a; Zhang et al., 2020a).
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Fig. 5. Strong overlap between FD, FDP, and TFL1 ChIP-seq peaks and targets at different
developmental stages.

(A) FD, TFLI and FDP binding peak overlap based on ChIP-seq analyses from three research
groups (yellow gradient) conducted at different developmental stages: 16-day-old long-day-
grown plants (Collani ef al., 2019; Goretti ef al., 2020), 24-day-old long-day-grown plants
(Romera-Branchat ef al., 2020) and 42-day-old short-day-grown plants (Zhu ef al., 2020). Data
analysis as in (Zhu et al., 2020). Row shows the peak overlap of the ChIP-seq experiments
indicated on the left compared to all other ChIP-seq experiments (columns). The rows focus on
ChIP-seq datasets reliant on endogenous promoter driven transgenes. Green color saturation
indicates peak number overlap. For Zhu et al. datasets, two normalizations were conducted: one
over mock samples (M; as in (Collani e/ al., 2019; Goretti ef al., 2020) and one over inputs (I; as
in (Romera-Branchat ef al., 2020)). (B) Strong overlap between FD, FDP and TFL1 regulated
targets at different developmental stages. Proportional Venn diagram of FT-dependent
photoperiod induced genes in 42-day-old short-day-grown plants (circle with diagonal green
stripes (Zhu ef al., 2020)), TFL1-FD bound genes at the same stage (pink circle (Zhu ef al.,
2020)) and uniquely FDP bound and regulated genes given gene expression changes in the fdp
mutant in three-day-old long day grown plants (grey circle; identified in (Romera-Branchat er
al., 2020))
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