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abstract 78 

The corals Acropora palmata and Acropora cervicornis are important Caribbean reef-79 

builders that have faced significant mortality in recent decades. While many studies have focused 80 

on the recent demise of these species, data from areas where Acropora spp. have continued to 81 

thrive are limited. Understanding the genetic diversity, recruitment, and temporal continuity of 82 

healthy populations of these threatened Acropora spp. and the hybrid they form (“Acropora 83 

prolifera”) may provide insights into the demographic processes governing them. We studied 84 

three reef sites with abundant Acropora cervicornis, Acropora palmata, and hybrid Acropora 85 

populations offshore of Ambergris Caye, Belize at Coral Gardens, Manatee Channel, and Rocky 86 

Point. Samples were collected from all three Acropora taxa. We used microsatellite markers to 87 

determine: 1) genotypic diversity; 2) dominant reproductive mode supporting local recruitment; 88 

3) minimum and maximum genet age estimates of all three acroporids; and 4) the history of 89 

hybrid colonization at these sites. We found Acropora populations to be highly clonal with local 90 

recruitment primarily occurring through asexual fragmentation. We also estimated the ages of 10 91 

Acropora genets using recent methodology based on somatic mutation rates from genetic data. 92 

Results indicate minimum ages between 62 – 409 years old for A. cervicornis, between 187-561 93 

years for A. palmata, and between 156-281 years old for the Acropora hybrids at these sites. Our 94 

data indicate that existing A. cervicornis, A. palmata, and Acropora hybrid genets persisted 95 

during the 1980s Caribbean-wide Acropora spp. collapse, suggesting that these sites have been a 96 

refuge for Caribbean Acropora corals. Additionally, our data suggest that formation of extant 97 

hybrid Acropora genets predates the widespread collapse of its parent taxa.  98 

 99 

introduction 100 
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The global decline of shallow coral populations in response to increasing sea-surface 101 

temperatures, overfishing, rising sea level, disease, eutrophication, sedimentation, and ocean 102 

acidification has been well documented (Hughes 1994; Hughes et al. 2003; Bellwood et al. 2004; 103 

Hoegh-Guldberg et al. 2007; Kuffner et al. 2015). Caribbean populations of Acropora 104 

cervicornis and Acropora palmata (Fig. 1), two of the most important Caribbean reef 105 

framework-builders, have experienced up to 98% mortality over just a few decades in response 106 

to increasing environmental stress and disease prevalence (Gladfelter 1982; Aronson and Precht 107 

2001; Pandolfi 2002; Gardner et al. 2003; Eakin et al. 2010; Randall and van Woesik 2015). 108 

Consequently, these were the first two coral species listed as threatened under the US 109 

Endangered Species Act (NOAA 2005).  110 

Despite Caribbean-wide declines, relatively abundant A. cervicornis and A. palmata 111 

populations have been reported in Honduras (Keck et al. 2005; Purkis et al., 2006), the 112 

Dominican Republic (Lirman et al. 2010), Mexico (Larson et al. 2014), Florida (Fort Lauderdale 113 

area; Vargas-Angel et al. 2003), and Belize (Peckol et al. 2003; Brown-Saracino et al. 2007; 114 

Macintyre and Toscano 2007; Busch et al. 2016). These studies have variably included general 115 

habitat surveys, quantification of percent of algal and live coral coverage, Acropora colony sizes, 116 

number of Acropora colonies, fish and invertebrate population densities, image-based spatial 117 

characterization, and disease prevalence, but none included genetic data.  118 

Genotypic diversity (the number of distinct genotypes or clones per species per site) is a 119 

critical factor when assessing the long-term population trends and evolutionary potential of these 120 

sites because Caribbean acroporids do not self-fertilize and thus sexual reproduction requires the 121 

presence of several genotypes (Szmant 1986; Baums et al. 2005a; Baums et al. 2006; Fogarty et 122 

al. 2012). Clonal reproduction is also an important process in many populations. Caribbean 123 
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acroporids experience frequent breakage due to physical impacts such as storms and anchor 124 

damage. Branches are genetically identical to their donor colonies (ie. ramets of the same genet) 125 

and can re-attach to the benthos. Once re-attached they grow into new colonies, usually within 126 

10s of meters of the donor colony (Highsmith 1982; Lirman 2000, Baums et al. 2006; Williams 127 

et al. 2008). This sometimes results in large areas of a reef dominated by a single genotype 128 

(Baums et al. 2006). Genotypic diversity of foundation fauna has been associated with overall 129 

population health and has been predicted to have a positive relationship with persistence during 130 

adverse conditions by providing a diverse set of alleles to the population (Altizer et al. 2003; 131 

Reed and Frankham 2003; Reusch et al. 2005, Downing et al. 2012; Williams et al. 2014). 132 

However, recent findings show that genotypic diversity in Acropora populations does not 133 

necessarily increase their sustainability over short time scales as predicted (Williams et al. 2014). 134 

Thus, the role of genotypic diversity in persistence remains unclear. 135 

A. cervicornis and A. palmata hybridize to form “Acropora prolifera”, the only known 136 

scleractinian hybrid in the Caribbean (Fig. 1; van Oppen et al. 2000; Vollmer and Palumbi 2002; 137 

Willis et al. 2006). The hybrid has not been found in the fossil record (Budd et al. 1994), and has 138 

been reported as rare compared to its parents (Lang et al. 1998; Willis et al. 2006; Fogarty, 2007; 139 

Fogarty 2012). However, recently it has been observed more frequently and in higher abundance 140 

in Florida (Wheaton et al. 2006), Curaçao (Fogarty 2010), Honduras (Keck et al. 2005), the 141 

Lesser Antilles (Japaud et al. 2014), and Belize (Fogarty 2010; Fogarty et al. 2012; Richards and 142 

Hobbs 2015). The apparent recent increase in the hybrid may suggest either that hybridization is 143 

now occurring more frequently, or that hybridization has always occurred, but environmental 144 

conditions now favor maturation of hybrid larvae over those of the diminishing parent species 145 

(Willis et al. 2006).  146 
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In this study, we analyzed genetic data of A. cervicornis, A. palmata, and the hybrid from 147 

Coral Gardens, Manatee Channel, and Rocky Point, sites offshore of Ambergris Caye, Belize, 148 

where acroporids are highly abundant (Table 1, Fig. 2). At these sites our specific objectives 149 

were to: 1) determine genotypic diversity of Acropora taxa; 2) calculate the degree to which 150 

sexual vs. asexual recruitment has occurred; 3) estimate the age of Acropora genets; and 4) 151 

determine the history and nature of hybrid colonization. To do this, we analyzed data from 152 

microsatellite loci to identify genets and ramets and subsequently draw inference about the 153 

genotypic diversity, as well as the degree of asexual versus sexual reproduction in recruitment to 154 

these sites (Baums et al. 2005b). We will refer to a “genet” as an assemblage of genetically 155 

identical colonies (clones) that are descendants of a single zygote (Harper 1977, Hughes 1989, 156 

Carvalho 1994), and a genet’s component colonies as “ramets” (Kays and Harper 1974) or clone 157 

mates. Amethod based on accumulation of somatic mutations in clonal organisms (Weiher et al. 158 

1999; Eriksson 2000; Ally et al. 2008; de Witte and Stocklin 2010), recently adapted to study 159 

Acropora genets (Devlin-Durante et al. 2016), was applied to estimate clonal age and assess the 160 

history of Acropora spp. and A. prolifera hybrid persistence at these sites. ). We analyzed clonal 161 

age data for all Acropora taxa to determine persistence and, for the hybrid at our study sites, to 162 

elucidate the history of its emergence and spread. 163 

 164 

materials and methods 165 

Study Site 166 

The three reef sites sampled lie within roughly a 50-km distance between Caye Caulker 167 

to the south and the northern end of Ambergris Caye in Belize (Fig. 2). Coral Gardens 168 
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(17°50'00.36"N, 87°59'32.45"W, Table 1, Fig. 1) is a shallow-water back reef setting with a 169 

maximum depth of ~7m. It is comprised of lagoonal patch reefs dominated by interconnected 170 

thickets of A. cervicornis, large peripheral colonies of A. palmata, and small hybrid colonies. 171 

The Acropora thickets are interspersed with mixed coral stands dominated by Orbicella, 172 

Agaricia, Porites, and Millepora species, and areas of sandy bottom.  Peckol et al. (2003) and 173 

Brown-Saracino et al. (2007) reported live coral cover (all species) in this area exceeding 43%. 174 

More recently, Busch et al. (2016) reported an average value of ~30% live A. cervicornis coral 175 

cover (species specific) in the Acropora thickets sampled in this study. The extent of live 176 

Acropora thickets in the greater Coral Gardens area exceeded 7.5 hectares in 2015, making it one 177 

of the largest documented sites of its kind in the Caribbean (Busch et al. 2016).   178 

Manatee Channel (17°47'58.08"N, 87°59'45.57"W; Table 1, Fig. 2) is approximately 1-2 179 

m deep and located just inside the reef crest. It is comprised of patch reefs dominated by thickets 180 

of the hybrid and scattered stands of A. cervicornis and A. palmata. Acroporid thickets and 181 

colonies are surrounded by mixed coral stands dominated by Orbicella, Agaricia, Porites, and 182 

Millepora species and sandy bottom. Manatee Channel has been previously described in the 183 

literature by Fogarty (2012) as “north Caye Caulker.”   184 

Rocky Point, (18°12'37.95''N, 87°82'60.64"W; Table 1, Fig. 2) approximately 2-3 m 185 

depth, is dominated by individual colonies and small patches of the hybrid, both parent species, 186 

and some colonies of Orbicella, Porites, and Siderastrea species (Figures 2 and 3). Rocky Point 187 

lies within the Bacalar Chico National Park and Marine Reserve and is the only site among our 188 

study locations with marine protected area (MPA) status.  189 

Sampling 190 
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 Live coral samples approximately 1 cm3 were collected from Acropora branch tips using 191 

surgical bone cutters. Samples were preserved in 95% ethanol and refrigerated prior to DNA 192 

extractions. Coral tissue samples were collected from Coral Gardens in June of 2013 and 2014, 193 

and from Manatee Channel and Rocky Point in June 2014. In 2013, coral tissue was collected at 194 

Coral Gardens from haphazardly selected A. cervicornis colonies (n=60) within the reef 195 

boundary, and each observed colony of A. palmata (n=78) and the hybrid (n=48) was sampled. 196 

Additional sampling in 2014 was designed to increase the likelihood of sampling ramets of the 197 

same genet: At Coral Gardens, A. cervicornis samples (n=158) were collected from 5-m radius 198 

plots in which a center point was designated and samples were collected along 4 randomly 199 

generated headings (at least 5° apart) every 1 m for a total of 20 samples per plot. The likelihood 200 

that the same colonies were sampled in 2013 and 2014 is small. At Manatee Channel, hybrid 201 

samples (n=80) were collected using the same circle plot method, with 4 plots (20 samples per 202 

plot) placed at areas of largest abundance and never overlapping. All observed colonies of A. 203 

cervicornis (n=20) and A. palmata (n=15) across the entire site were also sampled. We defined a 204 

colony as a continuous, upright entity of living coral attached to a base or seafloor. At Rocky 205 

Point the hybrid was sampled haphazardly (n=32) due to irregular patch shape. A. cervicornis 206 

and A. palmata were not sampled at this site.  207 

Genotypic Analysis  208 

Nuclear DNA was extracted from tissue of 3-5 polyps using the Qiagen DNEasy kit 209 

(Qiagen, Germany) and protocol with the following modifications: 1) we performed proteinase K 210 

digestion overnight at 56°C in a stationary water bath; and, 2) precipitates were dissolved in 211 

Buffer AL for 10 minutes 56°C in a stationary water bath.  We amplified five microsatellite loci 212 

(166, 181, 182, 192, 207) via polymerase chain reaction in two multiplexes following methods 213 
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described by Baums et al (2005a). Locus 192 does not amplify in A. cervicornis and amplifies 214 

only the A. palmata allele in the hybrid (making the marker appear homozygous). Fragment 215 

lengths were determined using an ABI 3730 (Gene Scan 500-Liz, Applied Biosystems) and 216 

electropherograms were scored using GeneMapper Software 3.0 (Applied Biosystems).   217 

Data Analyses 218 

Genotypic diversity:   219 

We used data from highly polymorphic microsatellite loci to identify unique genotypes 220 

(genets). Samples were considered ramets of the same genet, i.e. genotypically identical colonies 221 

arisen from fragmentation, if they have identical genotypes across all five or four loci, or if they 222 

have identical genotypes across all five or four (A. cervicornis) loci with an additional allele(s). 223 

Because of the smaller number of loci retrieved for A. cervicornis the power to distinguish 224 

clonemates from closely related individuals is lower for A.cervicornis (average Pgen = 1.11-04) 225 

than the other taxa (A palmata average Pgen = 2.99-07, hybrid average Pgen = 2.74 -05). 226 

Nevertheless, using MLGSim 2.0 (Stenberg et al. 2003) we determined that each of the identified 227 

genets, regardless of taxon, was highly likely to be the product of random mating within the 228 

population (Psex, p<0.05 for each genet).  229 

In addition, samples with matching genotypes across four or three (A. cervicornis) loci 230 

were also considered to be ramets of a single genet if the fifth or fourth (A. cervicornis) locus 231 

only differed by single- or double-step mutations. Such genotypic differences among ramets 232 

were assumed to arise via mutations in somatic cell lines that can accumulate with age (Devlin-233 

Durante et al. 2016; see below). We calculated diversity metrics following methods described in 234 
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Baums et al (2006) as adapted from Stoddart and Taylor (1988). Observed genotypic diversity 235 

(Go) within and among sampling sites for each species was calculated as: 236 

1
∑ 𝑔௜

ଶ௞
௜

 237 

Where gi is the relative frequency of an observed genotype among all (k) genotypes. Expected 238 

genotypic diversity under the condition of exclusively sexual reproduction (Ge) is assumed equal 239 

to the number of colonies sampled (i.e. sample size, n), since only one sample was collected 240 

from each separate colony. Thus, the ratio Go/Ge provides an index of genotypic diversity within 241 

the population that captures the relative degree to which sexual reproduction contributes to 242 

recruitment. Genotypic evenness is represented as the ratio of observed genotypic diversity 243 

versus genotypic richness (Go/Ng), where Ng is the number of unique genets in the sample. 244 

Finally, we calculated standardized genotypic richness among and within sites relative to sample 245 

size (Ng/n).  Baums et al. (2006) use these metrics to draw conclusions about the demography of 246 

local recruitment, classifying sites with high clonality as “asexual” (most colony recruitment 247 

arising from fragmentation) and those with the low clonality as “mostly sexual” (recruitment 248 

arising from sexual reproduction and settlement of planulae). We used values for these metrics 249 

from this study and those from Baums et al. (2006) to make relative inferences about clonal 250 

structure and recruitment of Acropora at our sites compared to others in the Caribbean.   251 
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Somatic mutations: 252 

Genotypes accumulate somatic mutations over time.  Assuming a constant mutation rate, the 253 

number of somatic mutations can be used to estimate the age of the genome by applying 254 

coalescent methods (Ally et al. 2008). Microsatellites are ideal for estimating genetic divergence 255 

because they have high mutation rates and low technical error rates. Hence, they can provide 256 

adequate resolution of somatic mutations. A ramet was identified as having a somatic mutation if 257 

there was an amplification of an additional allele/s, but alleles were otherwise identical at all 5 or 258 

4 (A. cervicornis) loci (Devlin-Durante et al. 2016). While the appearance of an additional allele 259 

at a locus (rendering an individual polyploid instead of diploid at this locus) may seem odd, it 260 

has been deemed common in A. palmata, and predicted to occur due to genomes accumulating 261 

somatic duplications over time.  262 

As somatic gene duplications accumulate, multiple copies of the microsatellite locus 263 

become available for replication slippage (Devlin-Durante et al. 2016). For example, consider 264 

the case where an unmutated ramet had the ancestral genotype of allele 1 = 160 bp, allele 2 = 265 

172 bp (in short: 160/172) at locus 1, whereas a mutated ramet had alleles of 160/172/175 at 266 

locus 1. In this instance, the ramet mutated when its second allele duplicated, and the new third 267 

allele underwent a single-step mutation, adding a tri-nucleotide repeat. Alternatively, one of the 268 

alleles may have mutated in some of the cells or polyps without a prior gene duplication event 269 

(Devlin-Durante et al. 2016).  Because DNA was extracted from multiple polyps this could also 270 

lead to the appearance of three alleles in the electropherograms.  A ramet was also identified as 271 

having a somatic mutation if it matched a genotype across four or three (A. cervicornis) loci, but 272 

at the fifth or fouth (A. cervicornis) locus only differed by single- or double-step mutations.  273 
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Next we required that a genet have at least five ramets, a minimum requirement set by 274 

Devlin-Durante et al. (2016) to improve accuracy of aging.  The mutation rates established by 275 

Devlin-Durante et al. (2016) (lowest=1.542-05 per locus per year, highest=1.195-04 per locus 276 

per year) were then applied to the equation described in Ally et al. (2008) to obtain minimum and 277 

maximum ages of each genet. The methods for calculating clonal age utilizing genetic 278 

divergence are described in Ally et al. (2008). In brief, there are two statistics, πk and Sk, that 279 

describe genetic divergence within a clone (Slatkin 1996). We calculated the average number of 280 

pairwise differences per locus for the kth clone 281 

𝜋௞ ൌ
1

൫௡ଶ൯
෍ ෍ s௜௝

௡

௝ୀ௜ାଵ

௡ିଵ

௜ୀଵ

 282 

where n is the number of sampled ramets and sij is the number of genetic differences between 283 

ramet i and j averaged across loci (Ally et al. 2008). We chose πk to measure the level of genetic 284 

divergence because it has been shown to be more robust to deviations from a starlike phylogeny 285 

than Sk (the observed proportion of polymorphic loci) (Ally et al. 2008). 286 

 287 

results 288 
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Genotypic diversity 289 

Collectively we identified 18 genets among n = 227 individuals of A. cervicornis 290 

sampled, 31 genets among n = 92 A. palmata, and 14 genets among n = 147 hybrid samples 291 

(Table 2). Acroporids at our study sites showed a range in genotypic diversity suggesting that 292 

local recruitment in some locations was predominantly asexual, i.e. supported by fragmentation, 293 

while at other sites recruitment was supported to a greater degree by sexual reproduction (Table 294 

2; Fig.3). At Manatee Channel, all hybrid colonies (n=70) shared the same genotype and were 295 

therefore ramets of a single genet (Table 2, Fig. 3). Thus, recruitment of existing hybrid colonies 296 

at Manatee Channel had occurred only through fragmentation from existing colonies. By 297 

contrast, A. cervicornis and A. palmata at Manatee Channel showed the highest genotypic 298 

diversity (Go/Ge = 0.26 and 0.37 respectively) and evenness (Go/Ng = 0.62 and 0.69 respectively) 299 

among locations1, indicating that a substantial proportion of local recruitment was via sexual 300 

reproduction (following Baums et al. 2006; Table 2, Fig. 3). Coral Gardens was characterized by 301 

low genotypic diversity across all three taxa, indicating a high degree of asexual recruitment 302 

(Table 2, Fig. 3). It is possible but unlikely that a few individual colonies were re-sampled from 303 

2013 to 2014. If so, this could partially contribute to the low genotypic diversity seen at Coral 304 

Gardens. Rocky Point, at which only hybrids were sampled, was characterized by low genotypic 305 

diversity and predominantly asexual recruitment as well (Table 2, Fig. 3). 306 

When samples were pooled across all three sites, both diversity and evenness metrics 307 

were relatively low and indicated predominantly asexual recruitment (Table 2, Fig. 3). Overall, 308 

A. palmata showed the highest genotypic diversity (Go/Ge=0.0.43), evenness (Go/Ng=0.15), and 309 

 
1 Note that although the calculated value for evenness is highest for A. prolifera hybrid at Manatee Channel (Go/Ng 
= 1), this value is not meaningful as all individuals shared the same genotype. 
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richness (Ng/N=0.34) across all three species (Table 2, Fig. 3). A. cervicornis and the hybrid 310 

were comparatively much lower in genotypic diversity and richness (Table 2, Fig. 3).  311 

Somatic Ages  312 

From our 466 Acropora samples, we were able to calculate preliminary minimum and 313 

maximum age estimates for 10 of the 63 genets (Table 3). We were unable to estimate ages for 314 

the remaining 53 genets using this method either because we sampled fewer than five ramets of 315 

that genet (44 genets) or because there were no observed somatic mutations in the loci amplified 316 

(9 genets). In the latter scenario, we concluded these genets lack somatic mutations because they 317 

are of recent origin.  318 

At Coral Gardens, A. cervicornis genets were estimated to be between 62-460 years old 319 

(two genets), 179-1337 years old (one genet), 393-2931 years old (one genet), and 409-3052 320 

years old (one genet) (Table 3). A. palmata genets at this site were estimated to be between 187-321 

1397 years old (one genet), 219- 1636 years old (one genet), and 561-4191 years old (one genet) 322 

(Table 3). A single hybrid genet at this site was estimated to be between 281-2096 years old 323 

(Table 3). At Manatee Channel, no somatic mutations were observed at these loci for any A. 324 

cervicornis, A. palmata, and hybrid genets. At Rocky Point, we were able to estimate the age for 325 

one hybrid genet to be between 156-1164 years old (Table 3).  326 
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discussion 327 

In this study we had the rare opportunity to analyze large living stands of ecologically 328 

significant Acropora spp. and the hybrid they form, at a time when the existence of acroporids in 329 

the Caribbean is in peril. From our collection and analyses of 466 samples, we determined that 330 

acroporids offshore of Ambergris Caye, Belize were mostly clonal, with little sexual recruitment. 331 

Although genetic diversity was low, we found that both veteran and more recent genets were 332 

represented in all three acroporid taxa at these sites. Furthermore, our data suggested that hybrid 333 

colonization at some of these sites pre-dated the widespread Caribbean collapse of its parent 334 

acroporid species.   335 

The genotypic diversity and evenness of acroporid populations at our study sites was low 336 

overall, with the exception of A. palmata and A. cervicornis at Manatee Channel, which 337 

exhibited a relatively high degree of genotypic diversity and evenness. From this information, we 338 

deduced that there is minimal input from local sexual reproduction or from ‘upstream’ source 339 

populations for all three Caribbean acroporids at Coral Gardens and the hybrid at Manatee 340 

Channel and Rocky Point. Only the Manatee Channel A. palmata and A. cervicornis samples in 341 

our study indicated substantive inputs from sexual reproduction. This may be due to localized 342 

variation in current patterns or subsequent differences in delivery or retention of planulae at these 343 

sites. A similar prevalence of asexual recruitment was observed by Baums et al. (2006) at a 344 

nearby A. palmata population in Chinchorro, Mexico (~49 km north of our northernmost site, 345 

Rocky Point), as well as in most other A. palmata populations at Western Caribbean sites 346 

(Baums et al. 2005b). Our results further validate their claim that Western Caribbean Acropora 347 

populations exhibit little sexual reproduction.   348 
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Previous studies from other abundant Acropora sites predicted that large populations 349 

were critical sources of propagules that might contribute to genetic diversity and coral coverage 350 

at neighboring sites (Keck et al. 2005; Zubillaga et al. 2008; Lirman et al. 2010, Vargas-Angel et 351 

al. 2003). However, because Caribbean acroporids usually do not self-fertilize, production of 352 

sexual offspring is a function of the number of genotypes present and not just a function of 353 

colony density or size (Levitan and McGovern 2005; Fogarty et al. 2012; Williams et al. 2014). 354 

Our study suggests that while Coral Gardens may be the largest extant acroporid site in the 355 

Caribbean (Busch et al., 2016), this may not translate into successful downstream sexual 356 

recruitment. Only observation of spawning and gamete-crossing experiments at these sites would 357 

provide additional insight into the production of gametes by these stands.  358 

Although the genotypic diversity is generally low, our age estimates of acroprid genets 359 

vary. Using a new genetic aging technique, we were able to estimate age ranges for 10 genets in 360 

this study. While the uncertainty in the age range estimates may be considerable (Devlin-Durante 361 

et al. 2016), we believe that the more conservative minimum age estimates may be valuable at 362 

least in distinguishing new from ‘older’ genets. Our data suggested that both new (minimal 363 

somatic mutations) and veteran (minimum ages from 62-561 years) genets co-exist at these sites 364 

and that veteran Belize acroporids pre-date the widespread Caribbean collapse of acroporids. 365 

Future determination of microsatellite mutation rates in Acropora coral would help to narrow the 366 

currently rather wide range for age estimates.  367 

Two of the veteran genets we identified are from hybrid samples. We estimated that these 368 

hybrid genets have existed for at least 156 and 281 years, respectively. It is thought that the 369 

hybrid only recently expanded its presence in Caribbean reef areas (Willis et al. 2006, Fogarty 370 

2010, Richards and Hobbs 2015); however, no data on the ages of extant hybrid genets exist in 371 
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the literature. Here we show that at least a few hybrid genets originated before the Caribbean 372 

wide acroporid die-off event in the 1980s. It is unclear whether the persistence of A. cervicornis, 373 

A. palmata, and hybrid veteran genets at our sites is a function of: 1) their innate ability to 374 

rebound from disturbances (Eriksson 2000; Riegl et al. 2009); 2) whether certain colonies simply 375 

got lucky and survived environmental changes at random; or 3) whether environmental or 376 

oceanographic conditions at this site have been particularly conducive to acroporid persistence at 377 

these sites.  378 

Our study sites are home to acroporid populations observed in high abundances in a time 379 

when they are facing Caribbean-wide decline. The existence of Acropora populations like these 380 

provides hope that perhaps these species and their hybrid can continue to persist. However, 381 

without analyzing the demographic processes of such populations, their potential resilience 382 

cannot be known. Here, we studied genotypic diversity and age in unison. The genotypic 383 

diversity of acroporids at our study sites was relatively low, which when considered alone does 384 

not bode well with respect to the potential of these populations to combat future environmental 385 

stresses (Schmid 1994; Steinger et al. 1996; Reusch et al. 2005; Garcia et al. 2008; Williams et 386 

al. 2008). However, we also know that some of the genets in these populations are relatively old 387 

and may have survived past environmental stresses, perhaps due to increased (and unknown) 388 

fitness attributes. Such veteran populations have hypothesized potential to expand (Noss 2001; 389 

Taberlet and Cheddadi 2002; Loarie et al. 2008; Keppel et al. 2012). Thus, we are left with two 390 

contradicting conclusions: the populations have low genotypic diversity so they are vulnerable to 391 

environmental change, and the populations have veteran genets whose past fitness may indicate 392 

that they will continue to survive in the future. In either scenario, these sites have potential to be 393 

valuable resources to Acropora spp. recovery initiatives, and should be investigated further. We 394 
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hope that the methods applied here can be useful to future studies that aim to identify sites of 395 

conservation priorities.  396 
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 572 

figure captions 573 

Fig. 1 Caribbean Acropora species: A) Acropora cervicornis, or Staghorn coral; B) A. palmata, 574 

or Elkhorn coral; C) “A. prolifera”, the hybrid of A. cervicornis and A. palmata, also known as 575 

“Fused Staghorn” coral; all from Coral Gardens, Belize. 576 

Fig. 2 Map of Belize, inlayed with map of study sites Coral Gardens, Manatee Channel, and 577 

Rocky Point. Reef area is depicted in blue.  578 

Fig. 3 Comparison of genotypic diversity and evenness metrics calculated in our study with 579 

those calculated by Baums et al (2006) for Caribbean populations of A. palmata, with inference 580 

on demography of local recruitment. Values for our locations are labeled by site (MC, Manatee 581 

Channel; CG, Coral Gardens; RP, Rocky Point; BZ, Belize i.e. all sites combined) and color 582 

coded by species (blue, A. cervicornis; red, A. palmata; green, hybrid). Data from Baums et al. 583 

(2006) are shown as unfilled circles. Ellipses grouping sites according to relative degree of 584 

sexual versus asexual recruitment are redrawn from Figure 4 in Baums et al. (2006). 585 


