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Researchers in recent years have endeavored to integrate MOFs on 
microfluidics to fabricate biosensors with advantages from both MOFs 
and microfluidics. MOFs can be embedded inside microfluidic channels. 
Due to the high surface area, high pore volume, abundant ingredients 
and groups, the MOFs-based microfluidic biosensor can achieve great 
analytical performance. In 2019, Chen’s group introduced a microfluidic 
device integrated with a biosensor based on MOFs and enzymes 
(Mohammad et al., 2019). Biomineralization of enzymes in MOFs to 
improve enzyme stability and polydopamine/polyethyleneimine 
(PDA/PEI) coating to pattern enzyme/MOFs in microfluidic channels 
were employed to assemble biosensors in a polydimethysiloxane 
(PDMS)-based microfluidic device. They combined a cascade reaction of 
glucose oxidase (GOx) and HRP enzyme in a patterned ZIF-8 thin film to 
detect glucose. ZIF-8/GOx&HRP in situ exhibited high selectivity toward 
glucose, obtaining a LOD of 8 μM for glucose detection. Significantly, the 
team found the ability of the ZIF-8 thin-film structure to provide a 
diffusion-limiting effect for substrate influx in a microfluidic channel, 
achieving a wide linear range from 8 μM to 5 mM of glucose. A similar 
phenomenon for a wide linear range was also observed in our recent 
work in ultrasensitive on-chip immunoassays (Sanjay et al., 2020). 
Moreover, the combination of MOF-based biosensors with microfluidics 
enables rapid, sensitive, in situ detection of pollutants to improve public 
environmental safety. In 2020, Cheng et al. developed a MOF-based 
impedance sensor using a microfluidic platform for ultrasensitive in 
situ detection of perfluorooctanesulfonate (PFOS) (Cheng et al., 2020). 
This work demonstrated a synergistic approach for the targeted 
affinity-based capture of PFOS using a porous sorbent probe, which 
enhanced detection sensitivity by embedding the probe on a micro
fluidic platform. The mesoporous MOF Cr-MIL-101 with high surface 
areas and pore volumes was used as the probe for the targeted PFOS 
capture based on the affinity of the chromium center toward both 
fluorine tail groups as well as the sulfonate functionalities. The MOF 
capture probes were sandwiched between interdigitated microelec
trodes in a microfluidic channel, forming an impedance sensor in a 
portable microfluidic device. This microfluidic platform integrated with 
a MOFs-based sensor exhibited ultrasensitivity for the rapid in situ 
detection of PFOS. The LOD was obtained as 0.5 ng/L, which was 
comparable to that of state-of-the-art ex situ techniques (Fig. 9b). 

7. Conclusion and future perspectives 

This article reviews recent advances of various aptamer- 
functionalized MOF-based sensors and their bio-applications. Due to 
the variable composition and groups of MOFs, aptamer can functionalize 
MOFs easily and stably with different methods for the target recognition. 
For signal transduction, MOFs act not only as signal probes directly, but 
also as carriers for loading signal probes. Due to remarkable advantages 
of MOFs and aptamers, numerous MOFs-based aptasensors have been 
developed and widely used in various applications with high sensitivity 
and high specificity. The integration of MOFs on microfluidic devices 
allows controlled synthesis of MOFs and high-performance biosensing 
on the GO. 

However, MOFs-based aptasensors still face some challenges to 
overcome in order to obtain highly effective aptasensors. First, it is still 
challenging to control their shape and size, particularly in environ
mentally friendly syntheses, whereas the size, morphology, and struc
ture of MOFs can significantly affect a sensor’s performance. To obtain 
an aptasensor with great sensitivity and accuracy, synthesizing nano
scale MOFs with uniform structures to improve active areas of the 
sensing interface and promote the mass/electron transfer efficiency will 
be an effective method. MOF synthesis using microfluidic platforms may 
provide a superior solution to address these challenges. Second, the 
effective and precise immobilization of aptamers on specific sites of 
MOFs is a key factor for the reproducibility of biosensors. Therefore, the 
introduced decorated groups, the functionalization methods, and the 
ratio of aptamers per MOF may need to be systematically studied. To 

overcome this challenge, developing theoretical models by computa
tional methods to analyze the functionalized aptamers amount can 
contribute to the improvement of functionalization efficiency, sensing 
accuracy and reproducibility. Third, not all targets have their corre
sponding aptamers available, and the availability of aptamers to 
different targets is still limited. Additionally, the specificity of aptamers 
in complex matrixes, such as whole blood, is not high at times and thus 
needs to be further improved. Moreover, MOFs-based biosensors are 
often not portable, inconvenient to operate, and not suitable for in situ 
and practical applications. The demand for portable devices is 
increasing in many fields, such as POC diagnostics, rapid on-site infec
tious disease screening, global health in developing nations, environ
mental surveillance, and food safety inspection. The integration of 
MOFs-based biosensors with the microfluidic technology provides a 
unique opportunity for the future development of portable devices to 
meet such demand and has great potential for wide applications, though 
such a combination is still at its early stage. Overall, with a promising 
future ahead, new significant advances in MOFs-based biosensors 
require close collaborations from multiple disciplines, such as material 
science and engineering, nanoscience and technology, microfluidics, 
analytical chemistry, biosensors, biology, and biomedical science and 
applications. 
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