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ABSTRACT

Scientific computing needs are growing dramatically with time and

are expanding in science domains that were previously not compute

intensive. When compute workflows spike well in excess of the

capacity of their local compute resource, capacity should be tem-

porarily provisioned from somewhere else to both meet deadlines

and to increase scientific output. Public Clouds have become an

attractive option due to their ability to be provisioned with minimal

advance notice. The available capacity of cost-effective instances is

not well understood. This paper presents expanding the IceCube’s

production HTCondor pool using cost-effective GPU instances in

preemptible mode gathered from the three major Cloud providers,

namely Amazon Web Services, Microsoft Azure and the Google

Cloud Platform. Using this setup, we sustained for a whole workday

about 15k GPUs, corresponding to around 170 PFLOP32s, integrat-

ing over one EFLOP32 hour worth of science output for a price tag

of about $60k. In this paper, we provide the reasoning behind Cloud

instance selection, a description of the setup and an analysis of the

provisioned resources, as well as a short description of the actual

science output of the exercise.
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1 INTRODUCTION

Scientific computing needs are growing dramatically with time and

many communities have to occasionally deal that workloads that

exceed the capacity of their local compute resource. At the same

time, public Cloud computing has been gaining traction, including

funding agencies starting to invest in this sector; examples being

NSF’s E-CAS and CloudBank awards, and the European Cloud

Initiative. Cloud computing, with its promise of elasticity, is the

ideal platform for accommodating occasional spikes in computing

needs. In a past exercise [1] we demonstrated that it is possible to

provision and effectively use up to 380 PFLOP32s (i.e. fp32 PFLOPS)

of GPU-based compute from the Clouds, but that was executed

as a short burst during a carefully chosen timeframe and without

budgetary constraints.

We thus decided to perform a second Cloud-based run, with the

additional goal of showing the available capacity during a typical

workday while restricting ourselves to only the most cost-effective

Cloud instance types in either spot or preemptible mode. We have

also foregone the use of a dedicated setup, combining the provi-

sioned Cloud resources with an existing resource pool. We believe

than any production user would use a similar setup.

Like in the previous exercise, the chosen application was Ice-

Cube’s photon propagation simulation [2], for technical (heavy

use of GPU at modest IO) and scientific reasons (high impact sci-

ence). IceCube follows the distributed High Throughput Computing

(dHTC) paradigm and has an existing HTCondor [3] setup that reg-

ularly provisions resources from external sources, including the

Open Science Grid (OSG) [4], the Extreme Science and Engineering

Discovery Environment (XSEDE) and the Pacific Research Platform

(PRP) [5]. We again provisioned resources from multiple public

Cloud providers, and used several geographically distributed re-

gions in each, too.
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We executed the run on a Tuesday during work hours, without

any coordination with or even advance notification of the Cloud

providers. The observed plateau was about 15k GPUs of the most

cost-effective type, which provided about 170 PFLOP32s (i.e. fp32

PFLOPS) and 64M GPU cores. The run latest about 8 hours, with the

plateau being sustained for 6 hours, resulting in a total integrated

compute of approximately one EFLOP32 hour.

Section 2 provides an overview of the multi-Cloud setup, includ-

ing the reasoning behind choosing specific Cloud instance types and

the description of the provisioned resources. Section 3provides an

analysis of the effectiveness of the setup from the application point

of view. Section 4 provides a description of input data handling.

And, finally, section 5 describes the science behind the simulation

application as well as a summary description of the simulation code

internals.

1.1 Related work

Running scientific workloads in the public Cloud is hardly a novel

idea, nor is integration of Cloud resources in existing resource

pools [1, 6]ś[8]. This work is however novel in that it provides a

measurement and cost analysis of available Cloud capacity across

multiple public Cloud providers, with a focus on cost-efficient GPU

resources in preemptible mode. Moreover, running an unmodified,

production scientific code in such a setup is also quite unusual.

2 THE MULTI-CLOUD, MULTI-REGION

SETUP

One of the main objectives of this Cloud run was to show how

much spare cost-effective GPU capacity is available on a typical

workday in three public Cloud providers, namely Amazon Web

Services (AWS), Microsoft Azure and Google Cloud Platform (GCP),

which also implied that resources had to be provisioned from Cloud

regions located all over the world. We chose to use the two most

cost-effective GPU types offered by each Cloud provider, based

on runtimes and list cost analysis performed after the previous

exercise [1]. This meant NVIDIA Tesla T4 and V100 GPUs for AWS

and GCP, and NVIDIA Tesla P40 and V100 GPUs on Azure. We

requested only spot instances on AWS and Azure, and preemptible

instances on GCP.

The workload management system used was the existing Ice-

Cube’s HTCondor system, to which we added a couple of additional

scheduling and collector nodes to support the additional load. Sim-

ilarly to the previous exercise, the provisioned Cloud resources

were launched using spot fleets on AWS, Virtual Machine Scale Sets

on Azure, and Instance Groups on GCP. For each Cloud platform

we had a customized image based on CentOS Linux, containing a

fully configured HTCondor worker setup, and using CVMFS [9]

for software distribution. We also deployed a service instance in

each Cloud region, which served both as a HTCondor collector

concentrator and CVMFS cache.

The Cloud run was executed on a Tuesday in February, starting

around 9:45am PST and was sustained until about 5:45pm PST. We

chose to first provision T4 GPU instances only, since we expected

them to be the most cost-effective ones. The other GPU types were

added only after reaching an apparent plateau for the T4 GPUs,

as shown in Figure 1. In the same figure you can also see how

the GPU instances were distributed across the various geographic

regions. The resources came from 25 Cloud regions and 20 on-prem

locations distributed across the four major geographical areas.

The number of GPUs provisioned at peak during this run was

much smaller than in our previous all-GPU exercise, when we man-

aged to reach over 51k GPUs. Nevertheless, the provisioned GPUs

were on average significantly more powerful, so during the plateau

we reached approximately 170 PFLOP32s of compute, almost half

compared to the 380 PFLOP32s of the all-GPU Cloud run, but still

significantly more than the biggest XSEDE system currently de-

ployed. And the total integrated compute exceeded one EFLOP32h,

or 1000 PFLOP32 hours, with about one third coming from T4 GPUs,

as seen in Figure 2. The FLOP32s represent the peak fp32 FLOPS

provided by NVIDIA specs for the GPUs involved.

While we are not authorized to release the precise cost of this

Cloud run, we can provide an approximate value. The total cost of

this Cloud run was roughly $60,000, with the T4 providing Cloud

instances costing about $9,000 in total. Thismeans that the instances

providing NVIDIA T4 GPUs are about twice as cost-effective as

the sum of all resources used, since they delivered approximately

30% of the integrated compute at 15% of the price. Using only T4

GPUs would have of course drastically lowered the FLOP32s being

sustained during the plateau.

This run thus demonstrated that it is indeed possible to get

significant cost-effective compute capability out of the public Cloud

providers, if one can live with preemption and can aggregate the

resources from many independent sources. Using T4 GPUs alone,

one can apparently add about 40 PFLOP32s worth of compute to

an existing pool for slightly more than $1,000/h, and about 170

PFLOP32s for roughly $10,000/h.

3 THE APPLICATION VIEW OF THE SETUP

Aggregating a large amount of compute power is an interesting

system administrator exercise, but did it actually allow the IceCube

application to perform the desired science computation?

The provisioned Cloud resources used spot instances from AWS

and Azure, and preemptible instances from GCP because they are

priced at about 1/3rd the price of the on-demand equivalents. This

implies that some waste had to be expected due to preemption. The

used application, IceCube photon propagation simulation, does not

use checkpointing, but its runtime is relatively short, from about

25 minutes for the V100 GPUs to 55 minutes for the T4 GPUs, as

shown in Figure 3. On some slower GPUs provided by OSG and

PRP, who also operate in preemptible mode, the application may

run for up to 2 hours.

So, while we did observe preemptions, as shown in Figure 4, they

affected only a small fraction of the jobs, and those were automati-

cally restarted by HTCondor, resulting only in some wasted GPU

cycles. Moreover, the total waste due to preemption was less than

10%, as shown in the same figure. Note that there was some waste

incurred during the rampdown sequence, too, as we did not always

de-provision exactly at job termination boundary. Given that spot

and preemptible Cloud instances are billed at only a fraction of the

cost of more reliable on-demand instances, the observed waste is a

very cost-effective tradeoff.
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Figure 7: Impact of the IceCube detector calibration on science results.

namely Amazon Web Services, Microsoft Azure and the Google

Cloud Platform. The chosen community was IceCube, and the ap-

plication their photon propagation simulation, both for technical

(heavy use of GPU at modest IO) and scientific reasons (high impact

science). The needed input data was fetched straight from IceCube’s

Web servers at UW Madison, with minimal impact on overall job

efficiency.

We managed to provision about 15k instances, a mix of NVIDIA

Tesla T4, P40 and V100 GPUs, corresponding to around 170

PFLOP32s. We executed this run on a Tuesday in February and

ran for a whole workday, sustaining a plateau which was close to

the peak for about 6 hours. The observed waste due to preemption

was less than 10%. The total cost of this exercise was about $60,000,

or slightly less than $10,000 per hour.

It is also worth noting that we provisioned and sustained about

5.5k instances having T4 GPUs, for about 45 PFLOP32s, at the total

cost of about $9,000, or slightly more than $1,000 per hour. The

T4-providing instances completed almost one third of all IceCube

jobs, making them about twice more cost-effective than the sum of

all the resources we provisioned, if slower progress is acceptable.

We made no special arrangements or had long-term commit-

ments with the Cloud providers to achieve this. We are thus confi-

dent we could repeat such runs on a regular basis, possibly several

times a week, if we had the funding to do so.
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