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ABSTRACT

Scientific computing needs are growing dramatically with time and
are expanding in science domains that were previously not compute
intensive. When compute workflows spike well in excess of the
capacity of their local compute resource, capacity should be tem-
porarily provisioned from somewhere else to both meet deadlines
and to increase scientific output. Public Clouds have become an
attractive option due to their ability to be provisioned with minimal
advance notice. The available capacity of cost-effective instances is
not well understood. This paper presents expanding the IceCube’s
production HTCondor pool using cost-effective GPU instances in
preemptible mode gathered from the three major Cloud providers,
namely Amazon Web Services, Microsoft Azure and the Google
Cloud Platform. Using this setup, we sustained for a whole workday
about 15k GPUs, corresponding to around 170 PFLOP32s, integrat-
ing over one EFLOP32 hour worth of science output for a price tag
of about $60k. In this paper, we provide the reasoning behind Cloud
instance selection, a description of the setup and an analysis of the
provisioned resources, as well as a short description of the actual
science output of the exercise.
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1 INTRODUCTION

Scientific computing needs are growing dramatically with time and
many communities have to occasionally deal that workloads that
exceed the capacity of their local compute resource. At the same
time, public Cloud computing has been gaining traction, including
funding agencies starting to invest in this sector; examples being
NSF’s E-CAS and CloudBank awards, and the European Cloud
Initiative. Cloud computing, with its promise of elasticity, is the
ideal platform for accommodating occasional spikes in computing
needs. In a past exercise [1] we demonstrated that it is possible to
provision and effectively use up to 380 PFLOP32s (i.e. fp32 PFLOPS)
of GPU-based compute from the Clouds, but that was executed
as a short burst during a carefully chosen timeframe and without
budgetary constraints.

We thus decided to perform a second Cloud-based run, with the
additional goal of showing the available capacity during a typical
workday while restricting ourselves to only the most cost-effective
Cloud instance types in either spot or preemptible mode. We have
also foregone the use of a dedicated setup, combining the provi-
sioned Cloud resources with an existing resource pool. We believe
than any production user would use a similar setup.

Like in the previous exercise, the chosen application was Ice-
Cube’s photon propagation simulation [2], for technical (heavy
use of GPU at modest IO) and scientific reasons (high impact sci-
ence). IceCube follows the distributed High Throughput Computing
(dHTC) paradigm and has an existing HTCondor [3] setup that reg-
ularly provisions resources from external sources, including the
Open Science Grid (OSG) [4], the Extreme Science and Engineering
Discovery Environment (XSEDE) and the Pacific Research Platform
(PRP) [5]. We again provisioned resources from multiple public
Cloud providers, and used several geographically distributed re-
gions in each, too.
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We executed the run on a Tuesday during work hours, without
any coordination with or even advance notification of the Cloud
providers. The observed plateau was about 15k GPUs of the most
cost-effective type, which provided about 170 PFLOP32s (i.e. fp32
PFLOPS) and 64M GPU cores. The run latest about 8 hours, with the
plateau being sustained for 6 hours, resulting in a total integrated
compute of approximately one EFLOP32 hour.

Section 2 provides an overview of the multi-Cloud setup, includ-
ing the reasoning behind choosing specific Cloud instance types and
the description of the provisioned resources. Section 3provides an
analysis of the effectiveness of the setup from the application point
of view. Section 4 provides a description of input data handling.
And, finally, section 5 describes the science behind the simulation
application as well as a summary description of the simulation code
internals.

1.1 Related work

Running scientific workloads in the public Cloud is hardly a novel
idea, nor is integration of Cloud resources in existing resource
pools [1, 6]-[8]. This work is however novel in that it provides a
measurement and cost analysis of available Cloud capacity across
multiple public Cloud providers, with a focus on cost-efficient GPU
resources in preemptible mode. Moreover, running an unmodified,
production scientific code in such a setup is also quite unusual.

2 THE MULTI-CLOUD, MULTI-REGION
SETUP

One of the main objectives of this Cloud run was to show how
much spare cost-effective GPU capacity is available on a typical
workday in three public Cloud providers, namely Amazon Web
Services (AWS), Microsoft Azure and Google Cloud Platform (GCP),
which also implied that resources had to be provisioned from Cloud
regions located all over the world. We chose to use the two most
cost-effective GPU types offered by each Cloud provider, based
on runtimes and list cost analysis performed after the previous
exercise [1]. This meant NVIDIA Tesla T4 and V100 GPUs for AWS
and GCP, and NVIDIA Tesla P40 and V100 GPUs on Azure. We
requested only spot instances on AWS and Azure, and preemptible
instances on GCP.

The workload management system used was the existing Ice-
Cube’s HTCondor system, to which we added a couple of additional
scheduling and collector nodes to support the additional load. Sim-
ilarly to the previous exercise, the provisioned Cloud resources
were launched using spot fleets on AWS, Virtual Machine Scale Sets
on Azure, and Instance Groups on GCP. For each Cloud platform
we had a customized image based on CentOS Linux, containing a
fully configured HTCondor worker setup, and using CVMES [9]
for software distribution. We also deployed a service instance in
each Cloud region, which served both as a HTCondor collector
concentrator and CVMFS cache.

The Cloud run was executed on a Tuesday in February, starting
around 9:45am PST and was sustained until about 5:45pm PST. We
chose to first provision T4 GPU instances only, since we expected
them to be the most cost-effective ones. The other GPU types were
added only after reaching an apparent plateau for the T4 GPUs,
as shown in Figure 1. In the same figure you can also see how
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the GPU instances were distributed across the various geographic
regions. The resources came from 25 Cloud regions and 20 on-prem
locations distributed across the four major geographical areas.

The number of GPUs provisioned at peak during this run was
much smaller than in our previous all-GPU exercise, when we man-
aged to reach over 51k GPUs. Nevertheless, the provisioned GPUs
were on average significantly more powerful, so during the plateau
we reached approximately 170 PFLOP32s of compute, almost half
compared to the 380 PFLOP32s of the all-GPU Cloud run, but still
significantly more than the biggest XSEDE system currently de-
ployed. And the total integrated compute exceeded one EFLOP32h,
or 1000 PFLOP32 hours, with about one third coming from T4 GPUs,
as seen in Figure 2. The FLOP32s represent the peak fp32 FLOPS
provided by NVIDIA specs for the GPUs involved.

While we are not authorized to release the precise cost of this
Cloud run, we can provide an approximate value. The total cost of
this Cloud run was roughly $60,000, with the T4 providing Cloud
instances costing about $9,000 in total. This means that the instances
providing NVIDIA T4 GPUs are about twice as cost-effective as
the sum of all resources used, since they delivered approximately
30% of the integrated compute at 15% of the price. Using only T4
GPUs would have of course drastically lowered the FLOP32s being
sustained during the plateau.

This run thus demonstrated that it is indeed possible to get
significant cost-effective compute capability out of the public Cloud
providers, if one can live with preemption and can aggregate the
resources from many independent sources. Using T4 GPUs alone,
one can apparently add about 40 PFLOP32s worth of compute to
an existing pool for slightly more than $1,000/h, and about 170
PFLOP32s for roughly $10,000/h.

3 THE APPLICATION VIEW OF THE SETUP

Aggregating a large amount of compute power is an interesting
system administrator exercise, but did it actually allow the IceCube
application to perform the desired science computation?

The provisioned Cloud resources used spot instances from AWS
and Azure, and preemptible instances from GCP because they are
priced at about 1/3rd the price of the on-demand equivalents. This
implies that some waste had to be expected due to preemption. The
used application, IceCube photon propagation simulation, does not
use checkpointing, but its runtime is relatively short, from about
25 minutes for the V100 GPUs to 55 minutes for the T4 GPUs, as
shown in Figure 3. On some slower GPUs provided by OSG and
PRP, who also operate in preemptible mode, the application may
run for up to 2 hours.

So, while we did observe preemptions, as shown in Figure 4, they
affected only a small fraction of the jobs, and those were automati-
cally restarted by HTCondor, resulting only in some wasted GPU
cycles. Moreover, the total waste due to preemption was less than
10%, as shown in the same figure. Note that there was some waste
incurred during the rampdown sequence, too, as we did not always
de-provision exactly at job termination boundary. Given that spot
and preemptible Cloud instances are billed at only a fraction of the
cost of more reliable on-demand instances, the observed waste is a
very cost-effective tradeoff.
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Figure 1: Number of provisioned Cloud resources, alongside on-prem resources. Left) By GPU type. Right) By geographic
region.
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Figure 2: Total performance of provisioned Cloud resources, alongside on-prem resources, in fp32 PFLOPS. Left) Instantaneous
by GPU type. Right) Integral over time.
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Figure 3: Observed job runtimes for the IceCube photon propagation simulation for various GPU types, in minutes.

87



PEARC 20, July 26-30, 2020, Portland, OR, USA

Provisioned GPUs vs Running jobs Integrated PFLOP32 hours

15k
1000 1
10k 7507
500
5k 1
2501
0°* . : : ‘ 01 . , , ,
09:45 11:45 13:45 15:45 17:45 09:45 11:45 13:45 15:45 17:45
Time of day Time of day
Provisioned GPUs — Total — T4 only —— Provisioned GPUs

Jobs running to completions —— Total T4 only
—— Jobs preempted (5 min bins)

—— Completed jobs

Figure 4: Difference between provisioned GPUs and jobs that ran to completion.
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Figure 5: Number of completed IceCube jobs.

Observing the number of jobs completed on the different re-
sources shows that using FLOP32s as a metric does provide a valid
comparison. About a third of all the jobs ran on the NVIDIA Tesla
T4 instances, as can be seen from Figure 5, which is comparable to
the fraction of integrated FLOP32s that those instances provided, as
shown in Figure 2. The observation that using just T4 GPUs would
be twice as cost-effective than using all three types of Cloud GPUs,
at the expense of speed of progress, is thus still valid.

It is also worth noting that during this Cloud run we produced
the output of 151k jobs, which is about 50% more than the 101k that
were produced during the previous exercise. While the previous
exercise did reach a higher peak, the total value for the IceCube
science was greater this time.

4 INPUT FILE HANDLING

The IceCube photon propagation application expects an input file
containing a set of photons to propagate, which is generated asyn-
chronously by another process in the workflow. We had many such
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files ready to be processed on IceCube servers located at the Uni-
versity of Wisconsin — Madison (UW), each about 45 MB in size.
All the files were accessible through a Web portal, using the HTTP
protocol, which was tested as being able to deliver files at up to 100
Gbps.

Each job during this Cloud run would fetch an input file from
UW using a command line tool, typically aria2, store it on local
disk and then launch the photon propagation application process.
We logged the amount of time it took for each job to fetch the
input data and are glad to report that for most jobs it took less
than 10 seconds, as can be seen from Figure 6. Given that typical
job runtime was in the 1.5k to 3.5k seconds range, the overhead
of fetching files was negligible. The total needed throughput was
about 4 Gbps, with a slightly higher peak during the initial rampup.
Cloud networking is thus fast enough, even from remote regions,
to allow for both quick bursting and sustained compute at large
scales for applications with modest input data needs. It should also
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Figure 6: Input file downloads. Left) Observed input file download times, in seconds. Right) Observed throughput, as measured

on the server.

be noted that incoming networking is not a billable item in the
three public Cloud providers used.

For this exercise, we still first uploaded the output files into
Cloud native storage and then fetched them asynchronously back
to UW. We did this since we did not have an object store available at
UW in time for the Cloud run. We will likely explore direct upload
to UW in a follow up exercise.

5 ICECUBE SCIENCE MOTIVATION

The IceCube Neutrino Observatory [10] is the world’s premier facil-
ity to detect neutrinos with energies above 1 TeV and an essential
part of multi-messenger astrophysics. IceCube is composed of 5160
digital optical modules (DOMs) buried deep in glacial ice at the
geographical south pole. Neutrinos that interact close to or inside
of IceCube produce secondary particles, often a muon. Such sec-
ondary particles produce Cherenkov (blue as seen by humans) light
as they travel through the highly transparent ice. Cherenkov pho-
tons detected by DOMs can be used to reconstruct the direction
and energy of the parent neutrino.

Since the detector is built into a naturally existing medium, i.e.
glacial ice, there was a priori only limited information regarding
the optical properties of the detector, so a lot of simulation data is
needed to properly calibrate the employed instruments. The optical
properties of the glacial ice greatly affect the pointing resolution of
IceCube. Improving the pointing resolution has two effects in this
case: greater chance to detect astrophysical neutrinos and better
information sent to the community. While IceCube can detect all
flavors and interaction channels of neutrinos, about two-thirds of
the flux reaching IceCube will generate a detection pattern with
a large angular error, see Figure 7. In the same figure you can
also see that this angular error is mostly driven by systematic
effects. Similarly, different optical models have a great effect on the
reconstructed location of an event on the sky. The comparatively
minute field of view of partner observatories and telescopes requires
IceCube to provide as accurate as information as possible.

The most computationally intensive part of the IceCube simu-
lation workflow is a photon propagation code, and that code can
greatly benefit from running on GPUs. The algorithm follows these
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steps. Initially a set of photons is created along the path of charged
particles produced in the neutrino interaction or from in-situ light
sources used for calibration. Once the location and properties of the
photons have been determined, they are added to a queue. A thread
pool is created depending on the possible number of threads, typi-
cally one to several threads per GPU core, with the exact mapping
depending on the specific vendor and architecture. Each thread
takes a photon out of the queue and propagates it. During the prop-
agation, the algorithm will first determine the absorption length
of the photon, i.e. how long the photon can travel before being
absorbed. Then the algorithm will determine the distance to the
next scatter. The photon is now propagated the distance of the next
scatter. After the propagation, a check is performed to test whether
the photon has reached its absorption length or intersected with
an optical detector along its path. If the photon does not pass these
checks, the photon is scattered, i.e. a scattering angle and a new
scattering distance are determined, and the cycle repeats. Once
the photon has either been absorbed or intersected with an optical
detector, its propagation is halted and the thread will take a new
photon from the queue.

The IceCube photon propagation code is distinct from others, e.g.
Nvidia OptiX in that it is purpose-built. It handles the medium, i.e.
glacial ice and the physical aspects of photon propagation in great
detail. The photons will traverse through a medium with varying
optical properties. The ice has been deposited over several hundreds
of thousands of years. Earth’s climate changed significantly during
that time and imprinted a pattern on the ice as a function of depth.
In addition to the depth-dependent optical properties the glacier
has moved across the Antarctic continent and has undergone other
unknown stresses. This has caused layers of constant ice proper-
ties, optically speaking, to be tilted and to have anisotropic optical
properties.

6 CONCLUSIONS

This paper presents our experience in expanding an existing pro-
duction HTCondor pool by several orders of magnitude for the
duration of a workday, using cost-effective GPU instances in pre-
emptible mode gathered from the three major Cloud providers,
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Figure 7: Impact of the IceCube detector calibration on science results.

namely Amazon Web Services, Microsoft Azure and the Google
Cloud Platform. The chosen community was IceCube, and the ap-
plication their photon propagation simulation, both for technical
(heavy use of GPU at modest IO) and scientific reasons (high impact
science). The needed input data was fetched straight from IceCube’s
Web servers at UW Madison, with minimal impact on overall job
efficiency.

We managed to provision about 15k instances, a mix of NVIDIA
Tesla T4, P40 and V100 GPUs, corresponding to around 170
PFLOP32s. We executed this run on a Tuesday in February and
ran for a whole workday, sustaining a plateau which was close to
the peak for about 6 hours. The observed waste due to preemption
was less than 10%. The total cost of this exercise was about $60,000,
or slightly less than $10,000 per hour.

It is also worth noting that we provisioned and sustained about
5.5k instances having T4 GPUs, for about 45 PFLOP32s, at the total
cost of about $9,000, or slightly more than $1,000 per hour. The
T4-providing instances completed almost one third of all IceCube
jobs, making them about twice more cost-effective than the sum of
all the resources we provisioned, if slower progress is acceptable.

We made no special arrangements or had long-term commit-
ments with the Cloud providers to achieve this. We are thus confi-
dent we could repeat such runs on a regular basis, possibly several
times a week, if we had the funding to do so.
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