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To date, most assessments of coral connectivity have emphasized long-distance
horizontal dispersal of propagules from one shallow reef to another. The extent of vertical
connectivity, however, remains largely understudied. Here, we used newly-developed and
existing DNA microsatellite loci for the brooding coral Porites astreoides to assess patterns of
horizontal and vertical connectivity in 590 colonies collected from three depth zones (<10m, 15-
20m and >25m) at sites in Florida, Bermuda and the U.S. Virgin Islands (USVI). We also tested
whether maternal transmission of algal symbionts (Symbiodinium spp.) might limit effective
vertical connectivity. Overall, shallow P. astreoides exhibited high gene flow between Florida
and USVI, but limited gene flow between these locations and Bermuda. In contrast, there was
significant genetic differentiation by depth in Florida (Upper Keys, Lower Keys and Dry
Tortugas), but not in Bermuda or USVI, despite strong patterns of depth zonation in algal
symbionts at two of these locations. Together, these findings suggest that P. astreoides is
effective at dispersing both horizontally and vertically despite its brooding reproductive mode
and maternal transmission of algal symbionts. In addition, these findings might help explain the

ecological success reported for P. astreoides in the Caribbean in recent decades.
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INTRODUCTION

Variation in life-history characteristics, such as reproductive mode and larval type, has
often been used to predict patterns of larval dispersal and connectivity in marine invertebrates'.
Scleractinian corals are excellent study models, as they exhibit a variety of life-history and
reproductive strategies that can directly influence their potential for dispersal’. Brooded larvae
are more advanced in their development when released than larvae from broadcast spawners, and
are therefore competent to settle within hours®*. In addition, algal symbionts (Symbiodinium
spp.) are transmitted directly to brooded offspring? (i.e., maternal transmission), which may
constrain the colonization and post-settlement survival of the coral offspring. For example,
brooding corals may be limited in their ability to settle outside the direct parental range if depth-
specific symbionts are transferred. In contrast, larvae from broadcast spawners — in which
gametes are fertilized in the water column — usually require 5—7 days of development to achieve
competency (reviewed in Harrison and Wallace®). In addition, algal symbionts are not generally
present in the eggs of broadcast spawning coral species and must be acquired from the
environment, often several days after settlement (e.g., Coffroth et al.%). Together, these
characteristics are thought to facilitate greater dispersal in broadcast spawners compared to
brooding species. However, no studies have yet examined the potential for horizontal vs. vertical
(i.e., across depth gradients) dispersal for a Caribbean brooding coral.

Porites astreoides (Lamarck, 1816) is a common coral species found throughout the
Caribbean, occurring over a wide range of depths and habitats’® down to 70 m’. It occurs as two
color morphs, with the yellow/green morph generally observed in shallower waters than the
brown morph, although both are often found side by side'%!". In addition, P. astreoides

undergoes internal fertilization, releasing semi-mature planulae monthly from January to
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and has an unusual mixed breeding system, in which half of the colonies are
hermaphroditic and the other half are female'®. Algal symbionts are present in brooded P.
astreoides larvae when released!® and appear to follow strong zonation patterns along depth
gradients of 2 — 25 m in Panama'4, the Bahamas'4, Belize'> and Curacao'S. Finally, P. astreoides
appears to be the only scleractinian coral species that is becoming a more prominent component
of coral reef communities throughout the Caribbean'”. In fact, a comparison of historical data
collected from 1974 — 1992 with photoquadrats from 2003 — 2004 revealed that the relative
percentage of cover of P. astreoides has increased from < 20 % to 50% in shallow habitats
spanning over a 4,000 km arc of the Caribbean'”.

In a previous study (Serrano et al.'®), we undertook a comprehensive analysis of
population genetic structure in the broadcast spawning coral species M. cavernosa, in both
horizontal and vertical directions. Significant genetic differentiation with depth was observed in
Florida (Upper and Lower Keys), but not in Bermuda or the U.S. Virgin Islands (USVI), despite
high levels of horizontal connectivity between all three of these geographic locations at shallow
depths. These observations strongly suggest that horizontal connectivity is much greater than
vertical connectivity for M. cavernosa. However, whether these patterns are consistent across
other scleractinian corals from the Caribbean is not yet understood.

The current study represents the first assessment of genetic connectivity for the coral
species Porites astreoides in the tropical and subtropical western Atlantic. We aimed to examine
the extent to which the life-history and reproductive strategies of P. astreoides may influence its
patterns of larval dispersal and gene flow in both horizontal and vertical directions, and help
explain this species’ ecological success in the Caribbean!”. First, we collected samples of P.

astreoides from sites in the Upper Keys, Lower Keys and Dry Tortugas (within Florida),
4



84  Bermuda and the USVI, at three depth zones [denoted as “shallow” (< 10 m), “mid” (15 —20 m
85 and “deep” (= 25 m), see Supplementary Table S1 and Fig. S1]. We then used a combination of
86 newly-developed and existing DNA microsatellite loci for P. astreoides to evaluate patterns of
87  connectivity among geographic locations (long-distance horizontal dispersal), among reefs
88  within a geographic location (within Florida), and among depths in each region (vertical
89  dispersal). We also tested whether connectivity patterns could be correlated with differences in
90 color morph (yellow/green vs. brown). Finally, we used a combination of denaturing gradient gel
91 electrophoresis and quantitative PCR in a subset of corals to assess patterns of depth zonation in
92  algal symbionts (Symbiodinium spp.) if any, and test whether maternal transmission of algal
93  symbionts might limit effective vertical connectivity for P. astreoides.
94
95 RESULTS
96  Multi-locus genotyping and tests of Hardy Weinberg Equilibrium
97 Our genetic analysis of 660 P. astreoides samples yielded 590 unique multi-locus
98  genotypes (Supplementary Table S1), suggesting ~10% clonality, either as a result of asexual
99  reproduction or insufficient resolution in our markers to distinguish clones. Most clones,
100  however, were confined to a single sampling location (within < 1 km) except in two cases, both
101  at two different mid-depth sites within the Upper or Lower Keys. Tests of Hardy Weinberg
102 Equilibrium (HWE) for each of the 15 combinations of region/depth individually revealed that
103  all 8 loci are largely in HWE, with only 5.8% of 120 tests showing significant deviations from
104  HWE after FDR correction (Supplementary Table S2). Individual inbreeding values were

105  generally low (Fi mean = 0.01; 95% confidence interval = 0 — 0.04), as well as null allele
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frequencies (which ranged between 0.03 — 0.06 across loci and populations, see Supplementary
Table S3).
Assessment of vertical vs. horizontal connectivity

Patterns of genetic subdivision for P. astreoides showed strong support for three clusters
(Figs. 1, 2ab and Supplementary Table S5 and Fig. S2) that correlate with depth in Florida
(shallow vs. deep), and with geographic distance (Bermuda vs. Florida or the USVI). Within
Florida, significant differentiation with depth was observed in all three regions. The largest
differentiation occurred in the Upper Keys, where most of the individual colonies at intermediate
and deep depths (> 15 m) were assigned with high probabilities of membership to the deep
cluster (depicted in orange, Fig. 1). Conversely, the Dry Tortugas exhibited significant
differentiation with depth, but at depths > 25 m, and with only about half of the colonies at this
depth assigned with high probabilities of membership to the deep cluster. Finally, STRUCTURE
showed difficulty in assigning some Floridian individuals to either cluster, indicating some
degree of admixture, perhaps as a result of interbreeding between shallow and deep colonies. In
addition, a subset of individuals from both shallow and deep habitats displayed high probabilities
of membership to the opposite depth to the one they were collected from, especially in the Lower
Keys. These findings suggest that these individuals might be immigrants to their assumed
populations or have recent immigrant ancestors. Finally, in contrast to significant depth
differentiation in Florida, high levels of gene flow were observed among depths in the USVI and
Bermuda. However, whereas corals from all depths in the USVI shared the common shallow
cluster present in Florida, the “local” Bermudian cluster (depicted in green, Fig. 1) dominated

across all depths within this geographic location.
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Overall, no genetic structure was observed among shallow sites in Florida and the USVI
(Fig. 1), suggesting a high degree of horizontal connectivity among sites separated by > 1,700
km within the Caribbean and northwest Atlantic. Bermuda, however, appears relatively isolated,
with only a few individuals at the shallow inshore site clustering with shallow corals from
Florida and the USVI (Fig. 1 and Supplementary Fig. S3). Isolation-by-distance analyses
confirmed these results (Figs. 3a, 3b and 3c), with 39% of the variation in genetic distance
explained by geographic distance between Florida and Bermuda, compared to 0% explained by
geographic distance between Florida and the USVI. Pairwise Fsr estimates were also in
agreement (Table 1), as Fst values were largest for Bermudian populations compared to any of
the populations from Florida or the USVI regardless of depth. Finally, Principal Components
Analysis (PCA, Fig. 4) also suggested that populations from Bermuda were genetically isolated
from Florida or the USVI (PC1, explaining 39% of the variance) and that habitats clustered
together by depth within Florida (PC2, explaining 21% of the variance). All populations within
the USVI (regardless of depth) clustered together with the common shallow population present
in Florida. Finally, since P. astreoides is known to occur as two color morphs (yellow/green and
brown), this information was recorded whenever possible (N = 200). Our findings, however,
show that genetic subdivision was not associated with color morph type (Fig. 5), suggesting that
both color morphs constitute a single species (see Gleason'?).
Algal symbiont characterization

Scleractinian corals depend critically on the mutualistic association with dinoflagellate
endosymbiotic algae in the genus Symbiodinium, consisting of at least 9 phylogenetically distinct
clades (A-1)". To date, most of the depth-generalist Caribbean coral species studied have been

found to exhibit marked patterns of depth zonation in Symbiodinium®. However, intraspecific
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variation tends to be greatest in shallower reefs (1-8 m), where some species have been shown to
host up to five distinctive symbionts (e.g., Orbicella faveolata'’). Furthermore, in some cases,
the limits of reef coral vertical distribution have been correlated with the photophysiological
capacity of the symbionts hosted (e.g., Iglesias-Prieto et al.?*).

In this study, we first assessed the diversity of symbiont populations and patterns of depth
zonation (if any) in P. astreoides by selecting a subset of corals haphazardly and using
denaturing gradient gel electrophoresis (DGGE) and sequencing dominant band profiles of ITS-2
rDNA. Overall, DGGE showed evidence for strong depth zonation in algal symbionts in both
Florida and the USVI, but not in Bermuda (Fig. 6a). In Florida and the USVI, most shallow and
mid-depth colonies appear to only host Symbiodinium types A4 or A4a, whereas most deep
colonies appear to only host Symbiodinium type C1. The shift between A4/A4a and C1 occurred
at relatively deep depths, with colonies at 20 — 30 m hosting either A4/A4a or C1, and colonies
>30 m hosting only C1 (although larger sample sizes can help clearly elucidate where this shift
occurs). In Bermuda, on the other hand, all colonies hosted Symbiodinium type A4 or A4a across
all depths (Fig. 6a). Corals from the shallow inshore site in Bermuda, however, also hosted
Symbiodinium type B1.

Quantitative PCR assays (qPCR) were used in addition to DGGE to better understand
patterns of depth zonation in Florida and the USVI, by detecting the presence of any
“background” symbiont types not detectable by DGGE (e.g., Mieog et al.”), if any. Assays
targeted Symbiodinium in clades A, C and D. Overall, despite the low sample sizes used, this
method (Fig. 6b) revealed mixed symbiont communities (i.e., multiple Symbidinium types within
a colony) in Florida shallow [(A, A (+C), A (+D), or A (+C +D)] and deep corals [(A, only C or

A (+C)], but not in the USVI. Furthermore, half of the shallow corals assessed from Florida had

8



174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

background levels of Symbiodinium in clade D (presumably D1a /S. trenchi) not previously
detected with DGGE (Fig. 6b). Finally, a subset of the colonies identified as potential
immigrants or as having immigrant ancestry in genetic analyses [denoted as “shallow (deep
origin)” or “deep (shallow origin)” in Fig. 6b)] also hosted mixed symbiont communities in
Florida, but not in the USVI (which only hosted A4/A4a or C1). Interestingly, these colonies
hosted symbionts most commonly found in the habitat they settled in, rather than the symbionts

most commonly found in their depth of origin (Fig. 6b).

DISCUSSION

The extent to which reefs are effectively connected to one another and their potential to
serve as sources of larval replenishment following disturbance are topics of considerable interest
in contemporary reef science. Understanding patterns of coral connectivity, sources of
recruitment and recovery timelines are critical needs for managers who are increasingly
operating under the implicit assumption that climate change and other impacts to reefs are
unlikely to improve in the short term. In this study, we conducted the first assessment of genetic
connectivity for the brooding coral Porites astreoides in the tropical and subtropical western
Atlantic, in both horizontal and vertical directions. P. astreoides was expected to exhibit limited
dispersal capabilities and lower genetic connectivity than broadcast spawning coral species in the
region, presumably due to shorter pre-competency periods and maternal transmission of algal
symbionts. However, findings revealed that P. astreoides (i) exhibits high levels of gene flow
within the Caribbean region, (ii) can occasionally disperse and settle as far as Bermuda, (iii)
exhibits patterns of vertical connectivity that vary among and within geographic locations, and

(iv) displays strong patterns of depth zonation in two of the three geographic locations examined.
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Together, these findings suggest that P. astreoides is effective at dispersing both horizontally and
vertically despite its brooding reproductive mode and depth zonation of algal symbionts, and
exhibits a similar or greater dispersal potential compared to other Caribbean broadcast spawning
taxa studied to date. Furthermore, these findings might help explain the ecological success
reported for P. astreoides in the Caribbean compared to other scleractinian coral species!’.

Overall, we found very little differentiation for P. astreoides between shallow sites in
Florida and the USVI, despite being separated by > 1,700 km (Figs. 1, 3 and 4 and Table 1).
These findings suggest that this coral species has the ability to disperse over large distances
within the Caribbean/northwest Atlantic. In addition, these findings suggest high genetic
exchange between the eastern and western Caribbean, compared to the lack of genetic exchange
among these regions observed for broadcast spawning coral species Acropora palmata®' and
Orbicella annularis®*. Recent work by Holstein et al.>*, however, used a modeling approach to
show that P. astreoides consists of a highly fragmented connectivity network within the
Caribbean compared to the broadcast spawning species O. annularis. In their model, P.
astreoides from Florida and the USVI appear generally isolated from each other, although
different findings between both studies may be explained by the different methods applied,
assumptions of population connectivity, and time-scales examined. Alternatively, the lack of
population subdivision between Florida and the USVI in our study could be the result of
stepping-stone dispersal among locations in the fragmented connectivity network described by
Holstein et al®.

The high gene flow observed for P. astreoides between the USVI and Florida did not
translate into high levels of connectivity between these two regions and Bermuda. Findings

strongly suggest that, in contrast to M. cavernosa'®, P. astreoides from Bermuda may be
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relatively isolated from the Caribbean region and northwest Atlantic (Figs. 1, 3 and 4, Table 1).
However, larvae originating from the Caribbean may occasionally disperse and settle in
Bermuda, as suggested by the few individuals in the Bermuda shallow inshore site that were
assigned to the same population common in Florida and the USVI (Fig. 1). Nunes et al.?*,
however, showed that, out of 6 coral species studied, P. astreoides was the only one with no
significant differentiation between Brazil and the Caribbean, suggesting a high degree of gene
flow between these two regions. Nunes and colleagues concluded that the long-distance dispersal
observed in this species might be due to its ability to raft and/or its tolerance to freshwater and
high sedimentation.

The degree of vertical connectivity observed for P. astreoides varied among and within
geographic locations (Fig. 1). Within Florida, significant structure with depth was observed in all
3 regions. Patterns weakened from east to west, with the largest differentiation occurring in the
Upper Keys and the lowest in the Dry Tortugas (Fig. 1). In addition, the depths at which this
transition occurred were quite shallow and varied regionally: in the Upper and Lower Keys the
transition occurred at > 15 m, while in the Dry Tortugas it occurred at > 25 m. This is not
surprising, as the Dry Tortugas region has been identified as having mesoscale eddies which
extend down to > 100 m?> which may potentially act as important larval retention mechanisms?¢
and facilitate vertical movement of larvae compared to the Lower or Upper Keys. Regardless,
these patterns of genetic structure with depth are in agreement with those from the Caribbean

2829 corals in the

broadcast spawner species M. cavernosa'®?’ the octocoral Eunicea flexuosa
genus Oculina®’, the brooding coral Madracis pharensis®', and the Pacific brooding coral

Seriatopora hystrix*?, despite different study locations, coral species and reproductive strategies.
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In comparison to patterns of genetic structure observed in Florida, Bermuda and the
USVI, on the other hand, appeared to be highly panmictic across depths. One possibility is that
the corresponding deep habitat may be at greater depths than those assessed (> 33 m) at these
locations. Alternatively, deep reefs from Bermuda and the USVI may act as important local
recruitment sources for their shallow water counterparts following disturbance, supporting the
Deep Reef Refugia Hypothesis (reviewed in Bongaerts et al.’. In agreement with these results,
biophysical modeling in the USVI found that mesophotic (>30 m) and shallow P. astreoides
populations might be connected within one to two generations, suggesting high local
connectivity?>,

Overall, our results suggest a higher degree of interbreeding among shallow and deep P.
astreoides colonies compared to M. cavernosa (Serrano et al.'®), especially in Florida. This is not
surprising, as M. cavernosa has to send bundles of egg and sperm to the water surface during
spawning, which may reduce the potential for interbreeding if deep gametes arrive late to the
surface®* or if there are temporal differences in spawning times>*?®. Alternatively, deep and
shallow P. astreoides colonies may have increased chances of interbreeding due to multiple
reproductive events per year. A higher number of P. astreoides individuals from shallow habitats
in Florida also exhibited high probabilities of membership to the deep cluster compared to M.
cavernosa, suggesting that these colonies, which originated in deep-water, were able to
successfully recruit and survive in shallow habitats (Fig. 1). P. astreoides might be more
competitive in high irradiance (shallow) habitats because it possesses symbionts in clade A

3336 whereas M. cavernosa was found to host the same

(considered ‘shallow water specialists
Symbiodinium type in clade C across depths'®, or because of availability of maternal (energy)

reserves® in addition to input from algal symbionts®’. Alternatively, P. astreoides planulae,
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competent to settle a few hours after released, might be more capable of controlling their
swimming and/or vertical position in the water column which might be important for selecting an
optimal substratum in which to settle.

Interestingly, we found restricted gene flow between the Bermuda inshore shallow site
(BDAI, see Supplementary Fig. S3) and all other Bermuda sites — including the offshore shallow
site — despite similar depths and close proximity (~3.5 km). Similarly, recent work by Kenkel et
al.*® reported significant genetic differentiation among P. astreoides individuals from inshore vs.
offshore shallow sites (2 — 3 m) in the Lower Florida Keys. The authors hypothesized that P.
astreoides coral populations inhabiting reefs < 10 km apart within the same depth range can
exhibit substantial physiological and genetic differences in response to thermal stress. In the
present study, however, although all of our sites in the Lower Keys can be considered offshore,
analyses among inshore and offshore sites in the Upper Keys (see Supplementary Fig. S4)
suggest that some of the genetic differences observed in Kenkel et al.*® may be attributable to
whether these individuals originated in shallow vs. deep water.

Finally, although Potts and Garthwaite®” suggested that the two P. astreoides color
morphs (yellow/green and brown) may represent different species, our findings show that genetic
subdivision is not associated with color morph type (Fig. 5), suggesting that both morphs
constitute a single species (i.e., are not reproductively isolated). These findings are in agreement
with Weil*’, who found no genetic differences between the two color morphs, and suggested that
differences in color morph type might be driven by depth and habitat (i.e., environmental
differences). Furthermore, Gleason'® later showed that morph-specific variation in P. astreoides

appears to correspond to differences in UV tolerance.
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To date, the role of depth zonation in algal symbionts in shaping the vertical distributions
of the coral host is not well understood'®. In this study, the characterization of algal symbionts
using DGGE revealed that most P. astreoides shallow corals from Florida and the USVI
genotyped only associated with Symbiodinium types A4 or A4a, while most deep colonies
(particularly >30 m) only associated with Symbiodinium type C1 (Fig. 6a). Similar results were
found by Baker'* in Panama and Bahamas, and along depth gradients (2 — 25 m) in Belize'® and
Curacao's. However, the depth at which we observed all colonies to host type C1 was slightly
deeper than in Belize (> 30 m vs. <25 m)'°. In addition, Bongaerts et al.'® reported many
Symbiodinium profiles for P. astreoides, including novel ITS2 sequences in clade C not reported
here. These differences, however, may be a result of sampling different geographic locations
and/or using different methods for the identification of algal symbiont types. Furthermore, since
we were sequencing only dominant bands, it is possible that we might have found additional sub-
cladal types had we sequenced all bands from each characteristic ITS2 profile.

Further analyses with quantitative PCR (Figs. 6a and 6b) revealed mixed algal symbiont
communities in Florida’s shallow and deep colonies, as well as in colonies identified as potential
immigrants or having immigrant ancestry. These colonies were more likely to host algal
symbionts that matched those found in the habitats they settled in, rather than those inherited
form their parents (Fig. 6b). These findings suggest that some of the P. astreoides colonies in
Florida may have changed their symbiont communities post-settlement, either through
“switching” or “shuffling” (sensu Baker*?). Alternatively, colonies might have migrated to the
opposite reef and then fertilized “local” colonies, resulting in “admixed” individuals with the
local symbionts maternally-inherited, without “switching” or “shuffling” needed. In agreement

with these findings, van Oppen et al.*! observed similar patterns for the brooding coral S. hystrix
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at Scott Reef (Australia), where shallow colonies identified as having originated from deep-water
also hosted the same Symbiodinium type most commonly found in shallow habitats.

While patterns of depth zonation were observed in Florida and the USVI, most corals in
Bermuda hosted only Symbiodinium type A4 or A4a, regardless of depth. Corals from the
inshore shallow site at this location however, also hosted Symbiodinium type B1 (Fig. 6a),
perhaps as a result of this site’s continuous exposure to anthropogenic stressors and high
sedimentation rates*’, compared to offshore sites. Alternatively, habitat differences (e.g., inshore
vs. offshore), could be driving both host (Fig. 1 and Supplementary Fig. S3) and algal symbiont
differences (Fig. 6a). Regardless, the lack of depth zonation in observed in Bermuda may be the
result of this site’s isolated high latitude location. Patterns of depth zonation of algal symbionts
observed in Florida and the USVI, however, did not appear to affect the ability of P. astreoides
to disperse across different depths. We hypothesize that possessing or acquiring the appropriate
symbionts (‘high light’ vs. ‘low light’) might be an important mechanism used by P. astreoides
to increase post-settlement survival across a wide range of habitats and depths. This might be
particularly important for colonies inferred to be of deep-water origin that settled in shallow
habitats (Fig. 6b), as only symbionts in clade A have been shown to produce UV-protective
compounds* that are likely to offer a competitive advantage to corals in high irradiance
environments>®.

In conclusion, we expected the Caribbean coral P. astreoides, with its brooding
reproductive mode and maternal transmission of algal symbionts, to show low levels of gene
flow in both horizontal and vertical directions. However, we found that P. astreoides exhibited
high levels of horizontal gene flow between the USVI and Florida (>1,700 km), suggesting that

P. astreoides has similar or greater dispersal potential compared to Caribbean broadcast
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spawning taxa [similar: O. faveolata® and M. cavernosa'®; greater: A. palmata®', A. cervicornis*®

and O. annularis*], as well as other Caribbean brooding taxa shown to recruit in close proximity
to the parent population (Siderastraea radians*’; Agaricia agaricites®). Furthermore, patterns of
genetic differentiation with depth observed in this study for P. astreoides are remarkably similar
to those found for the broadcast spawning coral M. cavernosa'® in 4 of the 5 regions assessed

(Upper Keys, Lower Keys, Bermuda and the USVI), despite very different life-history and

145 1.49

reproductive strategies. In contrast, both Severance and Karl™ and Davies et al.*” showed
significant differences in dispersal ability for congeneric species O. annularis/O. faveolata® and
A. hyacinthus/A. digitifera® despite their similar reproductive traits. Nunes et al.>*, however,
found that the extent of gene flow within populations in Brazil was correlated with the
reproductive traits of the species studied.

Together, results from this study have important consequences for understanding how
coral reef populations might recover from stressors and how can they be managed. Our findings
suggest that neither the mode of reproduction or algal transmission are necessarily good
predictors of dispersal ability for coral species within the Caribbean region. Furthermore, a
comparison between this and our previous study (Serrano et al.'®) reveals that the extent of
vertical gene flow is likely the result of extrinsic, site-specific factors occurring pre- or post-
settlement. Since light is the primary factor limiting the maximum depth of hermatypic coral
growth>*! it is possible that the absolute depths defining the degree of genetic structure may
vary as a result of site-specific variability in parameters such as water clarity and/or light
intensity. Alternatively, variable oceanographic features such as those found within regions in

Florida may result in restricted gene flow, indicating that populations may rely on local

recruitment and thus local management is needed. Thus, future work should include a broader
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survey of coral species, geographic locations and larger sample sizes to better elucidate the role
of shallow vs. deep coral populations as sources of larval replenishment following disturbance.
In addition, newer molecular techniques can be used (e.g., SNPs, ITS2 metabarcoding) to help
elucidate finer patterns of genetic structure for P. astreoides and understand the processes

affecting this species’ coral-symbiont interaction.

METHODS
Sample collection

Field activities were focused on “shallow” (< 10 m), “intermediate” (15 — 20 m) and
“deep” (= 25 m) coral communities along the (1) Florida Reef Tract (within sites in the Upper
Keys, Lower Keys and Dry Tortugas), (2) Bermuda, and (3) the USVI (Supplementary Table S1
and Fig. S1). “Deep” reefs were defined as those > 25 m because there is very little coral cover
information available for Florida at depths > 30 m (e.g., Murdoch and Aronson®?; Smith et al.>),
and because this depth approximates the lower 1% attenuation depth for visible radiation in the
Lower Keys (~27 m>%).

At each site, corals were sampled using SCUBA along depth transects. A haphazard
approach was used to collect samples from colonies at least 1 m apart to minimize the likelihood
of sampling clones. Since P. astreoides is known to occur as two color morphs (yellow/green
and brown), we recorded this information as often as possible (N = 200). Two different sampling
methods were used, per the requirements of the respective permitting agencies. Briefly, when
permitted, samples were removed from colonies as small tissue biopsies (0.25 cm?) using a 4 mm
internal diameter hollow steel punch, and preserved in 95% ethanol. Conversely, when
destructive sampling was not permitted, tissue biopsies were collected using a razor blade,
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transferred at the surface to a 2 mL tube with 500 uL of DNAB + 1% SDS>, and heated to 65°C
for 1.5 — 2 hrs. Finally, genomic DNA was then extracted using the organic extraction protocol
described in Rowan and Powers>>.
Microsatellite development

The methods used to minimize contamination of symbiont DNA in the coral used prior to
454 sequencing and library construction are described in detail in Serrano et al.'®. Overall, a total
30,770 single sequence reads were generated and trimmed with PipeMeta®, then assembled with
the GS De Novo Assembler (Roche Diagnostics Corporation, Indianapolis, IN) keeping the
default settings and a minimum sequence length of 45 base pairs. Sequences were then imported
to the Tandem Repeat Finder (TRF) database®’ and processed using the default alignment
parameters as follows: Match: 2; Mismatch: 7; Indels: 7. Primers were designed for a subset of
sequences with a minimum of six tri-, tetra-, penta- or hexanucleotide repeats (N = 40) using the
web-based program Primer 3°® and screened for variability by visually inspecting bands on 2%
agarose gels to identify candidate markers (N = 6). Finally, specificity to host DNA was
confirmed for candidate markers by screening against the algal symbionts isolated from the
colony used for microsatellite development (identified as Symbiodinium type A4), as well other
preexisting algal cultures in clades A, B, C and D isolated from this species or the coral species
O. faveolata. None of the candidate markers amplified any of the cultured Symbiodinium,
therefore, they were determined to be derived from the host and used in subsequent analyses.
Microsatellite genotyping

Six microsatellite loci were further developed for scoring on an ABI 3730 automated
sequencer by fluorescently labeling forward primers with NED, VIC or 6FAM (Applied

Biosystems, CA). Two of the six markers exhibited strong deviations from Hardy Weinberg
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Equilibrium (HWE) expectations and were excluded from further analyses. PCR reactions for the
remaining four loci were performed in two multiplex reactions (11 pL total volume, consisting of
2 primer pairs each) using 1 pl of 50-100 ng of template DNA and primer concentrations specific
to each locus (Supplementary Table S4), 5x PCR Reaction Buffer (Promega), 2.75 mM of
MgCI2 (Promega), 0.8 mM of dNTPs, and 0.5 U of Taq polymerase (Promega)..In total, P.
astreoides samples were amplified with a total of 8 microsatellite loci: four as described above
(Supplementary Table S4) and four (markers Past 3, Past16, Past 17 and Past 21) as described

in Kenkel et al.?®

. Thermal cycling for all reactions, as well as visualization of PCR products
were performed as described in Serrano et al.'®. Samples that failed to amplify more than two of
the eight loci (N = 190) or samples which exhibited tri-allelic genotypes (N = 12) at any of the
markers from Kenkel et al.>® were excluded from further analyses. In this dataset, there was a per
locus failure rate of < 10% (except for marker Past 3 which had a failure rate of 13.7%), and a
per sample failure rate of 0.51%.
Analysis of multi-locus genotype (MLG) data

Identical MLGs (clones) were identified in GenAIEx v.6.41% by requiring complete
matches at all loci. The same number of unique MLGs (N = 590) were found whether missing
data were considered or not. Tests for conformation to HWE expectations were performed using
the program Genepop®’. The R-package FDRtool was then used to adjust p-values for multiple
testing®!. Since large heterozygote deficits are common in marine invertebrates®?%, the program
INEST®* was used to distinguish among some of the possible causes for departures for HWE by
estimating null allele frequencies while accounting for inbreeding. Population level pairwise Fst

comparisons were performed in GenAlEx v.6.41. Finally, a Principal Component Analysis

(PCA) was performed on a matrix of covariance values calculated from population allele
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frequencies in the program GenoDive v.2.20%. Then, to assess if there was a relationship
between uncorrected Fstand geographic distance, a Mantel’s test for isolation-by-distance was
run in GenoDive with 999 bootstrap permutations, including only sampling locations with > 10
individuals.

Population structure was investigated using a Bayesian clustering approach performed in
STRUCTURE v.2.3.3% on the web-based Bioportal server from the University of Oslo.
Correlated allele frequencies and admixed populations were assumed. Values of K (hypothesized
number of populations) from 1 to 20 were tested by running 3 replicate simulations per K with
10° Markov chain Monte Carlo repetitions and 10° burn-in iterations. The LOCPRIOR option
was not used. A preliminary run was conducted by site to assess whether individuals within a
same region and depth could be pooled to increase statistical power but this run did not
introduced additional structure (see Supplementary Fig. S3). The most likely value for K based
on the STRUCTURE output was then determined by plotting the log probability [L(K)] of the
data over multiple runs and comparing that with delta K¢, as implemented in the web-based
program STRUCTURE HARVESTER®. An alternative approach, implemented in the program
ObStruct®®, was also used to statistically analyze the STRUCTURE ancestry profiles and
determine whether the inferred population assignment and the factor of interest (e.g., origin of
individuals) were significantly correlated (see Supplementary Table S5 and Fig. S2). The results
from STRUCTURE were used as prior information to test values of K from 2 to 4 in analyses of
ObStruct. Finally, results of the three STRUCTURE runs for the most likely K were then merged
with CLUMPP? and visualized with DISTRUCT"!.

Algal symbiont characterization
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A subset of the corals used for microsatellite analyses was selected haphazardly to assess
the diversity of symbiont populations and patterns of depth zonation in P. astreoides, if any.
Symbiodinium types were identified by denaturing gradient gel electrophoresis (DGGE) and
sequencing of ITS-2 rDNA using the primers ITSintfor2 and ITS2clamp’?. Amplification
products were separated by DGGE using a 35 — 75% gradient. Dominant bands on the gel were
excised, re-amplified and sequenced using the BigDye Terminator v3.1 cycle sequencing kit and
an automated sequencer (ABI 3730). Sequences were then identified via BLAST in GenBank
(accession numbers are given in Supplementary Table S6).

Quantitative PCR (qPCR) assays were used in a subset of corals from Florida and the
USVI previously typed with DGGE to better understand patterns of depth zonation and detect the
presence of “background” symbiont types not detectable by DGGE (e.g., Mieog et al.”®). Assays
targeted Symbiodinium in clades A, C and D and were validated for target specificity and

1.7* and Cunning and Baker’®. The assay for

amplification efficiency as described in Correa et a
Symbiodinium clade A targeted the ITS1-5.8S-ITS2 of the large subunit of the nuclear IDNA’,
Assays targeting specific actin loci in Symbiodinium clades C and D, however, were carried out
in multiplex as described in Cunning and Baker”>. All qPCR reactions were performed with
StepOnePlus Real-Time PCR System (Applied Biosystems, CA) using reaction volumes of 10
puL and 1 pL of genomic DNA template. Two replicates were used per sample and clade assayed
and positive amplifications were counted only when both technical replicates produced cycle
threshold (Cr) values < 35 and there was no amplification in the no-template controls. Finally,

potential immigrants or individuals with immigrant ancestors were previously identified in

STRUCTURE as having a probability of membership > 0.90 to the deep cluster [denoted as
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469  “shallow (deep origin)” in Fig. 6b], or as having a probability of membership > 0.90 to the

470  shallow cluster [denoted as “deep (shallow origin)” in Fig. 6b].
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FIGURE CAPTIONS

Figure 1. Porites astreoides population structure across regions [Upper Keys, Lower Keys and
Dry Tortugas (within Florida), Bermuda and the U.S. Virgin Islands] and depths [shallow (<10
m), mid (15-20 m) and deep (=25 m)]. Bar graphs show the average probability of membership
(y-axis) of individuals (N = 590, x-axis) in K = 2 to K = 4 clusters (shown in ascending order) as

identified by STRUCTURE. Samples were arranged in order of increasing depth within region.

Figure 2. Mean log-likelihood of K (a) and Delta K (b) values for STRUCTURE analysis of
Porites astreoides samples. Values of K = 1 — 20 were tested by running 3 replicate simulations

for each K (error bars in upper figure indicate variance among replicates).

Figure 3. Isolation-by-distance patterns in Porites astreoides. Geographic distance explained
17% of the variation in genetic distance (Fst) across all sampling sites (R*?=0.17, P < 0.01, Fig.
a), 39% of the variation in genetic distance when the U.S. Virgin Islands sites were excluded (R?
=0.39, P <0.01, Fig. b), and none of the variation when Bermuda sites were excluded (R*=

0.01, P> 0.05, Fig. ¢). USVI= U.S. Virgin Islands

Figure 4. Principal Component Analysis (PCA) of allele frequency covariance in Porites
astreoides populations. 14 of 79 axes were retained, explaining 100% of the cumulative variance.
Plotted are the first and second axes explaining 38.59% (P < 0.01) and 21.28% (P < 0.05) of the
variance, respectively. Axes cross at 0. The different shapes denote each of the 3 geographic
locations sampled in this study (Florida, Bermuda and U.S. Virgin Islands), whereas different

colors denote each of the 3 depths under comparison [shallow (<10 m), mid (15-20 m) and deep
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(>25 m)]. UK= Upper Keys, LK= Lower Keys, DT= Dry Tortugas, Bermuda= Bermuda and

USVI=U.S. Virgin Islands.

Figure 5. Porites astreoides population structure by color morph (yellow/green or brown). Bar
graphs show the average probability of membership (y-axis) of individuals (N = 200, x-axis) in

K = 3 clusters as identified by STRUCTURE.

Figure 6. Symbiodinium types detected in a subset of Porites astreoides corals from shallow (<10
m), intermediate (15-20 m) or deep (>25 m) depths, using denaturing gradient gel electrophoresis
(a) versus high-sensitivity quantitative PCR (b). In (b), potential immigrants or individuals with
immigrant ancestors were identified in STRUCTURE as having a probability of membership >
0.90 to the deep cluster [denoted as ‘shallow (deep origin)’], or as having a probability of
membership > 0.90 to the shallow cluster [denoted as ‘deep (shallow origin)’]. No shallow
individuals of deep-water origin were found in the U.S. Virgin Islands (denoted by nd) and no
samples from Bermuda where included due to absence of patterns of depth zonation at this

location. Numbers in bars indicate number of colonies assessed. USVI= U.S. Virgin Islands
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Table 1. Porites astreoides pairwise Fst values for each population. Statistically significant values (p < 0.05) after FDR correction are
highlighted in bold. UK=Upper Keys, LK= Lower Keys, DT= Dry Tortugas, Bermuda= Bermuda and USVI= U.S. Virgin Islands.

Population

UK shallow
UK mid

UK deep

LK shallow
LK mid

LK deep

DT shallow
DT mid

DT deep
BDA shallow
BDA mid
BDA deep
USVI shallow
USVI mid
USVI deep

UK
shallow
0.000
0.041
0.062
0.020
0.033
0.058
0.053
0.037
0.029
0.070
0.070
0.088
0.029
0.037
0.032

UK
mid

0.000
0.012
0.030
0.008
0.021
0.085
0.076
0.014
0.079
0.100
0.117
0.048
0.043
0.038

UK
deep

0.000
0.045
0.032
0.023
0.085
0.100
0.021
0.070
0.091
0.107
0.071
0.050
0.051

LK
shallow

0.000
0.017
0.028
0.058
0.029
0.024
0.057
0.071
0.094
0.033
0.030
0.020

LK
mid

0.000
0.017
0.071
0.049
0.005
0.076
0.100
0.127
0.033
0.033
0.021

LK
deep

0.000
0.085
0.064
0.018
0.057
0.088
0.110
0.068
0.039
0.032

DT

DT

shallow mid

0.000
0.069
0.056
0.096
0.106
0.119
0.052
0.048
0.054

32

0.000
0.046
0.093
0.095
0.126
0.045
0.043
0.048

DT
deep

0.000
0.068
0.081
0.106
0.031
0.027
0.026

BDA

BDA

shallow mid

0.000
0.024
0.033
0.091
0.077
0.069

0.000
0.001
0.095
0.093
0.095

BDA
deep

0.000
0.111
0.118
0.119

usvi

shallow mid

0.000
0.025
0.032

usvl  Usvi

deep

0.000
0.011 0.000
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Figure 3.
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Figure 4.
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