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A B S T R A C T   

The CryoSat-2 radar altimetry mission, launched in 2010, provides key measurements of Earth’s cryosphere. 
CryoSat-2’s primary instrument, the Synthetic Aperture Interferometric Radar Altimeter (SIRAL), allows accurate 
height measurements of sloped ice-surfaces including the highly crevassed Bering-Bagley Glacier System (BBGS) 
in southeast Alaska. The recent surge of the BBGS in 2011–2013, which resulted in large-scale elevation changes 
and wide-spread crevassing, presents an interesting challenge to the processing of the SIRAL measurements. 
Derivation of surface height is achieved by retracking the received waveform of the altimeter signal. Several such 
retracking methods have been developed. In this paper, we investigate the influence of six unique SIRAL 
retracking methods on (1) Digital Elevation Model (DEM) generation, (2) analysis of ice-surface topography, and 
(3) numerical modeling results of the BBGS during surge. First, we derive a surface DEM for each retracked 
dataset using kriging. The swath-processed dataset provides 100–250 times more points than the other datasets, 
which decreases DEM uncertainty associated with data coverage by a factor of 2–4. Differences between the six 
resulting DEMs imply that retracking methods can have significant effects on elevation and elevation-change 
analysis, but we find that lower-level processing has larger effects. Next, the sensitivity of the data-model 
connection is evaluated using a finite element model of the BBGS surge. We set up six modeling experiments, 
each initiated with a unique input surface DEM derived from the various retracking methods. While retracking 
choices effect estimation of unknown model parameters related to crevasse simulation, we have developed a 
procedure to limit these effects resulting in remarkably consistent parameter optimization across modeling ex-
periments. Each model experiment yields an optimal friction coefficient in the sliding law of 10−5 MPa⋅a

m , while 
estimates of the optimal von Mises stress threshold for crevasse initiation ranged between 230 and 240 kPa.   

1. Introduction 

1.1. Study in a broader context 

Both collection of Earth observation data and modeling of physical 
processes have seen great advances in recent years, accelerating from 
previous decades. Increasingly large and detailed Earth observation data 
sets are becoming available for scientific investigations, with current 
satellite missions collecting terabytes of data per day, e.g., NASA’s 
ICESat-2 (Markus et al., 2017; Neumann et al., 2019) and ESA’s Sentinel 
series (Berger et al., 2012). At the same time, modeling of the Earth 
system has reached much higher standards in recent years than ever 

before (Bentsen et al., 2012; Jungclaus et al., 2013; Voldoire et al., 2013; 
Kay et al., 2015; Sokolov et al., 2018). This includes increased model 
resolution, expanded and integrated physical process modeling, and the 
limiting of uncertainties in projection models through intercomparison 
projects (e.g. Bindschadler et al. (2013); Nowicki et al. (2013a, Nowicki 
et al., 2013, 2016)). As a result, a new challenge emerged in linking 
observational data and models. 

Cryospheric height observations with sufficient spatiotemporal 
coverage require measurements from satellites, which since the 1980s 
has come in the form of radar altimeter measurements (Brenner et al., 
1983; Zwally et al., 1983). The processing of radar altimeter data has 
been the focus of a number of influential studies, from Davis (1993) for 
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early spaceborne radars, to Helm et al. (2014) and Nilsson et al. (2016) 
for the cutting-edge radar measurements made by the CryoSat-2 satellite 
(Wingham et al., 2006). 

In order to understand the physical processes involved in glacial 
change, and to predict future evolution of Earth’s ice-masses, numerical 
models of ice evolution are required. There are currently several leading 
ice sheet models investigating glacial response to climatic changes, 
including the Community Ice Sheet Model (CISM) (Price et al., 2011; 
Lipscomb et al., 2019), the SImulation COde for POLythermal Ice Sheets 
(SICOPOLIS) (Greve et al., 2011), the Ice Sheet System Model (ISSM) 
(Larour et al., 2012), the Parallel Ice Sheet Model (PISM) (Winkelmann 
et al., 2011), and an Elmer/Ice model (Gagliardini et al., 2013). These 
models, along with several others, have been compared and evaluated in 
community-wide comparison studies such as SeaRISE (Sea-level 
Response to Ice Sheet Evolution) (Bindschadler et al., 2013; Nowicki 
et al., 2013a, Nowicki et al., 2013) and ISMIP6 (Ice Sheet Model Inter-
comparison Project) (Nowicki et al., 2016; Goelzer et al., 2020; Seroussi 
et al., 2020). Inter-model comparison methods often lack spatial infor-
mation, with ice sheet-wide results boiled down to a single point in a 
time series analysis, and visualized in a simple 2D line plot (e.g. Bind-
schadler et al. (2013)). However, comparison methods exist, such as the 
Map Comparison Method (MAPCOMP) (Herzfeld and Merriam, 1990), 
that provide spatial maps of similarities and dissimilarities among input 
maps, i.e., ice sheet-wide model results, rather than providing a single 
number quantifying correlation. 

There are several approaches that employ observational data to 
improve numerical modeling (e.g., Herzfeld et al. (2015)), and are often 
in the form of data assimilation (e.g., Goldberg and Sergienko (2011); 
Brinkerhoff and Johnson (2013); Larour et al. (2014)). However, many 
of these studies are performed independently from the analysis and 
processing of the assimilated data and often assume they are using the 
best available observations to constrain their models. It is therefore rare 
to find analyses that combine data processing, data analysis, modeling 
results and model parameterization all in a single study, where doing so 
could help identify important outstanding uncertainties in cryospheric 
investigation. 

This paper serves as both a review of the current model-data 
connection techniques in cryospheric science, and each component 
therein, and a presentation of a novel sensitivity analysis that combines 
glaciological methods of observation, numerical modeling and model- 
data connection into a single study. In particular, our sensitivity anal-
ysis provides links between radar altimetry, satellite observations, 
altimeter data processing, numerical modeling of ice dynamics and 
crevasses, inter-model comparison and model-data connection. 
Following a review of state-of-the-art methods and approaches in each of 
the observation, analysis and modeling fields, we present our new study 
that combines each of these aspects for investigation of the effects that 
data processing have on glacier elevation analysis, numerical modeling 
results and the subsequent interpretations. This is the first study to 
investigate the effect that altimeter data processing has on numerical 
modeling of glacier dynamics. 

1.2. Introduction to the sensitivity study 

On April 8th, 2010, the European Space Agency (ESA) launched the 
CryoSat-2 satellite with the objective of continuously monitoring land- 
and sea-ice to investigate the connection between the melting ice and 
sea level rise and its contribution to climate change (Wingham et al., 
2006). CryoSat-2’s Synthetic Aperture Interferometric Radar Altimeter 
(SIRAL) continues to supply height measurements of the cryosphere 
through 2020. However, there exist a variety of level-2 processing, or 
retracking, techniques to derive elevation estimations of ice surfaces, 
each yielding unique datasets despite starting with the same raw SIRAL 
measurement (e.g., Bouffard (2015); Bouffard et al. (2017); Helm et al. 
(2014); Nilsson et al. (2016); Gray et al. (2015, 2017)). 

In our previous studies of the 2011–2013 surge of the Bering-Bagley 

Glacier System (BBGS), Alaska, we have utilized the available CryoSat-2 
elevation estimates provided by ESA (Trantow and Herzfeld, 2016, 
2018). Having shown that CryoSat-2 measurements are useful in 
investigating large mountain glaciers, even during large elevation 
changes typical of a surge, Trantow and Herzfeld (2016) proceeded to 
derive a time series of ice-surface Digital Elevation Models (DEMs) to 
interpret surge progression in the glacier system from 2011 to 2013. This 
study used the data given by the processing and retracking techniques of 
ESA’s Baseline-B level-2 product (Bouffard, 2015). In Trantow and 
Herzfeld (2018), we created an ice-surface DEM for input into an 
ice-dynamic numerical-model of the BBGS that simulated observed 
crevasses during the major surge phase in early 2011. The DEM for this 
study was derived using data from ESA’s updated Baseline-C level-2 
product (Bouffard et al., 2017). We observed large differences between 
the Baseline-B and Baseline-C elevation datasets for the BBGS whose 
highly crevassed surface, set in a mountainous region, provides a diffi-
cult challenge in the processing of CryoSat-2 SIRAL measurements. 

In the analysis of present paper, we seek to quantify the sensitivity of 
higher level data analysis for the BBGS, such as DEM generation, 
elevation-change interpretation and modeling results, to differences in 
surface elevation estimates provided by various CryoSat-2 retracking 
techniques. We investigate not only ESA’s standard products (versions 
Baseline-B and Baseline-C), but also height estimates provided by the 
Threshold First Maximum Retracking Algorithm (TFMRA) outlined in 
Helm et al. (2014), and the Leading-edge Maximum Gradient (LMG) 
retracker (Nilsson et al., 2016). We begin by presenting a review of the 
relevant background information on radar altimetry, CryoSat-2 and 
glacier surging in Section 2. Section 3 provides an introduction to the 
various CryoSat-2 processing techniques used in our study along with a 
description of the resulting datasets for the BBGS. This section also 
provides a brief overview of the techniques used in DEM generation, 
numerical modeling, crevasse-based model-data comparisons and the 
model sensitivity analysis. Finally, Section 4 presents the results of the 
sensitivity study which is discussed with regards to effects that different 
CryoSat-2 processing techniques have on error estimates in DEM gen-
eration, estimation of unknown model parameters, and the overall 
match of modeled results to observations. 

2. Background 

2.1. Radar altimetry 

Satellite radar altimetry has been used to investigate topography and 
elevation change in the cryosphere since the 1980s (Brenner et al., 1983; 
Zwally et al., 1983). Early satellite radar altimeter missions aimed at 
investigating surface characteristics of the ocean, such as sea level and 
wind patterns, and difficulties arose when measuring ice surfaces due to 
topographic features, surface slopes, and volume penetration of the 
radar wave into the snow/firn (Rémy and Parouty, 2009). These cryo-
spheric challenges in early satellite altimeter missions were overcome 
through development of new surface scattering models and retracking 
methods (e.g., Davis (1993); Bamber (1994); Davis (1997)). In addition, 
Herzfeld et al. (1993) applied advanced kriging methods to overcome 
the problem of estimating ice-surface topography from radar-altimeter 
data over sloping glaciers, utilizing the geometry of the satellite 
ground tracks. This method is used to derive elevation maps in the Atlas 
of Antarctica (Herzfeld, 2004). 

Accuracy and spatio-temporal coverage in satellite altimetry 
improved dramatically with the launch of ESA’s ERS-1 satellite in 1991. 
ERS-1 altimeter measurements in the cryosphere allowed the derivation 
of ice-sheet wide DEMs of the ice surface topography (Bamber and 
Huybrechts, 1996). These DEMs serve as important boundary conditions 
for numerical models aimed at predicting ice sheet evolution and 
cryospheric contributions to sea-level rise (Marsiat and Bamber, 1997). 
There are however, many methods of processing raw radar altimeter 
measurements and a variety of interpolation schemes that researchers 
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employ to derive ice-surface DEMs. Therefore, given the same initial 
measurement, DEMs can differ significantly when given as boundary 
conditions to a numerical model resulting in dissimilar simulations (e.g., 
Marsiat and Bamber (1997); Bamber and Gomez-Dans (2005)). Marsiat 
and Bamber (1997) show that differences in ERS-1 processing methods 
have substantial influence on numerical simulations of Antarctica’s 
climate. However, it was limitations of the ERS instrument itself, rather 
than differences in the processing chain, that resulted in the largest 
uncertainties in cryospheric applications, which motivated the devel-
opment of a satellite radar altimeter whose main objective was 
measuring ice-covered regions. 

To this end, ESA designed the CryoSat-2 satellite altimetry mission to 
provide continuous synoptic measurements of Earth’s land and marine 
ice fluxes (Wingham et al., 2006). CryoSat-2’s primary instrument, the 
SIRAL altimeter, operates in three modes including Synthetic Aperture 
Radar Interferometric (SARIn) mode that employs two receiver antennas 
for operation in sloped areas such as those along the margins of the ice 
sheet or in mountainous regions. In this mode, SIRAL utilizes the SAR 
principle to increase the spatial resolution of radar altimeter data 
compared to operation as a conventional pulse limited radar system in 
low-resolution mode (LRM). The measurement accuracy of cryospheric 
targets provided by CryoSat-2, along with its high spatio-temporal 
coverage up to ±88◦ latitude, allows the derivation of ice sheet-wide 
surface DEMs (e.g., Helm et al. (2014); Nilsson et al. (2016); Fei et al. 
(2017); Slater et al. (2018)), with uncertainties less than 3 m±15 m in 
the case of Helm et al. (2014). 

Even though initial CryoSat-2 measurements have been successful in 
measuring the cryosphere, there are still open problems in the standard 
processing chain leading to the level-2 product produced by ESA 
(Wingham et al., 2006; ESA, 2014; Helm et al., 2014; Mannan, 2017), 
which is the main product for the standard CryoSat-2 user. This has 
motivated the derivation of alternate methods of level-2 processing of 
CryoSat-2 measurements, such as the TFMRA (Helm et al., 2014) or LMG 
(Nilsson et al., 2016) methods, which are investigated in this paper with 
regards to their effect on analysis of the surging BBGS. 

2.2. Glacier surging and crevasses 

A glacier surge is a quasi-periodic episode of rapid acceleration, 
which interrupts a glacier’s quiescent phase of normal flow. Surge gla-
ciers are restricted to certain geographical region including Alaska, 
Svalbard, Iceland, the Karakoram Mountains and the margins of the 
Greenland and Antarctic ice sheets (Meier and Post, 1969; Dolgushin 
and Osipova, 1975; Herzfeld, 1998; Jiskoot et al., 2001). Surging is a 
type of glacial acceleration, and is the least understood type due to a 
relative paucity of observations (Meier and Post, 1969; Fowler, 1987; 
Raymond, 1987; Murray et al., 2003). Other types of glacial acceleration 
include always-fast-flowing ice streams, ice streams with a 
state-switching behavior, and tidewater glaciers with long periods of 
velocity changes (Clarke, 1987; Truffer and Echelmeyer, 2003). Glacial 
acceleration has been identified as one of the main uncertainties in 
estimating future global sea-level rise through numerical modeling 
(Stocker et al., 2013). Before the different types of glacial acceleration 
can be included in ice-sheet-scale models, particularly surging, the un-
known physical mechanisms controlling the surge phenomenon must be 
identified and represented in a dedicated surge model at the scale of a 
single glacier system. For this reason, we have created a numerical surge 
model of the Bering Bagley Glacier System (BBGS), Alaska (Trantow and 
Herzfeld, 2018) (Fig. 1), using the finite element software Elmer/Ice 
(Gagliardini et al., 2013). The recent surge of the BBGS in 2011–2013 
provides a rare opportunity to investigate a surge in a large and complex 
glacier system similar to those found in the margins of the major ice 
sheets. A complex surge-glacier system consists of both surging and 
non-surging parts, where surge initiation and progression effects 
different locations at different times. Of particular interest is the 
early-2011 phase of the recent surge, where the largest surge effects 
were observed during the initial rapid acceleration in lower and central 
Bering Glacier (Herzfeld et al., 2013b; Trantow and Herzfeld, 2018). The 
analysis in the present paper focuses on this surge phase. 

Cumulating airborne and satellite observations, numerical modeling 
and model-data comparison allows thorough investigation of this BBGS 
surge (Herzfeld et al., 2013a, b; Trantow and Herzfeld, 2016, 2018). 
These previous studies have taken an approach centered on the most 
conspicuous manifestation of surging: crevasses. Using crevasses as the 

Fig. 1. The Bering-Bagley Glacier System and the surrounding area with analysis domains. Labeled are important features of the BBGS and some of the major 
nearby glaciers in southeast Alaska. The Bering Glacier domain is outlined in blue while the (Eastern) Bagley Ice Field portion of the BBGS is outlined in green. The 
combination of the displayed Bering Glacier and Bagley Ice Field domains constitute the horizontal extent of the BBGS numerical model domain. The red line outlines 
the domain of analysis for the crevasse-based model-data comparison techniques employed in this paper, which is the intersection of the BBGS model domain and the 
image analysis domain from the April 15, 2011 Landsat-7 image. The Khitrov crevasse field, lying within the black ellipse just below the Khitrov Hills, is a location of 
large surge crevasses that opened up during the early-2011 phase of the recent surge. Map coordinates: Universal Transverse Mercator (UTM), zone 7. Background 
image: Landsat-8 panchromatic acquired April 28, 2013 (left) and Landsat-8 panchromatic acquired March 7, 2014 (right). Alaskan reference image: U.S. Geological 
Survey Map I-2585. 
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basis of analysis has the advantage of requiring only a single observation 
to derive comprehensive geophysical information. Traditional glacio-
logical analysis often relies upon velocity data to connect models to 
observations. However, velocity derivation requires the correlation of 
two separate observations, separated in time, which often yield sparse 
and unreliable estimates during rapid ice-deformation (see for example, 
Fatland and Lingle (1998); Burgess et al. (2013)). Therefore, these 
previous crevasse-based studies on the BBGS surge have made signifi-
cant methodological contributions to the study of fast-moving ice. The 
present paper also contributes to our understanding of BBGS surges, and 
glacial acceleration in general, by quantifying uncertainties in the 
elevation and elevation-change analysis of Trantow and Herzfeld (2016) 
and the modeling results of Trantow and Herzfeld (2018) introduced by 
the choice of the CryoSat-2 level-2 (retracked) product. 

3. Methods 

3.1. Data and retracking methods 

Radar altimeter measurements consist of transmitting a pulse in the 

nadir direction and measuring the backscattered energy. The returned 
signal is available as discretized power with respect to time providing an 
altimeter “waveform”. Post-processing of the return waveform signal is 
required since the leading edge deviates from the satellite’s on-board 
tracking gate leading to errors in range to the surface and thus, eleva-
tion retrieval. The range correction is termed “retracking”. Several 
retracking algorithms exist for each satellite altimeter, each with their 
own advantages and disadvantages, which can lead to significant dif-
ferences in elevation estimation (Davis, 1997; Bamber and Gomez-Dans, 
2005). In this study, we investigate analysis sensitivity to six different 
BBGS elevation datasets, each derived from a different retracking 
method applied to the same raw CryoSat-2 SARIn measurements. Each 
retracked dataset consists of CryoSat-2 data acquired between 
November 2010 to April 2011, from which a DEM is constructed to 
represent the BBGS ice-surface in early-2011 when the major surge 
phase occurred. The surge-induced effects during this time period, 
consisting of wide-spread crevassing and large-scale elevation changes, 
occurred mainly within our model-data comparison domain (red in 
Fig. 1) (Trantow and Herzfeld, 2018). 

The first two datasets we test are a result of the standard level-2 

Fig. 2. Coverage of the CryoSat-2 SARIn retracked datasets for the BBGS. (a) Six-month datasets collected between November 2010 and April 2011 (Winter 
2010/2011). (b) Six-month datasets collected between May 2011 and October 2011 (Summer 2011). Red and magenta points give elevation estimate locations from 
ESA’s standard level-2 product for Baseline-B and Baseline-C respectively. Black, blue and cyan points show elevation estimates from the TFMRA retracker for 
Baseline-C, Baseline-B and swath-processing (Baseline-C) respectively. Finally, the green points give elevation estimates from the LMG retracking method applied to 
the Baseline-C processing chain. The raddev filter was applied to each dataset visualized above. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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processing chain from ESA that were available to the public at the time 
of their release. In particular we use the level-2 Baseline-B data (ESA 
Baseline-B), released in January 2012, and Baseline-C data (ESA 
Baseline-C), released in April 2015, whose spatial coverages of the BBGS 
for the six-month period from November 2010 to April 2011 are seen in 
Fig. 2 in magenta and red respectively. The description of the core SARIn 
mode level-2 processing employed by ESA is given in Wingham et al. 
(2006). The main differences between Baseline-B and Baseline-C level-2 
processing is found in Bouffard (2015) and Bouffard et al. (2017). 

It is important to note that all Baseline-C data on Bering Glacier 
contain a 59.959 m elevation bias (Trantow and Herzfeld, 2018). This 
artifact stems from a compensation issue in the window delay in the 
processing chain near in-land areas (Mannan, 2017). The issue is under 
investigation by ESA and is planned to be corrected in the Baseline-D 
release. In the mean time, we add 59.959 m to each Baseline-C data 
point on Bering Glacier before any analysis is done. 

Next, we investigate three additional datasets in this study that use 
the TFMRA retracking method. A full description of the processing 
method is found in Helm et al. (2014). The first TFMRA dataset is 
derived from ESA’s level-1b (L1b) Baseline-B data product (TFMRA 
Baseline-B), given in blue in Fig. 2, while the second is based on ESA’s 
L1b Baseline-C product (TFMRA Baseline-C), given in black in Fig. 2. 
The third TFMRA dataset is comprised of swath processed data that fol-
lows the method introduced by Gray et al. (2013) applied to the stan-
dard L1b Baseline-C product (TFMRA Swath Baseline-C). Swath 
processing is a method that yields multiple height estimates per 
across-track swath as opposed to a single estimate at the Point of Closest 
Approach (POCA) serving to increase the spatial coverage of the altim-
eter data product. The return signal from POCA, that is, the return en-
ergy from the location on the ice surface closest to the satellite, is the 
only unambiguous return energy for geolocation in the across-track 
swath if the surface slope is less than half of the antenna’s angular 
beamwidth. For low slopes, returns from both sides of POCA will arrive 
at the receiving antennas simultaneously following the initial POCA 
signal thereby complicating geolocation for additional across-track 
elevation estimations. However, under ideally sloped conditions of the 
glacier surface, additional across-track elevation estimates can be 
determined within the antenna pattern (Gray et al., 2013; Foresta et al., 
2016; Gourmelen et al., 2018). Fortunately, the BBGS has a surface 
geometry that allows swath-processing at most locations as seen in cyan 
in Fig. 2. 

The final CryoSat-2 dataset is derived using LMG retracking method 
(Nilsson et al., 2016), which uses ESA’s L1b Baseline-C data as input 
(LMG Baseline-C), given as green in Fig. 2. Concise descriptions of each 
of the retracking methods introduced so far, excluding the swath pro-
cessing method, can be found in Sørensen et al. (2018) who investigate 
the accuracy of these and other retracking methods through compari-
sons with airborne lidar data over the Austfonna ice cap in Svalbard. 

The TFMRA and LMG datasets were not able to employ an ambiguity 
DEM to improve interferometric processing results due to the unavail-
ability of reliable DEMs of the BBGS during its surge (aside from those 
derived from CryoSat-2 itself (Trantow and Herzfeld, 2016)). The am-
biguity DEMs used in ESA’s Baseline-B are known to be inaccurate over 
steep slopes and are therefore unreliable in correcting for 
phase-wrapping ambiguities at these locations (Bouffard et al., 2017). In 
the Baseline-C processing, the DEMs are improved over the Greenland 
and Antarctic ice sheets, but not Alaska. The future Baseline-D data 
product aims to improve all land-ice ambiguity DEMs (Bouffard et al., 
2017). Since phased-wrapped data points may exist in our datasets, we 
apply an additional filter based on the calculated experimental vario-
gram for each dataset to remove large outliers (Trantow and Herzfeld, 
2016). Termed the Radial-Deviation filter, or raddev filter, this algo-
rithm removes most of the data points identified to have been affected 
by unwrapping errors within each dataset. While a few affected data 
points may still exist within each dataset, the geostatistical analysis that 
follows is robust to a relatively small number of outlier points (Herzfeld, 

2008). The amount of data points in each dataset before and after the 
raddev filter is applied is given in Table 1. 

Final datasets used to construct the ice-surface DEMs consist of valid 
measurements, identified by application of the raddev filter to each 
retracked dataset, collected between November 1, 2010 and April 30, 
2011 (Winter 2010/2011). Six months of CryoSat-2 data provides 
adequate spatial coverage over Bering Glacier to allow reliable DEM 
creation (Trantow and Herzfeld, 2016). However, there are little to no 
valid measurements in the Bagley Ice Field (BIF) during the winter 
season (November through April), as seen in Fig. 2 and Table 1. Since 
our analysis of the numerical modeling results focuses on lower and 
central Bering Glacier, over 25 km downglacier of the BIF, where the 
dominant surge effects took place in early 2011 (Herzfeld et al., 2013b; 
Trantow and Herzfeld, 2018), our short-term (≤100 days) simulation 
results are not dependent on the surface topography in the BIF. Yet, 
surface topography of the BIF is still needed to run the BBGS model. Data 
collected during the summer months (May through October) yield suf-
ficient coverage in the BIF due to the different surface conditions. 
Therefore we include measurements of the BIF from May 2011 through 
October 2011 from each respective retracking method in each of the 
winter datasets. This addition allows for surface DEM generation for the 
entire BBGS, while the sensitivity analysis in this study is restricted to 
Bering Glacier for Winter 2010/2011 only. 

In the following subsections we give a brief overview of the methods 
of DEM generation and error analysis, ice-dynamic modeling during a 
surge, crevasse characterization analysis via modeling and image anal-
ysis, and crevassed-based model-data comparisons, which are covered in 
more depth in Trantow and Herzfeld (2016) and Trantow and Herzfeld 
(2018). We then introduce the methods unique to this paper for testing 
the BBGS model’s sensitivity to input surface topography when simu-
lating crevasses. 

3.2. DEM generation 

Ice-surface DEMs and associated error measures in this analysis are 
generated following the geostatistical approach thoroughly described in 
Trantow and Herzfeld (2016), which was originally developed in a series 
of studies on elevation mapping in Antarctica (Herzfeld et al., 1993, 
2008, 1994; Herzfeld, 2004). Fig. 3 shows the DEMs derived from each 
of the retracked datasets over the Bering Glacier portion of the BBGS for 
Winter 2010/2011. For each dataset, we fit a unique Gaussian vario-
gram model and extract the variogram parameters to optimally inter-
polate the dataset onto a 200m × 200m grid, spanning all of Bering 

Table 1 
Valid elevation data points by region of the BBGS yielded by each level-2 pro-
cessing method after the removal of outliers by the raddev filter.  

Retracking 
method 

Nov 2010–Apr 2011 May 2011–Oct 2011 

Bering Bagley Total Bering Bagley Total 

ESA Baseline- 
C 

588 115 703 (727) 750 319 1069 

ESA Baseline- 
B 

297 0 297 (303) 667 197 864 

TFMRA 
Baseline-C 

380 48 428 (451) 608 181 787 

TFMRA 
Baseline-B 

318 81 399 (430) 415 167 582 

TFMRA Swath 
Baseline-C 

72777 18513 93981 
(112494) 

117697 67386 185083 

LMG Baseline- 
C 

352 112 464 (477) 490 224 714 

The amount of data points before the raddev filter was applied is given in pa-
rentheses for the November 2010 to April 2011 datasets. This time range reflects 
the approximate period of accumulation during the winter months (Trantow and 
Herzfeld, 2016). The datasets of aggregated measurements between May 2011 
and October 2011 reflects the approximate period of ablation for the BBGS 
during the warmer months. 
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Glacier, using an advanced method of Ordinary Kriging which employs a 
quadrant search (Herzfeld et al., 2012). Each estimation uses input from 
a maximum of 16 nearby points, 4 points in each quadrant, within at 
most a 20 km radius. However, only 8 data points are used in the case of 
excellent local data coverage when there exists 2 data points in each 
surrounding quadrant within a 3 km radius around the estimation 
location. 

Uncertainty in the kriging result at some point on the grid increases 

with the distance to the nearest measurement points used in estimation. 
This uncertainty reflects the data survey pattern, or spatial coverage, 
across the entire glacier and can be quantified by calculating the mean- 
distance-to-the-nearest-point for every location on the kriging grid. The 
uncertainty in the survey pattern can also be quantified by the Estima-
tion Standard Deviation (ESD) error measure for kriging, as used in 
Trantow and Herzfeld (2016). However, the ESD measure also takes into 
account the fit of the Gaussian variogram model to the experimental 

Fig. 3. Digital Elevation Model for each CryoSat-2 retracked dataset. (a) ESA Baseline-C, (b) ESA Baseline-B, (c) TFMRA Baseline-C, (d) TFMRA Baseline-B, (e) 
TFMRA Swath, and (f) LMG Baseline-C. 

T. Trantow et al.                                                                                                                                                                                                                                



Computers and Geosciences 146 (2021) 104610

7

variagram for a given data set. In the present analysis, we only quantify 
uncertainties arising from the particular characteristics of each 
retracked data set, and we therefore use the 
mean-distance-to-the-nearest-point measure rather than the ESD mea-
sure (see Section 4.1). 

Each of the six CryoSat-2 DEMs is evaluated using the numerical 
random error measure, which quantifies the inherent noise in each 
dataset and its propagation through the Kriging equations (Herzfeld, 
1992). Hereafter, we refer to this error measure as simply the numerical 
error. The numerical error measure is calculated for each elevation data 
point within a given retracked dataset following the equations in 
Trantow and Herzfeld (2016), which uses data noise estimates combined 
with the weights used in the kriging algorithm. 

Noise estimates in the measurements are derived through a simple 
scaling of the nugget parameter (see Trantow and Herzfeld (2016), 
Section 6.2). The nugget is a geostatistical parameter derived from the 
experimental variogram, which deviates from zero as a consequences of 
noise in the measurements. The nugget is calculated for each data point 
by characterizing the deviation in height estimation with respect to 
nearby measurements in the same dataset, i.e., points within a 300 m 
radius. The 300 m size is equal to the CryoSat-2 SARIn along-track 
resolution and also equal to the lag-bin separation in the variogram 
analysis. 

Note that the analysis in this paper does not investigate the effect 
that different interpolation schemes have on DEM generation. The 
kriging method has already been shown to be the ideal method for DEM 
derivation from CryoSat-2 data (Trantow and Herzfeld, 2016; Fei et al., 
2017). 

3.3. Modeling of surge dynamics and crevassing 

A 3D finite element model of the Bering-Bagley Glacier System 
(BBGS) was created to simulate ice dynamics and glacial structure 
during the recent 2011–2013 surge (Trantow, 2014), and in particular 
for surge crevasses in Trantow and Herzfeld (2018), using the finite 
element software Elmer/Ice (Gagliardini et al., 2013). These previous 
studies have demonstrated the usefulness of Elmer/Ice in simulating and 
understanding surge mechanisms in the BBGS. In the current study, we 
focus on modeling the surge during the early-2011 phase, where results 
depend on the flow law, basal and lateral boundary conditions, a 
crevasse initiation criteria and input glacier geometry. The use of cre-
vasses in model-data comparisons has allowed optimization of unknown 
model parameters important to simulate surging (Trantow and Herzfeld, 
2018). Our goal here is to investigate the sensitivity of these optimized 
parameters to the different retracking methods. 

The simulations presented in this paper are short diagnostic runs 
with a transient “relaxation” period, termed quasi-steady-state runs 
(Trantow and Herzfeld, 2018). For a full description of the BBGS model, 
along with justification for choices in model representations, see Tran-
tow and Herzfeld (2018). 

3.3.1. Flow equations 
The model is governed by 3D Stokes flow, 

∇ ⋅ σ + ρg=∇ ⋅ (τ − pI)+ ρg= 0, (1)  

∇ ⋅ u= tr(ε̇)= 0, (2)  

where σ is the Cauchy stress tensor, τ the deviatoric stress tensor, p the 
pressure, ρ the ice density, g = (0, 0,−9.81) the gravity vector, u the 
velocity vector and ε̇ = 1

2 (∇u+(∇u)T) the strain-rate tensor. Equations 
(1) and (2) are linked via Glen’s Flow Law assuming isothermal condi-
tions as the BBGS is a temperate glacier system. A temperate glacier 
system implies that most of the BBGS ice is at the pressure melting point 
temperature throughout the year, which, for pressures experienced in 
the BBGS, leads to our prescription of an ice temperature of 0◦C for 

experiments in this analysis (Trantow and Herzfeld, 2018). 

3.3.2. Boundary conditions 
The ice/atmosphere boundary at the upper surface is given as a 

stress-free boundary and is allowed to freely evolve. Forcing from both 
gravity and surface mass balance (SMB), that is, surface accumulation 
and ablation, cause the upper surface of the glacier to evolve. Surface 
height evolution is described by an advection equation, where changes 
in the upper surface elevation zs are given by, 

∂zs

∂t + us
∂zs

∂x + vs
∂zs

∂y − ws = as, (3)  

where us = (us, vs,ws) is the surface velocity vector found from the 
Stokes equation (Equation (2)) and as is the accumulation or ablation 
component that is only prescribed in the direction normal to the surface 
(Gagliardini et al., 2013). Accumulation/ablation components are not 
included in the analysis of this paper due to the short timescales that are 
considered (100-day simulations maximally). That is, elevation changes 
are dominated by surge dynamics rather than accumulation or ablation 
during the major surge phase investigated in this analysis (Tangborn, 
2013; Trantow and Herzfeld, 2016). 

The most important aspect of modeling a surge relates to the treat-
ment of the boundary condition at the base of the glacier via basal 
topography and the prescription of a sliding (or friction) law (Greve and 
Blatter, 2009; Cuffey and Paterson, 2010; Trantow and Herzfeld, 2018). 
For simulations of the early-2011 surge phase, we enforce a linear 
sliding law where normal velocities are set to zero and tangential ve-
locities (ut) are linearly proportional to shear stress (σnt) at the 
boundary: 

σnt = βut. (4) 

The linear friction parameter β in Equation (4) is an unknown model 
parameter that can be estimated using crevasse-based model-data 
comparisons (Trantow and Herzfeld, 2018). A smaller β value corre-
sponds to reduced friction at the glacier base, resulting from an 
increased amount of subglacial water Kamb (1987), which leads to basal 
sliding. Basal sliding accounts for most of the ice movement during a 
surge (Cuffey and Paterson, 2010; Trantow and Herzfeld, 2018). Opti-
mized values for β are determined using crevasse-based model-data 
comparison methods, as discussed in Section 4.2.1. 

The linear friction representation with uniform parameterization 
that we use in the current study is an appropriate approximation for the 
BBGS surge dynamics in a spatiotemporally-local sense, i.e., for a 100- 
day period of rapid acceleration in early 2011 across the model-data 
comparison domain ofof this analysis, as shown in Trantow and Herz-
feld (2018) when comparing model results to observations. This 
assumption can be thought of as a steady-state assumption in the tem-
poral sense and the consequences of this assumption on model results 
are investigated later in this paper (Section 4.2.1). 

The lateral boundary condition also adopts a linear sliding law where 
the friction coefficient, βlat , is set to fifty times the magnitude of basal 
friction coefficient, β, for each simulation in this analysis as this setting 
tends to best match observed stress patterns at the glacier margins as 
seen in the many model experiments of Trantow (2014) and in the re-
sults of Trantow and Herzfeld (2018). However, the lateral friction co-
efficient could be included as an additional model parameter to be 
optimized following the crevasse-based model-data comparison 
methods outlined in this paper. 

3.3.3. Crevasse initiation criterion and modeled crevasse characteristics 
The model estimates crevasse existence at a given nodal location by 

comparing the von Mises stress measure (σvm) at the ice surface to a 
given stress threshold (σthreshold) (Trantow and Herzfeld, 2018), 

σvm = σ2
1surf + σ2

2surf − σ1surf ⋅σ2surf > σthreshold , (5) 
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where σ1surf ≥ σ2surf are the two non-zero principal stresses in the surface 
plane (the third principal stress is normal to the surface plane and is 
assumed to be zero). Crevasse orientations are estimated to be normal to 
the modeled axis of maximum principal tensile stress within the surface 
plane. That is, a crevasse is assumed to open perpendicular to the 
principal stress axis corresponding to σ1surf > 0. A σ1surf < 0 corresponds 
to a compressional stress along the axis as opposed to an extensional or 
tensile stress. We assume extensional opening in our modeling of cre-
vasses and the consequences of this assumption are discussed in Section 
3.5. The stress threshold σthreshold in the von Mises criterion is another 
unknown model parameter that is estimated using the crevasse-based 
model-data comparisons (see Section 4.2.1). 

3.3.4. Input geometry 
Finally, the BBGS model depends on the input glacier geometry, 

which consists of basal and surface topographies. The basal topography 
input is given by a DEM (Trantow and Herzfeld, 2018) derived from 
ice-penetrating radar measurements made by the Jet Propulsion Labo-
ratory’s (JPL’s) Warm Ice Sounding Explorer (WISE) in 2008 and 2012 
over the BBGS (Rignot et al., 2013) (see Fig. 4). The derivation of the bed 
DEM follows the same kriging scheme as the surface DEMs, which is 
outlined in Section 3.2. The input surface topography is given by a DEM 
derived in Section 3.2 from one of the retracked CryoSat-2 SIRAL 
datasets (see also, Trantow and Herzfeld (2016)). The Elmer/Ice soft-
ware interpolates the input DEMs, given at 200m × 200m resolution, to 
the finite element grid, which for experiments in this analysis is at 400 m 
element-side-length resolution in the horizontal plane. An extruded 
mesh structure is employed with 5 vertical layers giving a vertical res-
olution varying between 2 and 300 m depending on location. 

3.4. Crevasse characteristics from image analysis 

Next, we derive crevasse location and orientation using image 
analysis allowing direct comparisons with modeled results. Using geo-
statistical methods applied to Landsat-7 panchromatic imagery (15 m 
resolution), we are able to determine crevassed areas and dominant 
orientations of the large surge-induced crevasses on a 600m× 600m grid. 
The grid size was chosen to be somewhat larger than the model reso-
lution so that modeled results could be averaged across several nearby 
nodes during the model-data comparison. Clouds tend to limit the 
amount of useable optical satellite imagery of the BBGS during the early- 
2011 phase. Moreover, striped artifacts exist in the Landsat-7 imagery 
due to instrument failure (Markham et al., 2004). However, we were 
able to find a Landsat-7 image from April 15, 2011 whose cloud- and 

stripe-free regions corresponded to the area of fresh surge crevasses 
(Fig. 5(a)). While Synthetic Aperture Radar (SAR) imagery may be better 
suited to resolve crevasse characteristics, as SAR images would be un-
affected by cloud cover, we did not have access to any for the BBGS in 
2011 at the time of the analysis. The intersection of this area with the 
model boundary provides the domain for the image analysis and the 
model-data comparisons (see the red line in Fig. 1 for the shape of this 
domain). 

Crevasse locations are identified in imagery by applying a threshold 
to the geostatistical parameter mean-pond, which is derived from 
directional variograms calculated for 16 direction classes within a 400 m 
window centered on each grid point (or node) in the analysis domain 
(see Trantow and Herzfeld (2018) for more specifics on this calculation). 
The pond parameter is defined as the maximum of the experimental 
variogram (or vario-function, see Herzfeld (2008)), while the mean-pond 
parameter is the pond value averaged over all 16 directions. In general, 
all pond related parameters quantify ice-surface roughness. The natural 
logarithm of the mean-pond parameter is shown in Fig. 5(b) for the April 
15, 2011 Landsat-7 image. 

Crevasse orientations can also be identified in imagery using addi-
tional geostatistical parameters calculated from directional variograms 
(Trantow and Herzfeld, 2018). However, for the April 15, 2011 
Landsat-7 image, crevasse orientations were assigned manually by 
classifying dominant crevasses at a particular nodal location into one of 
16 evenly-spaced directional classes. Crevasse directional classes are 
labeled by the angle between the orientation vector and the east-west 
horizontal, implying an angle-range of 180◦/16 = 11.25◦ for each 
class. Note that crevasse provinces, defined as areas homogeneous with 
respect to crevasse type and maximal with this property (Herzfeld et al., 
2014), are typically much larger than 600m × 600m for the BBGS 
(Herzfeld et al., 2013a). However, boundaries of crevasse provinces may 
exist within a 600m × 600m analysis window which complicates 
crevasse orientation assignment. In this case we assign crevasse orien-
tation to the dominant crevasses within the window. Orientation 
assignment was done at each of the crevassed locations determined by 
the pond-threshold (blue vectors in Fig. 5 (e)). The geostatistical image 
analysis approach is described in greater detail in Trantow and Herzfeld 
(2018). 

3.5. Crevasse-based model-data comparisons 

Crevasse characteristics derived in the image analysis given above 
can be directly compared to model results when using the model-data 
comparison methods derived in Trantow and Herzfeld (2018). Here, 

Fig. 4. Bed topography DEM for the BBGS model. Bed elevation was measured by JPL’s WISE instrument and krigged to a 200m × 200m DEM for use in the BBGS 
model simulations. 
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we give an overview of these comparison methods using as an example 
the modeled crevasse location and orientation results from the model 
experiment that employs the input surface DEM derived from the 
LMG-Baseline-C dataset at day 50 of the simulation (see Fig. 5). Note 
that modeled results are mapped from their finite element grid to the 
image analysis grid within the analysis domain using an interpolation 
scheme based on a weighted-distance measure applied to neighboring 

points (Trantow and Herzfeld, 2018). 
We use two comparison methods of crevasse location and crevasse 

orientation to optimally determine two important unknown model pa-
rameters: the basal friction coefficient (β in Equation (4)) and the von 
Mises stress threshold (σthreshold in Equation (5)). In the first comparison 
of crevasse location, disagreement is quantified by finding the fractional 
amount of nodes where model and observational data analysis disagree 

Fig. 5. Crevasse-based model-data comparisons using Landsat imagery and the BBGS model initialized with LMG-Baseline-C surface topography. (a) 
Landsat-7 panchromatic image form April 15, 2011 of Bering Glacier used to derive crevasse characteristics from observational sources during the surge in early 
2011. (b) The natural logarithm on the mean-pond parameter derived from the Landsat image in (a). (c) The von Mises stress measure (σvm calculated from the model 
experiment initialized with LMG-Baseline-C topography after 50 1-day time steps. (d) Crevasse location comparison for the LMG model experiment at 50 days. (e) 
Crevasse orientations derived from the Landsat image in (a) (blue) and from the LMG model experiment (orange). (f) Crevasse orientation comparison for the LMG 
model experiment after 50 time steps. (g) The maximum principal surface stress for the LMG model experiment after 50 time steps. (h) The second principal surface 
stress for the LMG model experiment after 50 days. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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on crevasse existence. This quantity is given by the scalar α1, defined as: 

α1 = Ndisagree

Ntotal
∈ [0, 1] (6)  

where Ndisagree is the amount of nodes where model and observations 
disagree on crevasse existence and Ntotal is the total amount of nodes in 
the study domain. For the analysis in this paper and in Trantow and 
Herzfeld (2018), Ntotal = 1185 nodes. 

This second scalar measure quantifying mean orientation discrep-
ancy is given by α2 and defined as: 

α2 =
∑Ncrev

i=1 |sin(θ)|
Ncrev

∈ [0, 1] (7)  

where θ is the angle between unit orientation vectors derived from ob-

servations and the model, v→obs and v→mod respectively, and Ncrev = 898 is 
the number of nodal locations where crevasses existence is consistent 
between the model and observations for this example. 

A simple cost function C is used to combine α1 and α2, with associ-
ated weights w1 and w2 into a single scalar value to evaluate overall 
agreement: 

C(α1, α2)=w1 ⋅ α1 +w2⋅α2 (8) 

The cost value C is calculated for a number of model runs each with a 
unique set of parameter values for β and σthreshold. Optimal parameter 
values are those associated with a minimized cost value and are denoted 
by an asterisk superscript (e.g., β∗). Fig. 5 (c) and (f) show the results of 
the comparison methods for the optimized parameter combination β∗ =
10−5MPa⋅a

m and σ∗
threshold = 235 kPa for a model simulation that uses the 

LMG-Baseline-C surface DEM as input after 50 1-day iterations. 
For the analysis in this paper, we set the weights to be w1 = 4 and 

w2 = 1. The reason for weighing crevasse orientation comparisons 
lower than crevasse location comparisons (w2 < w1) does not stem from 
an undervaluation of matching orientations, but rather from experi-
mentation in Trantow and Herzfeld (2018) where we found a small 
(negative) correlation between α∗

2 and the magnitude of the optimized 
von Mises stress threshold, leading to a bias toward larger threshold 
values. This effect is explained by the following: 

We observe that in locations where the maximum tensile stress at the 
surface is much larger than the von Mises threshold stress (σsurf1≫ 
σthreshold), modeled crevasse orientations tend to align better with 
observed crevasse orientations, given by lower |sin(θ)| values (see Fig. 5 
(f)–(h)). This occurs when there is a dominant principal surface stress 
σsurf1≫σsurf2, which will always be caused by extensional forcing σsurf1 >

0. When a dominant extensional force exists, crevasse orientations are 
expected to align better (more perpendicularly) to the axis of maximum 
principal stress. However, at locations where σsurf1 is closer in magnitude 
to the second principal surface stress, σsurf2, crevasses open via mixed- 
mode fracturing, as opposed to extensional fracturing only (Mode I) 
(Van der Veen, 1998, 1999). In the case of mixed-mode fracturing, the 
significant shearing component causes crevasse orientations to no longer 
align perpendicularly with the maximum principal stress axis, which we 
assume when modeling crevasse orientations. Therefore, when we in-
crease the von Mises stress threshold (σthreshold), we decrease the amount 
of estimated crevasses that have a significant σsurf2 component, i.e., 
crevassing likely formed via mixed-mode fracturing, and we naturally 
attain better crevasse orientation matching (a smaller α2 value). It is for 
this reason that we set the cost function weight associated with crevasse 
orientation, w2, to be significantly lower than the crevasse-location 
weight. Development of a more accurate crevasse orientation estimate 
in the case of mixed-mode fracturing will increase confidence in 
modeling crevasse orientations and will allow an increase in w2. 

3.6. Method for model sensitivity study 

New in this paper is the method for studying the sensitivity of 
modeled surge crevasses in the BBGS to input surface topography. We 
investigate this sensitivity by asking the following questions: All else 
equal, (1) Does input surface topography change the optimized values 
for the linear basal friction coefficient, β∗, and the von Mises stress 
threshold, σ∗

threshold, and the simulation time at which they are found? (2) 
Do modeled results from the various input surface topographies 
converge to one another with respect to the spatial pattern of modeled 
von Mises stress, crevasse orientation estimates and surface elevation as 
simulation time progresses? (3) Does a particular CryoSat-2 processing 
method lead to modeled results that best match observed crevasse 
characteristics or are modeled results dominated by constraints inde-
pendent of the retracking method used? 

To answer these questions, we run 6 sets of model experiments that 
differ only in their input surface topographies derived from the 
retracking methods introduced in Section 3.1. We apply the parameter 
optimization scheme introduced in Section 3.5 within each set of 
modeling experiments in order to answer question (1). Each experiment 
set consists of crevasse characteristic simulations that use a unique 
combination of the von Mises stress threshold, varying between 170 kPa 
and 250 kPa (Vaughan, 1993; Forster et al., 1999) at increments of 5 
kPa, and a basal friction coefficient varying between 10−4.5MPa⋅a

m and 
10−5.5MPa⋅a

m (Trantow, 2014) at increments of 0.25 in the exponent. The 
simulations are run for 100 one-day time steps during which the 
ice-surface can “relax”, that is, the surface can freely evolve after the 
input geometry is prescribed, being forced only by gravity. We perform 
the optimization procedure once every 10 time steps across each 100 
day simulation. As a result, each experiment set, defined by their input 
surface topography DEM, yields a unique β∗ and σ∗

threshold, along with a 
minimized cost function value C∗, at every 10-day increment. The final 
fully-optimized parameter values for each experiment correspond to the 
lowest overall cost value C∗ across all simulation time, which are labeled 
β† and σ†

threshold, with an associated cost value C†, and similarity measures 
α†

1 and α†
2. Note that the parameter values optimized across the time 

domain are referred to as the “fully-optimized” parameter values. Since 
determination of the optimal von Mises stress threshold is done in 
post-processing, i.e., after the Elmer/Ice simulation has completed, we 
run only 5 model simulations per experiment corresponding to each of 
the tested basal friction coefficient values. 

To investigate question (2), we compare results over the course of the 
full 100-day simulations that correspond to the fully-optimized basal 
friction coefficient, β†, for each experiment. At each 10-day time incre-
ment throughout the simulation, we compare the modeled von Mises 
stress, crevasse orientations (given by the maximum principal stress 
vector) and ice-surface elevation results from the six experiments to each 
other using the Map Comparison method covered in the following sec-
tion. The value of C†, along with DEM uncertainty comparisons, will 
allow us to answer question (3). 

3.7. Map Comparison Method 

We investigate the convergence of the ice-surface estimates from the 
model experiments, with respect to one another, by employing the Map 
Comparison method (MAPCOMP) (Herzfeld and Merriam, 1990). The 
MAPCOMP method yields a similarity map given any finite number of 
input maps, which in our case are maps of model results from our six sets 
of experiments. 

The MAPCOMP algorithm performs the similarity mapping by 
standardizing the input values of each input map and forming pairwise 
differences of the standardized values. To these differences, a semi-norm 
is applied, performed in a space whose dimension is equal to the number 
of possible pairwise comparisons among a set of input maps, to provide a 
normalized similarity value at each shared grid location. Similarity 
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values, or MAPCOMP values, close to 0 indicate high similarity among 
input maps at a given location. While the largest possible similarity 
value is 1, this value rarely exceeds 0.5 (Herzfeld et al., 2007; Trantow 
and Herzfeld, 2018). Moreover, while MAPCOMP can be applied to any 
number of input maps of different variables, each comparison made in 
the present study uses maps of the same modeled output variable. 
Therefore, similarity values are expected to be relatively low across the 
resulting similarity maps, with values mostly under 0.1 (see Section 
4.2.2). Input maps have the option to be weighted by their importance or 
confidence, however, we assign equal weights to each of the maps in the 
comparisons made in this paper. With equal weighting and consistent 
map grids among our inputs, the semi-norm used in our map compari-
sons is equivalent to the L1-norm. The mathematical formulation of the 
MAPCOMP method is given in full in Herzfeld and Merriam (1990). 

The MAPCOMP method has the advantage over a simple correlation 
calculation in that it produces a map of spatial similarities rather than a 
single scalar value. While the MAPCOMP method is not designed to 
identify outliers among the input maps, it has an advantage over typical 
correlation analysis in that it does not require information reduction 
before analysis allowing investigation of spatial relationships. In the 
end, the resultant similarity map will allow a spatial analysis of simi-
larities and differences between the results of our model experiments 
helping elucidate reasons for their existence. 

4. Results and discussion 

In the following, we summarize the resulting effects of CryoSat-2 
retracking techniques on higher level data analysis. These effects are 
demonstrated through application of our approach to the early-2011 
surge phase of the BBGS using CryoSat-2 retracked datasets for the 
time period spanning November 2010 to April 2011. In Section 4.1 we 
summarize error and uncertainty estimates within each retracked 
dataset and DEM product, and proceed to quantify the effects on 
elevation and elevation-change analysis when using CryoSat-2-derived 
DEMs via a series of difference maps between the various Bering 
Glacier DEMs. In Section 4.2, we analyze differences in numerical 
modeling results with respect to parameter estimation and in inter- 
model convergence of estimates of von Mises stress, crevasse orienta-
tions and surface elevation. 

4.1. Effects on DEM generation and elevation-change analysis 

4.1.1. Error estimates 
Ice-surface DEMs are evaluated using the numerical error measure, 

which reflects the inherent noise within each dataset and its propagation 
through the kriging algorithm. The mean and standard deviation of the 
numerical error, along with noise and nugget values, are given in Table 2 
for each DEM. In addition, we include the average distance from the 
estimation locations within the Bering Glacier DEM grid to the nearest 
data point used in kriging for each of the associated retracked datasets. 
The mean separation distance reflects the survey distribution across the 
entire glacier and may be interpreted as a measure of uncertainty in 
DEM generation. There is a clear negative correlation between the mean 
separation distance and the amount of data points within each POCA- 
based dataset, i.e., a higher number of data points yields a lower mean 
separation distance, as shown in Table 1. 

The average numerical error is around 2 m for each dataset, which is 
much lower than the observed elevation changes occurring during the 
early-2011 phase of the BBGS surge, which exceed 60 m in several lo-
cations (Herzfeld et al., 2013b). As shown in Trantow and Herzfeld 
(2016), the dominant error in the CryoSat-2 DEMs stem from the survey 
pattern and therefore datasets with larger mean-distance measures, and 
a generally lower amount of data points, result in larger elevation un-
certainty (e.g., the two Baseline-B datasets). 

The LMG Baseline-C dataset provides the lowest average numerical 
error, which reflects more consistent elevation estimates between 

nearby points within the six-month dataset. Interestingly, the two 
Baseline-B datasets have the next lowest mean numerical error, which 
may be a reflection of the lower amount of data points. The Baseline-C 
processing chain provides more elevation estimates than the Baseline- 
B chain, independent of the retracking method used. Therefore, the set 
of additional estimates given by the Baseline-C processing are likely 
more noisy than the remaining data, leading to (mostly) higher associ-
ated numerical error and noise estimates. 

The swath processed dataset contains 100–250 times more elevation 
estimates compared to POCA datasets (Table 1), and as a result, provides 
a lower mean search distance for kriging by a factor of 2–4. However, 
the noise and numerical error estimates are largest in the TFMRA Swath 
dataset (along with the TFMRA Baseline-C dataset). The error analysis 
results are influenced by the ability of the raddev filter to remove phase- 
wrapped data points and therefore the relatively large noise estimates in 
the TFMRA Swath dataset stem from the large amount of phase-wrapped 
data that result during processing. However, without a reliable ambi-
guity DEM for Bering Glacier during surge, we must expect some amount 
of phase-wrapped data to exist in each dataset and the noise and nu-
merical error estimates must still be taken into account when selecting a 
retracked dataset to use during higher level data analysis. 

The numerical error is visualized in Fig. 6 for each Winter 2010/ 
2011 dataset over Bering Glacier. Note that numerical error estimates 
can only be attained for data points that contain at least one other data 
point within a 300 m radius. Points that do not meet this requirement 
are given by an empty red marker in Fig. 6. 

4.1.2. Difference maps 
After quantifying the uncertainties in each DEM, we take a look at 

actual elevation differences between the Bering Glacier DEMs generated 
by the different retracking techniques (Figs. 7–9). Locations of the 
largest elevation discrepancy typically correspond to sparsely surveyed 
areas in one or both of the differenced DEMs. We identify large differ-
ences between Baseline-B DEMs and Baseline-C DEMs in upper Bering 
Glacier near the junction of Bagley Ice Field (Figs. 7(a),(c), 8(a),(b),(e), 
and 9(a),(c),(d)). This may be due to the location of Bering Glacier near 
the ocean, with upper-Bering and the Bagley Ice Field being further 
away, where there is a transition between CryoSat-2’s ocean and in-land 
masks, which led to the 59.959 m offset in the ESA Baseline-C data over 
Bering Glacier (Mannan, 2017). 

In general, the ESA Baseline-B data provide a map with the lowest 
overall ice-surface elevation (Figs. 7(b) and 8(a),(e) and 9(c),(e)), while 
the TFMRA Baseline-C data result in the map with the highest overall 

Table 2 
Error analysis means and standard deviations.  

Season Mean distance to 
nearest point (m) 

Numerical 
error (m) 

Noise 
(m) 

Nugget 
(m2) 

ESA Baseline-C 878.38 1.94 ± 3.46  5.65 ±
11.24  

78.99 ±
304.63  

ESA Baseline-B 1886.96 1.25 ± 3.70  4.68 ±
13.00  

95.09 ±
742.76  

TFMRA 
Baseline-C 

1285.24 2.04 ± 3.03  7.97 ±
11.28  

95.16 ±
268.35  

TFMRA 
Baseline-B 

1329.30 0.86 ± 1.41  3.43 ±
5.90  

23.22 ±
107.31  

TFMRA Swath 
Baseline-C 

535.32 2.04 ± 1.39  9.07 ±
6.17  

60.03±
108.81  

LMG Baseline- 
C 

1037.65 0.82 ± 1.03  2.61 ±
3.30  

8.83 ±
29.75  

Noise estimates are found by scaling the nugget value calculated for each mea-
surement within a data set. The numerical error is calculated using the noise 
estimates together with the kriging weights used in DEM generation (see Section 
3.2 and Trantow and Herzfeld (2016)). The nearest distance measure reflects 
uncertainties in the DEMs arising from the survey error, i.e., the data distribu-
tion within each data set. 
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elevation (Figs. 7(b) and 8(a)–(d)). The Khitrov Crevasse region (Fig. 1) 
is a location of consistent discrepancy between the various elevation 
maps, where some of the largest surge crevasses formed during the early- 
2011 phase of the surge (Herzfeld et al., 2013b; Trantow and Herzfeld, 
2018). Many of the retracking methods are not able to supply elevation 
estimates in this region, which leads to larger interpolation discrep-
ancies in the DEMs. Clearly, active crevassing occurring during the rapid 

surge acceleration complicates retracking, and consequently, elevation 
analysis, especially when aggregating data over a six-month period. 

The figures show that large differences, upwards of 150 m, can exist 
between DEMs derived from different processing methods applied to 
CryoSat-2 measurements over heavily-crevassed and highly-sloped 
terrain and that one must be careful in their interpretation. However, 
as shown by the error-analysis in Trantow and Herzfeld (2016), 

Fig. 6. Numerical error from the propagation of the noise through the kriging algorithm. Points marked by an empty red circle did not have any data points 
within a radius equal to the lag spacing and hence numerical error values are not calculated there. Numerical error estimates for the Winter 2010/2011 data are given 
for (a) ESA-Baseline-C, (b) ESA-Baseline-B, (c) TFMRA-Baseline-C, (d) TFMRA-Baseline-B, (e) TFMRA-Swath and (f) LMG-Baseline-C. Background image from 
LandSat-8 acquired on April 28, 2013. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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large-scale elevation changes (>15–20 m) that occur during a surge can 
still be analyzed using CryoSat-2-derived DEMs. This result was 
concluded from error measurements calculated for ESA Baseline-B data 
for the BBGS in Trantow and Herzfeld (2016), and the additional error 
estimates derived in Section 4.1.1 for each additional retracked dataset 
are consistent with this finding. On the other hand, using similar DEMs 
for elevation analysis during quiescence is not recommended, as 

six-month elevation-changes are typically less than the associated DEM 
error estimates. It is therefore better to aggregate CryoSat-2 data over a 
longer time period when analyzing the smaller elevation-changes during 
quiescence, which would greatly reduce the error associated with the 
survey pattern, i.e., the error associated with the mean distance to the 
nearest point during kriging. Finally, as we show in the following sec-
tions and in Trantow and Herzfeld (2018), the CryoSat-2 DEMs remain 

Fig. 7. Difference maps between various CryoSat-2 derived DEMs (part 1). (a) ESA-Baseline-C minus ESA-Baseline-B, (b) ESA-Baseline-C minus TFMRA- 
Baseline-C, (c) ESA-Baseline-C minus TFMRA-Baseline-B, (d) ESA-Baseline-C minus TFMRA-Swath, and (e) ESA-Baseline-C minus LMG-Baseline-C. 
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very useful as surface topography inputs for numerical models. 

4.2. Effects on numerical modeling results 

Next, we analyze the effects that a particular retracking technique 
has on numerical modeling results. Recall that each modeling experi-
ment is given a unique CryoSat-2 surface DEM, corresponding to a 

particular retracking method, to initialize the ice-surface geometry. 

4.2.1. Optimized model parameters 
We begin by comparing parameter optimization results between the 

model experiments. Table 3 gives the fully-optimized values for the two 
important unknown parameters in the model, the von Mises stress 
threshold σ†

threshold and the linear basal friction coefficient β†, and what 

Fig. 8. Difference maps between various CryoSat-2 derived DEMs (part 2). (a) TFMRA-Baseline-C minus ESA Baseline-B, (b) TFMRA-Baseline-C minus TFMRA- 
Baseline-B, (c) TFMRA-Baseline-C minus TFMRA-Swath, (d) TFMRA Baseline-C minus LMG-Baseline-C, and (e) LMG-Baseline-C minus ESA-Baseline-B. 
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time in the simulation these optimized values are found. Recall that each 
simulation is run for 100 days using a 1-day time step size. 

The general consistency of the optimal parameter estimates from 
each model experiment demonstrates that we are able to limit the effect 
of surface topography discrepancies from retracking differences when 
following the proper optimization routine, which is outlined throughout 
this section. Whichever CryoSat-2 surface DEM is given to the model, the 

fully-optimized basal friction coefficient is consistently β† = 10−5MPa⋅a
m . 

The consistency of the optimal basal sliding parameter across model 
experiments may allow increased precision in our estimate of β† in 
future analysis by running additional model experiments that vary β 
values within a smaller range around 10−5MPa⋅a

m . As shown in Trantow 
and Herzfeld (2018), a prescription of β = 10−5MPa⋅a

m in the linear sliding 

Fig. 9. Difference maps between various CryoSat-2 derived DEMs (part 3). (a) LMG-Baseline-C minus TFMRA-Baseline-B, (b) LMG-Baseline-C minus TFMRA- 
Swath, (c) TFMRA-Swath minus ESA-Baseline-B, (d) TFMRA-Swath minus TFMRA-Baseline-B, and (e) ESA-Baseline-B minus TFMRA-Baseline-B. 
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law, together with ESA Baseline-C surface topography, results in 
modeled surface velocities that match the limited observations by an 
average of 0.54 ± 2.57 m/day, where average velocities were around 11 
m/day. The velocity match provided an independent sanity check on the 
prescribed β value, and the results from the current analysis validate this 
parameterization further for simulation of the early-2011 surge phase 
within the model-data comparison domain. 

In addition, the fully-optimized von Mises stress threshold, σ†
threshold, 

is remarkably consistent across the various model experiments with a 
few exceptions. The TFMRA retracking technique applied to the 
Baseline-C data, for both POCA and swath methods, were the only 
datasets that yielded an optimized von Mises stress threshold different 
than 235 kPa, at 230 kPa and 240 kPa respectively. However, both 
TFMRA Baseline-C experiments still yield relatively low cost measures, 
implying an excellent match to observations, and therefore we estimate 
the range of an optimal von Mises stress threshold to lie somewhere 
between 230 and 240 kPa. This estimated range of the von Mises stress 
threshold is slightly larger than the range of ice strength thresholds 
given by Forster et al. (1999) for temperate glaciers: 169–224 kPa. 
However, as discussed in Trantow and Herzfeld (2018), the stress 
threshold we derive here might better reflect the formation of crevasses 
of a particular size, which is associated with crevasse identification in 
the Landsat-7 imagery. Therefore, our optimized stress threshold could 
be larger than the stress threshold corresponding to brittle deformation 
that results in an initial fracture of the ice. 

Note that the optimized stress threshold is assumed to be uniform 
through the analysis domain, but heterogeneous ice-characteristics may 
cause the ice yield strength to vary across the glacier surface. A non- 
uniform estimation carried out on a node-by-node basis (with some 
regularization) would lower the optimized cost function, and yield a 
better fit to observations, but at the risk of introducing more control 
parameters and degrees of freedom. 

The LMG Baseline-C experiment, whose results yielded the lowest 
overall cost function, matched observed crevasse existence in 88.35% of 
locations within the model-data comparison domain. This excellent 
match lends further credence to the use of a linear friction law to 
represent surging in a spatiotemporally local sense. This result has 
motivated the development of a spatiotemporally evolving sliding law, 
based on a local linear representation, to simulate the entire progression 
of a BBGS surge (Trantow, 2020). 

Table 3 shows that only the TFMRA Swath model experiment gives 
mean-von Mises stresses, σvm, below 305 kPa across the analysis domain 
for model-data comparison. The lower overall surface stress given in this 
model experiment during the time of optimization is likely correlated 
with the lower estimate of the optimal von Mises threshold. This rela-
tionship is highlighted further in Fig. 10(a) and (b) which show that 
throughout each simulation the mean von Mises stress increases as do 
the estimates for the optimal threshold value. In other words, with larger 
overall surface stresses, a larger stress threshold is required in order to 
best match modeled and observed crevasses. 

Next, we investigate the best time during the 100-day simulation for 
application of the optimization routine. In general, we find that the 
model best matches observations when optimal parameters are found 
after approximately 50 days of glacier evolution. Fig. 10 gives the esti-
mate of the optimal von Mises stress threshold at various times 
throughout the 100-day simulation along with the associated model- 
data comparison measures α1, α2 and C. Fig. 10(a) reflects the 
increasing von Mises stress threshold with time-of-optimization that is 
associated with an increasing mean surface stress. The continued in-
crease in mean surface stresses over time, as seen in Fig. 10(b), is a 
consequence of allowing our steady-state assumption to extend longer 
than is realistic during a surge. However, the cost value, after an initial 
decrease, also tends to increase with simulation time near the middle of 
the experiment (̃50 days), depending on the exact model experiment, as 
seen in Fig. 10(e). This pattern reflects the evolution of the model-data 
crevasse location measure, α1 (Fig. 10(c)), due to the relatively high 
weight given in the cost function. In general, the model-data crevasse 
orientation measure (α2, Fig. 10(d)) decreases modestly after time zero 
for 20–40 iterations before remaining relatively constant across the 
simulation time (with the exception of the ESA Baseline-B experiment). 
As shown by the gray dashed line in subfigures (c)-(e), the difference 
measures α1 and α2, along with the overall cost value, are at a minimum 
at the 50 time-step mark when averaged over all model experiments. 
Moreover, the best time for optimization given by the model experiment 
with the lowest overall cost value, the LMG Baseline-C experiment, is 
shown to be at the 50-day mark (green line in Fig. 10(e)). These results 
suggest that the ideal time for performing the optimization procedure is 
around the 50-day time, i.e., after approximately 50 iterations, for the 
BBGS surge model when using a CryoSat-2 POCA input DEM. This time 
balances having enough simulation time elapse to elevate errors in the 
input surface DEM while still holding the steady-state assumption war-
ranted for our investigation of the glacier state in early 2011. 

The TFMRA Swath experiment gives optimal values after only 20 
iterations, and therefore the additional elevation estimates given by 
swath processing may allow optimal parameter estimation after fewer 
model iterations. This also implies that actual elevation error in the 
swath-derived DEM may be lower than in the POCA-derived DEMs, with 
surface elevations more consistent with the other geometric represen-
tations given to the model (e.g., bed topography). 

While Fig. 10(e) shows the range of possible cost values across time- 
of-optimization, Fig. 11 gives the range of cost values across the 
β-σthreshold parameter-space for the ESA Baseline-C experiment at 40 days. 
The overall lowest cost value, corresponding the fully-optimized 
parameter choice, is displayed in white text. The largest cost values, 
indicating the worst match to observations, are found where the linear 
friction coefficient is smallest (10−5.5MPa⋅a

m ) and the von Mises stress 
threshold is largest (300 kPa), corresponding to simulations with the 
fastest glacier movement and strongest ice. Other parameter combina-
tions that yield low cost values appear along the diagonal where ice 
yield strength is balanced with sliding speed. The fact that these cost 

Table 3 
Fully-optimized model parameter values given different input surface topographies. The parameter β† is the fully-optimized basal sliding parameter in the linear 
friction law and σ†

threshold is the fully-optimized von Mises stress threshold parameter in the von Mises criterion. The sixth column displays the mean von Mises stress, σvm, 
across the analysis region for the model-data comparisons at the time corresponding to the lowest overall cost value. The final column gives the time step number 
(simulation day) for which modeled results and observations matched the best, as reflected by the lowest overall cost value, C†. The time step size is equal to 1-day.  

Retracking method β† (
MPa⋅a

m
)  σ†

threshold (kPa)  C† α†
1  α†

2  
σvm (kPa)  Day of optimization 

ESA Baseline-C 10−5  235 1.0027 0.1181 0.5301 305.4 40 

ESA Baseline-B 10−5  235 1.0268 0.1266 0.5205 309.2 50 

TFMRA Baseline-C 10−5  240 1.0009 0.1173 0.5317 308.7 50 

TFMRA Baseline-B 10−5  235 1.0341 0.1257 0.5347 318.1 70 

TFMRA Swath Baseline-C 10−5  230 0.9956 0.1171 0.5280 300.3 20 

LMG Baseline-C 10−5  235 0.9947 0.1165 0.5288 308.6 50  
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values along the diagonal are so close has motivated inclusion of addi-
tional data constraints to our optimization scheme, which includes the 
limited velocity data we have available during the surge in early-2011 
(Trantow, 2020). 

Note that the optimization of the model parameters in Trantow and 
Herzfeld (2018) were performed after 20 1-day iterations thus yielding 
an optimal estimation of σ∗

threshold = 200kPa. However, as seen in Fig. 10 
(a), the estimation of the magnitude of σ∗

threshold increases sharply when 

Fig. 10. Evolution of model and optimization values over each 100 day model simulation. ESA-Baseline-C (Red), ESA-Baseline-B (magenta), TFMRA-Baseline- 
C (black), TFMRA-Baseline-B (blue), TFMRA-Swath (cyan) and LMG-Baseline-C (green). The gray dashed line plots the mean value across all model experiments at 
each time. (a) The optimized von Mises stress threshold (σthreshold). (b) Mean von Mises stress measure (σvm) across the model-data analysis domain. (c) The model- 
data crevasse location difference measure (α1). (d) The model-data crevasse orientation difference measure (α2). (e) The minimized cost value associated with each 
time. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

T. Trantow et al.                                                                                                                                                                                                                                



Computers and Geosciences 146 (2021) 104610

18

performing the optimization 10–20 time steps later. The analysis in this 
section has shown that optimization closer to the 50-day mark yields 
better matches to observation, and therefore we favor the likely von 
Mises stress threshold for crevasse initiation to be closer to 235 kPa as 
found in this analysis, rather than 200 kPa as concluded in Trantow and 
Herzfeld (2018). 

4.2.2. Convergence between model experiments 
We are also interested in the effect that different retracking tech-

niques have on longer transient simulations rather than only the diag-
nostic, parameter-optimization simulations we have run so far. In 
particular we ask, how long do noticeable effects caused by different 
input surface DEMs remain in the model as the simulation progresses in 
time when free surface evolution, forced only by gravity, is allowed as a 
characteristic of the model? This analysis looks at the convergence over 
the course of a 100 day simulation of three modeled variables at the 
glacier surface: (1) the von Mises stress, σvm, (2) the direction of the 
maximum principal stress axis, which determines modeled crevasse 
orientations, and (3) elevation. The map comparison (MAPCOMP) 
method is employed to quantify the spatial similarities of these param-
eters across the study region and determine how these similarities (or 
dissimilarities) change as the models run forward in time. Because 
comparisons (1) and (2) pertain to the modeling of crevasse character-
istics, and ultimately their match to Landsat observations, the MAP-
COMP analysis is performed only for modeled results within the model- 
data comparison domain. However, the third comparison of elevation 

also has relevance to the DEMs generated in Section 3.2 and therefore 
the associated MAPCOMP analysis is applied to modeled results for all of 
Bering Glacier. 

4.2.2.1. von Mises stress. Fig. 12 shows the MAPCOMP results applied to 
the von Mises stress estimates given by the various model experiments, 
each using the basal friction coefficient β = 10−5, after (a) a single 1-day 
time step, (b) after 30 days and (c) after 100 days. The mean MAPCOMP 
value across the entire study region is plotted against the number of 
model time steps in Fig. 12(d). While similarity values are below 0.1 
throughout each map, indicating mostly high similarity between the von 
Mises maps from each model experiment, locations with relatively large 
similarity values still provide important spatial information with regards 
to model differences. 

The results of these comparisons clearly indicate that the spatial 
pattern of von Mises stress converges between model experiments 
initialized with different surface topographies, with very little variance 
remaining after the simulations have run for 100 days. Fig. 12(a) shows 
that the model results after the first time step differ most significantly 
along the margins and at regions with large noise and numerical error 
estimates (see Fig. 6). Most notable is the Khitrov Crevasse region where 
the largest surge-crevasses were formed during the early-2011 phase of 
the surge. The region near 390 km UTM-East/6695 km UTM-North, 
where relatively large dissimilarity exist even after 30 days, corre-
sponds to a region that is sparsely covered by height estimates for each 
of the retracked dataset, as seen in Fig. 2(a). This un-surveyed region 

Fig. 11. Range of cost values across the tested parameter-space for the ESA Baseline-C experiment at time ¼ 40 days. The range of tested linear friction 
parameter values are given along the x-axis while the range of tested von Mises stress thresholds are along the y-axis. The magnitude of the cost value is specified by 
color and by the number within each cell. The cost value labeled in white text corresponds to the optimized value at day 40, which corresponds to the fully-optimized 
value across the space of possible β, σthreshold, and time-of-optimization values. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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exists due to the CryoSat-2 satellite’s flight pattern which does not fly 
over this location during the time period between November 2010 and 
April 2011. The large MAPCOMP values along the margins are mostly 
due to elevation estimation from kriging. Data points used in estimation 

can only be pulled from limited directions corresponding to the glacier 
mask. That is, we do not use elevations of the surrounding mountains 
and lakes in our estimation of glacier height. 

In general, the results displayed in Fig. 12 indicate that spatial 

Fig. 12. MAPCOMP comparison of modeled von Mises stress at the ice surface between all six model experiments at different times during the simulation. 
(a) After a single 1-day time step. (b) After 30 1-day time steps. (c) After 100 1-day time steps. (d) Plot of the mean MAPCOMP value across all of Bering Glacier 
computed at 10-day increments throughout the 100-day simulation. 

Fig. 13. MAPCOMP comparison of modeled maximum principal stress axis direction at the ice surface between all six model experiments at different 
times during the simulation. (a) After a single 1-day time step. (b) After 30 1-day time steps. (c) After 100 1-day time steps. (d) Plot of the mean MAPCOMP value 
across all of Bering Glacier computed at 10-day increments throughout the 100-day simulation. 
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variance of von Mises stress between model experiments is controlled 
largely by the satellite flight pattern and intrinsic interpolation re-
strictions. Discrepancies in modeled stress from different retracking 
techniques matters only in how the technique handles elevation esti-
mation in the presence of large crevasses. Ultimately, the results from 
Section 4.2.1 indicate that optimization of the von Mises stress threshold 
is robust to these variances in the overall von Mises stress that arise from 
different retracking techniques as long as the recommended optimiza-
tion procedure is followed. 

4.2.2.2. Crevasse orientations and maximal principal stress axes. Fig. 13 
displays the MAPCOMP result applied to the maximal principal stress 
axis directions from the six model experiments after (a) 1 day, (b) 30 
days and (c) 100 days, while (d) shows the evolution of the mean 
MAPCOMP value across the entire domain over time. The appearance of 
larger MAPCOMP values, exceeding 0.3 in some locations, indicate less 
overall similarity of between modeled stress directions compared to 
modeled von Mises stress. 

We find that the dissimilarities in the modeled maximal principal 
stress axis directions between model experiments reduce over the course 
of the 100-day simulation. The steady decrease in the mean-MAPCOMP 
measure reflects the increased dominance of other model aspects, likely 
basal topography, for determining the direction of maximal principal 
stress at the surface rather than initial surface topography. This is further 
shown by the widespread, near-zero MAPCOMP values (dark blue) that 
exist even after a single time step. However, while modeled crevasse 
orientations tend to converge in time across the six model experiments, 
they do not necessarily converge with respect to observations as shown 
in Fig. 10 (d). Model-data crevasse-orientation agreement would in-
crease with improved bed-topography or, as mentioned previously, by 
incorporating mixed-mode fracturing in the modeled crevasse orienta-
tion determination. 

It is interesting to note that the similarity of the modeled principal 
stress axes appear to converge at a similar rate to the von Mises stress. 

This result implies that differences, or errors, in the input surface 
topography are reduced at a similar rate with regards to their effect on 
stress orientations and stress magnitudes as the simulation time pro-
gresses. However, the mean MAPCOMP values corresponding to the 
stress directions are about 0.015 larger in magnitude than those asso-
ciated with the von Mises stress, indicating a larger initial sensitivity to 
input surface topography. While this result may indicate larger un-
certainties in modeling crevasse orientations compared to crevasse lo-
cations, which is reflected in our cost function weights α1 and α2, we 
emphasize that matches to orientation observations do not improve, and 
in fact mostly degrade, after 50 days, as reflected in the mean α2 plot in 
Fig. 10 (d). Therefore, while the principal stress axes estimates continue 
to converge between model runs up to at least 100 days, we do not 
expect parameter optimization results to improve if the procedure is 
carried out after the 50-day mark. 

The similarity maps show that relatively large dissimilarities in 
modeled crevasse orientations exist at isolated locations produced by 
the different input surface topographies, even after 100 days of surface 
evolution. The large region of dissimilarity at 382 km UTM-East/6693 
km UTM-North is actually covered by a significant amount of height 
estimates for each retracked dataset (see Fig. 2). In this area in partic-
ular, we find that the POCA location (i.e., the x-y coordinate of the 
elevation estimate), identified in each retracking method, tends to avoid 
the large crevasses skirting the crevasse field boundary. This leads to a 
large discrepancy in the POCA location between the various retracking 
methods and also results in a significant information gap over the 
crevasse field. Therefore, this area could be used for investigation of 
CryoSat-2 data characteristics and retracking techniques in future 
analysis. 

4.2.2.3. Elevation. Fig. 14 shows the evolution of the MAPCOMP mea-
sure applied to modeled surface elevation over Bering Glacier. Overall, 
the elevation similarity comparison yields by far the smallest similarity 
values indicating that the spatial patterns of modeled elevations 

Fig. 14. MAPCOMP comparison of modeled surface elevation between all six model experiments at different times during the simulation. (a) After a single 
1-day time step. (b) After 30 1-day time steps. (c) After 100 1-day time steps. (d) Plot of the mean MAPCOMP value across all of Bering Glacier computed at 10-day 
increments throughout the 100-day simulation. 
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estimates between experiments are more consistent compared to 
modeled stress magnitudes and directions. The most persistent modeled 
elevation differences manifest in upper Bering Glacier, where the 
Baseline-B DEMs differed most significantly to the Baseline-C DEMs (see 
Section 4.1.2). 

We find that mean differences in the spatial pattern of modeled 
surface elevation decrease rapidly over the course of approximately 50 
1-day time steps before leveling out. These results indicate that the 
spatial variances in modeled surface elevation caused by differences in 
initial surface topography tend to dissipate after a “relaxation” period of 
around 50 days during which the modeled ice surface can freely evolve. 
After this time period, the elevation pattern is less affected by peculiars 
in the input surface topography due to an increased influence of basal 
topography and other intrinsic aspects of the model (e.g., the glacial 
boundary, the isothermal assumption or the sliding law). The 50-day 
time period corresponds well to ideal time for performing the param-
eter optimization as determined in Section 4.2. We therefore recom-
mend performing the parameter optimization routine after 50 days of 
free-surface evolution, regardless of the initial surface DEM used. This 
time period strikes a balance between reducing model effects from errors 
in the input surface DEM, computation time, and the ability of the DEM 
to realistically represent the glacier surface for the given time period 
(here Winter 2010/2011). 

5. Summary and conclusions 

Elevation estimations in the cryosphere have been greatly improved 
since the launch of ESA’s CryoSat-2 mission helping to reduce our un-
certainties in estimating future global sea-level rise. Sea-level rise 
assessment is typically achieved through modeling, yet most ice-sheet- 
wide models are missing the implementation of different types of 
glacial acceleration, especially the most dramatic form, that of a surge. 
Here, we use numerical modeling in our assessment of CryoSat-2 data. In 
particular, we investigate the effects that differences in retracking 
techniques have on deriving and analyzing surface topography DEMs 
and numerical modeling results. We find the numerical error during 
DEM generation to range from 0.82±1.03 m for the LMG retracking 
method to 2.04±1.39 m for the TFMRA Swath method. The swath- 
processed dataset suffers from a large amount of phase-wrapping er-
rors due to the lack of an unreliable ambiguity DEM for the BBGS during 
its surge phase in early 2011. However, the swath-processed dataset, by 
providing 100–250 times more data than the traditional POCA 
retracking methods, reduces the mean distance from the estimation 
location on the DEM grid to the nearest point by a factor of 2–4. With 
survey error dominating the uncertainties in DEM generation, we 
recommend using a swath-processed dataset, such as the TFMRA one 
used here, when analyzing elevation and elevation change in a large 
mountain glacier like the BBGS. 

Difference maps between the various DEMs show that large differ-
ences upwards of 150 m can occur when using different retracked 
datasets for the heavily crevassed Bering Glacier. Therefore, large un-
certainties in elevation and elevation-change analysis can exist, espe-
cially at sparsely surveyed locations, depending on which retracked 
dataset one chooses. We find that the largest differences between DEMs 
for Winter 2010/2011 exist between Baseline-B- and Baseline-C-based 
retracking methods, implying that lower level processing (level 0 or 1) 
account for a large portion of elevation estimation differences between 
the baseline processing chains. In general, crevasses complicate eleva-
tion derivation and can lead to significant information gaps over 
important crevassed regions that are critical to understanding the surge 
process. 

In contrast to elevation-change analysis, we find that numerical 
modeling results related to parameter estimation can be relatively 
insensitive to differences in input surface topography DEMs arising from 
various retracking methods when following the proper optimization 
routine. The optimization of unknown model parameters is remarkably 

consistent across the six modeling experiments, with each yielding an 
optimal linear friction coefficient of β† = 10−5MPa⋅a

m and an optimal von 
Mises stress threshold between σ†

threshold = 230kPa and 240kPa. The 
magnitude of our optimal stress threshold range is larger than that 
proposed for temperate glaciers by Forster et al. (1999) of 169–224 kPa. 
We find that the lowest overall cost measure, which quantifies the 
agreement between modeled and observed crevasse characteristics, to 
be associated with the LMG retracking method followed by the TFMRA 
Swath method. These results have helped to better parameterize our 
surge model during the most poorly constrained time period of the BBGS 
surge cycle corresponding to the major surge onset in early-2011. There 
is now less uncertainty in our model choices and parameterizations, 
which has led to further development of BBGS surge model (Trantow, 
2020) and better understanding of the important surge mechanisms. 

As a result of the MAPCOMP analysis, we find that the model ex-
periments converge over time in their estimations of von Mises stress, 
crevasse orientations and elevation. These convergences suggests that 
differences in input surface DEMs arising from retracking methods have 
less of an effect on model results as simulation time proceeds. Model 
estimates of stress directions appear to be most sensitive to initial sur-
face topography followed by stress magnitudes, while patterns of ice- 
surface elevation are least sensitive. The more persistant differences 
that remain between the model experiments after 100 days are attrib-
uted to the CryoSat-2 ground-track pattern during Winter 2010/2011, 
limitations in kriging ice elevations in mountainous regions and com-
plications in retracking return-waveforms in highly crevassed regions. 
While differences between model experiments decrease over time, dis-
crepancies between observations and model results generally show no 
improvement, or may in fact grow, after 40–60 days. We therefore 
recommend that the optimization procedure be performed after a 
relaxation period of 50 1-day iterations for POCA datasets. The 
improved spatial coverage provided by swath-processing may allow the 
parameter optimization routine to be carried out at an early time, e.g., 
after 20 days as given by the optimization results for the TFMRA Swath 
experiment. 

All CryoSat-2 retracking methods are affected by crevassing and 
CryoSat-2 in general does not capture high-resolution surface roughness 
on the order of crevasses. Fresh surge crevasses in early-2011 led to 
relatively large noise and error estimates at particular locations within 
each dataset and between each dataset in terms of elevation estimates. 
However, the general consistency in modeling results after ̃50 days of 
simulation may be explained by the fact that all retracking methods 
result in surface data of similar spatial characteristics. 

Computer code availability 

Code essential to the analysis in this paper is available on GitHub at 
the following public repository: https://github.com/trantow/bbgs_elm 
er. An example Solver Input File (SIF) to run the BBGS model in 
Elmer/Ice is provided (crev_BBGS_C2_swath_IAMG_20181126.sif) along 
with code the BBGS-specific User Functions (USF_Bering.f90). Code was 
written by Thomas Trantow and adapted from open source code pro-
vided by the Elmer/Ice community (see http://elmerice.elmerfem.org/ 
courses-tutorials). 

Data availability 

Information on how to freely download the ESA-processed CryoSat-2 
data is available online at https://earth.esa.int/web/guest/-/how-to- 
access-cryosat-data-6842. The TFMRA-processed CryoSat-2 data are 
available through V. Helm, while the LMG-processed data are available 
through J. Nilsson. The Landsat-7 data used in this analysis was down-
loaded using the USGS Global Visualization Viewer (GloVis) found at 
https://glovis.usgs.gov/. 
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