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ARTICLE INFO ABSTRACT

Keywords: The CryoSat-2 radar altimetry mission, launched in 2010, provides key measurements of Earth’s cryosphere.
Crevasse modeling CryoSat-2’s primary instrument, the Synthetic Aperture Interferometric Radar Altimeter (SIRAL), allows accurate
CryoSat-2

height measurements of sloped ice-surfaces including the highly crevassed Bering-Bagley Glacier System (BBGS)
in southeast Alaska. The recent surge of the BBGS in 2011-2013, which resulted in large-scale elevation changes
and wide-spread crevassing, presents an interesting challenge to the processing of the SIRAL measurements.
Derivation of surface height is achieved by retracking the received waveform of the altimeter signal. Several such
retracking methods have been developed. In this paper, we investigate the influence of six unique SIRAL
retracking methods on (1) Digital Elevation Model (DEM) generation, (2) analysis of ice-surface topography, and
(3) numerical modeling results of the BBGS during surge. First, we derive a surface DEM for each retracked
dataset using kriging. The swath-processed dataset provides 100-250 times more points than the other datasets,
which decreases DEM uncertainty associated with data coverage by a factor of 2-4. Differences between the six
resulting DEMs imply that retracking methods can have significant effects on elevation and elevation-change
analysis, but we find that lower-level processing has larger effects. Next, the sensitivity of the data-model
connection is evaluated using a finite element model of the BBGS surge. We set up six modeling experiments,
each initiated with a unique input surface DEM derived from the various retracking methods. While retracking
choices effect estimation of unknown model parameters related to crevasse simulation, we have developed a
procedure to limit these effects resulting in remarkably consistent parameter optimization across modeling ex-
periments. Each model experiment yields an optimal friction coefficient in the sliding law of 10> a4, while
estimates of the optimal von Mises stress threshold for crevasse initiation ranged between 230 and 240 kPa.

Radar altimetry
Bering glacier
Retracking methods
Glacier topography

1. Introduction before (Bentsen et al., 2012; Jungclaus et al., 2013; Voldoire et al., 2013;

Kay et al., 2015; Sokolov et al., 2018). This includes increased model

1.1. Study in a broader context

Both collection of Earth observation data and modeling of physical
processes have seen great advances in recent years, accelerating from
previous decades. Increasingly large and detailed Earth observation data
sets are becoming available for scientific investigations, with current
satellite missions collecting terabytes of data per day, e.g., NASA’s
ICESat-2 (Markus et al., 2017; Neumann et al., 2019) and ESA’s Sentinel
series (Berger et al., 2012). At the same time, modeling of the Earth
system has reached much higher standards in recent years than ever
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resolution, expanded and integrated physical process modeling, and the
limiting of uncertainties in projection models through intercomparison
projects (e.g. Bindschadler et al. (2013); Nowicki et al. (2013a, Nowicki
et al., 2013, 2016)). As a result, a new challenge emerged in linking
observational data and models.

Cryospheric height observations with sufficient spatiotemporal
coverage require measurements from satellites, which since the 1980s
has come in the form of radar altimeter measurements (Brenner et al.,
1983; Zwally et al., 1983). The processing of radar altimeter data has
been the focus of a number of influential studies, from Davis (1993) for
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early spaceborne radars, to Helm et al. (2014) and Nilsson et al. (2016)
for the cutting-edge radar measurements made by the CryoSat-2 satellite
(Wingham et al., 2006).

In order to understand the physical processes involved in glacial
change, and to predict future evolution of Earth’s ice-masses, numerical
models of ice evolution are required. There are currently several leading
ice sheet models investigating glacial response to climatic changes,
including the Community Ice Sheet Model (CISM) (Price et al., 2011;
Lipscomb et al., 2019), the SImulation COde for POLythermal Ice Sheets
(SICOPOLIS) (Greve et al., 2011), the Ice Sheet System Model (ISSM)
(Larour et al., 2012), the Parallel Ice Sheet Model (PISM) (Winkelmann
et al., 2011), and an Elmer/Ice model (Gagliardini et al., 2013). These
models, along with several others, have been compared and evaluated in
community-wide comparison studies such as SeaRISE (Sea-level
Response to Ice Sheet Evolution) (Bindschadler et al., 2013; Nowicki
et al., 2013a, Nowicki et al., 2013) and ISMIP6 (Ice Sheet Model Inter-
comparison Project) (Nowicki et al., 2016; Goelzer et al., 2020; Seroussi
et al., 2020). Inter-model comparison methods often lack spatial infor-
mation, with ice sheet-wide results boiled down to a single point in a
time series analysis, and visualized in a simple 2D line plot (e.g. Bind-
schadler et al. (2013)). However, comparison methods exist, such as the
Map Comparison Method (MAPCOMP) (Herzfeld and Merriam, 1990),
that provide spatial maps of similarities and dissimilarities among input
maps, i.e., ice sheet-wide model results, rather than providing a single
number quantifying correlation.

There are several approaches that employ observational data to
improve numerical modeling (e.g., Herzfeld et al. (2015)), and are often
in the form of data assimilation (e.g., Goldberg and Sergienko (2011);
Brinkerhoff and Johnson (2013); Larour et al. (2014)). However, many
of these studies are performed independently from the analysis and
processing of the assimilated data and often assume they are using the
best available observations to constrain their models. It is therefore rare
to find analyses that combine data processing, data analysis, modeling
results and model parameterization all in a single study, where doing so
could help identify important outstanding uncertainties in cryospheric
investigation.

This paper serves as both a review of the current model-data
connection techniques in cryospheric science, and each component
therein, and a presentation of a novel sensitivity analysis that combines
glaciological methods of observation, numerical modeling and model-
data connection into a single study. In particular, our sensitivity anal-
ysis provides links between radar altimetry, satellite observations,
altimeter data processing, numerical modeling of ice dynamics and
crevasses, inter-model comparison and model-data connection.
Following a review of state-of-the-art methods and approaches in each of
the observation, analysis and modeling fields, we present our new study
that combines each of these aspects for investigation of the effects that
data processing have on glacier elevation analysis, numerical modeling
results and the subsequent interpretations. This is the first study to
investigate the effect that altimeter data processing has on numerical
modeling of glacier dynamics.

1.2. Introduction to the sensitivity study

On April 8th, 2010, the European Space Agency (ESA) launched the
CryoSat-2 satellite with the objective of continuously monitoring land-
and sea-ice to investigate the connection between the melting ice and
sea level rise and its contribution to climate change (Wingham et al.,
2006). CryoSat-2’s Synthetic Aperture Interferometric Radar Altimeter
(SIRAL) continues to supply height measurements of the cryosphere
through 2020. However, there exist a variety of level-2 processing, or
retracking, techniques to derive elevation estimations of ice surfaces,
each yielding unique datasets despite starting with the same raw SIRAL
measurement (e.g., Bouffard (2015); Bouffard et al. (2017); Helm et al.
(2014); Nilsson et al. (2016); Gray et al. (2015, 2017)).

In our previous studies of the 2011-2013 surge of the Bering-Bagley
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Glacier System (BBGS), Alaska, we have utilized the available CryoSat-2
elevation estimates provided by ESA (Trantow and Herzfeld, 2016,
2018). Having shown that CryoSat-2 measurements are useful in
investigating large mountain glaciers, even during large elevation
changes typical of a surge, Trantow and Herzfeld (2016) proceeded to
derive a time series of ice-surface Digital Elevation Models (DEMs) to
interpret surge progression in the glacier system from 2011 to 2013. This
study used the data given by the processing and retracking techniques of
ESA’s Baseline-B level-2 product (Bouffard, 2015). In Trantow and
Herzfeld (2018), we created an ice-surface DEM for input into an
ice-dynamic numerical-model of the BBGS that simulated observed
crevasses during the major surge phase in early 2011. The DEM for this
study was derived using data from ESA’s updated Baseline-C level-2
product (Bouffard et al., 2017). We observed large differences between
the Baseline-B and Baseline-C elevation datasets for the BBGS whose
highly crevassed surface, set in a mountainous region, provides a diffi-
cult challenge in the processing of CryoSat-2 SIRAL measurements.

In the analysis of present paper, we seek to quantify the sensitivity of
higher level data analysis for the BBGS, such as DEM generation,
elevation-change interpretation and modeling results, to differences in
surface elevation estimates provided by various CryoSat-2 retracking
techniques. We investigate not only ESA’s standard products (versions
Baseline-B and Baseline-C), but also height estimates provided by the
Threshold First Maximum Retracking Algorithm (TFMRA) outlined in
Helm et al. (2014), and the Leading-edge Maximum Gradient (LMG)
retracker (Nilsson et al., 2016). We begin by presenting a review of the
relevant background information on radar altimetry, CryoSat-2 and
glacier surging in Section 2. Section 3 provides an introduction to the
various CryoSat-2 processing techniques used in our study along with a
description of the resulting datasets for the BBGS. This section also
provides a brief overview of the techniques used in DEM generation,
numerical modeling, crevasse-based model-data comparisons and the
model sensitivity analysis. Finally, Section 4 presents the results of the
sensitivity study which is discussed with regards to effects that different
CryoSat-2 processing techniques have on error estimates in DEM gen-
eration, estimation of unknown model parameters, and the overall
match of modeled results to observations.

2. Background
2.1. Radar altimetry

Satellite radar altimetry has been used to investigate topography and
elevation change in the cryosphere since the 1980s (Brenner et al., 1983;
Zwally et al., 1983). Early satellite radar altimeter missions aimed at
investigating surface characteristics of the ocean, such as sea level and
wind patterns, and difficulties arose when measuring ice surfaces due to
topographic features, surface slopes, and volume penetration of the
radar wave into the snow/firn (Rémy and Parouty, 2009). These cryo-
spheric challenges in early satellite altimeter missions were overcome
through development of new surface scattering models and retracking
methods (e.g., Davis (1993); Bamber (1994); Davis (1997)). In addition,
Herzfeld et al. (1993) applied advanced kriging methods to overcome
the problem of estimating ice-surface topography from radar-altimeter
data over sloping glaciers, utilizing the geometry of the satellite
ground tracks. This method is used to derive elevation maps in the Atlas
of Antarctica (Herzfeld, 2004).

Accuracy and spatio-temporal coverage in satellite altimetry
improved dramatically with the launch of ESA’s ERS-1 satellite in 1991.
ERS-1 altimeter measurements in the cryosphere allowed the derivation
of ice-sheet wide DEMs of the ice surface topography (Bamber and
Huybrechts, 1996). These DEMs serve as important boundary conditions
for numerical models aimed at predicting ice sheet evolution and
cryospheric contributions to sea-level rise (Marsiat and Bamber, 1997).
There are however, many methods of processing raw radar altimeter
measurements and a variety of interpolation schemes that researchers
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employ to derive ice-surface DEMs. Therefore, given the same initial
measurement, DEMs can differ significantly when given as boundary
conditions to a numerical model resulting in dissimilar simulations (e.g.,
Marsiat and Bamber (1997); Bamber and Gomez-Dans (2005)). Marsiat
and Bamber (1997) show that differences in ERS-1 processing methods
have substantial influence on numerical simulations of Antarctica’s
climate. However, it was limitations of the ERS instrument itself, rather
than differences in the processing chain, that resulted in the largest
uncertainties in cryospheric applications, which motivated the devel-
opment of a satellite radar altimeter whose main objective was
measuring ice-covered regions.

To this end, ESA designed the CryoSat-2 satellite altimetry mission to
provide continuous synoptic measurements of Earth’s land and marine
ice fluxes (Wingham et al., 2006). CryoSat-2’s primary instrument, the
SIRAL altimeter, operates in three modes including Synthetic Aperture
Radar Interferometric (SARIn) mode that employs two receiver antennas
for operation in sloped areas such as those along the margins of the ice
sheet or in mountainous regions. In this mode, SIRAL utilizes the SAR
principle to increase the spatial resolution of radar altimeter data
compared to operation as a conventional pulse limited radar system in
low-resolution mode (LRM). The measurement accuracy of cryospheric
targets provided by CryoSat-2, along with its high spatio-temporal
coverage up to +88° latitude, allows the derivation of ice sheet-wide
surface DEMs (e.g., Helm et al. (2014); Nilsson et al. (2016); Fei et al.
(2017); Slater et al. (2018)), with uncertainties less than 3 m=+15 m in
the case of Helm et al. (2014).

Even though initial CryoSat-2 measurements have been successful in
measuring the cryosphere, there are still open problems in the standard
processing chain leading to the level-2 product produced by ESA
(Wingham et al., 2006; ESA, 2014; Helm et al., 2014; Mannan, 2017),
which is the main product for the standard CryoSat-2 user. This has
motivated the derivation of alternate methods of level-2 processing of
CryoSat-2 measurements, such as the TFMRA (Helm et al., 2014) or LMG
(Nilsson et al., 2016) methods, which are investigated in this paper with
regards to their effect on analysis of the surging BBGS.

UTM-North (km)

Gulf of Alaska
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2.2. Glacier surging and crevasses

A glacier surge is a quasi-periodic episode of rapid acceleration,
which interrupts a glacier’s quiescent phase of normal flow. Surge gla-
ciers are restricted to certain geographical region including Alaska,
Svalbard, Iceland, the Karakoram Mountains and the margins of the
Greenland and Antarctic ice sheets (Meier and Post, 1969; Dolgushin
and Osipova, 1975; Herzfeld, 1998; Jiskoot et al., 2001). Surging is a
type of glacial acceleration, and is the least understood type due to a
relative paucity of observations (Meier and Post, 1969; Fowler, 1987;
Raymond, 1987; Murray et al., 2003). Other types of glacial acceleration
include always-fast-flowing ice streams, ice streams with a
state-switching behavior, and tidewater glaciers with long periods of
velocity changes (Clarke, 1987; Truffer and Echelmeyer, 2003). Glacial
acceleration has been identified as one of the main uncertainties in
estimating future global sea-level rise through numerical modeling
(Stocker et al., 2013). Before the different types of glacial acceleration
can be included in ice-sheet-scale models, particularly surging, the un-
known physical mechanisms controlling the surge phenomenon must be
identified and represented in a dedicated surge model at the scale of a
single glacier system. For this reason, we have created a numerical surge
model of the Bering Bagley Glacier System (BBGS), Alaska (Trantow and
Herzfeld, 2018) (Fig. 1), using the finite element software Elmer/Ice
(Gagliardini et al., 2013). The recent surge of the BBGS in 2011-2013
provides a rare opportunity to investigate a surge in a large and complex
glacier system similar to those found in the margins of the major ice
sheets. A complex surge-glacier system consists of both surging and
non-surging parts, where surge initiation and progression effects
different locations at different times. Of particular interest is the
early-2011 phase of the recent surge, where the largest surge effects
were observed during the initial rapid acceleration in lower and central
Bering Glacier (Herzfeld et al., 2013b; Trantow and Herzfeld, 2018). The
analysis in the present paper focuses on this surge phase.

Cumulating airborne and satellite observations, numerical modeling
and model-data comparison allows thorough investigation of this BBGS
surge (Herzfeld et al., 2013a, b; Trantow and Herzfeld, 2016, 2018).
These previous studies have taken an approach centered on the most
conspicuous manifestation of surging: crevasses. Using crevasses as the
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Fig. 1. The Bering-Bagley Glacier System and the surrounding area with analysis domains. Labeled are important features of the BBGS and some of the major
nearby glaciers in southeast Alaska. The Bering Glacier domain is outlined in blue while the (Eastern) Bagley Ice Field portion of the BBGS is outlined in green. The
combination of the displayed Bering Glacier and Bagley Ice Field domains constitute the horizontal extent of the BBGS numerical model domain. The red line outlines
the domain of analysis for the crevasse-based model-data comparison techniques employed in this paper, which is the intersection of the BBGS model domain and the
image analysis domain from the April 15, 2011 Landsat-7 image. The Khitrov crevasse field, lying within the black ellipse just below the Khitrov Hills, is a location of
large surge crevasses that opened up during the early-2011 phase of the recent surge. Map coordinates: Universal Transverse Mercator (UTM), zone 7. Background
image: Landsat-8 panchromatic acquired April 28, 2013 (left) and Landsat-8 panchromatic acquired March 7, 2014 (right). Alaskan reference image: U.S. Geological

Survey Map I-2585.



T. Trantow et al.

basis of analysis has the advantage of requiring only a single observation
to derive comprehensive geophysical information. Traditional glacio-
logical analysis often relies upon velocity data to connect models to
observations. However, velocity derivation requires the correlation of
two separate observations, separated in time, which often yield sparse
and unreliable estimates during rapid ice-deformation (see for example,
Fatland and Lingle (1998); Burgess et al. (2013)). Therefore, these
previous crevasse-based studies on the BBGS surge have made signifi-
cant methodological contributions to the study of fast-moving ice. The
present paper also contributes to our understanding of BBGS surges, and
glacial acceleration in general, by quantifying uncertainties in the
elevation and elevation-change analysis of Trantow and Herzfeld (2016)
and the modeling results of Trantow and Herzfeld (2018) introduced by
the choice of the CryoSat-2 level-2 (retracked) product.

3. Methods
3.1. Data and retracking methods

Radar altimeter measurements consist of transmitting a pulse in the
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nadir direction and measuring the backscattered energy. The returned
signal is available as discretized power with respect to time providing an
altimeter “waveform”. Post-processing of the return waveform signal is
required since the leading edge deviates from the satellite’s on-board
tracking gate leading to errors in range to the surface and thus, eleva-
tion retrieval. The range correction is termed “retracking”. Several
retracking algorithms exist for each satellite altimeter, each with their
own advantages and disadvantages, which can lead to significant dif-
ferences in elevation estimation (Davis, 1997; Bamber and Gomez-Dans,
2005). In this study, we investigate analysis sensitivity to six different
BBGS elevation datasets, each derived from a different retracking
method applied to the same raw CryoSat-2 SARIn measurements. Each
retracked dataset consists of CryoSat-2 data acquired between
November 2010 to April 2011, from which a DEM is constructed to
represent the BBGS ice-surface in early-2011 when the major surge
phase occurred. The surge-induced effects during this time period,
consisting of wide-spread crevassing and large-scale elevation changes,
occurred mainly within our model-data comparison domain (red in
Fig. 1) (Trantow and Herzfeld, 2018).

The first two datasets we test are a result of the standard level-2
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Fig. 2. Coverage of the CryoSat-2 SARIn retracked datasets for the BBGS. (a) Six-month datasets collected between November 2010 and April 2011 (Winter
2010/2011). (b) Six-month datasets collected between May 2011 and October 2011 (Summer 2011). Red and magenta points give elevation estimate locations from
ESA’s standard level-2 product for Baseline-B and Baseline-C respectively. Black, blue and cyan points show elevation estimates from the TFMRA retracker for
Baseline-C, Baseline-B and swath-processing (Baseline-C) respectively. Finally, the green points give elevation estimates from the LMG retracking method applied to
the Baseline-C processing chain. The raddev filter was applied to each dataset visualized above. (For interpretation of the references to color in this figure legend, the

reader is referred to the Web version of this article.)
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processing chain from ESA that were available to the public at the time
of their release. In particular we use the level-2 Baseline-B data (ESA
Baseline-B), released in January 2012, and Baseline-C data (ESA
Baseline-C), released in April 2015, whose spatial coverages of the BBGS
for the six-month period from November 2010 to April 2011 are seen in
Fig. 2 in magenta and red respectively. The description of the core SARIn
mode level-2 processing employed by ESA is given in Wingham et al.
(2006). The main differences between Baseline-B and Baseline-C level-2
processing is found in Bouffard (2015) and Bouffard et al. (2017).

It is important to note that all Baseline-C data on Bering Glacier
contain a 59.959 m elevation bias (Trantow and Herzfeld, 2018). This
artifact stems from a compensation issue in the window delay in the
processing chain near in-land areas (Mannan, 2017). The issue is under
investigation by ESA and is planned to be corrected in the Baseline-D
release. In the mean time, we add 59.959 m to each Baseline-C data
point on Bering Glacier before any analysis is done.

Next, we investigate three additional datasets in this study that use
the TFMRA retracking method. A full description of the processing
method is found in Helm et al. (2014). The first TFMRA dataset is
derived from ESA’s level-1b (L1b) Baseline-B data product (TFMRA
Baseline-B), given in blue in Fig. 2, while the second is based on ESA’s
L1b Baseline-C product (TFMRA Baseline-C), given in black in Fig. 2.
The third TFMRA dataset is comprised of swath processed data that fol-
lows the method introduced by Gray et al. (2013) applied to the stan-
dard L1b Baseline-C product (TFMRA Swath Baseline-C). Swath
processing is a method that yields multiple height estimates per
across-track swath as opposed to a single estimate at the Point of Closest
Approach (POCA) serving to increase the spatial coverage of the altim-
eter data product. The return signal from POCA, that is, the return en-
ergy from the location on the ice surface closest to the satellite, is the
only unambiguous return energy for geolocation in the across-track
swath if the surface slope is less than half of the antenna’s angular
beamwidth. For low slopes, returns from both sides of POCA will arrive
at the receiving antennas simultaneously following the initial POCA
signal thereby complicating geolocation for additional across-track
elevation estimations. However, under ideally sloped conditions of the
glacier surface, additional across-track elevation estimates can be
determined within the antenna pattern (Gray et al., 2013; Foresta et al.,
2016; Gourmelen et al., 2018). Fortunately, the BBGS has a surface
geometry that allows swath-processing at most locations as seen in cyan
in Fig. 2.

The final CryoSat-2 dataset is derived using LMG retracking method
(Nilsson et al., 2016), which uses ESA’s L1b Baseline-C data as input
(LMG Baseline-C), given as green in Fig. 2. Concise descriptions of each
of the retracking methods introduced so far, excluding the swath pro-
cessing method, can be found in Sgrensen et al. (2018) who investigate
the accuracy of these and other retracking methods through compari-
sons with airborne lidar data over the Austfonna ice cap in Svalbard.

The TFMRA and LMG datasets were not able to employ an ambiguity
DEM to improve interferometric processing results due to the unavail-
ability of reliable DEMs of the BBGS during its surge (aside from those
derived from CryoSat-2 itself (Trantow and Herzfeld, 2016)). The am-
biguity DEMs used in ESA’s Baseline-B are known to be inaccurate over
steep slopes and are therefore unreliable in correcting for
phase-wrapping ambiguities at these locations (Bouffard et al., 2017). In
the Baseline-C processing, the DEMs are improved over the Greenland
and Antarctic ice sheets, but not Alaska. The future Baseline-D data
product aims to improve all land-ice ambiguity DEMs (Bouffard et al.,
2017). Since phased-wrapped data points may exist in our datasets, we
apply an additional filter based on the calculated experimental vario-
gram for each dataset to remove large outliers (Trantow and Herzfeld,
2016). Termed the Radial-Deviation filter, or raddev filter, this algo-
rithm removes most of the data points identified to have been affected
by unwrapping errors within each dataset. While a few affected data
points may still exist within each dataset, the geostatistical analysis that
follows is robust to a relatively small number of outlier points (Herzfeld,
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2008). The amount of data points in each dataset before and after the
raddey filter is applied is given in Table 1.

Final datasets used to construct the ice-surface DEMs consist of valid
measurements, identified by application of the raddev filter to each
retracked dataset, collected between November 1, 2010 and April 30,
2011 (Winter 2010/2011). Six months of CryoSat-2 data provides
adequate spatial coverage over Bering Glacier to allow reliable DEM
creation (Trantow and Herzfeld, 2016). However, there are little to no
valid measurements in the Bagley Ice Field (BIF) during the winter
season (November through April), as seen in Fig. 2 and Table 1. Since
our analysis of the numerical modeling results focuses on lower and
central Bering Glacier, over 25 km downglacier of the BIF, where the
dominant surge effects took place in early 2011 (Herzfeld et al., 2013b;
Trantow and Herzfeld, 2018), our short-term (<100 days) simulation
results are not dependent on the surface topography in the BIF. Yet,
surface topography of the BIF is still needed to run the BBGS model. Data
collected during the summer months (May through October) yield suf-
ficient coverage in the BIF due to the different surface conditions.
Therefore we include measurements of the BIF from May 2011 through
October 2011 from each respective retracking method in each of the
winter datasets. This addition allows for surface DEM generation for the
entire BBGS, while the sensitivity analysis in this study is restricted to
Bering Glacier for Winter 2010/2011 only.

In the following subsections we give a brief overview of the methods
of DEM generation and error analysis, ice-dynamic modeling during a
surge, crevasse characterization analysis via modeling and image anal-
ysis, and crevassed-based model-data comparisons, which are covered in
more depth in Trantow and Herzfeld (2016) and Trantow and Herzfeld
(2018). We then introduce the methods unique to this paper for testing
the BBGS model’s sensitivity to input surface topography when simu-
lating crevasses.

3.2. DEM generation

Ice-surface DEMs and associated error measures in this analysis are
generated following the geostatistical approach thoroughly described in
Trantow and Herzfeld (2016), which was originally developed in a series
of studies on elevation mapping in Antarctica (Herzfeld et al., 1993,
2008, 1994; Herzfeld, 2004). Fig. 3 shows the DEMs derived from each
of the retracked datasets over the Bering Glacier portion of the BBGS for
Winter 2010/2011. For each dataset, we fit a unique Gaussian vario-
gram model and extract the variogram parameters to optimally inter-
polate the dataset onto a 200m x 200m grid, spanning all of Bering

Table 1
Valid elevation data points by region of the BBGS yielded by each level-2 pro-
cessing method after the removal of outliers by the raddey filter.

Retracking Nov 2010-Apr 2011 May 2011-Oct 2011
method R ;
Bering  Bagley  Total Bering Bagley  Total

ESA Baseline- 588 115 703 (727) 750 319 1069
C

ESA Baseline- 297 0 297 (303) 667 197 864
B

TFMRA 380 48 428 (451) 608 181 787
Baseline-C

TFMRA 318 81 399 (430) 415 167 582
Baseline-B

TFMRA Swath 72777 18513 93981 117697 67386 185083
Baseline-C (112494)

LMG Baseline- 352 112 464 (477) 490 224 714
C

The amount of data points before the raddev filter was applied is given in pa-
rentheses for the November 2010 to April 2011 datasets. This time range reflects
the approximate period of accumulation during the winter months (Trantow and
Herzfeld, 2016). The datasets of aggregated measurements between May 2011
and October 2011 reflects the approximate period of ablation for the BBGS
during the warmer months.
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Fig. 3. Digital Elevation Model for each CryoSat-2 retracked dataset. (a) ESA Baseline-C, (b) ESA Baseline-B, (c) TFMRA Baseline-C, (d) TFMRA Baseline-B, (e)

TFMRA Swath, and (f) LMG Baseline-C.

Glacier, using an advanced method of Ordinary Kriging which employs a
quadrant search (Herzfeld et al., 2012). Each estimation uses input from
a maximum of 16 nearby points, 4 points in each quadrant, within at
most a 20 km radius. However, only 8 data points are used in the case of
excellent local data coverage when there exists 2 data points in each
surrounding quadrant within a 3 km radius around the estimation
location.

Uncertainty in the kriging result at some point on the grid increases

with the distance to the nearest measurement points used in estimation.
This uncertainty reflects the data survey pattern, or spatial coverage,
across the entire glacier and can be quantified by calculating the mean-
distance-to-the-nearest-point for every location on the kriging grid. The
uncertainty in the survey pattern can also be quantified by the Estima-
tion Standard Deviation (ESD) error measure for kriging, as used in
Trantow and Herzfeld (2016). However, the ESD measure also takes into
account the fit of the Gaussian variogram model to the experimental
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variagram for a given data set. In the present analysis, we only quantify
uncertainties arising from the particular characteristics of each
retracked data set, and we therefore use the
mean-distance-to-the-nearest-point measure rather than the ESD mea-
sure (see Section 4.1).

Each of the six CryoSat-2 DEMs is evaluated using the numerical
random error measure, which quantifies the inherent noise in each
dataset and its propagation through the Kriging equations (Herzfeld,
1992). Hereafter, we refer to this error measure as simply the numerical
error. The numerical error measure is calculated for each elevation data
point within a given retracked dataset following the equations in
Trantow and Herzfeld (2016), which uses data noise estimates combined
with the weights used in the kriging algorithm.

Noise estimates in the measurements are derived through a simple
scaling of the nugget parameter (see Trantow and Herzfeld (2016),
Section 6.2). The nugget is a geostatistical parameter derived from the
experimental variogram, which deviates from zero as a consequences of
noise in the measurements. The nugget is calculated for each data point
by characterizing the deviation in height estimation with respect to
nearby measurements in the same dataset, i.e., points within a 300 m
radius. The 300 m size is equal to the CryoSat-2 SARIn along-track
resolution and also equal to the lag-bin separation in the variogram
analysis.

Note that the analysis in this paper does not investigate the effect
that different interpolation schemes have on DEM generation. The
kriging method has already been shown to be the ideal method for DEM
derivation from CryoSat-2 data (Trantow and Herzfeld, 2016; Fei et al.,
2017).

3.3. Modeling of surge dynamics and crevassing

A 3D finite element model of the Bering-Bagley Glacier System
(BBGS) was created to simulate ice dynamics and glacial structure
during the recent 2011-2013 surge (Trantow, 2014), and in particular
for surge crevasses in Trantow and Herzfeld (2018), using the finite
element software Elmer/Ice (Gagliardini et al., 2013). These previous
studies have demonstrated the usefulness of Elmer/Ice in simulating and
understanding surge mechanisms in the BBGS. In the current study, we
focus on modeling the surge during the early-2011 phase, where results
depend on the flow law, basal and lateral boundary conditions, a
crevasse initiation criteria and input glacier geometry. The use of cre-
vasses in model-data comparisons has allowed optimization of unknown
model parameters important to simulate surging (Trantow and Herzfeld,
2018). Our goal here is to investigate the sensitivity of these optimized
parameters to the different retracking methods.

The simulations presented in this paper are short diagnostic runs
with a transient “relaxation” period, termed quasi-steady-state runs
(Trantow and Herzfeld, 2018). For a full description of the BBGS model,
along with justification for choices in model representations, see Tran-
tow and Herzfeld (2018).

3.3.1. Flow equations
The model is governed by 3D Stokes flow,

V-6+pg=V-(t—pl)+pg=0, @
V-u=1r(€)=0, 2

where ¢ is the Cauchy stress tensor, 7 the deviatoric stress tensor, p the
pressure, p the ice density, g = (0,0,—9.81) the gravity vector, u the
velocity vector and &€ =1 (Vu +(Va)") the strain-rate tensor. Equations
(1) and (2) are linked via Glen’s Flow Law assuming isothermal condi-
tions as the BBGS is a temperate glacier system. A temperate glacier
system implies that most of the BBGS ice is at the pressure melting point
temperature throughout the year, which, for pressures experienced in
the BBGS, leads to our prescription of an ice temperature of 0°C for

Computers and Geosciences 146 (2021) 104610

experiments in this analysis (Trantow and Herzfeld, 2018).

3.3.2. Boundary conditions

The ice/atmosphere boundary at the upper surface is given as a
stress-free boundary and is allowed to freely evolve. Forcing from both
gravity and surface mass balance (SMB), that is, surface accumulation
and ablation, cause the upper surface of the glacier to evolve. Surface
height evolution is described by an advection equation, where changes
in the upper surface elevation z; are given by,
%+u50—i+vs%—w5:as, 3)

a "3 dy

where u, = (us,vs,ws) is the surface velocity vector found from the
Stokes equation (Equation (2)) and as is the accumulation or ablation
component that is only prescribed in the direction normal to the surface
(Gagliardini et al., 2013). Accumulation/ablation components are not
included in the analysis of this paper due to the short timescales that are
considered (100-day simulations maximally). That is, elevation changes
are dominated by surge dynamics rather than accumulation or ablation
during the major surge phase investigated in this analysis (Tangborn,
2013; Trantow and Herzfeld, 2016).

The most important aspect of modeling a surge relates to the treat-
ment of the boundary condition at the base of the glacier via basal
topography and the prescription of a sliding (or friction) law (Greve and
Blatter, 2009; Cuffey and Paterson, 2010; Trantow and Herzfeld, 2018).
For simulations of the early-2011 surge phase, we enforce a linear
sliding law where normal velocities are set to zero and tangential ve-
locities (u;) are linearly proportional to shear stress (on) at the
boundary:

Ot = Py (C))

The linear friction parameter $ in Equation (4) is an unknown model
parameter that can be estimated using crevasse-based model-data
comparisons (Trantow and Herzfeld, 2018). A smaller $ value corre-
sponds to reduced friction at the glacier base, resulting from an
increased amount of subglacial water Kamb (1987), which leads to basal
sliding. Basal sliding accounts for most of the ice movement during a
surge (Cuffey and Paterson, 2010; Trantow and Herzfeld, 2018). Opti-
mized values for f are determined using crevasse-based model-data
comparison methods, as discussed in Section 4.2.1.

The linear friction representation with uniform parameterization
that we use in the current study is an appropriate approximation for the
BBGS surge dynamics in a spatiotemporally-local sense, i.e., for a 100-
day period of rapid acceleration in early 2011 across the model-data
comparison domain ofof this analysis, as shown in Trantow and Herz-
feld (2018) when comparing model results to observations. This
assumption can be thought of as a steady-state assumption in the tem-
poral sense and the consequences of this assumption on model results
are investigated later in this paper (Section 4.2.1).

The lateral boundary condition also adopts a linear sliding law where
the friction coefficient, gy, is set to fifty times the magnitude of basal
friction coefficient, f, for each simulation in this analysis as this setting
tends to best match observed stress patterns at the glacier margins as
seen in the many model experiments of Trantow (2014) and in the re-
sults of Trantow and Herzfeld (2018). However, the lateral friction co-
efficient could be included as an additional model parameter to be
optimized following the crevasse-based model-data comparison
methods outlined in this paper.

3.3.3. Crevasse initiation criterion and modeled crevasse characteristics

The model estimates crevasse existence at a given nodal location by
comparing the von Mises stress measure (o,y) at the ice surface to a
given stress threshold (6yesnoig) (Trantow and Herzfeld, 2018),

2 2
Oym = Glsmf + 0-25,4,_1‘ = OLsurf *O2surf > Oithreshold s (5)
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where 614,r > 024, are the two non-zero principal stresses in the surface
plane (the third principal stress is normal to the surface plane and is
assumed to be zero). Crevasse orientations are estimated to be normal to
the modeled axis of maximum principal tensile stress within the surface
plane. That is, a crevasse is assumed to open perpendicular to the
principal stress axis corresponding to 61z, > 0. A 615, < O corresponds
to a compressional stress along the axis as opposed to an extensional or
tensile stress. We assume extensional opening in our modeling of cre-
vasses and the consequences of this assumption are discussed in Section
3.5. The stress threshold oresnoig in the von Mises criterion is another
unknown model parameter that is estimated using the crevasse-based
model-data comparisons (see Section 4.2.1).

3.3.4. Input geometry

Finally, the BBGS model depends on the input glacier geometry,
which consists of basal and surface topographies. The basal topography
input is given by a DEM (Trantow and Herzfeld, 2018) derived from
ice-penetrating radar measurements made by the Jet Propulsion Labo-
ratory’s (JPL’s) Warm Ice Sounding Explorer (WISE) in 2008 and 2012
over the BBGS (Rignot et al., 2013) (see Fig. 4). The derivation of the bed
DEM follows the same kriging scheme as the surface DEMs, which is
outlined in Section 3.2. The input surface topography is given by a DEM
derived in Section 3.2 from one of the retracked CryoSat-2 SIRAL
datasets (see also, Trantow and Herzfeld (2016)). The Elmer/Ice soft-
ware interpolates the input DEMs, given at 200m x 200m resolution, to
the finite element grid, which for experiments in this analysis is at 400 m
element-side-length resolution in the horizontal plane. An extruded
mesh structure is employed with 5 vertical layers giving a vertical res-
olution varying between 2 and 300 m depending on location.

3.4. Crevasse characteristics from image analysis

Next, we derive crevasse location and orientation using image
analysis allowing direct comparisons with modeled results. Using geo-
statistical methods applied to Landsat-7 panchromatic imagery (15 m
resolution), we are able to determine crevassed areas and dominant
orientations of the large surge-induced crevasses on a 600mx 600m grid.
The grid size was chosen to be somewhat larger than the model reso-
lution so that modeled results could be averaged across several nearby
nodes during the model-data comparison. Clouds tend to limit the
amount of useable optical satellite imagery of the BBGS during the early-
2011 phase. Moreover, striped artifacts exist in the Landsat-7 imagery
due to instrument failure (Markham et al., 2004). However, we were
able to find a Landsat-7 image from April 15, 2011 whose cloud- and
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stripe-free regions corresponded to the area of fresh surge crevasses
(Fig. 5(a)). While Synthetic Aperture Radar (SAR) imagery may be better
suited to resolve crevasse characteristics, as SAR images would be un-
affected by cloud cover, we did not have access to any for the BBGS in
2011 at the time of the analysis. The intersection of this area with the
model boundary provides the domain for the image analysis and the
model-data comparisons (see the red line in Fig. 1 for the shape of this
domain).

Crevasse locations are identified in imagery by applying a threshold
to the geostatistical parameter mean-pond, which is derived from
directional variograms calculated for 16 direction classes within a 400 m
window centered on each grid point (or node) in the analysis domain
(see Trantow and Herzfeld (2018) for more specifics on this calculation).
The pond parameter is defined as the maximum of the experimental
variogram (or vario-function, see Herzfeld (2008)), while the mean-pond
parameter is the pond value averaged over all 16 directions. In general,
all pond related parameters quantify ice-surface roughness. The natural
logarithm of the mean-pond parameter is shown in Fig. 5(b) for the April
15, 2011 Landsat-7 image.

Crevasse orientations can also be identified in imagery using addi-
tional geostatistical parameters calculated from directional variograms
(Trantow and Herzfeld, 2018). However, for the April 15, 2011
Landsat-7 image, crevasse orientations were assigned manually by
classifying dominant crevasses at a particular nodal location into one of
16 evenly-spaced directional classes. Crevasse directional classes are
labeled by the angle between the orientation vector and the east-west
horizontal, implying an angle-range of 180°/16 = 11.25° for each
class. Note that crevasse provinces, defined as areas homogeneous with
respect to crevasse type and maximal with this property (Herzfeld et al.,
2014), are typically much larger than 600m x 600m for the BBGS
(Herzfeld et al., 2013a). However, boundaries of crevasse provinces may
exist within a 600m x 600m analysis window which complicates
crevasse orientation assignment. In this case we assign crevasse orien-
tation to the dominant crevasses within the window. Orientation
assignment was done at each of the crevassed locations determined by
the pond-threshold (blue vectors in Fig. 5 (e)). The geostatistical image
analysis approach is described in greater detail in Trantow and Herzfeld
(2018).

3.5. Crevasse-based model-data comparisons
Crevasse characteristics derived in the image analysis given above

can be directly compared to model results when using the model-data
comparison methods derived in Trantow and Herzfeld (2018). Here,
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Fig. 4. Bed topography DEM for the BBGS model. Bed elevation was measured by JPL’s WISE instrument and krigged to a 200m x 200m DEM for use in the BBGS

model simulations.
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Landsat-7 panchromatic image form April 15, 2011 of Bering Glacier used to derive crevasse characteristics from observational sources during the surge in early
2011. (b) The natural logarithm on the mean-pond parameter derived from the Landsat image in (a). (c) The von Mises stress measure (o, calculated from the model
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Crevasse orientations derived from the Landsat image in (a) (blue) and from the LMG model experiment (orange). (f) Crevasse orientation comparison for the LMG
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stress for the LMG model experiment after 50 days. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)

we give an overview of these comparison methods using as an example
the modeled crevasse location and orientation results from the model
experiment that employs the input surface DEM derived from the
LMG-Baseline-C dataset at day 50 of the simulation (see Fig. 5). Note
that modeled results are mapped from their finite element grid to the
image analysis grid within the analysis domain using an interpolation
scheme based on a weighted-distance measure applied to neighboring

points (Trantow and Herzfeld, 2018).

We use two comparison methods of crevasse location and crevasse
orientation to optimally determine two important unknown model pa-
rameters: the basal friction coefficient (# in Equation (4)) and the von
Mises stress threshold (6 reshoiq in Equation (5)). In the first comparison
of crevasse location, disagreement is quantified by finding the fractional
amount of nodes where model and observational data analysis disagree
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on crevasse existence. This quantity is given by the scalar a;, defined as:

 Naisagree

(6)
N, total

oy S [0. 1]

where Ngisqgree is the amount of nodes where model and observations
disagree on crevasse existence and Ny, is the total amount of nodes in
the study domain. For the analysis in this paper and in Trantow and
Herzfeld (2018), Nt = 1185 nodes.

This second scalar measure quantifying mean orientation discrep-
ancy is given by ay and defined as:

Nerey | o+
a, :M c [()’ 1] ()

crev

where 0 is the angle between unit orientation vectors derived from ob-

servations and the model, 70’” and V"M respectively, and N, = 898 is
the number of nodal locations where crevasses existence is consistent
between the model and observations for this example.

A simple cost function C is used to combine a; and a», with associ-
ated weights w; and w, into a single scalar value to evaluate overall
agreement:

®

The cost value C is calculated for a number of model runs each with a
unique set of parameter values for  and 6yyesnors- Optimal parameter
values are those associated with a minimized cost value and are denoted
by an asterisk superscript (e.g., #). Fig. 5 (¢) and (f) show the results of
the comparison methods for the optimized parameter combination g* =
10324 and 67, 0 = 235 kPa for a model simulation that uses the
LMG-Baseline-C surface DEM as input after 50 1-day iterations.

For the analysis in this paper, we set the weights to be w; = 4 and
wy = 1. The reason for weighing crevasse orientation comparisons
lower than crevasse location comparisons (wp < w;) does not stem from
an undervaluation of matching orientations, but rather from experi-
mentation in Trantow and Herzfeld (2018) where we found a small
(negative) correlation between o and the magnitude of the optimized
von Mises stress threshold, leading to a bias toward larger threshold
values. This effect is explained by the following:

We observe that in locations where the maximum tensile stress at the
surface is much larger than the von Mises threshold stress (oquf1>>
Oreshold), Modeled crevasse orientations tend to align better with
observed crevasse orientations, given by lower |sin(6)| values (see Fig. 5
(f)-(h)). This occurs when there is a dominant principal surface stress
Gurf1>0surf2, Which will always be caused by extensional forcing 6g,s1 >
0. When a dominant extensional force exists, crevasse orientations are
expected to align better (more perpendicularly) to the axis of maximum
principal stress. However, at locations where o,y is closer in magnitude
to the second principal surface stress, o2, crevasses open via mixed-
mode fracturing, as opposed to extensional fracturing only (Mode I)
(Van der Veen, 1998, 1999). In the case of mixed-mode fracturing, the
significant shearing component causes crevasse orientations to no longer
align perpendicularly with the maximum principal stress axis, which we
assume when modeling crevasse orientations. Therefore, when we in-
crease the von Mises stress threshold (6 yeshoid), We decrease the amount
of estimated crevasses that have a significant oy, component, i.e.,
crevassing likely formed via mixed-mode fracturing, and we naturally
attain better crevasse orientation matching (a smaller az value). It is for
this reason that we set the cost function weight associated with crevasse
orientation, ws, to be significantly lower than the crevasse-location
weight. Development of a more accurate crevasse orientation estimate
in the case of mixed-mode fracturing will increase confidence in
modeling crevasse orientations and will allow an increase in wy.

C((ll,(lz) =Wy -0 +wr

10
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3.6. Method for model sensitivity study

New in this paper is the method for studying the sensitivity of
modeled surge crevasses in the BBGS to input surface topography. We
investigate this sensitivity by asking the following questions: All else
equal, (1) Does input surface topography change the optimized values
for the linear basal friction coefficient, *, and the von Mises stress
threshold, 6;,,,.,,.4» and the simulation time at which they are found? (2)
Do modeled results from the various input surface topographies
converge to one another with respect to the spatial pattern of modeled
von Mises stress, crevasse orientation estimates and surface elevation as
simulation time progresses? (3) Does a particular CryoSat-2 processing
method lead to modeled results that best match observed crevasse
characteristics or are modeled results dominated by constraints inde-
pendent of the retracking method used?

To answer these questions, we run 6 sets of model experiments that
differ only in their input surface topographies derived from the
retracking methods introduced in Section 3.1. We apply the parameter
optimization scheme introduced in Section 3.5 within each set of
modeling experiments in order to answer question (1). Each experiment
set consists of crevasse characteristic simulations that use a unique
combination of the von Mises stress threshold, varying between 170 kPa
and 250 kPa (Vaughan, 1993; Forster et al., 1999) at increments of 5
kPa, and a basal friction coefficient varying between 10454224 apnd
10-55MPaa (Trantow, 2014) at increments of 0.25 in the exponent. The
simulations are run for 100 one-day time steps during which the
ice-surface can “relax”, that is, the surface can freely evolve after the
input geometry is prescribed, being forced only by gravity. We perform
the optimization procedure once every 10 time steps across each 100
day simulation. As a result, each experiment set, defined by their input
surface topography DEM, yields a unique " and oy;,,,,14, along with a
minimized cost function value C*, at every 10-day increment. The final
fully-optimized parameter values for each experiment correspond to the
lowest overall cost value C* across all simulation time, which are labeled

p' and al,mhal + With an associated cost value C', and similarity measures

al and o). Note that the parameter values optimized across the time
domain are referred to as the “fully-optimized” parameter values. Since
determination of the optimal von Mises stress threshold is done in
post-processing, i.e., after the Elmer/Ice simulation has completed, we
run only 5 model simulations per experiment corresponding to each of
the tested basal friction coefficient values.

To investigate question (2), we compare results over the course of the
full 100-day simulations that correspond to the fully-optimized basal
friction coefficient, 4!, for each experiment. At each 10-day time incre-
ment throughout the simulation, we compare the modeled von Mises
stress, crevasse orientations (given by the maximum principal stress
vector) and ice-surface elevation results from the six experiments to each
other using the Map Comparison method covered in the following sec-
tion. The value of C', along with DEM uncertainty comparisons, will
allow us to answer question (3).

3.7. Map Comparison Method

We investigate the convergence of the ice-surface estimates from the
model experiments, with respect to one another, by employing the Map
Comparison method (MAPCOMP) (Herzfeld and Merriam, 1990). The
MAPCOMP method yields a similarity map given any finite number of
input maps, which in our case are maps of model results from our six sets
of experiments.

The MAPCOMP algorithm performs the similarity mapping by
standardizing the input values of each input map and forming pairwise
differences of the standardized values. To these differences, a semi-norm
is applied, performed in a space whose dimension is equal to the number
of possible pairwise comparisons among a set of input maps, to provide a
normalized similarity value at each shared grid location. Similarity
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values, or MAPCOMP values, close to 0 indicate high similarity among
input maps at a given location. While the largest possible similarity
value is 1, this value rarely exceeds 0.5 (Herzfeld et al., 2007; Trantow
and Herzfeld, 2018). Moreover, while MAPCOMP can be applied to any
number of input maps of different variables, each comparison made in
the present study uses maps of the same modeled output variable.
Therefore, similarity values are expected to be relatively low across the
resulting similarity maps, with values mostly under 0.1 (see Section
4.2.2). Input maps have the option to be weighted by their importance or
confidence, however, we assign equal weights to each of the maps in the
comparisons made in this paper. With equal weighting and consistent
map grids among our inputs, the semi-norm used in our map compari-
sons is equivalent to the L1-norm. The mathematical formulation of the
MAPCOMP method is given in full in Herzfeld and Merriam (1990).

The MAPCOMP method has the advantage over a simple correlation
calculation in that it produces a map of spatial similarities rather than a
single scalar value. While the MAPCOMP method is not designed to
identify outliers among the input maps, it has an advantage over typical
correlation analysis in that it does not require information reduction
before analysis allowing investigation of spatial relationships. In the
end, the resultant similarity map will allow a spatial analysis of simi-
larities and differences between the results of our model experiments
helping elucidate reasons for their existence.

4. Results and discussion

In the following, we summarize the resulting effects of CryoSat-2
retracking techniques on higher level data analysis. These effects are
demonstrated through application of our approach to the early-2011
surge phase of the BBGS using CryoSat-2 retracked datasets for the
time period spanning November 2010 to April 2011. In Section 4.1 we
summarize error and uncertainty estimates within each retracked
dataset and DEM product, and proceed to quantify the effects on
elevation and elevation-change analysis when using CryoSat-2-derived
DEMs via a series of difference maps between the various Bering
Glacier DEMs. In Section 4.2, we analyze differences in numerical
modeling results with respect to parameter estimation and in inter-
model convergence of estimates of von Mises stress, crevasse orienta-
tions and surface elevation.

4.1. Effects on DEM generation and elevation-change analysis

4.1.1. Error estimates

Ice-surface DEMs are evaluated using the numerical error measure,
which reflects the inherent noise within each dataset and its propagation
through the kriging algorithm. The mean and standard deviation of the
numerical error, along with noise and nugget values, are given in Table 2
for each DEM. In addition, we include the average distance from the
estimation locations within the Bering Glacier DEM grid to the nearest
data point used in kriging for each of the associated retracked datasets.
The mean separation distance reflects the survey distribution across the
entire glacier and may be interpreted as a measure of uncertainty in
DEM generation. There is a clear negative correlation between the mean
separation distance and the amount of data points within each POCA-
based dataset, i.e., a higher number of data points yields a lower mean
separation distance, as shown in Table 1.

The average numerical error is around 2 m for each dataset, which is
much lower than the observed elevation changes occurring during the
early-2011 phase of the BBGS surge, which exceed 60 m in several lo-
cations (Herzfeld et al., 2013b). As shown in Trantow and Herzfeld
(2016), the dominant error in the CryoSat-2 DEMs stem from the survey
pattern and therefore datasets with larger mean-distance measures, and
a generally lower amount of data points, result in larger elevation un-
certainty (e.g., the two Baseline-B datasets).

The LMG Baseline-C dataset provides the lowest average numerical
error, which reflects more consistent elevation estimates between
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Table 2
Error analysis means and standard deviations.
Season Mean distance to Numerical Noise Nugget
nearest point (m) error (m) (m) (mz)
ESA Baseline-C 878.38 1.94 + 3.46 5.65 £+ 78.99 +
11.24 304.63
ESA Baseline-B 1886.96 1.25 £ 3.70 4.68 + 95.09 +
13.00 742.76
TFMRA 1285.24 2.04 £ 3.03 7.97 £ 95.16 +
Baseline-C 11.28 268.35
TFMRA 1329.30 0.86 + 1.41 3.43 £ 23.22 +
Baseline-B 5.90 107.31
TFMRA Swath 535.32 2.04 +1.39 9.07 + 60.03+
Baseline-C 6.17 108.81
LMG Baseline- 1037.65 0.82 £1.03 2.61 £ 8.83 +
C 3.30 29.75

Noise estimates are found by scaling the nugget value calculated for each mea-
surement within a data set. The numerical error is calculated using the noise
estimates together with the kriging weights used in DEM generation (see Section
3.2 and Trantow and Herzfeld (2016)). The nearest distance measure reflects
uncertainties in the DEMs arising from the survey error, i.e., the data distribu-
tion within each data set.

nearby points within the six-month dataset. Interestingly, the two
Baseline-B datasets have the next lowest mean numerical error, which
may be a reflection of the lower amount of data points. The Baseline-C
processing chain provides more elevation estimates than the Baseline-
B chain, independent of the retracking method used. Therefore, the set
of additional estimates given by the Baseline-C processing are likely
more noisy than the remaining data, leading to (mostly) higher associ-
ated numerical error and noise estimates.

The swath processed dataset contains 100-250 times more elevation
estimates compared to POCA datasets (Table 1), and as a result, provides
a lower mean search distance for kriging by a factor of 2-4. However,
the noise and numerical error estimates are largest in the TFMRA Swath
dataset (along with the TFMRA Baseline-C dataset). The error analysis
results are influenced by the ability of the raddev filter to remove phase-
wrapped data points and therefore the relatively large noise estimates in
the TFMRA Swath dataset stem from the large amount of phase-wrapped
data that result during processing. However, without a reliable ambi-
guity DEM for Bering Glacier during surge, we must expect some amount
of phase-wrapped data to exist in each dataset and the noise and nu-
merical error estimates must still be taken into account when selecting a
retracked dataset to use during higher level data analysis.

The numerical error is visualized in Fig. 6 for each Winter 2010/
2011 dataset over Bering Glacier. Note that numerical error estimates
can only be attained for data points that contain at least one other data
point within a 300 m radius. Points that do not meet this requirement
are given by an empty red marker in Fig. 6.

4.1.2. Difference maps

After quantifying the uncertainties in each DEM, we take a look at
actual elevation differences between the Bering Glacier DEMs generated
by the different retracking techniques (Figs. 7-9). Locations of the
largest elevation discrepancy typically correspond to sparsely surveyed
areas in one or both of the differenced DEMs. We identify large differ-
ences between Baseline-B DEMs and Baseline-C DEMs in upper Bering
Glacier near the junction of Bagley Ice Field (Figs. 7(a),(c), 8(a),(b),(e),
and 9(a),(c),(d)). This may be due to the location of Bering Glacier near
the ocean, with upper-Bering and the Bagley Ice Field being further
away, where there is a transition between CryoSat-2’s ocean and in-land
masks, which led to the 59.959 m offset in the ESA Baseline-C data over
Bering Glacier (Mannan, 2017).

In general, the ESA Baseline-B data provide a map with the lowest
overall ice-surface elevation (Figs. 7(b) and 8(a),(e) and 9(c),(e)), while
the TFMRA Baseline-C data result in the map with the highest overall
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Fig. 6. Numerical error from the propagation of the noise through the kriging algorithm. Points marked by an empty red circle did not have any data points
within a radius equal to the lag spacing and hence numerical error values are not calculated there. Numerical error estimates for the Winter 2010/2011 data are given
for (a) ESA-Baseline-C, (b) ESA-Baseline-B, (¢) TFMRA-Baseline-C, (d) TFMRA-Baseline-B, (¢) TFMRA-Swath and (f) LMG-Baseline-C. Background image from
LandSat-8 acquired on April 28, 2013. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

elevation (Figs. 7(b) and 8(a)-(d)). The Khitrov Crevasse region (Fig. 1)
is a location of consistent discrepancy between the various elevation
maps, where some of the largest surge crevasses formed during the early-
2011 phase of the surge (Herzfeld et al., 2013b; Trantow and Herzfeld,
2018). Many of the retracking methods are not able to supply elevation
estimates in this region, which leads to larger interpolation discrep-
ancies in the DEMs. Clearly, active crevassing occurring during the rapid
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surge acceleration complicates retracking, and consequently, elevation
analysis, especially when aggregating data over a six-month period.
The figures show that large differences, upwards of 150 m, can exist
between DEMs derived from different processing methods applied to
CryoSat-2 measurements over heavily-crevassed and highly-sloped
terrain and that one must be careful in their interpretation. However,
as shown by the error-analysis in Trantow and Herzfeld (2016),
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Fig. 7. Difference maps between various CryoSat-2 derived DEMs (part 1). (a) ESA-Baseline-C minus ESA-Baseline-B, (b) ESA-Baseline-C minus TFMRA-
Baseline-C, (c) ESA-Baseline-C minus TFMRA-Baseline-B, (d) ESA-Baseline-C minus TFMRA-Swath, and (e) ESA-Baseline-C minus LMG-Baseline-C.

large-scale elevation changes (>15-20 m) that occur during a surge can
still be analyzed using CryoSat-2-derived DEMs. This result was
concluded from error measurements calculated for ESA Baseline-B data
for the BBGS in Trantow and Herzfeld (2016), and the additional error
estimates derived in Section 4.1.1 for each additional retracked dataset
are consistent with this finding. On the other hand, using similar DEMs
for elevation analysis during quiescence is not recommended, as
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six-month elevation-changes are typically less than the associated DEM
error estimates. It is therefore better to aggregate CryoSat-2 data over a
longer time period when analyzing the smaller elevation-changes during
quiescence, which would greatly reduce the error associated with the
survey pattern, i.e., the error associated with the mean distance to the
nearest point during kriging. Finally, as we show in the following sec-
tions and in Trantow and Herzfeld (2018), the CryoSat-2 DEMs remain
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very useful as surface topography inputs for numerical models.

4.2. Effects on numerical modeling results

Next, we analyze the effects that a particular retracking technique
has on numerical modeling results. Recall that each modeling experi-
ment is given a unique CryoSat-2 surface DEM, corresponding to a

particular retracking method, to initialize the ice-surface geometry.

4.2.1. Optimized model parameters
We begin by comparing parameter optimization results between the
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model experiments. Table 3 gives the fully-optimized values for the two
important unknown parameters in the model, the von Mises stress

threshold alhreshold and the linear basal friction coefficient ', and what
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time in the simulation these optimized values are found. Recall that each
simulation is run for 100 days using a 1-day time step size.

The general consistency of the optimal parameter estimates from
each model experiment demonstrates that we are able to limit the effect
of surface topography discrepancies from retracking differences when
following the proper optimization routine, which is outlined throughout
this section. Whichever CryoSat-2 surface DEM is given to the model, the
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fully-optimized basal friction coefficient is consistently g = 10->MPae,
The consistency of the optimal basal sliding parameter across model
experiments may allow increased precision in our estimate of g in
future analysis by running additional model experiments that vary g
values within a smaller range around 107524, As shown in Trantow
and Herzfeld (2018), a prescription of § = 10224 jj the linear sliding
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Computers and Geosciences 146 (2021) 104610

Fully-optimized model parameter values given different input surface topographies. The parameter 4! is the fully-optimized basal sliding parameter in the linear

friction law and ol'hmhold is the fully-optimized von Mises stress threshold parameter in the von Mises criterion. The sixth column displays the mean von Mises stress, Gym,
across the analysis region for the model-data comparisons at the time corresponding to the lowest overall cost value. The final column gives the time step number
(simulation day) for which modeled results and observations matched the best, as reflected by the lowest overall cost value, C'. The time step size is equal to 1-day.

Retracking method 4 (MPa~a) ”1}1 reshora (KP2) ct “Tl a; Gym (kPa) Day of optimization
m
ESA Baseline-C 10°° 235 1.0027 0.1181 0.5301 305.4 40
ESA Baseline-B 1075 235 1.0268 0.1266 0.5205 309.2 50
TFMRA Baseline-C 10°° 240 1.0009 0.1173 0.5317 308.7 50
TFMRA Baseline-B 103 235 1.0341 0.1257 0.5347 318.1 70
TFMRA Swath Baseline-C 10-° 230 0.9956 0.1171 0.5280 300.3 20
LMG Baseline-C 107° 235 0.9947 0.1165 0.5288 308.6 50

law, together with ESA Baseline-C surface topography, results in
modeled surface velocities that match the limited observations by an
average of 0.54 + 2.57 m/day, where average velocities were around 11
m/day. The velocity match provided an independent sanity check on the
prescribed g value, and the results from the current analysis validate this
parameterization further for simulation of the early-2011 surge phase
within the model-data comparison domain.

In addition, the fully-optimized von Mises stress threshold, olhreshald,
is remarkably consistent across the various model experiments with a
few exceptions. The TFMRA retracking technique applied to the
Baseline-C data, for both POCA and swath methods, were the only
datasets that yielded an optimized von Mises stress threshold different
than 235 kPa, at 230 kPa and 240 kPa respectively. However, both
TFMRA Baseline-C experiments still yield relatively low cost measures,
implying an excellent match to observations, and therefore we estimate
the range of an optimal von Mises stress threshold to lie somewhere
between 230 and 240 kPa. This estimated range of the von Mises stress
threshold is slightly larger than the range of ice strength thresholds
given by Forster et al. (1999) for temperate glaciers: 169-224 kPa.
However, as discussed in Trantow and Herzfeld (2018), the stress
threshold we derive here might better reflect the formation of crevasses
of a particular size, which is associated with crevasse identification in
the Landsat-7 imagery. Therefore, our optimized stress threshold could
be larger than the stress threshold corresponding to brittle deformation
that results in an initial fracture of the ice.

Note that the optimized stress threshold is assumed to be uniform
through the analysis domain, but heterogeneous ice-characteristics may
cause the ice yield strength to vary across the glacier surface. A non-
uniform estimation carried out on a node-by-node basis (with some
regularization) would lower the optimized cost function, and yield a
better fit to observations, but at the risk of introducing more control
parameters and degrees of freedom.

The LMG Baseline-C experiment, whose results yielded the lowest
overall cost function, matched observed crevasse existence in 88.35% of
locations within the model-data comparison domain. This excellent
match lends further credence to the use of a linear friction law to
represent surging in a spatiotemporally local sense. This result has
motivated the development of a spatiotemporally evolving sliding law,
based on a local linear representation, to simulate the entire progression
of a BBGS surge (Trantow, 2020).

Table 3 shows that only the TFMRA Swath model experiment gives
mean-von Mises stresses, 6ym, below 305 kPa across the analysis domain
for model-data comparison. The lower overall surface stress given in this
model experiment during the time of optimization is likely correlated
with the lower estimate of the optimal von Mises threshold. This rela-
tionship is highlighted further in Fig. 10(a) and (b) which show that
throughout each simulation the mean von Mises stress increases as do
the estimates for the optimal threshold value. In other words, with larger
overall surface stresses, a larger stress threshold is required in order to
best match modeled and observed crevasses.
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Next, we investigate the best time during the 100-day simulation for
application of the optimization routine. In general, we find that the
model best matches observations when optimal parameters are found
after approximately 50 days of glacier evolution. Fig. 10 gives the esti-
mate of the optimal von Mises stress threshold at various times
throughout the 100-day simulation along with the associated model-
data comparison measures a;, az and C. Fig. 10(a) reflects the
increasing von Mises stress threshold with time-of-optimization that is
associated with an increasing mean surface stress. The continued in-
crease in mean surface stresses over time, as seen in Fig. 10(b), is a
consequence of allowing our steady-state assumption to extend longer
than is realistic during a surge. However, the cost value, after an initial
decrease, also tends to increase with simulation time near the middle of
the experiment (750 days), depending on the exact model experiment, as
seen in Fig. 10(e). This pattern reflects the evolution of the model-data
crevasse location measure, a; (Fig. 10(c)), due to the relatively high
weight given in the cost function. In general, the model-data crevasse
orientation measure (a2, Fig. 10(d)) decreases modestly after time zero
for 20-40 iterations before remaining relatively constant across the
simulation time (with the exception of the ESA Baseline-B experiment).
As shown by the gray dashed line in subfigures (c)-(e), the difference
measures a1 and az, along with the overall cost value, are at a minimum
at the 50 time-step mark when averaged over all model experiments.
Moreover, the best time for optimization given by the model experiment
with the lowest overall cost value, the LMG Baseline-C experiment, is
shown to be at the 50-day mark (green line in Fig. 10(e)). These results
suggest that the ideal time for performing the optimization procedure is
around the 50-day time, i.e., after approximately 50 iterations, for the
BBGS surge model when using a CryoSat-2 POCA input DEM. This time
balances having enough simulation time elapse to elevate errors in the
input surface DEM while still holding the steady-state assumption war-
ranted for our investigation of the glacier state in early 2011.

The TFMRA Swath experiment gives optimal values after only 20
iterations, and therefore the additional elevation estimates given by
swath processing may allow optimal parameter estimation after fewer
model iterations. This also implies that actual elevation error in the
swath-derived DEM may be lower than in the POCA-derived DEMs, with
surface elevations more consistent with the other geometric represen-
tations given to the model (e.g., bed topography).

While Fig. 10(e) shows the range of possible cost values across time-
of-optimization, Fig. 11 gives the range of cost values across the
P-6reshold Parameter-space for the ESA Baseline-C experiment at 40 days.
The overall lowest cost value, corresponding the fully-optimized
parameter choice, is displayed in white text. The largest cost values,
indicating the worst match to observations, are found where the linear
friction coefficient is smallest (10~>#E29) and the von Mises stress
threshold is largest (300 kPa), corresponding to simulations with the
fastest glacier movement and strongest ice. Other parameter combina-
tions that yield low cost values appear along the diagonal where ice
yield strength is balanced with sliding speed. The fact that these cost
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Fig. 10. Evolution of model and optimization values over each 100 day model simulation. ESA-Baseline-C (Red), ESA-Baseline-B (magenta), TFMRA-Baseline-
C (black), TFMRA-Baseline-B (blue), TFMRA-Swath (cyan) and LMG-Baseline-C (green). The gray dashed line plots the mean value across all model experiments at
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time. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

values along the diagonal are so close has motivated inclusion of addi- Note that the optimization of the model parameters in Trantow and
tional data constraints to our optimization scheme, which includes the Herzfeld (2018) were performed after 20 1-day iterations thus yielding
limited velocity data we have available during the surge in early-2011 an optimal estimation of 6};,,,.,; = 200kPa. However, as seen in Fig. 10

(Trantow, 2020). (a), the estimation of the magnitude of ¢},,,,4 increases sharply when
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performing the optimization 10-20 time steps later. The analysis in this
section has shown that optimization closer to the 50-day mark yields
better matches to observation, and therefore we favor the likely von
Mises stress threshold for crevasse initiation to be closer to 235 kPa as
found in this analysis, rather than 200 kPa as concluded in Trantow and
Herzfeld (2018).

4.2.2. Convergence between model experiments

We are also interested in the effect that different retracking tech-
niques have on longer transient simulations rather than only the diag-
nostic, parameter-optimization simulations we have run so far. In
particular we ask, how long do noticeable effects caused by different
input surface DEMs remain in the model as the simulation progresses in
time when free surface evolution, forced only by gravity, is allowed as a
characteristic of the model? This analysis looks at the convergence over
the course of a 100 day simulation of three modeled variables at the
glacier surface: (1) the von Mises stress, o,m,, (2) the direction of the
maximum principal stress axis, which determines modeled crevasse
orientations, and (3) elevation. The map comparison (MAPCOMP)
method is employed to quantify the spatial similarities of these param-
eters across the study region and determine how these similarities (or
dissimilarities) change as the models run forward in time. Because
comparisons (1) and (2) pertain to the modeling of crevasse character-
istics, and ultimately their match to Landsat observations, the MAP-
COMP analysis is performed only for modeled results within the model-
data comparison domain. However, the third comparison of elevation
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also has relevance to the DEMs generated in Section 3.2 and therefore
the associated MAPCOMP analysis is applied to modeled results for all of
Bering Glacier.

4.2.2.1. von Mises stress. Fig. 12 shows the MAPCOMP results applied to
the von Mises stress estimates given by the various model experiments,
each using the basal friction coefficient # = 10>, after (a) a single 1-day
time step, (b) after 30 days and (c) after 100 days. The mean MAPCOMP
value across the entire study region is plotted against the number of
model time steps in Fig. 12(d). While similarity values are below 0.1
throughout each map, indicating mostly high similarity between the von
Mises maps from each model experiment, locations with relatively large
similarity values still provide important spatial information with regards
to model differences.

The results of these comparisons clearly indicate that the spatial
pattern of von Mises stress converges between model experiments
initialized with different surface topographies, with very little variance
remaining after the simulations have run for 100 days. Fig. 12(a) shows
that the model results after the first time step differ most significantly
along the margins and at regions with large noise and numerical error
estimates (see Fig. 6). Most notable is the Khitrov Crevasse region where
the largest surge-crevasses were formed during the early-2011 phase of
the surge. The region near 390 km UTM-East/6695 km UTM-North,
where relatively large dissimilarity exist even after 30 days, corre-
sponds to a region that is sparsely covered by height estimates for each
of the retracked dataset, as seen in Fig. 2(a). This un-surveyed region
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Fig. 12. MAPCOMP comparison of modeled von Mises stress at the ice surface between all six model experiments at different times during the simulation.
(a) After a single 1-day time step. (b) After 30 1-day time steps. (c) After 100 1-day time steps. (d) Plot of the mean MAPCOMP value across all of Bering Glacier

computed at 10-day increments throughout the 100-day simulation.

exists due to the CryoSat-2 satellite’s flight pattern which does not fly
over this location during the time period between November 2010 and
April 2011. The large MAPCOMP values along the margins are mostly
due to elevation estimation from kriging. Data points used in estimation

Maximum Principal Stress Direction MAPCOMP after 1 Timestep

can only be pulled from limited directions corresponding to the glacier
mask. That is, we do not use elevations of the surrounding mountains
and lakes in our estimation of glacier height.

In general, the results displayed in Fig. 12 indicate that spatial
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Fig. 13. MAPCOMP comparison of modeled maximum principal stress axis direction at the ice surface between all six model experiments at different
times during the simulation. (a) After a single 1-day time step. (b) After 30 1-day time steps. (c) After 100 1-day time steps. (d) Plot of the mean MAPCOMP value
across all of Bering Glacier computed at 10-day increments throughout the 100-day simulation.
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variance of von Mises stress between model experiments is controlled
largely by the satellite flight pattern and intrinsic interpolation re-
strictions. Discrepancies in modeled stress from different retracking
techniques matters only in how the technique handles elevation esti-
mation in the presence of large crevasses. Ultimately, the results from
Section 4.2.1 indicate that optimization of the von Mises stress threshold
is robust to these variances in the overall von Mises stress that arise from
different retracking techniques as long as the recommended optimiza-
tion procedure is followed.

4.2.2.2. Crevasse orientations and maximal principal stress axes. Fig. 13
displays the MAPCOMP result applied to the maximal principal stress
axis directions from the six model experiments after (a) 1 day, (b) 30
days and (c) 100 days, while (d) shows the evolution of the mean
MAPCOMP value across the entire domain over time. The appearance of
larger MAPCOMP values, exceeding 0.3 in some locations, indicate less
overall similarity of between modeled stress directions compared to
modeled von Mises stress.

We find that the dissimilarities in the modeled maximal principal
stress axis directions between model experiments reduce over the course
of the 100-day simulation. The steady decrease in the mean-MAPCOMP
measure reflects the increased dominance of other model aspects, likely
basal topography, for determining the direction of maximal principal
stress at the surface rather than initial surface topography. This is further
shown by the widespread, near-zero MAPCOMP values (dark blue) that
exist even after a single time step. However, while modeled crevasse
orientations tend to converge in time across the six model experiments,
they do not necessarily converge with respect to observations as shown
in Fig. 10 (d). Model-data crevasse-orientation agreement would in-
crease with improved bed-topography or, as mentioned previously, by
incorporating mixed-mode fracturing in the modeled crevasse orienta-
tion determination.

It is interesting to note that the similarity of the modeled principal
stress axes appear to converge at a similar rate to the von Mises stress.
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This result implies that differences, or errors, in the input surface
topography are reduced at a similar rate with regards to their effect on
stress orientations and stress magnitudes as the simulation time pro-
gresses. However, the mean MAPCOMP values corresponding to the
stress directions are about 0.015 larger in magnitude than those asso-
ciated with the von Mises stress, indicating a larger initial sensitivity to
input surface topography. While this result may indicate larger un-
certainties in modeling crevasse orientations compared to crevasse lo-
cations, which is reflected in our cost function weights a; and a,, we
emphasize that matches to orientation observations do not improve, and
in fact mostly degrade, after 50 days, as reflected in the mean a, plot in
Fig. 10 (d). Therefore, while the principal stress axes estimates continue
to converge between model runs up to at least 100 days, we do not
expect parameter optimization results to improve if the procedure is
carried out after the 50-day mark.

The similarity maps show that relatively large dissimilarities in
modeled crevasse orientations exist at isolated locations produced by
the different input surface topographies, even after 100 days of surface
evolution. The large region of dissimilarity at 382 km UTM-East/6693
km UTM-North is actually covered by a significant amount of height
estimates for each retracked dataset (see Fig. 2). In this area in partic-
ular, we find that the POCA location (i.e., the x-y coordinate of the
elevation estimate), identified in each retracking method, tends to avoid
the large crevasses skirting the crevasse field boundary. This leads to a
large discrepancy in the POCA location between the various retracking
methods and also results in a significant information gap over the
crevasse field. Therefore, this area could be used for investigation of
CryoSat-2 data characteristics and retracking techniques in future
analysis.

4.2.2.3. Elevation. Fig. 14 shows the evolution of the MAPCOMP mea-
sure applied to modeled surface elevation over Bering Glacier. Overall,
the elevation similarity comparison yields by far the smallest similarity
values indicating that the spatial patterns of modeled elevations
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Fig. 14. MAPCOMP comparison of modeled surface elevation between all six model experiments at different times during the simulation. (a) After a single
1-day time step. (b) After 30 1-day time steps. (c) After 100 1-day time steps. (d) Plot of the mean MAPCOMP value across all of Bering Glacier computed at 10-day

increments throughout the 100-day simulation.
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estimates between experiments are more consistent compared to
modeled stress magnitudes and directions. The most persistent modeled
elevation differences manifest in upper Bering Glacier, where the
Baseline-B DEMs differed most significantly to the Baseline-C DEMs (see
Section 4.1.2).

We find that mean differences in the spatial pattern of modeled
surface elevation decrease rapidly over the course of approximately 50
1-day time steps before leveling out. These results indicate that the
spatial variances in modeled surface elevation caused by differences in
initial surface topography tend to dissipate after a “relaxation” period of
around 50 days during which the modeled ice surface can freely evolve.
After this time period, the elevation pattern is less affected by peculiars
in the input surface topography due to an increased influence of basal
topography and other intrinsic aspects of the model (e.g., the glacial
boundary, the isothermal assumption or the sliding law). The 50-day
time period corresponds well to ideal time for performing the param-
eter optimization as determined in Section 4.2. We therefore recom-
mend performing the parameter optimization routine after 50 days of
free-surface evolution, regardless of the initial surface DEM used. This
time period strikes a balance between reducing model effects from errors
in the input surface DEM, computation time, and the ability of the DEM
to realistically represent the glacier surface for the given time period
(here Winter 2010/2011).

5. Summary and conclusions

Elevation estimations in the cryosphere have been greatly improved
since the launch of ESA’s CryoSat-2 mission helping to reduce our un-
certainties in estimating future global sea-level rise. Sea-level rise
assessment is typically achieved through modeling, yet most ice-sheet-
wide models are missing the implementation of different types of
glacial acceleration, especially the most dramatic form, that of a surge.
Here, we use numerical modeling in our assessment of CryoSat-2 data. In
particular, we investigate the effects that differences in retracking
techniques have on deriving and analyzing surface topography DEMSs
and numerical modeling results. We find the numerical error during
DEM generation to range from 0.82+1.03 m for the LMG retracking
method to 2.04+1.39 m for the TFMRA Swath method. The swath-
processed dataset suffers from a large amount of phase-wrapping er-
rors due to the lack of an unreliable ambiguity DEM for the BBGS during
its surge phase in early 2011. However, the swath-processed dataset, by
providing 100-250 times more data than the traditional POCA
retracking methods, reduces the mean distance from the estimation
location on the DEM grid to the nearest point by a factor of 2-4. With
survey error dominating the uncertainties in DEM generation, we
recommend using a swath-processed dataset, such as the TFMRA one
used here, when analyzing elevation and elevation change in a large
mountain glacier like the BBGS.

Difference maps between the various DEMs show that large differ-
ences upwards of 150 m can occur when using different retracked
datasets for the heavily crevassed Bering Glacier. Therefore, large un-
certainties in elevation and elevation-change analysis can exist, espe-
cially at sparsely surveyed locations, depending on which retracked
dataset one chooses. We find that the largest differences between DEMs
for Winter 2010/2011 exist between Baseline-B- and Baseline-C-based
retracking methods, implying that lower level processing (level O or 1)
account for a large portion of elevation estimation differences between
the baseline processing chains. In general, crevasses complicate eleva-
tion derivation and can lead to significant information gaps over
important crevassed regions that are critical to understanding the surge
process.

In contrast to elevation-change analysis, we find that numerical
modeling results related to parameter estimation can be relatively
insensitive to differences in input surface topography DEMs arising from
various retracking methods when following the proper optimization
routine. The optimization of unknown model parameters is remarkably
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consistent across the six modeling experiments, with each yielding an
optimal linear friction coefficient of ' = 10~5#22¢ apd an optimal von

Mises stress threshold between GZhreshold = 230kPa and 240kPa. The
magnitude of our optimal stress threshold range is larger than that
proposed for temperate glaciers by Forster et al. (1999) of 169-224 kPa.
We find that the lowest overall cost measure, which quantifies the
agreement between modeled and observed crevasse characteristics, to
be associated with the LMG retracking method followed by the TFMRA
Swath method. These results have helped to better parameterize our
surge model during the most poorly constrained time period of the BBGS
surge cycle corresponding to the major surge onset in early-2011. There
is now less uncertainty in our model choices and parameterizations,
which has led to further development of BBGS surge model (Trantow,
2020) and better understanding of the important surge mechanisms.

As a result of the MAPCOMP analysis, we find that the model ex-
periments converge over time in their estimations of von Mises stress,
crevasse orientations and elevation. These convergences suggests that
differences in input surface DEMs arising from retracking methods have
less of an effect on model results as simulation time proceeds. Model
estimates of stress directions appear to be most sensitive to initial sur-
face topography followed by stress magnitudes, while patterns of ice-
surface elevation are least sensitive. The more persistant differences
that remain between the model experiments after 100 days are attrib-
uted to the CryoSat-2 ground-track pattern during Winter 2010/2011,
limitations in kriging ice elevations in mountainous regions and com-
plications in retracking return-waveforms in highly crevassed regions.
While differences between model experiments decrease over time, dis-
crepancies between observations and model results generally show no
improvement, or may in fact grow, after 40-60 days. We therefore
recommend that the optimization procedure be performed after a
relaxation period of 50 1-day iterations for POCA datasets. The
improved spatial coverage provided by swath-processing may allow the
parameter optimization routine to be carried out at an early time, e.g.,
after 20 days as given by the optimization results for the TFMRA Swath
experiment.

All CryoSat-2 retracking methods are affected by crevassing and
CryoSat-2 in general does not capture high-resolution surface roughness
on the order of crevasses. Fresh surge crevasses in early-2011 led to
relatively large noise and error estimates at particular locations within
each dataset and between each dataset in terms of elevation estimates.
However, the general consistency in modeling results after ~50 days of
simulation may be explained by the fact that all retracking methods
result in surface data of similar spatial characteristics.

Computer code availability

Code essential to the analysis in this paper is available on GitHub at
the following public repository: https://github.com/trantow/bbgs_elm
er. An example Solver Input File (SIF) to run the BBGS model in
Elmer/Ice is provided (crev_BBGS_C2_swath_[AMG_20181126.sif) along
with code the BBGS-specific User Functions (USF_Bering.f90). Code was
written by Thomas Trantow and adapted from open source code pro-
vided by the Elmer/Ice community (see http://elmerice.elmerfem.org/
courses-tutorials).

Data availability

Information on how to freely download the ESA-processed CryoSat-2
data is available online at https://earth.esa.int/web/guest/-/how-to-
access-cryosat-data-6842. The TFMRA-processed CryoSat-2 data are
available through V. Helm, while the LMG-processed data are available
through J. Nilsson. The Landsat-7 data used in this analysis was down-
loaded using the USGS Global Visualization Viewer (GloVis) found at
https://glovis.usgs.gov/.
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