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Experienced teachers pay close attention to their students, adjust-
ing their teaching when students seem lost. This dynamic inter-
action is missing in online education. We hypothesized that
attentive students follow videos similarly with their eyes. Thus,
attention to instructional videos could be assessed remotely by
tracking eye movements. Here we show that intersubject correla-
tion of eye movements during video presentation is substantially
higher for attentive students and that synchronized eye move-
ments are predictive of individual test scores on the material pre-
sented in the video. These findings replicate for videos in a variety
of production styles, for incidental and intentional learning and
for recall and comprehension questions alike. We reproduce the
result using standard web cameras to capture eye movements in a
classroom setting and with over 1,000 participants at home with-
out the need to transmit user data. Our results suggest that online
education could be made adaptive to a student’s level of attention
in real time.

online education | eye tracking | intersubject correlation

In a classroom the level of attention is quite variable (1, 2).
An overt indicator of attention is the point of gaze (3, 4).

When students are not following the relevant teaching mate-
rial, there is a good chance that they are not paying attention
and that they will perform poorly in subsequent exams. Experi-
enced teachers know this and adjust the interaction with students
accordingly (5). During online education this immediate feed-
back is lost. Here we suggest that standard web cameras could be
used to monitor attention during online instruction based on the
student’s eye movements.

In the context of online media eye tracking has been used
extensively to evaluate user interfaces, advertising, or educa-
tional material (6, 7). In education research eye tracking has
been used to improve instructional design, determine the level
of learner expertise, or purposefully guide eye movements dur-
ing instruction (8). These studies often focus on the content of
eye fixations in static media, to determine, for example, whether
users look at a specific graphic or whether they read a rele-
vant text (9, 10). This approach requires detailed analysis and
interpretation of the specific content and cannot be used rou-
tinely to evaluate individual students. Evaluating the content
of eye fixations is particularly complicated for dynamic stim-
uli such as instructional video, which is increasingly abundant
online. Here we focus on dynamic video and whether students
“follow” that dynamic content, in the literal sense of following
with their eyes.

Previous studies have shown that eye movements are corre-
lated across subjects during video presentation (11, 12). This
intersubject correlation (ISC) of eye movements is elevated for
dynamic, well-produced movies and video advertising (13–16)
and is affected by the viewing task (17). A variety of eye-tracking
measures have been used in educational research (18). However,
the observation that eye movements are synchronized across sub-
jects has not been widely explored in the context of education. In
particular, it has not been established yet whether intersubject
correlation of eye movement depends on attention or whether

it is predictive of learning. Much of our eye movements dur-
ing video seems to be driven by the visual dynamic (14, 19),
resulting in similar scan paths even when movies are presented
backward in time (11). Thus, a remarkable fraction of eye move-
ments seems to be guided by “bottom-up” processing of salient
visual events in the video (19, 20).

We hypothesize that typical online instructional videos syn-
chronize eye movements across students; however, the level of
synchrony depends on whether students are paying attention.
Therefore, the correlation of eye movement between subjects
should be predictive of retention of the material presented in
the video. The alternative hypothesis is that the stimuli drive
eye movements without engaging a student’s mind meaningfully
in the material. One may also argue that static stimuli, while
not reliably guiding eye movements, may nonetheless engage
students’ minds (21, 22).

We test this hypothesis by measuring ISC of eye movements
and pupil size, recorded while a diverse group of students watch
short informal instructional videos typically found online. Con-
sistent with the hypothesis, we find significant intersubject cor-
relation, which drops in magnitude when viewers are distracted
by a secondary task. Additionally, ISC of individual students
is predictive of individual performance in a subsequent test
of recall and comprehension. To determine the robustness of
these findings, we repeat the experiment for different learning
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scenarios and instructional videos produced in different styles.
Finally, we replicate the results with remote students, using sub-
jects’ own computers to capture their eye movements, without
the need to transfer data from the user, thus preserving online
privacy.

Results
Effects of Attention on Eye Movements during Video Presentation.
To test the hypothesis that synchronization of eye movements
depends on attentional state, we recruited a diverse group of sub-
jects (n = 88) to participate in a series of experiments where they
were asked to watch five or six short instructional videos in the
laboratory while we monitored their eye movements. The videos
covered a variety of topics related to physics, biology, and com-
puter science (SI Appendix, Table S2). The videos reflected the
most common contemporary formats, which feature a teacher
writing on a board, or more modern storytelling using anima-
tions or the popular writing-hand style. A first cohort of subjects
(n = 27, 17 females, age 18 to 53 y, mean [M] = 26.74, standard
deviation [SD] = 8.98) watched five short instructional videos,
and after each video they took a test with questions related to the
material presented in the videos. In the first cohort, subjects were
told to expect this subsequent test. After watching the videos
and answering questions they watched the videos again. To test
for attentional modulation of ISC, in the second viewing sub-
jects performed a serial subtraction task (count silently in their
mind backward in steps of seven starting from a random prime
number between 800 and 1,000). This is a common distraction
task in visual attention experiments (23). During the first atten-
tive viewing eye movements of most subjects are well correlated

(Fig. 1A). As predicted, during the second one, distracted view-
ing eye movements often diverge (Fig. 1B). The same appears
to be true for the fluctuations of pupil size. To quantify this, we
measure the Pearson’s correlation of these time courses between
subjects. For each student we obtain an ISC value as the average
correlation of that subject with all other subjects in the group.
We further average over the three measures taken, namely, ver-
tical and horizontal gaze position as well as pupil size. This ISC
is substantial during the normal viewing condition (Fig. 1C; ISC
median = 0.35, interquartile range [IQR] = 0.12, across videos)
and decreases in the second distracted viewing (ISC median =
0.12, IQR = 0.18). Specifically, a three-way repeated-measures
ANOVA shows a very strong fixed effect of the attention con-
dition (F (1, 231) = 749.06, P = 1.93·10−74), a fixed effect of
video (F (4, 231) = 32.29, P = 2.23·10−21), and a random effect
of subject (F (26, 231) = 9.21, P = 1.62·10−23). For a replica-
tion of these results on two other experiments see SI Appendix,
section S1. This confirms the evident variability across films and
subjects. The predicted effect of attention, however, is so strong
that despite the variability between subjects one can still deter-
mine the attention condition from the ISC of individual subjects
(Fig. 1C). Specifically, by thresholding on ISC one can determine
with high accuracy the attentional state of the subject (area under
the receiver–operator curve of Az =0.944± 0.033 – mean ±
SD over videos). To determine which time scale of the eye
dynamic dominates this intersubject correlation we computed
ISC resolved by frequency (Fig. 1D). We find that ISC and its
modulation with attention are dominant in a time scale of 0.1 to
33 s for eye movements (0.03 to 8.8 Hz) and 0.2 to 33 s for pupil
size (0.03 to 5 Hz).
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Fig. 1. Intersubject correlation of eye movements modulated by attention when watching instructional videos. (A) Two subjects’ gaze position and pupil
size follow each other during attentive viewing. (B) The same two subjects viewing the same segment of video while distracted by a counting task. (C) For
each subject, ISC is measured as the mean correlation of vertical and horizontal gaze position and pupil size with that of other subjects. Values for each
subject are shown as dots for all videos in experiment 1. Each dot is connected with a line between two different conditions, namely, when subjects were
either attending (A) or distracted (D) while watching the video. (D) ISC for the attentive and distracted conditions resolved by frequency, i.e., computed on
band-pass filtered eye movements and pupil size. Each ISC value is averaged over the five videos and all subjects. In D, Left and Right significant differences
between attending and distracted conditions are established using a cluster permutation test (gray shaded area indicates P < 0.01).
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Correlated Eye Movements and Pupil Size as Predictors of Test Scores.
In the previous experiments we confirmed the hypothesis that
if subjects are distracted the ISC of eye movements and pupil
size is reduced. Given the well-established link between attention
and memory we therefore expect that ISC will be predictive of
how much each subject retained from the instructional video. We
tested this hypothesis by quizzing subjects after they had watched
the video using a short, four-alternative forced-choice question-
naire (11 to 12 questions per video). Students that watched the
video performed significantly better than näıve students (65.2 ±
18.8% versus näıve: 45 ± 14.6%; t(56) = 5.37, P = 1.58·10−6;
see Materials and Methods for details). Importantly, we find a
strong correlation between ISC and test scores across subjects
for all videos we tested (Fig. 1B; r = 0.61 ± 0.06, SD across five
videos, P < 3.60·10−3). This is true for ISC of eye movement and
pupil size alike, even when luminance fluctuations are regressed
out from the pupillary response (SI Appendix, Fig. S6). Evidently,
subjects with lower ISC performed poorer on the tests (e.g., sub-
ject 3 in Fig. 2A). Inversely, subjects with more correlated eye
movements obtain higher test scores (e.g., subjects 1 and 2 in
Fig. 2A). This suggests that subjects who did not follow the visual
dynamics of the video with their eyes were not paying attention
and as a result their test scores were lower (see SI Appendix, sec-
tion S2 for replication of these results on two other laboratory
experiments). This causal interpretation is consistent with a sta-
tistical model of the data (SI Appendix, section S4). However, the

present study is only observational and the source of the corre-
lation observed here between ISC and test performance remains
undetermined.

A classic approach to predicting recall of a visual stimulus is
to measure overt attention toward the stimulus, for instance, by
measuring the number of fixations or their duration (23, 24).
Indeed, in the present data the fraction of time subjects had their
eye on the video also correlated with subsequent test scores, but
the effect was not as strong as for the ISC of eye movements
(SI Appendix, section S9 and Fig. S7).

Different Learning Scenarios. To test for the robustness of the
effect we repeated the experiment, but this time subjects did
not know that they would be quizzed on the content of the
videos (Fig. 2C). The two scenarios thus constitute intentional
learning and incidental learning which are known to elicit dif-
ferent levels of motivation (25). As expected, we find a higher
ISC in the intentional learning condition (ISC median = 0.32,
IQR = 0.12, n = 27) compared to the incidental learning
condition (ISC median = 0.317, IQR = 0.06, n = 30) (two-
tailed Wilcoxon rank sum test: z = 2.82, P = 4.78·10−3). This
suggests that lower motivation in the incidental learning con-
dition resulted in lower attentional levels and thus somewhat
less correlated eye movements and pupil size. In the inten-
tional learning condition test scores were higher compared to
the incidental learning condition (intentional learning score =
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Fig. 2. Intersubject correlation of eye movements during instructional videos predicts learning performance. (A) Eye movements of three representative
subjects as they watch “Why are Stars Star-Shaped?”. Two high-performing subjects have similar eye movements and pupil size dynamic (S1 and S2). A third,
low-performing student does not match their gaze position or pupil size (S3). (B) ISC of eye movements and performance on test taking (score) for each
of five videos in experiment 1. Each symbol is a subject. The high- and low-performing subjects (subjects 1 to 3) from A are highlighted in color and with
arrows for the stars video. Dashed lines represent performance of subjects naı̈ve to the video. (C) Same as B but averaging over the five videos. The data
were collected in two different conditions: during intentional learning (experiment 1) where subjects knew they would be quizzed on the material and
during incidental learning (experiment 2) where subjects did not know that quizzes would follow the viewing. (D) Videos in three different production styles
(experiment 3) show similar correlation values between test scores and ISC. Each point is a subject where values are averaged over two videos presented in
each of the three styles. (See SI Appendix, Fig. S2 for results on all six videos.) (E) A similar effect is observed for different question types. Here each point is a
subject with test scores averaged over all questions about factual information (recognition) versus questions requiring comprehension. ISCs were averaged
over all six videos in experiment 3.
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65.22 ± 18.75 points, n = 27; incidental learning score =
54.53 ± 15.31 points, n = 31; two-sample t test, t(56) = 2.39,
P = 0.02, d = 0.63). This may reflect increased motivation
or more simply the increased difficulty of having to answer all
questions together after a longer time interval. Importantly, and
again consistent with our hypothesis, in both cohorts there is a
robust correlation between ISC and test scores (Fig. 2C; inten-
tional, r(25) = 0.61, P = 7.51·10−4; incidental, r(29) = 0.58,
P = 5.87·10−4).

Different Styles of Instructional Videos. We found a positive cor-
relation between ISC and test scores for all five videos tested.
The style of these five videos either consisted of animation (light-
bulbs, immune, internet) or showed a hand, drawing figures
(stars, birth). We wanted to test whether this effect is robust
to other popular styles of informal instructional videos found
on popular YouTube channels. To this end we performed an
additional experiment on a new cohort of 30 subjects (exper-
iment 3; 22 females, 8 males, age 18 to 50 y, mean = 25.50,
SD = 8.05 y) where we selected six different videos in three dif-
ferent styles (two videos per style): a real-life presenter along
with animation, a presenter writing on a glass board, and a writ-
ing hand with animation (see links to videos in Materials and
Methods). Despite the different visual appearance and dynamic,
we still find a strong correlation between ISC and test scores for
all three styles (Fig. 2D: presenter and animation, r(28) = 0.56,
P = 1.2·10−3); writing hand and animation, r(27) = 0.46, P =
0.01; presenter and glass board, r(28) = 0.51, P = 3.7·10−3)).

Recognition and Comprehension Questions. It is possible that atten-
tion favors recognition of factual information, but that questions
probing for comprehension of the material would require the stu-
dent to disengage from the video to process the content “offline.”
We therefore included in experiment 3 comprehension questions
(32 of a total of 72 questions across the six videos; see questions
in SI Appendix, Table S2). Overall subjects did similarly on the
comprehension questions compared to the recognition questions
(Fig. 2E) and we find a significant correlation with ISC for these
comprehension questions (r(28) = 0.50, P = 5.3·10−3), and we
again find a correlation with recognition performance (r(28) =
0.58, P = 8.5·10−4). These correlation values do not differ sig-
nificantly (asymptotic z test after Fisher r-to-z conversion, P =
0.68), suggesting that comprehension and recognition are both
affected by attention. Indeed, test scores for comprehension and
recognition questions are significantly correlated across subjects
(r(28) = 0.52 (P = 3.02·10−3)). Therefore, the hypothesized link
between ISC and performance seems to be fairly robust, applying
to different learning scenarios and various styles of educational
video found online, as well as recognition and comprehension
questions alike.

Capturing Eye Movements Online at Scale Using Standard Web Cam-
eras. Thus far all experiments were performed in a laboratory
setting with a research-grade eye tracker. To test the approach in
a realistic setting we developed an online platform that can oper-
ate with standard web cameras. These cameras typically operate
at lower sampling frequencies (<60 Hz), which should suffice as
we showed that the relevant fluctuations of eye movements are
below 10 Hz (Fig. 1D). The online platform relies on existing eye-
tracking software that can run on any web browser (26), allowing
us to reach a large scale of users. The software operates on the
remote computer of the users and captures gaze position, but
not pupil size as web cameras typically do not have the necessary
spatial resolution. In one experiment we recruited 82 students
(female = 21, age 18 to 40 y, mean = 19.6, SD = 2.7 y) from a
college physics class to participate after their laboratory sessions
using the desktop computers available in the classroom (exper-
iment 4: classroom). In another experiment we recruited 1,012

participants (female = 443, age 18 to 64 y, mean = 28.1, SD = 8.4
y) on MTurk and Prolific. These are online platforms that assign
tasks to anonymous subjects and compensate them for their work
(experiment 5: at-home). The subjects used the webcam on their
own computers, emulating the at-home setting typical for online
learning. The gaze position data collected with web cameras are
significantly noisier than using the professional eye tracker in the
laboratory (Fig. 3A; see raw data in SI Appendix, section S6). To
quantify this, we compute the accuracy of gaze position when
subjects are asked to look at a dot on the screen (Fig. 3B). As
expected, we find a significant difference in gaze position accu-
racy between the laboratory and the classroom (two-sample t
test, t(69) = −7.73, P = 6.3·10−11) and a significant difference
between the classroom and the at-home setting (t(242) = −2.46,
P = 0.01). Despite this signal degradation we find a high correla-
tion between the median gaze position data (across subjects) for
laboratory and classroom data (horizontal gaze, r = 0.87 ± 0.04;
vertical gaze, r = 0.75 ± 0.04) and laboratory and at-home data
(horizontal gaze, r = 0.91 ± 0.04; vertical gaze, r = 0.83 ± 0.04).

Predicting Test Scores in a Classroom and at Home Using Web Cam-
eras. To preserve online privacy of the users we propose to
evaluate eye movements remotely by correlating each subject’s
eye movements with the median gaze positions (Fig. 3A). Instead
of ISC with all members of the group, we thus compute the cor-
relation with the median position locally, without the need to
transmit individual eye position data (Materials and Methods). To
compensate for the loss of the pupil signal we now also measure
the correlation of eye movement velocity, which has been used
previously to capture synchronous eye movements (16) (Mate-
rials and Methods). We combine these eye movement metrics
by taking a weighted average of the vertical, horizontal, and
velocity ISC (wISC) [following previous work on combining mul-
tiple ISC measures (27, 28); Materials and Methods]. We find
that this wISC of eye movement robustly correlates with sub-
sequent test scores (Fig. 3 and SI Appendix, Table S1) despite
the lower quality of the gaze position data. In fact, the cor-
relation of wISC with test scores for the classroom (Fig. 3C;
r = 0.46 ± 0.16, P < 0.01) is comparable to the values in
the laboratory experiments (r = 0.59 ± 0.08, all P < 0.01;
compare to Fig. 2B). The at-home experiment had also highly
significant correlation between wISC and subsequent test scores
(Fig. 3D; r = 0.47 ± 0.08, P < 3.9·10−8). The prediction error of
the test score based on wISC is 14.6 ± 16.9% (median across
videos, IQR across all videos and subjects), which is equiva-
lent to 1.75 of 12 questions, and outperforms a näıve predictor
based on mean performance (SI Appendix, Table S1). We can
essentially predict how well students are going to perform on
a test by comparing their eye movements to the median eye
movements.

Discussion
We found that eye movements during watching of instructional
videos are similar between students, in particular if they are pay-
ing attention. The effect of attention is strong, allowing one to
detect with a few minutes of gaze-position data whether the
student is distracted. Consequently, and as predicted, we find
that students performed well in subsequent quizzes if their eyes
followed the material presented during the video in a stereo-
typical pattern. We replicated this finding in two subsequent
laboratory experiments, where we confirmed that the effect per-
sists when students do not expect to be quizzed and that the
effect of attention does not depend on the specific type of video
or the type of questions asked. The results also replicate in a
classroom setting and in a large-scale online experiment with
users at home using standard web cameras. By correlating with
the median gaze positions one can avoid transmitting personal
data over the internet. Thus, we conclude that one can detect
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Fig. 3. Weighted intersubject correlation of eye movement measured using low-cost web camera predicts test scores. (A) Gaze position for “immune”
video in laboratory, classroom, and at-home settings. Median and interquartile range are taken across subjects (solid line and shaded area, respectively). (B)
Deviation of gaze position when subjects looked at four “validation” dots presented in sequence on the corners of the screen, collected in the laboratory,
classroom, and at-home settings for the first video shown to subjects (Materials and Methods). *, a significant difference in means. (C) Eye-movement
wISC is predictive of performance in the classroom. (D) Eye-movement wISC is predictive of performance in the at-home setting. See details in SI Appendix,
Table S1.

students’ attentional engagement during online education with
readily available technology. In fact, we can predict how well stu-
dents will perform on a test related to an instructional video,
by looking at their eye movements while maintaining online
privacy.

A traditional approach to assess overt visual attention is to
simply determine whether subjects are looking at the stimulus,
e.g., for video (20, 29). In contrast, ISC of eye movements mea-
sures whether subjects follow the visual content and not just
whether they are looking at the video. Here we showed that ISC
is a more faithful measure of active attentional engagement as
it was a better predictor of test-taking performance compared to
how long subjects looked at the video.

Note that the link between eye movements and test perfor-
mance established here was purely correlational. It is possible
that stronger students can both follow the video better and per-
form better in the test, without the need for a direct link between
the two. It could also be that students with prior knowledge on
the material were more interested and thus paid more attention.
We built an analytic model assuming a common cause for inter-
subject correlation and test-taking performance. While we refer
to this common cause as “attention,” it really can refer to any
internal state of a subject that may have a causal effect on test
scores and eye movements such as alertness, interest, motiva-
tion, engagement, fatigue, etc. This causal model explained the

data more accurately than a simple correlation. But ultimately,
our study did not control attention prospectively and thus cannot
conclusively answer the direction of this relationship.

We tested for recognition of factual information presented in
the videos. Performance on these questions naturally depends
on attention to the presentation of this factual information. For
questions requiring comprehension, instead, it may be that stu-
dents need time to think about material quietly without being
absorbed by the video. Yet, we did not find a degradation in
the ability to predict test scores from eye movement for the
comprehension questions. However, a more nuanced analysis
and larger sample size may be needed to establish a differ-
ence in our ability to predict comprehension vs. recognition
performance.

ISC of eye movements varied significantly between subjects
and videos. The variability between subjects is to a certain degree
predictive of different test scores and thus we can ascribe it to
genuine differences in attention. However, there is a significant
variability in ISC across subjects even in the distracted condition,
suggesting that baseline levels of ISC do vary between subjects,
irrespective of attention. It is worth noting that we recruited a
fairly diverse subject pool. In addition to the wide range in age
and education levels reported here, the laboratory and classroom
experiments likely also had a wide range of ethnicities, national-
ities, and second language skills. The same is true for the online
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experiment, which recruited subjects through online platforms.
This was a deliberate choice as we expected this to result in a
wider range of attention levels.

ISC also differed significantly among videos. This again could
be due to different levels of attention that the videos elicit, but it
could also be due to differences in how the visual dynamic drives
bottom–up attention; e.g., slower videos or less salient visuals
may drive eye movements less vigorously (14, 20). In fact, we
occasionally observed short segments of asynchronous eye move-
ments, as gaze jumps back and forth between two prominent
items in the video, but out of phase between subjects. Neverthe-
less, for the full videos ISC was always positive and correlated
with learning gains. One caveat of using ISC is that its values
may depend on spatial arrangements and the temporal dynamic.
Therefore, ISC values should always be compared against a
baseline that calibrates for differences between videos (30).

Eye tracking has been used extensively to study cognitive pro-
cessing during reading (31) and visual search (32). In education
research, specifically, eye tracking is often combined with a think-
aloud protocol (33), whereby subjects verbalize their thinking
while learning (34). This has been used to establish theories of
learning (35). Eye-tracking data have also been used to classify
different cognitive processes or to classify whether the viewer is
an expert or näıve learner (36). But to our knowledge, eye move-
ments have not been used to predict test-taking performance as
we have done here.

Eye tracking has also been used in research specifically related
to computer and online education. For instance, when learn-
ing from pictures and written text, fixation times and rereading
predict learning performance (37). Showing the instructor’s face
while talking seems to help students attend to the material (38,
39), but there are mixed results on whether this is actually bene-
ficial for learning (40, 41). These types of results required careful
analysis of the exact content that is fixated upon. The method
presented here assesses whether students are paying attention
without the need for specific information about the contents of
the video.

Given the link between the point of gaze and attention,
attempts have been made to guide the attention of novice learn-
ers using cueing, e.g., pointing out where on a video or animation
the student should pay attention. This can reduce cognitive load
(42) and foster learning (43). There are also a few attempts of
guiding attention of a novice by displaying the gaze position of
an expert during problem solving (44) or during video presen-
tation (45). However, this method has shown improved learning
only in specific cases and requires careful manual annotations of
the instructional videos (8).

Our analysis also included pupillary responses. That this
should correlate between subjects is perhaps not surprising as
it is strongly driven by luminance changes in the visual stim-
ulus. The observation is that this correlation is modulated by
attention. Interestingly, the ISC of pupil size remained predictive
of test-taking performance even after regressing out luminance.
Therefore, in the present study synchronization of pupil response
is unlikely to result from luminance fluctuations and may be
driven instead by other factors known to affect pupil size, such as
arousal (39), cognitive effort (46), or attention (38). The present
finding differs from the extensive literature on pupil size, which
attempts to link pupillary response to specific events. For exam-
ple, pupil size predicted reliably which stimuli were recalled, in
particular for emotionally arousing stimuli (47). Pupil size has
also been linked with cognitive effort, for instance, the effort
associated with holding multiple items in working memory (46).
In contrast to this traditional work on event-related pupil dila-
tion we did not have to identify specific events in the stimulus.
As with the eye movements, we can simply use other viewers as a
reference to determine whether the pupil size is correlated and,
if it is, anticipate high test scores. As online video communica-

tion becomes more prevalent, we expect future web cameras to
have sufficient spatial resolution to capture pupil size. For the
time being, we demonstrated current technology may suffice to
predict learning performance based on eye movements alone.

Online education often struggles to persistently engage stu-
dents’ attention, which may be one of the causes for low retention
(48). Students’ online engagement is often measured in terms of
the time spent watching videos (49), mouse clicks (50), or viewed
content (51), and some important lessons have been learned
from these outcome measures. For instance, videos should be
short, be dynamic, and show the face of the instructor talking
with enthusiasm (49). Our recent work has focused on measur-
ing attentional engagement of the students by measuring their
actual brain activity (52). Attempts to record brain signals in a
classroom have been made (53–55), but typically require help
from research personnel and may thus not be practical, particu-
larly at home. The method we have presented here opens up the
possibility to measure not just time spent with the material, but
the actual engagement of the student’s mind with the material,
regardless of where the student is. With adequate data quality
one may be able to even adapt the content in real time to the
current attentional state of the student. In particular, for a syn-
chronous online course, where students participate at the same
time, real-time feedback to the teachers may allow them to adapt
to students’ level of attention in real time, much like real teachers
in real classrooms. The internet has turned attention into a com-
modity. With video content increasing online, remote sensing of
attention to video at scale may have applications beyond edu-
cation, including entertainment, advertising, and politics. The
applications are limitless.

Materials and Methods
Participants. A total of 1,182 subjects participated in one of five different
experimental conditions. The first two experiments tested the learning sce-
nario of online education, namely intentional learning (experiment 1, n =
27, 17 females, age 18 to 53 y, M = 26.74, SD = 8.98; 1 subject was removed
due to bad data quality) and incidental learning (experiment 2, n = 31,
20 females, age range 18 to 50 y, M = 26.20, SD = 8.30 y; 3 subjects were
removed due to bad signal quality). Experiment 3 was designed to investi-
gate the effect of different video styles and types of questions (n = 30, 22
females, age 18 to 50 y, M = 25.73, SD = 8.85 y; 2 subjects were removed due
to bad signal quality).

Participants for the laboratory experiments 1 to 3 were recruited from
mailing lists of students at the City College of New York (CCNY) (n = 74) and
the New York City section of craigslist.org (n = 14). n = 63 of 88 subjects self-
reported to have some college education. CCNY has a diverse student body
including age, ethnicity, second languages, skills, etc., and participants from
the public in New York City only added to this diversity. Subjects were com-
pensated for their time at a rate of $20 USD per hour, with the experiment
lasting between 1 and 2 h.

Experiment 4 was designed to replicate the findings from the laboratory
in a classroom setting. Participants were all second-year physics students
enrolled in a common physics class at the City College of New York (n =
82, female = 21, age 18 to 40 y, M = 19.6, SD = 2.7 y). They were invited to
participate at the beginning of one of their in-class lectures. For this exper-
iment subjects were compensated with $3 USD per video and an additional
$5 if they watched all five videos.

Experiment 5 replicated the finding from the laboratory in a home set-
ting. Amazon Mechanical Turk and Prolific were used to recruit subjects
(n = 1,012, 473 females, age range 18 to 64 y, M = 28.1, SD = 8.4 y). n =
532 of 1,012 subjects reported to have some college education and n = 353
had some high school education. Subjects of experiments 1 to 4 participated
in only a single experiment; i.e., they were excluded from subsequent exper-
iments. In experiment 5 subjects were allowed to participate in more than
one assignment (video) so the total subject count is not unique subjects. For
this experiment subjects were compensated with $3 USD per video.

The experimental protocol was approved by the Institutional Review
Boards of the City University of New York. Documented informed consent
was obtained from all subjects for laboratory experiments. Internet-based
informed consent was given by subjects that were recruited for the online
experiments.
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Stimuli. The video stimuli are listed in SI Appendix, Table S2. Briefly, for
experiments 1, 2, 4, and 5 we selected five videos from YouTube channels
that post short informal instructional videos: “Kurzgesagt – In a Nut-
shell” and “Minute Physics.” The videos cover topics relating to physics,
biology, and computer science. Videos are short to match the limited
attention span online (range, 2.4 to 6.5 min; average, 4.1 ± 2.0 min).
Two of the videos (“Immune” and “Internet”) used purely animations,
where “Boys” used paper cutouts and handwriting. “Bulbs” and “Stars”
showed a hand drawing illustrations aiding the narrative. For experiment
3, six video stimuli were selected using the following criteria: 1) The
duration was limited to no more than 6 min (49) to ensure our subject
would not lose interest (SI Appendix, Table S2; duration, 4.2 to 6 min;
average, 5.15 ± 57 s). 2) The videos cover three different styles that
are commonly found in large online educational channels on YouTube
(“Khan Academy,” “eHow,” “Its ok to be smart,” and “SciShow”). Here
we use a nomenclature of video styles as found in the online instruc-
tional video community. “Mosquitoes” and “Related” were produced in the
“Presenter and animation” style, which shows a presenter talking as pictures
and animations are shown. “Planets” and “Enzymes” were produced in the
“Presenter and glass board,” which shows a presenter drawing illustrations
and equations on a glass board facing the viewer. “Capacitors” and “Work
energy” used the “Animation and writing hand” style, which shows a hand
drawing animations. 3) Videos within each “style” cover two different top-
ics each related to biology, astronomy, or physics. For experiments 4 and 5 a
total of five videos were selected among the 11 videos used in experiments
1 to 3. Links to all videos are provided in SI Appendix, Table S2.

Procedure.
Laboratory experiments. In experiment 1 (intentional learning), subjects
watched a video and answered afterward a short four-alternative forced-
choice questionnaire. The five videos and question pairs were presented
in random order. The subjects were aware that they would be tested
on the material. The test covered factual information imparted during
the video (11 to 12 recognition questions per video). Examples of ques-
tions and answer options can be found in SI Appendix, Table S2 and all
can be found at https://osf.io/fjxaq/. In experiment 2 (incidental learning)
subjects were not aware that they would be tested or asked questions
regarding the material. They first watched all five videos and subsequently
answered all of the questions (59 questions in total). In experiment 3,
subjects were informed that questions regarding the material would be
presented after each video and followed the procedure of experiment 1,
using a different set of stimuli with six videos. The order of video pre-
sentation, questions, and answer options were randomized for all three
experiments. Common for experiments 1 to 3, after subjects had watched
all video stimuli and answered questions, they watched all of the videos
again in a distracted condition using the same order as the attend condi-
tion. In this condition participants counted backward silently in the mind,
from a randomly chosen prime number between 800 and 1,000, in decre-
ments of 7. This task aimed to distract the subjects from the stimulus
without requiring overt responses and is based on the serial subtraction
task used to assess mental capacity and has previously been used to assess
attention (7).
Online experiments. The web camera experiments (experiments 4 and 5)
were carried out using Elicit, a framework developed for online experi-
ments. In experiment 4 (classroom) students used the same computers they
use for their class exercises. From the Elicit webpage subjects could select
which video they wanted to watch from a list of five videos. Subjects
were given a short verbal instruction besides the written instructions that
were provided through the website. In experiment 5 (at-home) subjects
could select human intelligence tasks (Amazon Mechanical Turk assign-
ments) or assignments (Prolific) that contained a single video with questions
and otherwise followed the same procedure as in experiment 4. For both
experiments 4 and 5, subjects were informed that there would be ques-
tions regarding the material after the video. They first received instructions
regarding the procedure, performed the webcam calibration to enable
tracking of their eye movements, watched a single video, and answered a
four-alternative choice questionnaire for that video. Subjects were allowed
to perform more than one assignment, i.e., view more than one video
and answer questions. In experiment 5 subjects were additionally shown
a short instructional video on how to calibrate the webcam to track eye
movements.

Online Eye Tracking Using Web Cameras. The webcam-based gaze position
data were recorded using WebGazer (26). WebGazer runs locally on the
subject’s computer and uses the subject’s webcam to compute the gaze posi-

tion. The script fits a wireframe to the subject’s face and captures images
of the subject’s eyes to compute where on the screen the subject is look-
ing. Only the gaze position and the coordinates of the eye images used for
the eye position computation were transmitted from the subject’s computer
to our web server. For the software to compute where on the screen the
participant is looking, a standard nine-point calibration scheme was used.
Subjects had to achieve a 70% accuracy to proceed in the experiment. Note
that here we did transfer user data to the server for analysis. However, in a
fully local implementation of the approach no user data would be transmit-
ted. Instead, median eye positions of a previously recorded group would be
transmitted to the remote location and median-to-subject correlation could
be computed entirely locally.

Preprocessing of Webcam-Based Gaze Position Data. WebGazer estimates
point of gaze on the screen as well as the position and size of the eyes
on the webcam image. Eye position and size allowed us to estimate the
movement of the subject in horizontal and vertical directions. The point
of gaze and eye image position and size were up-sampled to a uniform
1,000 Hz, from the variable sampling rate of each remote webcam (typi-
cally in the range of 15 to 100 Hz). An inclusion criterion for the study was
that the gaze position data should be sampled at least at an average of
15 Hz. Missing data were linearly interpolated and the gaze positions were
denoised using a 300-ms-long median filter. Movements of the participant
were linearly regressed out of the gaze position data using the estimated
head position of the participant from the image patch coordinates. This was
done since the estimated gaze position is sensitive to head movements (we
found this regression increased the overall ISC). Subjects that had excessive
movements were removed from the study (16 of 1,159 subjects; excessive
movement is defined as 1,000 times the standard deviation of the recorded
image patch coordinates in the horizontal, vertical, and depth directions).
Blinks were detected as peaks in the vertical gaze position data after a
200-ms median filter. The onset and offset of each blink were identified
as a minimum point in the first-order temporal derivative of the gaze posi-
tion. Blinks were filled using linear interpolation in both the horizontal and
vertical directions. Subjects that had more than 20% of data interpolated
using this method were removed from the cohort (14 of 1,159 subjects). We
could not compute the visual angle of gaze since no accurate estimate was
available for the distance of the subject to the screen. Instead, gaze position
is measured in units of pixels, i.e., where on the screen the subject is looking.
Since the resolutions of computer screens vary across subjects, the recorded
gaze position data in pixels were normalized to the width and height of the
window the video was played in (between 0 and 1 indicating the edges of
the video player). Events indicating end of the video stimuli (“stop event”)
were used to segment the gaze position data. The start time for each sub-
ject was estimated as the difference between the stop event and the actual
duration of the video. This was done, since the time to load the YouTube
player was variable across user platforms.

Estimating the Quality of Gaze Position. To compute the quality of the gaze
position data, subjects were instructed to look at a sequence of four dots in
each corner of the screen, embedded in the video stimuli before and after
the video. The actual dot position on the individual screen was computed
and compared to the captured eye gaze position of the WebGazer. The devi-
ation was computed as the pooled deviation of the recorded gaze position
from the position of the dot, while the subject looked at each dot. Poor
data quality is indicated by higher deviation. Furthermore, subjects with
low-quality calibration were identified by computing the spatial difference
of recorded gaze position data of opposing dots in the horizontal and ver-
tical directions when they were looking at the four dots. If the difference
in recorded gaze position between dot pairs was in average negative, i.e.,
left/right reversed, the subject was excluded (135 of 1,159).

Preprocessing of Laboratory Gaze Position Data. In the laboratory (experi-
ments 1 to 3) gaze position data were recorded using an Eyelink 1000 eye
tracker (SR Research Ltd.) at a sampling frequency of 500 Hz using a 35-mm
lens. The subjects were free to move their heads, to ensure comfort (no chin
rest). A standard nine-point calibration scheme was used, using manual ver-
ification. To ensure stable pupil size recordings, the background color of the
calibration screen and all instructions presented to the subjects were set to
be the average luminance of all of the videos presented during the exper-
iment. In between each stimulus presentation a drift check was performed
and tracking was recalibrated if the visual angular error was greater than
2◦. Blinks were detected using the SR research blink detection algorithm
and remaining peaks were found using a peak picking algorithm. The blink
and 100 ms before and after were filled with linearly interpolated values.
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Intersubject Correlation and Attention Analysis of Gaze Position Data. Inter-
subject correlation of eye movements was calculated by 1) computing the
Pearson’s correlation coefficient between a single subject’s gaze position in
the vertical direction with that of all other subjects while they watched a
video; 2) obtaining a single ISC value for a subject by averaging the corre-
lation values between that subject and all other subjects (ISC); and 3) then
repeating steps 1 and 2 for all subjects, resulting in a single ISC value for
each subject. We repeat these three steps for the horizontal eye move-
ments ISChorizontal and the pupil size ISCpupil. To obtain the measure used
for the laboratory experiments we averaged the three ISC values which we
call ISC = (ISCvertical + ISChorizontal + ISCpupil)/3. The ISC values for the attend
and distract conditions were computed on the data for the two conditions
separately. To test whether ISC varies between the attend and distract condi-
tions, a three-way repeated-measures ANOVA was used with fixed effect of
video and attentional state (attend vs. distract) and random effect of sub-
ject. As an additional measure the receiver operating characteristic curve
(ROC) was used. Each point on the curve is a single subject. To quantify
the overall ability of ISC to discriminate between attend and distract con-
ditions the area under the ROC curve (AUC) is used. To test for the effect
of motivation, ISC was computed for each video in the attend condition
and averaged across all videos. Since the distribution was not Gaussian,
we tested for a difference in median ISC values with a Wilcoxon rank sum
test. To test for the effect of video style on the attentional modulation
of ISC we performed a three-way repeated-measures ANOVA. The random
effect was subject and fixed effects were stimuli, attentional condition, and
video style.

Weighted Intersubject Correlation of Eye Movements. For the experiments
with the web camera in the classroom and at home we compute for
each time point in the video the median gaze position across all sub-
jects (Fig. 3A). We then compute the Pearson’s correlation coefficient of
that median time course with the time course of gaze position of each
subject. We refer to this as median-to-subject correlation, MSCvertical and
MSChorizontal. Note that in principle this can be computed with the median
gaze positions previously collected on a sample group for each video. To
compute this remotely without transmitting the gaze data of individual
users, one would transmit the median gaze positions to the remote user
of the online platform (two values for each time point in the video). MSC
can then be computed locally by the remote user. Eye velocity has been
demonstrated to be a useful measure of synchronous eye movements (16).
We therefore compute in addition MSC for the velocity of eye movements
as follows. First, we compute movement velocity by taking the temporal
derivative of horizontal and vertical gaze positions using the Hilbert trans-
form. We form two-dimensional spatial vectors of these velocity estimates
(combining Hilbert transforms of horizontal and vertical directions). These
vectors are normalized to unit length. The median gaze velocity vector is
obtained as the median of the two coordinates across all subjects. The
median-to-subject correlation of velocity, MSCvelocity , is then computed as
the cosine distance between the velocity vectors of each subject and the
median velocity vector, averaged over time. Finally, we combine the three
MSC measures to obtain a single weighted intersubject correlation value
for each subject, wISC = w1MSCvertical + w2MSChorizontal + w3MSCvelocity , fol-
lowing our previous work on ISC of neural signals (27, 28). The weights wi

are chosen to best predict test scores with the constraint that they must
sum up to 1 and that they are all positive. This is done with conventional
constrained optimization. The constraints ensure that the wISC values are
bounded between −1 and 1. To avoid a biased estimate of predictabil-
ity we optimize these weights for each subject on the gaze/score data
leaving out that subject from the optimization; i.e., we use leave-one-out
cross-validation.

Frequency-Resolved Analysis of ISC. We performed a frequency analysis to
investigate at which time scale eye movements and pupil size synchronize
between subjects. The vertical and horizontal gaze position signal was band-
pass filtered using fifth-order Butterworth filters with logarithmic spaced
center frequencies with a bandwidth of 0.2 of the center frequency. The ISC
was computed for each subject in each frequency band (experiment 2 on all
five videos). To obtain a single ISC value per frequency band we average ISC

values for all videos, for all subjects, and across the two directions (horizon-
tal and vertical). The gray-shaded intervals around the mean values (Fig. 1D)
are the standard error across subjects. The same analysis was done on the
pupil size.

Student Learning Assessment. Four-alternative, forced-choice questions
were used to assess the performance of students (score). Test performance
was calculated as the percentage of correct responses each student gave for
each video. For questions that had multiple correct options, points were
given per correct selected option and subtracted per incorrect selected
option. The questionnaires were designed in pilot experiments to yield
an even distribution of answer options from subjects that had not seen
the videos. All questions and answer options can be found at https://osf.
io/fjxaq/.

To estimate the baseline difficulty of the questions, separate naı̈ve
cohorts of subjects were given the same questions without seeing the
videos. Two different cohorts were recruited from the City College of New
York to compare against the cohorts recruited for experiments 1 to 4 (exper-
iments 1, 2, and 4, n = 26; experiment 3, n = 15) and a third from Prolific to
compare against the at-home experiment cohort (experiment 5, n = 25).

All questions were categorized as either recognition or comprehension
questions following Bloom’s taxonomy (56) and defined here specifically
as follows: Recognition–Question can be answered by remembering a
word, phrase, or number which was specifically stated in the video and
does not require understanding of scientific concepts to answer correctly;
Comprehension–Question involves an application or interpretation of ideas
presented in the video or identification of concepts developed in the video
that likely requires understanding to be able to answer correctly. To decide
on the category for each question, we independently rated each question
and the majority rating was selected as the final categorization (see ratings
at https://osf.io/fjxaq/).

Relating Student Test Performance and ISC. When evaluating the different
learning scenarios (incidental and intentional learning) in experiments 1 and
2, students’ scores and ISC values were averaged across all videos. ISC was
compared to student test performance by computing the Pearson’s corre-
lation coefficient between ISC and test performance. Similarly, to test the
effect of video style, the ISC and scores for each subject were averages
for the videos produced in different styles and correlated using Pearson’s
correlation. Testing the connection between ISC and test scores on each indi-
vidual video, subjects’ scores were compared with the ISC using Pearson’s
correlation. To test whether there is a significant difference in correlation
between comprehension vs. recognition questions and ISC we used the same
ISC values and performed a test between correlation values with a shared
dependent variable (57). Testing how well eye-movement ISC can predict
the performance of students on tests regarding the material in the online
setting, we use leave-one-out cross-validation. We estimate the attention
model (see SI Appendix, section S4 for description) on all subjects leaving
out one subject’s ISC values and their corresponding test scores. We then
estimate how well ISC predicts the test score on the left-out subject. We do
this for all subjects and compute the median absolute deviation between
the prediction and the actual score. To test whether our eye-movement ISC
model is statistically better than a naı̈ve model (only predicting the average
score), we subtract the prediction errors of the two models and perform a
two-sided sign test.

Data Availability. Anonymized data to produce each figure in matlab for-
mat is available in the Open Science Framework (https://osf.io/m7gj4/). A full
list of questions and answer options can be found in Open Science Frame-
work (https://osf.io/fjxaq/). The code used to carry out the online experiment
is available in Github (https://github.com/elicit-experiment).
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